binutils-gdb/gdb/testsuite/gdb.base/watchpoint.c
Daniel Jacobowitz fa4727a64f * breakpoint.c (fetch_watchpoint_value): New function.
(update_watchpoint): Set and clear val_valid.  Use
	fetch_watchpoint_value.  Handle unreadable values on the
	value chain.  Correct check for user-requested array watchpoints.
	(breakpoint_init_inferior): Clear val_valid.
	(watchpoint_value_print): New function.
	(print_it_typical): Use it.  Do not free or clear old_val.  Print
	watchpoints even if old_val == NULL.
	(watchpoint_check): Use fetch_watchpoint_value.  Check for values
	becoming readable or unreadable.
	(watch_command_1): Use fetch_watchpoint_value.  Set val_valid.
	(do_enable_watchpoint): Likewise.
	* breakpoint.h (struct breakpoint): Update comment for val.  Add
	val_valid.
	* NEWS: Mention watchpoints on inaccessible memory.

	* gdb.base/watchpoint.c (global_ptr, func4): New.
	(main): Call func4.
	* gdb.base/watchpoint.exp: Call test_inaccessible_watchpoint.
	(test_inaccessible_watchpoint): New.

	* gdb.texinfo (Set Watchpoints): Mention watchpoints on
	unreadable memory.  Delete obsolete SPARClite reference.
2008-03-03 13:24:12 +00:00

202 lines
4.3 KiB
C

#include <stdio.h>
#include <unistd.h>
/*
* Since using watchpoints can be very slow, we have to take some pains to
* ensure that we don't run too long with them enabled or we run the risk
* of having the test timeout. To help avoid this, we insert some marker
* functions in the execution stream so we can set breakpoints at known
* locations, without worrying about invalidating line numbers by changing
* this file. We use null bodied functions are markers since gdb does
* not support breakpoints at labeled text points at this time.
*
* One place we need is a marker for when we start executing our tests
* instructions rather than any process startup code, so we insert one
* right after entering main(). Another is right before we finish, before
* we start executing any process termination code.
*
* Another problem we have to guard against, at least for the test
* suite, is that we need to ensure that the line that causes the
* watchpoint to be hit is still the current line when gdb notices
* the hit. Depending upon the specific code generated by the compiler,
* the instruction after the one that triggers the hit may be part of
* the same line or part of the next line. Thus we ensure that there
* are always some instructions to execute on the same line after the
* code that should trigger the hit.
*/
int count = -1;
int ival1 = -1;
int ival2 = -1;
int ival3 = -1;
int ival4 = -1;
int ival5 = -1;
char buf[10];
struct foo
{
int val;
};
struct foo struct1, struct2, *ptr1, *ptr2;
int doread = 0;
char *global_ptr;
void marker1 ()
{
}
void marker2 ()
{
}
void marker4 ()
{
}
void marker5 ()
{
}
void marker6 ()
{
}
#ifdef PROTOTYPES
void recurser (int x)
#else
void recurser (x) int x;
#endif
{
int local_x;
if (x > 0)
recurser (x-1);
local_x = x;
}
void
func2 ()
{
int local_a;
static int static_b;
ival5++;
local_a = ival5;
static_b = local_a;
}
void
func3 ()
{
int x;
int y;
x = 0;
x = 1; /* second x assignment */
y = 1;
y = 2;
}
int
func1 ()
{
/* The point of this is that we will set a breakpoint at this call.
Then, if DECR_PC_AFTER_BREAK equals the size of a function call
instruction (true on a sun3 if this is gcc-compiled--FIXME we
should use asm() to make it work for any compiler, present or
future), then we will end up branching to the location just after
the breakpoint. And we better not confuse that with hitting the
breakpoint. */
func2 ();
return 73;
}
void
func4 ()
{
buf[0] = 3;
global_ptr = buf;
buf[0] = 7;
}
int main ()
{
#ifdef usestubs
set_debug_traps();
breakpoint();
#endif
struct1.val = 1;
struct2.val = 2;
ptr1 = &struct1;
ptr2 = &struct2;
marker1 ();
func1 ();
for (count = 0; count < 4; count++) {
ival1 = count;
ival3 = count; ival4 = count;
}
ival1 = count; /* Outside loop */
ival2 = count;
ival3 = count; ival4 = count;
marker2 ();
if (doread)
{
static char msg[] = "type stuff for buf now:";
write (1, msg, sizeof (msg) - 1);
read (0, &buf[0], 5);
}
marker4 ();
/* We have a watchpoint on ptr1->val. It should be triggered if
ptr1's value changes. */
ptr1 = ptr2;
/* This should not trigger the watchpoint. If it does, then we
used the wrong value chain to re-insert the watchpoints or we
are not evaluating the watchpoint expression correctly. */
struct1.val = 5;
marker5 ();
/* We have a watchpoint on ptr1->val. It should be triggered if
ptr1's value changes. */
ptr1 = ptr2;
/* This should not trigger the watchpoint. If it does, then we
used the wrong value chain to re-insert the watchpoints or we
are not evaluating the watchpoint expression correctly. */
struct1.val = 5;
marker5 ();
/* We're going to watch locals of func2, to see that out-of-scope
watchpoints are detected and properly deleted.
*/
marker6 ();
/* This invocation is used for watches of a single
local variable. */
func2 ();
/* This invocation is used for watches of an expression
involving a local variable. */
func2 ();
/* This invocation is used for watches of a static
(non-stack-based) local variable. */
func2 ();
/* This invocation is used for watches of a local variable
when recursion happens.
*/
marker6 ();
recurser (2);
marker6 ();
func3 ();
func4 ();
return 0;
}