mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-03 04:12:10 +08:00
199b2450f6
Change all references to stdout/stderr to gdb_stdout/gdb_stderr. Replace all calls to stdio output functions with calls to corresponding _unfiltered functions (`fprintf_unfiltered') Replaced calls to fopen for output to gdb_fopen. Added sufficient goo to utils.c and defs.h to make the above work. The net effect is that stdio output functions are only directly used in utils.c. Elsewhere, the _unfiltered and _filtered functions and GDB_FILE type are used. In the near future, GDB_FILE will stop being equivalant to FILE. The semantics of some commands has changed in a very subtle way: called in the right context, they may cause new occurences of prompt_for_continue() behavior. The testsuite doesn't notice anything like this, though. Please respect this change by not reintroducing stdio output dependencies in the main body of gdb code. All output from commands should go to a GDB_FILE. Target-specific code can still use stdio directly to communicate with targets.
1069 lines
30 KiB
C
1069 lines
30 KiB
C
/* Print values for GDB, the GNU debugger.
|
||
Copyright 1986, 1988, 1989, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include <string.h>
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "obstack.h"
|
||
#include "language.h"
|
||
#include "demangle.h"
|
||
|
||
#include <errno.h>
|
||
|
||
/* Prototypes for local functions */
|
||
|
||
static void
|
||
print_hex_chars PARAMS ((GDB_FILE *, unsigned char *, unsigned int));
|
||
|
||
static void
|
||
show_print PARAMS ((char *, int));
|
||
|
||
static void
|
||
set_print PARAMS ((char *, int));
|
||
|
||
static void
|
||
set_radix PARAMS ((char *, int));
|
||
|
||
static void
|
||
show_radix PARAMS ((char *, int));
|
||
|
||
static void
|
||
set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
|
||
|
||
static void
|
||
set_input_radix_1 PARAMS ((int, unsigned));
|
||
|
||
static void
|
||
set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
|
||
|
||
static void
|
||
set_output_radix_1 PARAMS ((int, unsigned));
|
||
|
||
static void
|
||
value_print_array_elements PARAMS ((value, GDB_FILE *, int, enum val_prettyprint));
|
||
|
||
/* Maximum number of chars to print for a string pointer value or vector
|
||
contents, or UINT_MAX for no limit. Note that "set print elements 0"
|
||
stores UINT_MAX in print_max, which displays in a show command as
|
||
"unlimited". */
|
||
|
||
unsigned int print_max;
|
||
#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
|
||
|
||
/* Default input and output radixes, and output format letter. */
|
||
|
||
unsigned input_radix = 10;
|
||
unsigned output_radix = 10;
|
||
int output_format = 0;
|
||
|
||
/* Print repeat counts if there are more than this many repetitions of an
|
||
element in an array. Referenced by the low level language dependent
|
||
print routines. */
|
||
|
||
unsigned int repeat_count_threshold = 10;
|
||
|
||
int prettyprint_structs; /* Controls pretty printing of structures */
|
||
int prettyprint_arrays; /* Controls pretty printing of arrays. */
|
||
|
||
/* If nonzero, causes unions inside structures or other unions to be
|
||
printed. */
|
||
|
||
int unionprint; /* Controls printing of nested unions. */
|
||
|
||
/* If nonzero, causes machine addresses to be printed in certain contexts. */
|
||
|
||
int addressprint; /* Controls printing of machine addresses */
|
||
|
||
|
||
/* Print data of type TYPE located at VALADDR (within GDB), which came from
|
||
the inferior at address ADDRESS, onto stdio stream STREAM according to
|
||
FORMAT (a letter, or 0 for natural format using TYPE).
|
||
|
||
If DEREF_REF is nonzero, then dereference references, otherwise just print
|
||
them like pointers.
|
||
|
||
The PRETTY parameter controls prettyprinting.
|
||
|
||
If the data are a string pointer, returns the number of string characters
|
||
printed.
|
||
|
||
FIXME: The data at VALADDR is in target byte order. If gdb is ever
|
||
enhanced to be able to debug more than the single target it was compiled
|
||
for (specific CPU type and thus specific target byte ordering), then
|
||
either the print routines are going to have to take this into account,
|
||
or the data is going to have to be passed into here already converted
|
||
to the host byte ordering, whichever is more convenient. */
|
||
|
||
|
||
int
|
||
val_print (type, valaddr, address, stream, format, deref_ref, recurse, pretty)
|
||
struct type *type;
|
||
char *valaddr;
|
||
CORE_ADDR address;
|
||
GDB_FILE *stream;
|
||
int format;
|
||
int deref_ref;
|
||
int recurse;
|
||
enum val_prettyprint pretty;
|
||
{
|
||
if (pretty == Val_pretty_default)
|
||
{
|
||
pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
|
||
}
|
||
|
||
QUIT;
|
||
|
||
/* Ensure that the type is complete and not just a stub. If the type is
|
||
only a stub and we can't find and substitute its complete type, then
|
||
print appropriate string and return. Typical types that my be stubs
|
||
are structs, unions, and C++ methods. */
|
||
|
||
check_stub_type (type);
|
||
if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
|
||
{
|
||
fprintf_filtered (stream, "<incomplete type>");
|
||
gdb_flush (stream);
|
||
return (0);
|
||
}
|
||
|
||
return (LA_VAL_PRINT (type, valaddr, address, stream, format, deref_ref,
|
||
recurse, pretty));
|
||
}
|
||
|
||
/* Print the value VAL in C-ish syntax on stream STREAM.
|
||
FORMAT is a format-letter, or 0 for print in natural format of data type.
|
||
If the object printed is a string pointer, returns
|
||
the number of string bytes printed. */
|
||
|
||
int
|
||
value_print (val, stream, format, pretty)
|
||
value val;
|
||
GDB_FILE *stream;
|
||
int format;
|
||
enum val_prettyprint pretty;
|
||
{
|
||
register unsigned int n, typelen;
|
||
|
||
if (val == 0)
|
||
{
|
||
printf_filtered ("<address of value unknown>");
|
||
return 0;
|
||
}
|
||
if (VALUE_OPTIMIZED_OUT (val))
|
||
{
|
||
printf_filtered ("<value optimized out>");
|
||
return 0;
|
||
}
|
||
|
||
/* A "repeated" value really contains several values in a row.
|
||
They are made by the @ operator.
|
||
Print such values as if they were arrays. */
|
||
|
||
if (VALUE_REPEATED (val))
|
||
{
|
||
n = VALUE_REPETITIONS (val);
|
||
typelen = TYPE_LENGTH (VALUE_TYPE (val));
|
||
fprintf_filtered (stream, "{");
|
||
/* Print arrays of characters using string syntax. */
|
||
if (typelen == 1 && TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
|
||
&& format == 0)
|
||
LA_PRINT_STRING (stream, VALUE_CONTENTS (val), n, 0);
|
||
else
|
||
{
|
||
value_print_array_elements (val, stream, format, pretty);
|
||
}
|
||
fprintf_filtered (stream, "}");
|
||
return (n * typelen);
|
||
}
|
||
else
|
||
{
|
||
struct type *type = VALUE_TYPE (val);
|
||
|
||
/* If it is a pointer, indicate what it points to.
|
||
|
||
Print type also if it is a reference.
|
||
|
||
C++: if it is a member pointer, we will take care
|
||
of that when we print it. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR ||
|
||
TYPE_CODE (type) == TYPE_CODE_REF)
|
||
{
|
||
/* Hack: remove (char *) for char strings. Their
|
||
type is indicated by the quoted string anyway. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR &&
|
||
TYPE_LENGTH (TYPE_TARGET_TYPE (type)) == sizeof(char) &&
|
||
TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_INT &&
|
||
!TYPE_UNSIGNED (TYPE_TARGET_TYPE (type)))
|
||
{
|
||
/* Print nothing */
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (stream, "(");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, ") ");
|
||
}
|
||
}
|
||
return (val_print (type, VALUE_CONTENTS (val),
|
||
VALUE_ADDRESS (val), stream, format, 1, 0, pretty));
|
||
}
|
||
}
|
||
|
||
/* Called by various <lang>_val_print routines to print TYPE_CODE_INT's */
|
||
|
||
void
|
||
val_print_type_code_int (type, valaddr, stream)
|
||
struct type *type;
|
||
char *valaddr;
|
||
GDB_FILE *stream;
|
||
{
|
||
char *p;
|
||
/* Pointer to first (i.e. lowest address) nonzero character. */
|
||
char *first_addr;
|
||
unsigned int len;
|
||
|
||
if (TYPE_LENGTH (type) > sizeof (LONGEST))
|
||
{
|
||
if (TYPE_UNSIGNED (type))
|
||
{
|
||
/* First figure out whether the number in fact has zeros
|
||
in all its bytes more significant than least significant
|
||
sizeof (LONGEST) ones. */
|
||
len = TYPE_LENGTH (type);
|
||
|
||
#if TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
for (p = valaddr;
|
||
len > sizeof (LONGEST) && p < valaddr + TYPE_LENGTH (type);
|
||
p++)
|
||
#else /* Little endian. */
|
||
first_addr = valaddr;
|
||
for (p = valaddr + TYPE_LENGTH (type) - 1;
|
||
len > sizeof (LONGEST) && p >= valaddr;
|
||
p--)
|
||
#endif /* Little endian. */
|
||
{
|
||
if (*p == 0)
|
||
{
|
||
len--;
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
#if TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
first_addr = p;
|
||
#endif
|
||
if (len <= sizeof (LONGEST))
|
||
{
|
||
/* We can print it in decimal. */
|
||
print_longest (stream, 'u', 0,
|
||
unpack_long (BUILTIN_TYPE_LONGEST, first_addr));
|
||
}
|
||
else
|
||
{
|
||
/* It is big, so print it in hex. */
|
||
print_hex_chars (stream, (unsigned char *) first_addr, len);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Signed. One could assume two's complement (a reasonable
|
||
assumption, I think) and do better than this. */
|
||
print_hex_chars (stream, (unsigned char *) valaddr,
|
||
TYPE_LENGTH (type));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
#ifdef PRINT_TYPELESS_INTEGER
|
||
PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
|
||
#else
|
||
print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
|
||
unpack_long (type, valaddr));
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
|
||
The raison d'etre of this function is to consolidate printing of LONG_LONG's
|
||
into this one function. Some platforms have long longs but don't have a
|
||
printf() that supports "ll" in the format string. We handle these by seeing
|
||
if the number is actually a long, and if not we just bail out and print the
|
||
number in hex. The format chars b,h,w,g are from
|
||
print_scalar_formatted(). USE_LOCAL says whether or not to call the
|
||
local formatting routine to get the format. */
|
||
|
||
void
|
||
print_longest (stream, format, use_local, val_long)
|
||
GDB_FILE *stream;
|
||
int format;
|
||
int use_local;
|
||
LONGEST val_long;
|
||
{
|
||
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
|
||
long vtop, vbot;
|
||
|
||
vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
|
||
vbot = (long) val_long;
|
||
|
||
if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
|
||
|| ((format == 'u' || format == 'x') && val_long > UINT_MAX))
|
||
{
|
||
fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
#ifdef PRINTF_HAS_LONG_LONG
|
||
switch (format)
|
||
{
|
||
case 'd':
|
||
fprintf_filtered (stream,
|
||
use_local ? local_decimal_format_custom ("ll")
|
||
: "%lld",
|
||
val_long);
|
||
break;
|
||
case 'u':
|
||
fprintf_filtered (stream, "%llu", val_long);
|
||
break;
|
||
case 'x':
|
||
fprintf_filtered (stream,
|
||
use_local ? local_hex_format_custom ("ll")
|
||
: "%llx",
|
||
val_long);
|
||
break;
|
||
case 'o':
|
||
fprintf_filtered (stream,
|
||
use_local ? local_octal_format_custom ("ll")
|
||
: "%llo",
|
||
break;
|
||
case 'b':
|
||
fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
|
||
break;
|
||
case 'h':
|
||
fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
|
||
break;
|
||
case 'w':
|
||
fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
|
||
break;
|
||
case 'g':
|
||
fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
#else /* !PRINTF_HAS_LONG_LONG */
|
||
/* In the following it is important to coerce (val_long) to a long. It does
|
||
nothing if !LONG_LONG, but it will chop off the top half (which we know
|
||
we can ignore) if the host supports long longs. */
|
||
|
||
switch (format)
|
||
{
|
||
case 'd':
|
||
fprintf_filtered (stream,
|
||
use_local ? local_decimal_format_custom ("l")
|
||
: "%ld",
|
||
(long) val_long);
|
||
break;
|
||
case 'u':
|
||
fprintf_filtered (stream, "%lu", (unsigned long) val_long);
|
||
break;
|
||
case 'x':
|
||
fprintf_filtered (stream,
|
||
use_local ? local_hex_format_custom ("l")
|
||
: "%lx",
|
||
(long) val_long);
|
||
break;
|
||
case 'o':
|
||
fprintf_filtered (stream,
|
||
use_local ? local_octal_format_custom ("l")
|
||
: "%lo",
|
||
(long) val_long);
|
||
break;
|
||
case 'b':
|
||
fprintf_filtered (stream, local_hex_format_custom ("02l"),
|
||
(long) val_long);
|
||
break;
|
||
case 'h':
|
||
fprintf_filtered (stream, local_hex_format_custom ("04l"),
|
||
(long) val_long);
|
||
break;
|
||
case 'w':
|
||
fprintf_filtered (stream, local_hex_format_custom ("08l"),
|
||
(long) val_long);
|
||
break;
|
||
case 'g':
|
||
fprintf_filtered (stream, local_hex_format_custom ("016l"),
|
||
(long) val_long);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
#endif /* !PRINTF_HAS_LONG_LONG */
|
||
}
|
||
|
||
/* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
|
||
on STREAM. */
|
||
|
||
void
|
||
print_floating (valaddr, type, stream)
|
||
char *valaddr;
|
||
struct type *type;
|
||
GDB_FILE *stream;
|
||
{
|
||
double doub;
|
||
int inv;
|
||
unsigned len = TYPE_LENGTH (type);
|
||
|
||
#if defined (IEEE_FLOAT)
|
||
|
||
/* Check for NaN's. Note that this code does not depend on us being
|
||
on an IEEE conforming system. It only depends on the target
|
||
machine using IEEE representation. This means (a)
|
||
cross-debugging works right, and (2) IEEE_FLOAT can (and should)
|
||
be defined for systems like the 68881, which uses IEEE
|
||
representation, but is not IEEE conforming. */
|
||
|
||
{
|
||
unsigned long low, high;
|
||
/* Is the sign bit 0? */
|
||
int nonnegative;
|
||
/* Is it is a NaN (i.e. the exponent is all ones and
|
||
the fraction is nonzero)? */
|
||
int is_nan;
|
||
|
||
if (len == 4)
|
||
{
|
||
/* It's single precision. */
|
||
/* Assume that floating point byte order is the same as
|
||
integer byte order. */
|
||
low = extract_unsigned_integer (valaddr, 4);
|
||
nonnegative = low >= 0;
|
||
is_nan = ((((low >> 23) & 0xFF) == 0xFF)
|
||
&& 0 != (low & 0x7FFFFF));
|
||
low &= 0x7fffff;
|
||
high = 0;
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
/* It's double precision. Get the high and low words. */
|
||
|
||
/* Assume that floating point byte order is the same as
|
||
integer byte order. */
|
||
#if TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
low = extract_unsigned_integer (valaddr + 4, 4);
|
||
high = extract_unsigned_integer (valaddr, 4);
|
||
#else
|
||
low = extract_unsigned_integer (valaddr, 4);
|
||
high = extract_unsigned_integer (valaddr + 4, 4);
|
||
#endif
|
||
nonnegative = high >= 0;
|
||
is_nan = (((high >> 20) & 0x7ff) == 0x7ff
|
||
&& ! ((((high & 0xfffff) == 0)) && (low == 0)));
|
||
high &= 0xfffff;
|
||
}
|
||
else
|
||
/* Extended. We can't detect NaNs for extendeds yet. Also note
|
||
that currently extendeds get nuked to double in
|
||
REGISTER_CONVERTIBLE. */
|
||
is_nan = 0;
|
||
|
||
if (is_nan)
|
||
{
|
||
/* The meaning of the sign and fraction is not defined by IEEE.
|
||
But the user might know what they mean. For example, they
|
||
(in an implementation-defined manner) distinguish between
|
||
signaling and quiet NaN's. */
|
||
if (high)
|
||
fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + nonnegative,
|
||
high, low);
|
||
else
|
||
fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
|
||
return;
|
||
}
|
||
}
|
||
#endif /* IEEE_FLOAT. */
|
||
|
||
doub = unpack_double (type, valaddr, &inv);
|
||
if (inv)
|
||
fprintf_filtered (stream, "<invalid float value>");
|
||
else
|
||
fprintf_filtered (stream, len <= sizeof(float) ? "%.9g" : "%.17g", doub);
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
|
||
|
||
static void
|
||
print_hex_chars (stream, valaddr, len)
|
||
GDB_FILE *stream;
|
||
unsigned char *valaddr;
|
||
unsigned len;
|
||
{
|
||
unsigned char *p;
|
||
|
||
/* FIXME: We should be not printing leading zeroes in most cases. */
|
||
|
||
fprintf_filtered (stream, local_hex_format_prefix ());
|
||
#if TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
#else /* Little endian. */
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
#endif
|
||
{
|
||
fprintf_filtered (stream, "%02x", *p);
|
||
}
|
||
fprintf_filtered (stream, local_hex_format_suffix ());
|
||
}
|
||
|
||
/* Called by various <lang>_val_print routines to print elements of an
|
||
array in the form "<elem1>, <elem2>, <elem3>, ...".
|
||
|
||
(FIXME?) Assumes array element separator is a comma, which is correct
|
||
for all languages currently handled.
|
||
(FIXME?) Some languages have a notation for repeated array elements,
|
||
perhaps we should try to use that notation when appropriate.
|
||
*/
|
||
|
||
void
|
||
val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
|
||
recurse, pretty, i)
|
||
struct type *type;
|
||
char *valaddr;
|
||
CORE_ADDR address;
|
||
GDB_FILE *stream;
|
||
int format;
|
||
int deref_ref;
|
||
int recurse;
|
||
enum val_prettyprint pretty;
|
||
unsigned int i;
|
||
{
|
||
unsigned int things_printed = 0;
|
||
unsigned len;
|
||
struct type *elttype;
|
||
unsigned eltlen;
|
||
/* Position of the array element we are examining to see
|
||
whether it is repeated. */
|
||
unsigned int rep1;
|
||
/* Number of repetitions we have detected so far. */
|
||
unsigned int reps;
|
||
|
||
elttype = TYPE_TARGET_TYPE (type);
|
||
eltlen = TYPE_LENGTH (elttype);
|
||
len = TYPE_LENGTH (type) / eltlen;
|
||
|
||
for (; i < len && things_printed < print_max; i++)
|
||
{
|
||
if (i != 0)
|
||
{
|
||
if (prettyprint_arrays)
|
||
{
|
||
fprintf_filtered (stream, ",\n");
|
||
print_spaces_filtered (2 + 2 * recurse, stream);
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (stream, ", ");
|
||
}
|
||
}
|
||
wrap_here (n_spaces (2 + 2 * recurse));
|
||
|
||
rep1 = i + 1;
|
||
reps = 1;
|
||
while ((rep1 < len) &&
|
||
!memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
|
||
{
|
||
++reps;
|
||
++rep1;
|
||
}
|
||
|
||
if (reps > repeat_count_threshold)
|
||
{
|
||
val_print (elttype, valaddr + i * eltlen, 0, stream, format,
|
||
deref_ref, recurse + 1, pretty);
|
||
fprintf_filtered (stream, " <repeats %u times>", reps);
|
||
i = rep1 - 1;
|
||
things_printed += repeat_count_threshold;
|
||
}
|
||
else
|
||
{
|
||
val_print (elttype, valaddr + i * eltlen, 0, stream, format,
|
||
deref_ref, recurse + 1, pretty);
|
||
things_printed++;
|
||
}
|
||
}
|
||
if (i < len)
|
||
{
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
|
||
static void
|
||
value_print_array_elements (val, stream, format, pretty)
|
||
value val;
|
||
GDB_FILE *stream;
|
||
int format;
|
||
enum val_prettyprint pretty;
|
||
{
|
||
unsigned int things_printed = 0;
|
||
register unsigned int i, n, typelen;
|
||
/* Position of the array elem we are examining to see if it is repeated. */
|
||
unsigned int rep1;
|
||
/* Number of repetitions we have detected so far. */
|
||
unsigned int reps;
|
||
|
||
n = VALUE_REPETITIONS (val);
|
||
typelen = TYPE_LENGTH (VALUE_TYPE (val));
|
||
for (i = 0; i < n && things_printed < print_max; i++)
|
||
{
|
||
if (i != 0)
|
||
{
|
||
fprintf_filtered (stream, ", ");
|
||
}
|
||
wrap_here ("");
|
||
|
||
rep1 = i + 1;
|
||
reps = 1;
|
||
while (rep1 < n && !memcmp (VALUE_CONTENTS (val) + typelen * i,
|
||
VALUE_CONTENTS (val) + typelen * rep1,
|
||
typelen))
|
||
{
|
||
++reps;
|
||
++rep1;
|
||
}
|
||
|
||
if (reps > repeat_count_threshold)
|
||
{
|
||
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
|
||
VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
|
||
0, pretty);
|
||
fprintf_unfiltered (stream, " <repeats %u times>", reps);
|
||
i = rep1 - 1;
|
||
things_printed += repeat_count_threshold;
|
||
}
|
||
else
|
||
{
|
||
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
|
||
VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
|
||
0, pretty);
|
||
things_printed++;
|
||
}
|
||
}
|
||
if (i < n)
|
||
{
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
|
||
/* Print a string from the inferior, starting at ADDR and printing up to LEN
|
||
characters, to STREAM. If LEN is zero, printing stops at the first null
|
||
byte, otherwise printing proceeds (including null bytes) until either
|
||
print_max or LEN characters have been printed, whichever is smaller. */
|
||
|
||
int
|
||
val_print_string (addr, len, stream)
|
||
CORE_ADDR addr;
|
||
unsigned int len;
|
||
GDB_FILE *stream;
|
||
{
|
||
int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
|
||
int errcode; /* Errno returned from bad reads. */
|
||
unsigned int fetchlimit; /* Maximum number of bytes to fetch. */
|
||
unsigned int nfetch; /* Bytes to fetch / bytes fetched. */
|
||
unsigned int chunksize; /* Size of each fetch, in bytes. */
|
||
int bufsize; /* Size of current fetch buffer. */
|
||
char *buffer = NULL; /* Dynamically growable fetch buffer. */
|
||
char *bufptr; /* Pointer to next available byte in buffer. */
|
||
char *limit; /* First location past end of fetch buffer. */
|
||
struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
|
||
char peekchar; /* Place into which we can read one char. */
|
||
|
||
/* First we need to figure out the limit on the number of characters we are
|
||
going to attempt to fetch and print. This is actually pretty simple. If
|
||
LEN is nonzero, then the limit is the minimum of LEN and print_max. If
|
||
LEN is zero, then the limit is print_max. This is true regardless of
|
||
whether print_max is zero, UINT_MAX (unlimited), or something in between,
|
||
because finding the null byte (or available memory) is what actually
|
||
limits the fetch. */
|
||
|
||
fetchlimit = (len == 0 ? print_max : min (len, print_max));
|
||
|
||
/* Now decide how large of chunks to try to read in one operation. This
|
||
is also pretty simple. If LEN is nonzero, then we want fetchlimit bytes,
|
||
so we might as well read them all in one operation. If LEN is zero, we
|
||
are looking for a null terminator to end the fetching, so we might as
|
||
well read in blocks that are large enough to be efficient, but not so
|
||
large as to be slow if fetchlimit happens to be large. So we choose the
|
||
minimum of DEFAULT_PRINT_MAX and fetchlimit. */
|
||
|
||
chunksize = (len == 0 ? min (PRINT_MAX_DEFAULT, fetchlimit) : fetchlimit);
|
||
|
||
/* Loop until we either have all the characters to print, or we encounter
|
||
some error, such as bumping into the end of the address space. */
|
||
|
||
bufsize = 0;
|
||
do {
|
||
QUIT;
|
||
/* Figure out how much to fetch this time, and grow the buffer to fit. */
|
||
nfetch = min (chunksize, fetchlimit - bufsize);
|
||
bufsize += nfetch;
|
||
if (buffer == NULL)
|
||
{
|
||
buffer = (char *) xmalloc (bufsize);
|
||
bufptr = buffer;
|
||
}
|
||
else
|
||
{
|
||
discard_cleanups (old_chain);
|
||
buffer = (char *) xrealloc (buffer, bufsize);
|
||
bufptr = buffer + bufsize - nfetch;
|
||
}
|
||
old_chain = make_cleanup (free, buffer);
|
||
|
||
/* Read as much as we can. */
|
||
nfetch = target_read_memory_partial (addr, bufptr, nfetch, &errcode);
|
||
if (len != 0)
|
||
{
|
||
addr += nfetch;
|
||
bufptr += nfetch;
|
||
}
|
||
else
|
||
{
|
||
/* Scan this chunk for the null byte that terminates the string
|
||
to print. If found, we don't need to fetch any more. Note
|
||
that bufptr is explicitly left pointing at the next character
|
||
after the null byte, or at the next character after the end of
|
||
the buffer. */
|
||
limit = bufptr + nfetch;
|
||
do {
|
||
addr++;
|
||
bufptr++;
|
||
} while (bufptr < limit && *(bufptr - 1) != '\0');
|
||
}
|
||
} while (errcode == 0 /* no error */
|
||
&& bufptr < buffer + fetchlimit /* no overrun */
|
||
&& !(len == 0 && *(bufptr - 1) == '\0')); /* no null term */
|
||
|
||
/* We now have either successfully filled the buffer to fetchlimit, or
|
||
terminated early due to an error or finding a null byte when LEN is
|
||
zero. */
|
||
|
||
if (len == 0 && *(bufptr - 1) != '\0')
|
||
{
|
||
/* We didn't find a null terminator we were looking for. Attempt
|
||
to peek at the next character. If not successful, or it is not
|
||
a null byte, then force ellipsis to be printed. */
|
||
if (target_read_memory (addr, &peekchar, 1) != 0 || peekchar != '\0')
|
||
{
|
||
force_ellipsis = 1;
|
||
}
|
||
}
|
||
else if ((len != 0 && errcode != 0) || (len > bufptr - buffer))
|
||
{
|
||
/* Getting an error when we have a requested length, or fetching less
|
||
than the number of characters actually requested, always make us
|
||
print ellipsis. */
|
||
force_ellipsis = 1;
|
||
}
|
||
|
||
QUIT;
|
||
|
||
if (addressprint)
|
||
{
|
||
fputs_filtered (" ", stream);
|
||
}
|
||
LA_PRINT_STRING (stream, buffer, bufptr - buffer, force_ellipsis);
|
||
|
||
if (errcode != 0 && force_ellipsis)
|
||
{
|
||
if (errcode == EIO)
|
||
{
|
||
fprintf_filtered (stream,
|
||
" <Address 0x%lx out of bounds>",
|
||
(unsigned long) addr);
|
||
}
|
||
else
|
||
{
|
||
error ("Error reading memory address 0x%lx: %s.",
|
||
(unsigned long) addr,
|
||
safe_strerror (errcode));
|
||
}
|
||
}
|
||
gdb_flush (stream);
|
||
do_cleanups (old_chain);
|
||
return (bufptr - buffer);
|
||
}
|
||
|
||
|
||
/* Validate an input or output radix setting, and make sure the user
|
||
knows what they really did here. Radix setting is confusing, e.g.
|
||
setting the input radix to "10" never changes it! */
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
set_input_radix (args, from_tty, c)
|
||
char *args;
|
||
int from_tty;
|
||
struct cmd_list_element *c;
|
||
{
|
||
set_input_radix_1 (from_tty, *(unsigned *)c->var);
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
set_input_radix_1 (from_tty, radix)
|
||
int from_tty;
|
||
unsigned radix;
|
||
{
|
||
/* We don't currently disallow any input radix except 0 or 1, which don't
|
||
make any mathematical sense. In theory, we can deal with any input
|
||
radix greater than 1, even if we don't have unique digits for every
|
||
value from 0 to radix-1, but in practice we lose on large radix values.
|
||
We should either fix the lossage or restrict the radix range more.
|
||
(FIXME). */
|
||
|
||
if (radix < 2)
|
||
{
|
||
error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
|
||
radix);
|
||
}
|
||
input_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
set_output_radix (args, from_tty, c)
|
||
char *args;
|
||
int from_tty;
|
||
struct cmd_list_element *c;
|
||
{
|
||
set_output_radix_1 (from_tty, *(unsigned *)c->var);
|
||
}
|
||
|
||
static void
|
||
set_output_radix_1 (from_tty, radix)
|
||
int from_tty;
|
||
unsigned radix;
|
||
{
|
||
/* Validate the radix and disallow ones that we aren't prepared to
|
||
handle correctly, leaving the radix unchanged. */
|
||
switch (radix)
|
||
{
|
||
case 16:
|
||
output_format = 'x'; /* hex */
|
||
break;
|
||
case 10:
|
||
output_format = 0; /* decimal */
|
||
break;
|
||
case 8:
|
||
output_format = 'o'; /* octal */
|
||
break;
|
||
default:
|
||
error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
|
||
radix);
|
||
}
|
||
output_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Set both the input and output radix at once. Try to set the output radix
|
||
first, since it has the most restrictive range. An radix that is valid as
|
||
an output radix is also valid as an input radix.
|
||
|
||
It may be useful to have an unusual input radix. If the user wishes to
|
||
set an input radix that is not valid as an output radix, he needs to use
|
||
the 'set input-radix' command. */
|
||
|
||
static void
|
||
set_radix (arg, from_tty)
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
unsigned radix;
|
||
|
||
radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
|
||
set_output_radix_1 (0, radix);
|
||
set_input_radix_1 (0, radix);
|
||
if (from_tty)
|
||
{
|
||
printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Show both the input and output radices. */
|
||
|
||
/*ARGSUSED*/
|
||
static void
|
||
show_radix (arg, from_tty)
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
if (from_tty)
|
||
{
|
||
if (input_radix == output_radix)
|
||
{
|
||
printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
|
||
input_radix, input_radix, input_radix);
|
||
}
|
||
else
|
||
{
|
||
printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
|
||
input_radix, input_radix, input_radix);
|
||
printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
|
||
output_radix, output_radix, output_radix);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*ARGSUSED*/
|
||
static void
|
||
set_print (arg, from_tty)
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
printf_unfiltered (
|
||
"\"set print\" must be followed by the name of a print subcommand.\n");
|
||
help_list (setprintlist, "set print ", -1, gdb_stdout);
|
||
}
|
||
|
||
/*ARGSUSED*/
|
||
static void
|
||
show_print (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
cmd_show_list (showprintlist, from_tty, "");
|
||
}
|
||
|
||
void
|
||
_initialize_valprint ()
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
add_prefix_cmd ("print", no_class, set_print,
|
||
"Generic command for setting how things print.",
|
||
&setprintlist, "set print ", 0, &setlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &setlist);
|
||
/* prefer set print to set prompt */
|
||
add_alias_cmd ("pr", "print", no_class, 1, &setlist);
|
||
|
||
add_prefix_cmd ("print", no_class, show_print,
|
||
"Generic command for showing print settings.",
|
||
&showprintlist, "show print ", 0, &showlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &showlist);
|
||
add_alias_cmd ("pr", "print", no_class, 1, &showlist);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("elements", no_class, var_uinteger, (char *)&print_max,
|
||
"Set limit on string chars or array elements to print.\n\
|
||
\"set print elements 0\" causes there to be no limit.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("repeats", no_class, var_uinteger,
|
||
(char *)&repeat_count_threshold,
|
||
"Set threshold for repeated print elements.\n\
|
||
\"set print repeats 0\" causes all elements to be individually printed.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("pretty", class_support, var_boolean,
|
||
(char *)&prettyprint_structs,
|
||
"Set prettyprinting of structures.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("union", class_support, var_boolean, (char *)&unionprint,
|
||
"Set printing of unions interior to structures.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("array", class_support, var_boolean,
|
||
(char *)&prettyprint_arrays,
|
||
"Set prettyprinting of arrays.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("address", class_support, var_boolean, (char *)&addressprint,
|
||
"Set printing of addresses.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
|
||
c = add_set_cmd ("input-radix", class_support, var_uinteger,
|
||
(char *)&input_radix,
|
||
"Set default input radix for entering numbers.",
|
||
&setlist);
|
||
add_show_from_set (c, &showlist);
|
||
c->function.sfunc = set_input_radix;
|
||
|
||
c = add_set_cmd ("output-radix", class_support, var_uinteger,
|
||
(char *)&output_radix,
|
||
"Set default output radix for printing of values.",
|
||
&setlist);
|
||
add_show_from_set (c, &showlist);
|
||
c->function.sfunc = set_output_radix;
|
||
|
||
/* The "set radix" and "show radix" commands are special in that they are
|
||
like normal set and show commands but allow two normally independent
|
||
variables to be either set or shown with a single command. So the
|
||
usual add_set_cmd() and add_show_from_set() commands aren't really
|
||
appropriate. */
|
||
add_cmd ("radix", class_support, set_radix,
|
||
"Set default input and output number radices.\n\
|
||
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
|
||
Without an argument, sets both radices back to the default value of 10.",
|
||
&setlist);
|
||
add_cmd ("radix", class_support, show_radix,
|
||
"Show the default input and output number radices.\n\
|
||
Use 'show input-radix' or 'show output-radix' to independently show each.",
|
||
&showlist);
|
||
|
||
/* Give people the defaults which they are used to. */
|
||
prettyprint_structs = 0;
|
||
prettyprint_arrays = 0;
|
||
unionprint = 1;
|
||
addressprint = 1;
|
||
print_max = PRINT_MAX_DEFAULT;
|
||
}
|