binutils-gdb/gdb/valprint.c
Joel Brobecker 3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00

3186 lines
91 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Print values for GDB, the GNU debugger.
Copyright (C) 1986-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "language.h"
#include "annotate.h"
#include "valprint.h"
#include "target-float.h"
#include "extension.h"
#include "ada-lang.h"
#include "gdb_obstack.h"
#include "charset.h"
#include "typeprint.h"
#include <ctype.h>
#include <algorithm>
#include "gdbsupport/byte-vector.h"
#include "cli/cli-option.h"
#include "gdbarch.h"
#include "cli/cli-style.h"
#include "count-one-bits.h"
#include "c-lang.h"
#include "cp-abi.h"
/* Maximum number of wchars returned from wchar_iterate. */
#define MAX_WCHARS 4
/* A convenience macro to compute the size of a wchar_t buffer containing X
characters. */
#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
/* Character buffer size saved while iterating over wchars. */
#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
/* A structure to encapsulate state information from iterated
character conversions. */
struct converted_character
{
/* The number of characters converted. */
int num_chars;
/* The result of the conversion. See charset.h for more. */
enum wchar_iterate_result result;
/* The (saved) converted character(s). */
gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
/* The first converted target byte. */
const gdb_byte *buf;
/* The number of bytes converted. */
size_t buflen;
/* How many times this character(s) is repeated. */
int repeat_count;
};
/* Command lists for set/show print raw. */
struct cmd_list_element *setprintrawlist;
struct cmd_list_element *showprintrawlist;
/* Prototypes for local functions */
static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
int len, int *errptr);
static void set_input_radix_1 (int, unsigned);
static void set_output_radix_1 (int, unsigned);
static void val_print_type_code_flags (struct type *type,
struct value *original_value,
int embedded_offset,
struct ui_file *stream);
#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
#define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
struct value_print_options user_print_options =
{
Val_prettyformat_default, /* prettyformat */
0, /* prettyformat_arrays */
0, /* prettyformat_structs */
0, /* vtblprint */
1, /* unionprint */
1, /* addressprint */
0, /* objectprint */
PRINT_MAX_DEFAULT, /* print_max */
10, /* repeat_count_threshold */
0, /* output_format */
0, /* format */
0, /* stop_print_at_null */
0, /* print_array_indexes */
0, /* deref_ref */
1, /* static_field_print */
1, /* pascal_static_field_print */
0, /* raw */
0, /* summary */
1, /* symbol_print */
PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
1 /* finish_print */
};
/* Initialize *OPTS to be a copy of the user print options. */
void
get_user_print_options (struct value_print_options *opts)
{
*opts = user_print_options;
}
/* Initialize *OPTS to be a copy of the user print options, but with
pretty-formatting disabled. */
void
get_no_prettyformat_print_options (struct value_print_options *opts)
{
*opts = user_print_options;
opts->prettyformat = Val_no_prettyformat;
}
/* Initialize *OPTS to be a copy of the user print options, but using
FORMAT as the formatting option. */
void
get_formatted_print_options (struct value_print_options *opts,
char format)
{
*opts = user_print_options;
opts->format = format;
}
static void
show_print_max (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("Limit on string chars or array "
"elements to print is %s.\n"),
value);
}
/* Default input and output radixes, and output format letter. */
unsigned input_radix = 10;
static void
show_input_radix (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("Default input radix for entering numbers is %s.\n"),
value);
}
unsigned output_radix = 10;
static void
show_output_radix (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("Default output radix for printing of values is %s.\n"),
value);
}
/* By default we print arrays without printing the index of each element in
the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
static void
show_print_array_indexes (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
}
/* Print repeat counts if there are more than this many repetitions of an
element in an array. Referenced by the low level language dependent
print routines. */
static void
show_repeat_count_threshold (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
value);
}
/* If nonzero, stops printing of char arrays at first null. */
static void
show_stop_print_at_null (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("Printing of char arrays to stop "
"at first null char is %s.\n"),
value);
}
/* Controls pretty printing of structures. */
static void
show_prettyformat_structs (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
}
/* Controls pretty printing of arrays. */
static void
show_prettyformat_arrays (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
}
/* If nonzero, causes unions inside structures or other unions to be
printed. */
static void
show_unionprint (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("Printing of unions interior to structures is %s.\n"),
value);
}
/* If nonzero, causes machine addresses to be printed in certain contexts. */
static void
show_addressprint (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
}
static void
show_symbol_print (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("Printing of symbols when printing pointers is %s.\n"),
value);
}
/* A helper function for val_print. When printing in "summary" mode,
we want to print scalar arguments, but not aggregate arguments.
This function distinguishes between the two. */
int
val_print_scalar_type_p (struct type *type)
{
type = check_typedef (type);
while (TYPE_IS_REFERENCE (type))
{
type = TYPE_TARGET_TYPE (type);
type = check_typedef (type);
}
switch (type->code ())
{
case TYPE_CODE_ARRAY:
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_SET:
case TYPE_CODE_STRING:
return 0;
default:
return 1;
}
}
/* A helper function for val_print. When printing with limited depth we
want to print string and scalar arguments, but not aggregate arguments.
This function distinguishes between the two. */
static bool
val_print_scalar_or_string_type_p (struct type *type,
const struct language_defn *language)
{
return (val_print_scalar_type_p (type)
|| language->is_string_type_p (type));
}
/* See valprint.h. */
int
valprint_check_validity (struct ui_file *stream,
struct type *type,
LONGEST embedded_offset,
const struct value *val)
{
type = check_typedef (type);
if (type_not_associated (type))
{
val_print_not_associated (stream);
return 0;
}
if (type_not_allocated (type))
{
val_print_not_allocated (stream);
return 0;
}
if (type->code () != TYPE_CODE_UNION
&& type->code () != TYPE_CODE_STRUCT
&& type->code () != TYPE_CODE_ARRAY)
{
if (value_bits_any_optimized_out (val,
TARGET_CHAR_BIT * embedded_offset,
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
{
val_print_optimized_out (val, stream);
return 0;
}
if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
{
const int is_ref = type->code () == TYPE_CODE_REF;
int ref_is_addressable = 0;
if (is_ref)
{
const struct value *deref_val = coerce_ref_if_computed (val);
if (deref_val != NULL)
ref_is_addressable = value_lval_const (deref_val) == lval_memory;
}
if (!is_ref || !ref_is_addressable)
fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
stream);
/* C++ references should be valid even if they're synthetic. */
return is_ref;
}
if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
{
val_print_unavailable (stream);
return 0;
}
}
return 1;
}
void
val_print_optimized_out (const struct value *val, struct ui_file *stream)
{
if (val != NULL && value_lval_const (val) == lval_register)
val_print_not_saved (stream);
else
fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
}
void
val_print_not_saved (struct ui_file *stream)
{
fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
}
void
val_print_unavailable (struct ui_file *stream)
{
fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
}
void
val_print_invalid_address (struct ui_file *stream)
{
fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
}
/* Print a pointer based on the type of its target.
Arguments to this functions are roughly the same as those in
generic_val_print. A difference is that ADDRESS is the address to print,
with embedded_offset already added. ELTTYPE represents
the pointed type after check_typedef. */
static void
print_unpacked_pointer (struct type *type, struct type *elttype,
CORE_ADDR address, struct ui_file *stream,
const struct value_print_options *options)
{
struct gdbarch *gdbarch = get_type_arch (type);
if (elttype->code () == TYPE_CODE_FUNC)
{
/* Try to print what function it points to. */
print_function_pointer_address (options, gdbarch, address, stream);
return;
}
if (options->symbol_print)
print_address_demangle (options, gdbarch, address, stream, demangle);
else if (options->addressprint)
fputs_filtered (paddress (gdbarch, address), stream);
}
/* generic_val_print helper for TYPE_CODE_ARRAY. */
static void
generic_val_print_array (struct value *val,
struct ui_file *stream, int recurse,
const struct value_print_options *options,
const struct
generic_val_print_decorations *decorations)
{
struct type *type = check_typedef (value_type (val));
struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
struct type *elttype = check_typedef (unresolved_elttype);
if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
{
LONGEST low_bound, high_bound;
if (!get_array_bounds (type, &low_bound, &high_bound))
error (_("Could not determine the array high bound"));
fputs_filtered (decorations->array_start, stream);
value_print_array_elements (val, stream, recurse, options, 0);
fputs_filtered (decorations->array_end, stream);
}
else
{
/* Array of unspecified length: treat like pointer to first elt. */
print_unpacked_pointer (type, elttype, value_address (val),
stream, options);
}
}
/* generic_value_print helper for TYPE_CODE_PTR. */
static void
generic_value_print_ptr (struct value *val, struct ui_file *stream,
const struct value_print_options *options)
{
if (options->format && options->format != 's')
value_print_scalar_formatted (val, options, 0, stream);
else
{
struct type *type = check_typedef (value_type (val));
struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
const gdb_byte *valaddr = value_contents_for_printing (val);
CORE_ADDR addr = unpack_pointer (type, valaddr);
print_unpacked_pointer (type, elttype, addr, stream, options);
}
}
/* Print '@' followed by the address contained in ADDRESS_BUFFER. */
static void
print_ref_address (struct type *type, const gdb_byte *address_buffer,
int embedded_offset, struct ui_file *stream)
{
struct gdbarch *gdbarch = get_type_arch (type);
if (address_buffer != NULL)
{
CORE_ADDR address
= extract_typed_address (address_buffer + embedded_offset, type);
fprintf_filtered (stream, "@");
fputs_filtered (paddress (gdbarch, address), stream);
}
/* Else: we have a non-addressable value, such as a DW_AT_const_value. */
}
/* If VAL is addressable, return the value contents buffer of a value that
represents a pointer to VAL. Otherwise return NULL. */
static const gdb_byte *
get_value_addr_contents (struct value *deref_val)
{
gdb_assert (deref_val != NULL);
if (value_lval_const (deref_val) == lval_memory)
return value_contents_for_printing_const (value_addr (deref_val));
else
{
/* We have a non-addressable value, such as a DW_AT_const_value. */
return NULL;
}
}
/* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
static void
generic_val_print_ref (struct type *type,
int embedded_offset, struct ui_file *stream, int recurse,
struct value *original_value,
const struct value_print_options *options)
{
struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
struct value *deref_val = NULL;
const int value_is_synthetic
= value_bits_synthetic_pointer (original_value,
TARGET_CHAR_BIT * embedded_offset,
TARGET_CHAR_BIT * TYPE_LENGTH (type));
const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
|| options->deref_ref);
const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
const gdb_byte *valaddr = value_contents_for_printing (original_value);
if (must_coerce_ref && type_is_defined)
{
deref_val = coerce_ref_if_computed (original_value);
if (deref_val != NULL)
{
/* More complicated computed references are not supported. */
gdb_assert (embedded_offset == 0);
}
else
deref_val = value_at (TYPE_TARGET_TYPE (type),
unpack_pointer (type, valaddr + embedded_offset));
}
/* Else, original_value isn't a synthetic reference or we don't have to print
the reference's contents.
Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
cause original_value to be a not_lval instead of an lval_computed,
which will make value_bits_synthetic_pointer return false.
This happens because if options->objectprint is true, c_value_print will
overwrite original_value's contents with the result of coercing
the reference through value_addr, and then set its type back to
TYPE_CODE_REF. In that case we don't have to coerce the reference again;
we can simply treat it as non-synthetic and move on. */
if (options->addressprint)
{
const gdb_byte *address = (value_is_synthetic && type_is_defined
? get_value_addr_contents (deref_val)
: valaddr);
print_ref_address (type, address, embedded_offset, stream);
if (options->deref_ref)
fputs_filtered (": ", stream);
}
if (options->deref_ref)
{
if (type_is_defined)
common_val_print (deref_val, stream, recurse, options,
current_language);
else
fputs_filtered ("???", stream);
}
}
/* Helper function for generic_val_print_enum.
This is also used to print enums in TYPE_CODE_FLAGS values. */
static void
generic_val_print_enum_1 (struct type *type, LONGEST val,
struct ui_file *stream)
{
unsigned int i;
unsigned int len;
len = type->num_fields ();
for (i = 0; i < len; i++)
{
QUIT;
if (val == TYPE_FIELD_ENUMVAL (type, i))
{
break;
}
}
if (i < len)
{
fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
stream);
}
else if (TYPE_FLAG_ENUM (type))
{
int first = 1;
/* We have a "flag" enum, so we try to decompose it into pieces as
appropriate. The enum may have multiple enumerators representing
the same bit, in which case we choose to only print the first one
we find. */
for (i = 0; i < len; ++i)
{
QUIT;
ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
int nbits = count_one_bits_ll (enumval);
gdb_assert (nbits == 0 || nbits == 1);
if ((val & enumval) != 0)
{
if (first)
{
fputs_filtered ("(", stream);
first = 0;
}
else
fputs_filtered (" | ", stream);
val &= ~TYPE_FIELD_ENUMVAL (type, i);
fputs_styled (TYPE_FIELD_NAME (type, i),
variable_name_style.style (), stream);
}
}
if (val != 0)
{
/* There are leftover bits, print them. */
if (first)
fputs_filtered ("(", stream);
else
fputs_filtered (" | ", stream);
fputs_filtered ("unknown: 0x", stream);
print_longest (stream, 'x', 0, val);
fputs_filtered (")", stream);
}
else if (first)
{
/* Nothing has been printed and the value is 0, the enum value must
have been 0. */
fputs_filtered ("0", stream);
}
else
{
/* Something has been printed, close the parenthesis. */
fputs_filtered (")", stream);
}
}
else
print_longest (stream, 'd', 0, val);
}
/* generic_val_print helper for TYPE_CODE_ENUM. */
static void
generic_val_print_enum (struct type *type,
int embedded_offset, struct ui_file *stream,
struct value *original_value,
const struct value_print_options *options)
{
LONGEST val;
struct gdbarch *gdbarch = get_type_arch (type);
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
gdb_assert (!options->format);
const gdb_byte *valaddr = value_contents_for_printing (original_value);
val = unpack_long (type, valaddr + embedded_offset * unit_size);
generic_val_print_enum_1 (type, val, stream);
}
/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
static void
generic_val_print_func (struct type *type,
int embedded_offset, CORE_ADDR address,
struct ui_file *stream,
struct value *original_value,
const struct value_print_options *options)
{
struct gdbarch *gdbarch = get_type_arch (type);
gdb_assert (!options->format);
/* FIXME, we should consider, at least for ANSI C language,
eliminating the distinction made between FUNCs and POINTERs to
FUNCs. */
fprintf_filtered (stream, "{");
type_print (type, "", stream, -1);
fprintf_filtered (stream, "} ");
/* Try to print what function it points to, and its address. */
print_address_demangle (options, gdbarch, address, stream, demangle);
}
/* generic_value_print helper for TYPE_CODE_BOOL. */
static void
generic_value_print_bool
(struct value *value, struct ui_file *stream,
const struct value_print_options *options,
const struct generic_val_print_decorations *decorations)
{
if (options->format || options->output_format)
{
struct value_print_options opts = *options;
opts.format = (options->format ? options->format
: options->output_format);
value_print_scalar_formatted (value, &opts, 0, stream);
}
else
{
const gdb_byte *valaddr = value_contents_for_printing (value);
struct type *type = check_typedef (value_type (value));
LONGEST val = unpack_long (type, valaddr);
if (val == 0)
fputs_filtered (decorations->false_name, stream);
else if (val == 1)
fputs_filtered (decorations->true_name, stream);
else
print_longest (stream, 'd', 0, val);
}
}
/* generic_value_print helper for TYPE_CODE_INT. */
static void
generic_value_print_int (struct value *val, struct ui_file *stream,
const struct value_print_options *options)
{
struct value_print_options opts = *options;
opts.format = (options->format ? options->format
: options->output_format);
value_print_scalar_formatted (val, &opts, 0, stream);
}
/* generic_value_print helper for TYPE_CODE_CHAR. */
static void
generic_value_print_char (struct value *value, struct ui_file *stream,
const struct value_print_options *options)
{
if (options->format || options->output_format)
{
struct value_print_options opts = *options;
opts.format = (options->format ? options->format
: options->output_format);
value_print_scalar_formatted (value, &opts, 0, stream);
}
else
{
struct type *unresolved_type = value_type (value);
struct type *type = check_typedef (unresolved_type);
const gdb_byte *valaddr = value_contents_for_printing (value);
LONGEST val = unpack_long (type, valaddr);
if (type->is_unsigned ())
fprintf_filtered (stream, "%u", (unsigned int) val);
else
fprintf_filtered (stream, "%d", (int) val);
fputs_filtered (" ", stream);
LA_PRINT_CHAR (val, unresolved_type, stream);
}
}
/* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
static void
generic_val_print_float (struct type *type, struct ui_file *stream,
struct value *original_value,
const struct value_print_options *options)
{
gdb_assert (!options->format);
const gdb_byte *valaddr = value_contents_for_printing (original_value);
print_floating (valaddr, type, stream);
}
/* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
static void
generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
const struct value_print_options *options)
{
if (options->format)
value_print_scalar_formatted (val, options, 0, stream);
else
{
struct type *type = value_type (val);
const gdb_byte *valaddr = value_contents_for_printing (val);
gdb_mpf f;
f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)),
type_byte_order (type), type->is_unsigned (),
type->fixed_point_scaling_factor ());
const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg";
std::string str = gmp_string_printf (fmt, f.val);
fprintf_filtered (stream, "%s", str.c_str ());
}
}
/* generic_value_print helper for TYPE_CODE_COMPLEX. */
static void
generic_value_print_complex (struct value *val, struct ui_file *stream,
const struct value_print_options *options,
const struct generic_val_print_decorations
*decorations)
{
fprintf_filtered (stream, "%s", decorations->complex_prefix);
struct value *real_part = value_real_part (val);
value_print_scalar_formatted (real_part, options, 0, stream);
fprintf_filtered (stream, "%s", decorations->complex_infix);
struct value *imag_part = value_imaginary_part (val);
value_print_scalar_formatted (imag_part, options, 0, stream);
fprintf_filtered (stream, "%s", decorations->complex_suffix);
}
/* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
static void
generic_value_print_memberptr
(struct value *val, struct ui_file *stream,
int recurse,
const struct value_print_options *options,
const struct generic_val_print_decorations *decorations)
{
if (!options->format)
{
/* Member pointers are essentially specific to C++, and so if we
encounter one, we should print it according to C++ rules. */
struct type *type = check_typedef (value_type (val));
const gdb_byte *valaddr = value_contents_for_printing (val);
cp_print_class_member (valaddr, type, stream, "&");
}
else
generic_value_print (val, stream, recurse, options, decorations);
}
/* See valprint.h. */
void
generic_value_print (struct value *val, struct ui_file *stream, int recurse,
const struct value_print_options *options,
const struct generic_val_print_decorations *decorations)
{
struct type *type = value_type (val);
type = check_typedef (type);
if (is_fixed_point_type (type))
type = type->fixed_point_type_base_type ();
switch (type->code ())
{
case TYPE_CODE_ARRAY:
generic_val_print_array (val, stream, recurse, options, decorations);
break;
case TYPE_CODE_MEMBERPTR:
generic_value_print_memberptr (val, stream, recurse, options,
decorations);
break;
case TYPE_CODE_PTR:
generic_value_print_ptr (val, stream, options);
break;
case TYPE_CODE_REF:
case TYPE_CODE_RVALUE_REF:
generic_val_print_ref (type, 0, stream, recurse,
val, options);
break;
case TYPE_CODE_ENUM:
if (options->format)
value_print_scalar_formatted (val, options, 0, stream);
else
generic_val_print_enum (type, 0, stream, val, options);
break;
case TYPE_CODE_FLAGS:
if (options->format)
value_print_scalar_formatted (val, options, 0, stream);
else
val_print_type_code_flags (type, val, 0, stream);
break;
case TYPE_CODE_FUNC:
case TYPE_CODE_METHOD:
if (options->format)
value_print_scalar_formatted (val, options, 0, stream);
else
generic_val_print_func (type, 0, value_address (val), stream,
val, options);
break;
case TYPE_CODE_BOOL:
generic_value_print_bool (val, stream, options, decorations);
break;
case TYPE_CODE_RANGE:
case TYPE_CODE_INT:
generic_value_print_int (val, stream, options);
break;
case TYPE_CODE_CHAR:
generic_value_print_char (val, stream, options);
break;
case TYPE_CODE_FLT:
case TYPE_CODE_DECFLOAT:
if (options->format)
value_print_scalar_formatted (val, options, 0, stream);
else
generic_val_print_float (type, stream, val, options);
break;
case TYPE_CODE_FIXED_POINT:
generic_val_print_fixed_point (val, stream, options);
break;
case TYPE_CODE_VOID:
fputs_filtered (decorations->void_name, stream);
break;
case TYPE_CODE_ERROR:
fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
break;
case TYPE_CODE_UNDEF:
/* This happens (without TYPE_STUB set) on systems which don't use
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
and no complete type for struct foo in that file. */
fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
break;
case TYPE_CODE_COMPLEX:
generic_value_print_complex (val, stream, options, decorations);
break;
case TYPE_CODE_METHODPTR:
cplus_print_method_ptr (value_contents_for_printing (val), type,
stream);
break;
case TYPE_CODE_UNION:
case TYPE_CODE_STRUCT:
default:
error (_("Unhandled type code %d in symbol table."),
type->code ());
}
}
/* Helper function for val_print and common_val_print that does the
work. Arguments are as to val_print, but FULL_VALUE, if given, is
the value to be printed. */
static void
do_val_print (struct value *value, struct ui_file *stream, int recurse,
const struct value_print_options *options,
const struct language_defn *language)
{
int ret = 0;
struct value_print_options local_opts = *options;
struct type *type = value_type (value);
struct type *real_type = check_typedef (type);
if (local_opts.prettyformat == Val_prettyformat_default)
local_opts.prettyformat = (local_opts.prettyformat_structs
? Val_prettyformat : Val_no_prettyformat);
QUIT;
/* Ensure that the type is complete and not just a stub. If the type is
only a stub and we can't find and substitute its complete type, then
print appropriate string and return. */
if (real_type->is_stub ())
{
fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
return;
}
if (!valprint_check_validity (stream, real_type, 0, value))
return;
if (!options->raw)
{
ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
language);
if (ret)
return;
}
/* Handle summary mode. If the value is a scalar, print it;
otherwise, print an ellipsis. */
if (options->summary && !val_print_scalar_type_p (type))
{
fprintf_filtered (stream, "...");
return;
}
/* If this value is too deep then don't print it. */
if (!val_print_scalar_or_string_type_p (type, language)
&& val_print_check_max_depth (stream, recurse, options, language))
return;
try
{
language->value_print_inner (value, stream, recurse, &local_opts);
}
catch (const gdb_exception_error &except)
{
fprintf_styled (stream, metadata_style.style (),
_("<error reading variable>"));
}
}
/* See valprint.h. */
bool
val_print_check_max_depth (struct ui_file *stream, int recurse,
const struct value_print_options *options,
const struct language_defn *language)
{
if (options->max_depth > -1 && recurse >= options->max_depth)
{
gdb_assert (language->struct_too_deep_ellipsis () != NULL);
fputs_filtered (language->struct_too_deep_ellipsis (), stream);
return true;
}
return false;
}
/* Check whether the value VAL is printable. Return 1 if it is;
return 0 and print an appropriate error message to STREAM according to
OPTIONS if it is not. */
static int
value_check_printable (struct value *val, struct ui_file *stream,
const struct value_print_options *options)
{
if (val == 0)
{
fprintf_styled (stream, metadata_style.style (),
_("<address of value unknown>"));
return 0;
}
if (value_entirely_optimized_out (val))
{
if (options->summary && !val_print_scalar_type_p (value_type (val)))
fprintf_filtered (stream, "...");
else
val_print_optimized_out (val, stream);
return 0;
}
if (value_entirely_unavailable (val))
{
if (options->summary && !val_print_scalar_type_p (value_type (val)))
fprintf_filtered (stream, "...");
else
val_print_unavailable (stream);
return 0;
}
if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
{
fprintf_styled (stream, metadata_style.style (),
_("<internal function %s>"),
value_internal_function_name (val));
return 0;
}
if (type_not_associated (value_type (val)))
{
val_print_not_associated (stream);
return 0;
}
if (type_not_allocated (value_type (val)))
{
val_print_not_allocated (stream);
return 0;
}
return 1;
}
/* Print using the given LANGUAGE the value VAL onto stream STREAM according
to OPTIONS.
This is a preferable interface to val_print, above, because it uses
GDB's value mechanism. */
void
common_val_print (struct value *val, struct ui_file *stream, int recurse,
const struct value_print_options *options,
const struct language_defn *language)
{
if (language->la_language == language_ada)
/* The value might have a dynamic type, which would cause trouble
below when trying to extract the value contents (since the value
size is determined from the type size which is unknown). So
get a fixed representation of our value. */
val = ada_to_fixed_value (val);
if (value_lazy (val))
value_fetch_lazy (val);
do_val_print (val, stream, recurse, options, language);
}
/* See valprint.h. */
void
common_val_print_checked (struct value *val, struct ui_file *stream,
int recurse,
const struct value_print_options *options,
const struct language_defn *language)
{
if (!value_check_printable (val, stream, options))
return;
common_val_print (val, stream, recurse, options, language);
}
/* Print on stream STREAM the value VAL according to OPTIONS. The value
is printed using the current_language syntax. */
void
value_print (struct value *val, struct ui_file *stream,
const struct value_print_options *options)
{
scoped_value_mark free_values;
if (!value_check_printable (val, stream, options))
return;
if (!options->raw)
{
int r
= apply_ext_lang_val_pretty_printer (val, stream, 0, options,
current_language);
if (r)
return;
}
current_language->value_print (val, stream, options);
}
static void
val_print_type_code_flags (struct type *type, struct value *original_value,
int embedded_offset, struct ui_file *stream)
{
const gdb_byte *valaddr = (value_contents_for_printing (original_value)
+ embedded_offset);
ULONGEST val = unpack_long (type, valaddr);
int field, nfields = type->num_fields ();
struct gdbarch *gdbarch = get_type_arch (type);
struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
fputs_filtered ("[", stream);
for (field = 0; field < nfields; field++)
{
if (TYPE_FIELD_NAME (type, field)[0] != '\0')
{
struct type *field_type = type->field (field).type ();
if (field_type == bool_type
/* We require boolean types here to be one bit wide. This is a
problematic place to notify the user of an internal error
though. Instead just fall through and print the field as an
int. */
&& TYPE_FIELD_BITSIZE (type, field) == 1)
{
if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
fprintf_filtered
(stream, " %ps",
styled_string (variable_name_style.style (),
TYPE_FIELD_NAME (type, field)));
}
else
{
unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
ULONGEST field_val
= val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
field_val &= ((ULONGEST) 1 << field_len) - 1;
fprintf_filtered (stream, " %ps=",
styled_string (variable_name_style.style (),
TYPE_FIELD_NAME (type, field)));
if (field_type->code () == TYPE_CODE_ENUM)
generic_val_print_enum_1 (field_type, field_val, stream);
else
print_longest (stream, 'd', 0, field_val);
}
}
}
fputs_filtered (" ]", stream);
}
/* See valprint.h. */
void
value_print_scalar_formatted (struct value *val,
const struct value_print_options *options,
int size,
struct ui_file *stream)
{
struct type *type = check_typedef (value_type (val));
gdb_assert (val != NULL);
/* If we get here with a string format, try again without it. Go
all the way back to the language printers, which may call us
again. */
if (options->format == 's')
{
struct value_print_options opts = *options;
opts.format = 0;
opts.deref_ref = 0;
common_val_print (val, stream, 0, &opts, current_language);
return;
}
/* value_contents_for_printing fetches all VAL's contents. They are
needed to check whether VAL is optimized-out or unavailable
below. */
const gdb_byte *valaddr = value_contents_for_printing (val);
/* A scalar object that does not have all bits available can't be
printed, because all bits contribute to its representation. */
if (value_bits_any_optimized_out (val, 0,
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
val_print_optimized_out (val, stream);
else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
val_print_unavailable (stream);
else
print_scalar_formatted (valaddr, type, options, size, stream);
}
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
The raison d'etre of this function is to consolidate printing of
LONG_LONG's into this one function. The format chars b,h,w,g are
from print_scalar_formatted(). Numbers are printed using C
format.
USE_C_FORMAT means to use C format in all cases. Without it,
'o' and 'x' format do not include the standard C radix prefix
(leading 0 or 0x).
Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
and was intended to request formatting according to the current
language and would be used for most integers that GDB prints. The
exceptional cases were things like protocols where the format of
the integer is a protocol thing, not a user-visible thing). The
parameter remains to preserve the information of what things might
be printed with language-specific format, should we ever resurrect
that capability. */
void
print_longest (struct ui_file *stream, int format, int use_c_format,
LONGEST val_long)
{
const char *val;
switch (format)
{
case 'd':
val = int_string (val_long, 10, 1, 0, 1); break;
case 'u':
val = int_string (val_long, 10, 0, 0, 1); break;
case 'x':
val = int_string (val_long, 16, 0, 0, use_c_format); break;
case 'b':
val = int_string (val_long, 16, 0, 2, 1); break;
case 'h':
val = int_string (val_long, 16, 0, 4, 1); break;
case 'w':
val = int_string (val_long, 16, 0, 8, 1); break;
case 'g':
val = int_string (val_long, 16, 0, 16, 1); break;
break;
case 'o':
val = int_string (val_long, 8, 0, 0, use_c_format); break;
default:
internal_error (__FILE__, __LINE__,
_("failed internal consistency check"));
}
fputs_filtered (val, stream);
}
/* This used to be a macro, but I don't think it is called often enough
to merit such treatment. */
/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
arguments to a function, number in a value history, register number, etc.)
where the value must not be larger than can fit in an int. */
int
longest_to_int (LONGEST arg)
{
/* Let the compiler do the work. */
int rtnval = (int) arg;
/* Check for overflows or underflows. */
if (sizeof (LONGEST) > sizeof (int))
{
if (rtnval != arg)
{
error (_("Value out of range."));
}
}
return (rtnval);
}
/* Print a floating point value of floating-point type TYPE,
pointed to in GDB by VALADDR, on STREAM. */
void
print_floating (const gdb_byte *valaddr, struct type *type,
struct ui_file *stream)
{
std::string str = target_float_to_string (valaddr, type);
fputs_filtered (str.c_str (), stream);
}
void
print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
unsigned len, enum bfd_endian byte_order, bool zero_pad)
{
const gdb_byte *p;
unsigned int i;
int b;
bool seen_a_one = false;
/* Declared "int" so it will be signed.
This ensures that right shift will shift in zeros. */
const int mask = 0x080;
if (byte_order == BFD_ENDIAN_BIG)
{
for (p = valaddr;
p < valaddr + len;
p++)
{
/* Every byte has 8 binary characters; peel off
and print from the MSB end. */
for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
{
if (*p & (mask >> i))
b = '1';
else
b = '0';
if (zero_pad || seen_a_one || b == '1')
fputc_filtered (b, stream);
if (b == '1')
seen_a_one = true;
}
}
}
else
{
for (p = valaddr + len - 1;
p >= valaddr;
p--)
{
for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
{
if (*p & (mask >> i))
b = '1';
else
b = '0';
if (zero_pad || seen_a_one || b == '1')
fputc_filtered (b, stream);
if (b == '1')
seen_a_one = true;
}
}
}
/* When not zero-padding, ensure that something is printed when the
input is 0. */
if (!zero_pad && !seen_a_one)
fputc_filtered ('0', stream);
}
/* A helper for print_octal_chars that emits a single octal digit,
optionally suppressing it if is zero and updating SEEN_A_ONE. */
static void
emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
{
if (*seen_a_one || digit != 0)
fprintf_filtered (stream, "%o", digit);
if (digit != 0)
*seen_a_one = true;
}
/* VALADDR points to an integer of LEN bytes.
Print it in octal on stream or format it in buf. */
void
print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
unsigned len, enum bfd_endian byte_order)
{
const gdb_byte *p;
unsigned char octa1, octa2, octa3, carry;
int cycle;
/* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
* the extra bits, which cycle every three bytes:
*
* Byte side: 0 1 2 3
* | | | |
* bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
*
* Octal side: 0 1 carry 3 4 carry ...
*
* Cycle number: 0 1 2
*
* But of course we are printing from the high side, so we have to
* figure out where in the cycle we are so that we end up with no
* left over bits at the end.
*/
#define BITS_IN_OCTAL 3
#define HIGH_ZERO 0340
#define LOW_ZERO 0034
#define CARRY_ZERO 0003
static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
"cycle zero constants are wrong");
#define HIGH_ONE 0200
#define MID_ONE 0160
#define LOW_ONE 0016
#define CARRY_ONE 0001
static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
"cycle one constants are wrong");
#define HIGH_TWO 0300
#define MID_TWO 0070
#define LOW_TWO 0007
static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
"cycle two constants are wrong");
/* For 32 we start in cycle 2, with two bits and one bit carry;
for 64 in cycle in cycle 1, with one bit and a two bit carry. */
cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
carry = 0;
fputs_filtered ("0", stream);
bool seen_a_one = false;
if (byte_order == BFD_ENDIAN_BIG)
{
for (p = valaddr;
p < valaddr + len;
p++)
{
switch (cycle)
{
case 0:
/* No carry in, carry out two bits. */
octa1 = (HIGH_ZERO & *p) >> 5;
octa2 = (LOW_ZERO & *p) >> 2;
carry = (CARRY_ZERO & *p);
emit_octal_digit (stream, &seen_a_one, octa1);
emit_octal_digit (stream, &seen_a_one, octa2);
break;
case 1:
/* Carry in two bits, carry out one bit. */
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
octa2 = (MID_ONE & *p) >> 4;
octa3 = (LOW_ONE & *p) >> 1;
carry = (CARRY_ONE & *p);
emit_octal_digit (stream, &seen_a_one, octa1);
emit_octal_digit (stream, &seen_a_one, octa2);
emit_octal_digit (stream, &seen_a_one, octa3);
break;
case 2:
/* Carry in one bit, no carry out. */
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
octa2 = (MID_TWO & *p) >> 3;
octa3 = (LOW_TWO & *p);
carry = 0;
emit_octal_digit (stream, &seen_a_one, octa1);
emit_octal_digit (stream, &seen_a_one, octa2);
emit_octal_digit (stream, &seen_a_one, octa3);
break;
default:
error (_("Internal error in octal conversion;"));
}
cycle++;
cycle = cycle % BITS_IN_OCTAL;
}
}
else
{
for (p = valaddr + len - 1;
p >= valaddr;
p--)
{
switch (cycle)
{
case 0:
/* Carry out, no carry in */
octa1 = (HIGH_ZERO & *p) >> 5;
octa2 = (LOW_ZERO & *p) >> 2;
carry = (CARRY_ZERO & *p);
emit_octal_digit (stream, &seen_a_one, octa1);
emit_octal_digit (stream, &seen_a_one, octa2);
break;
case 1:
/* Carry in, carry out */
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
octa2 = (MID_ONE & *p) >> 4;
octa3 = (LOW_ONE & *p) >> 1;
carry = (CARRY_ONE & *p);
emit_octal_digit (stream, &seen_a_one, octa1);
emit_octal_digit (stream, &seen_a_one, octa2);
emit_octal_digit (stream, &seen_a_one, octa3);
break;
case 2:
/* Carry in, no carry out */
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
octa2 = (MID_TWO & *p) >> 3;
octa3 = (LOW_TWO & *p);
carry = 0;
emit_octal_digit (stream, &seen_a_one, octa1);
emit_octal_digit (stream, &seen_a_one, octa2);
emit_octal_digit (stream, &seen_a_one, octa3);
break;
default:
error (_("Internal error in octal conversion;"));
}
cycle++;
cycle = cycle % BITS_IN_OCTAL;
}
}
}
/* Possibly negate the integer represented by BYTES. It contains LEN
bytes in the specified byte order. If the integer is negative,
copy it into OUT_VEC, negate it, and return true. Otherwise, do
nothing and return false. */
static bool
maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
enum bfd_endian byte_order,
gdb::byte_vector *out_vec)
{
gdb_byte sign_byte;
gdb_assert (len > 0);
if (byte_order == BFD_ENDIAN_BIG)
sign_byte = bytes[0];
else
sign_byte = bytes[len - 1];
if ((sign_byte & 0x80) == 0)
return false;
out_vec->resize (len);
/* Compute -x == 1 + ~x. */
if (byte_order == BFD_ENDIAN_LITTLE)
{
unsigned carry = 1;
for (unsigned i = 0; i < len; ++i)
{
unsigned tem = (0xff & ~bytes[i]) + carry;
(*out_vec)[i] = tem & 0xff;
carry = tem / 256;
}
}
else
{
unsigned carry = 1;
for (unsigned i = len; i > 0; --i)
{
unsigned tem = (0xff & ~bytes[i - 1]) + carry;
(*out_vec)[i - 1] = tem & 0xff;
carry = tem / 256;
}
}
return true;
}
/* VALADDR points to an integer of LEN bytes.
Print it in decimal on stream or format it in buf. */
void
print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
unsigned len, bool is_signed,
enum bfd_endian byte_order)
{
#define TEN 10
#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
#define CARRY_LEFT( x ) ((x) % TEN)
#define SHIFT( x ) ((x) << 4)
#define LOW_NIBBLE( x ) ( (x) & 0x00F)
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
const gdb_byte *p;
int carry;
int decimal_len;
int i, j, decimal_digits;
int dummy;
int flip;
gdb::byte_vector negated_bytes;
if (is_signed
&& maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
{
fputs_filtered ("-", stream);
valaddr = negated_bytes.data ();
}
/* Base-ten number is less than twice as many digits
as the base 16 number, which is 2 digits per byte. */
decimal_len = len * 2 * 2;
std::vector<unsigned char> digits (decimal_len, 0);
/* Ok, we have an unknown number of bytes of data to be printed in
* decimal.
*
* Given a hex number (in nibbles) as XYZ, we start by taking X and
* decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
* the nibbles by 16, add Y and re-decimalize. Repeat with Z.
*
* The trick is that "digits" holds a base-10 number, but sometimes
* the individual digits are > 10.
*
* Outer loop is per nibble (hex digit) of input, from MSD end to
* LSD end.
*/
decimal_digits = 0; /* Number of decimal digits so far */
p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
flip = 0;
while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
{
/*
* Multiply current base-ten number by 16 in place.
* Each digit was between 0 and 9, now is between
* 0 and 144.
*/
for (j = 0; j < decimal_digits; j++)
{
digits[j] = SHIFT (digits[j]);
}
/* Take the next nibble off the input and add it to what
* we've got in the LSB position. Bottom 'digit' is now
* between 0 and 159.
*
* "flip" is used to run this loop twice for each byte.
*/
if (flip == 0)
{
/* Take top nibble. */
digits[0] += HIGH_NIBBLE (*p);
flip = 1;
}
else
{
/* Take low nibble and bump our pointer "p". */
digits[0] += LOW_NIBBLE (*p);
if (byte_order == BFD_ENDIAN_BIG)
p++;
else
p--;
flip = 0;
}
/* Re-decimalize. We have to do this often enough
* that we don't overflow, but once per nibble is
* overkill. Easier this way, though. Note that the
* carry is often larger than 10 (e.g. max initial
* carry out of lowest nibble is 15, could bubble all
* the way up greater than 10). So we have to do
* the carrying beyond the last current digit.
*/
carry = 0;
for (j = 0; j < decimal_len - 1; j++)
{
digits[j] += carry;
/* "/" won't handle an unsigned char with
* a value that if signed would be negative.
* So extend to longword int via "dummy".
*/
dummy = digits[j];
carry = CARRY_OUT (dummy);
digits[j] = CARRY_LEFT (dummy);
if (j >= decimal_digits && carry == 0)
{
/*
* All higher digits are 0 and we
* no longer have a carry.
*
* Note: "j" is 0-based, "decimal_digits" is
* 1-based.
*/
decimal_digits = j + 1;
break;
}
}
}
/* Ok, now "digits" is the decimal representation, with
the "decimal_digits" actual digits. Print! */
for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
;
for (; i >= 0; i--)
{
fprintf_filtered (stream, "%1d", digits[i]);
}
}
/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
void
print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
unsigned len, enum bfd_endian byte_order,
bool zero_pad)
{
const gdb_byte *p;
fputs_filtered ("0x", stream);
if (byte_order == BFD_ENDIAN_BIG)
{
p = valaddr;
if (!zero_pad)
{
/* Strip leading 0 bytes, but be sure to leave at least a
single byte at the end. */
for (; p < valaddr + len - 1 && !*p; ++p)
;
}
const gdb_byte *first = p;
for (;
p < valaddr + len;
p++)
{
/* When not zero-padding, use a different format for the
very first byte printed. */
if (!zero_pad && p == first)
fprintf_filtered (stream, "%x", *p);
else
fprintf_filtered (stream, "%02x", *p);
}
}
else
{
p = valaddr + len - 1;
if (!zero_pad)
{
/* Strip leading 0 bytes, but be sure to leave at least a
single byte at the end. */
for (; p >= valaddr + 1 && !*p; --p)
;
}
const gdb_byte *first = p;
for (;
p >= valaddr;
p--)
{
/* When not zero-padding, use a different format for the
very first byte printed. */
if (!zero_pad && p == first)
fprintf_filtered (stream, "%x", *p);
else
fprintf_filtered (stream, "%02x", *p);
}
}
}
/* Print function pointer with inferior address ADDRESS onto stdio
stream STREAM. */
void
print_function_pointer_address (const struct value_print_options *options,
struct gdbarch *gdbarch,
CORE_ADDR address,
struct ui_file *stream)
{
CORE_ADDR func_addr
= gdbarch_convert_from_func_ptr_addr (gdbarch, address,
current_top_target ());
/* If the function pointer is represented by a description, print
the address of the description. */
if (options->addressprint && func_addr != address)
{
fputs_filtered ("@", stream);
fputs_filtered (paddress (gdbarch, address), stream);
fputs_filtered (": ", stream);
}
print_address_demangle (options, gdbarch, func_addr, stream, demangle);
}
/* Print on STREAM using the given OPTIONS the index for the element
at INDEX of an array whose index type is INDEX_TYPE. */
void
maybe_print_array_index (struct type *index_type, LONGEST index,
struct ui_file *stream,
const struct value_print_options *options)
{
if (!options->print_array_indexes)
return;
current_language->print_array_index (index_type, index, stream, options);
}
/* See valprint.h. */
void
value_print_array_elements (struct value *val, struct ui_file *stream,
int recurse,
const struct value_print_options *options,
unsigned int i)
{
unsigned int things_printed = 0;
unsigned len;
struct type *elttype, *index_type;
unsigned eltlen;
/* Position of the array element we are examining to see
whether it is repeated. */
unsigned int rep1;
/* Number of repetitions we have detected so far. */
unsigned int reps;
LONGEST low_bound, high_bound;
struct type *type = check_typedef (value_type (val));
elttype = TYPE_TARGET_TYPE (type);
eltlen = type_length_units (check_typedef (elttype));
index_type = type->index_type ();
if (index_type->code () == TYPE_CODE_RANGE)
index_type = TYPE_TARGET_TYPE (index_type);
if (get_array_bounds (type, &low_bound, &high_bound))
{
/* The array length should normally be HIGH_BOUND - LOW_BOUND +
1. But we have to be a little extra careful, because some
languages such as Ada allow LOW_BOUND to be greater than
HIGH_BOUND for empty arrays. In that situation, the array
length is just zero, not negative! */
if (low_bound > high_bound)
len = 0;
else
len = high_bound - low_bound + 1;
}
else
{
warning (_("unable to get bounds of array, assuming null array"));
low_bound = 0;
len = 0;
}
annotate_array_section_begin (i, elttype);
for (; i < len && things_printed < options->print_max; i++)
{
scoped_value_mark free_values;
if (i != 0)
{
if (options->prettyformat_arrays)
{
fprintf_filtered (stream, ",\n");
print_spaces_filtered (2 + 2 * recurse, stream);
}
else
fprintf_filtered (stream, ", ");
}
else if (options->prettyformat_arrays)
{
fprintf_filtered (stream, "\n");
print_spaces_filtered (2 + 2 * recurse, stream);
}
wrap_here (n_spaces (2 + 2 * recurse));
maybe_print_array_index (index_type, i + low_bound,
stream, options);
rep1 = i + 1;
reps = 1;
/* Only check for reps if repeat_count_threshold is not set to
UINT_MAX (unlimited). */
if (options->repeat_count_threshold < UINT_MAX)
{
while (rep1 < len
&& value_contents_eq (val, i * eltlen,
val, rep1 * eltlen,
eltlen))
{
++reps;
++rep1;
}
}
struct value *element = value_from_component (val, elttype, eltlen * i);
common_val_print (element, stream, recurse + 1, options,
current_language);
if (reps > options->repeat_count_threshold)
{
annotate_elt_rep (reps);
fprintf_filtered (stream, " %p[<repeats %u times>%p]",
metadata_style.style ().ptr (), reps, nullptr);
annotate_elt_rep_end ();
i = rep1 - 1;
things_printed += options->repeat_count_threshold;
}
else
{
annotate_elt ();
things_printed++;
}
}
annotate_array_section_end ();
if (i < len)
fprintf_filtered (stream, "...");
if (options->prettyformat_arrays)
{
fprintf_filtered (stream, "\n");
print_spaces_filtered (2 * recurse, stream);
}
}
/* Read LEN bytes of target memory at address MEMADDR, placing the
results in GDB's memory at MYADDR. Returns a count of the bytes
actually read, and optionally a target_xfer_status value in the
location pointed to by ERRPTR if ERRPTR is non-null. */
/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
function be eliminated. */
static int
partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
int len, int *errptr)
{
int nread; /* Number of bytes actually read. */
int errcode; /* Error from last read. */
/* First try a complete read. */
errcode = target_read_memory (memaddr, myaddr, len);
if (errcode == 0)
{
/* Got it all. */
nread = len;
}
else
{
/* Loop, reading one byte at a time until we get as much as we can. */
for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
{
errcode = target_read_memory (memaddr++, myaddr++, 1);
}
/* If an error, the last read was unsuccessful, so adjust count. */
if (errcode != 0)
{
nread--;
}
}
if (errptr != NULL)
{
*errptr = errcode;
}
return (nread);
}
/* Read a string from the inferior, at ADDR, with LEN characters of
WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
will be set to a newly allocated buffer containing the string, and
BYTES_READ will be set to the number of bytes read. Returns 0 on
success, or a target_xfer_status on failure.
If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
(including eventual NULs in the middle or end of the string).
If LEN is -1, stops at the first null character (not necessarily
the first null byte) up to a maximum of FETCHLIMIT characters. Set
FETCHLIMIT to UINT_MAX to read as many characters as possible from
the string.
Unless an exception is thrown, BUFFER will always be allocated, even on
failure. In this case, some characters might have been read before the
failure happened. Check BYTES_READ to recognize this situation. */
int
read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
int *bytes_read)
{
int errcode; /* Errno returned from bad reads. */
unsigned int nfetch; /* Chars to fetch / chars fetched. */
gdb_byte *bufptr; /* Pointer to next available byte in
buffer. */
/* Loop until we either have all the characters, or we encounter
some error, such as bumping into the end of the address space. */
buffer->reset (nullptr);
if (len > 0)
{
/* We want fetchlimit chars, so we might as well read them all in
one operation. */
unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
bufptr = buffer->get ();
nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
/ width;
addr += nfetch * width;
bufptr += nfetch * width;
}
else if (len == -1)
{
unsigned long bufsize = 0;
unsigned int chunksize; /* Size of each fetch, in chars. */
int found_nul; /* Non-zero if we found the nul char. */
gdb_byte *limit; /* First location past end of fetch buffer. */
found_nul = 0;
/* We are looking for a NUL terminator to end the fetching, so we
might as well read in blocks that are large enough to be efficient,
but not so large as to be slow if fetchlimit happens to be large.
So we choose the minimum of 8 and fetchlimit. We used to use 200
instead of 8 but 200 is way too big for remote debugging over a
serial line. */
chunksize = std::min (8u, fetchlimit);
do
{
QUIT;
nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
if (*buffer == NULL)
buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
else
buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
(nfetch + bufsize) * width));
bufptr = buffer->get () + bufsize * width;
bufsize += nfetch;
/* Read as much as we can. */
nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
/ width;
/* Scan this chunk for the null character that terminates the string
to print. If found, we don't need to fetch any more. Note
that bufptr is explicitly left pointing at the next character
after the null character, or at the next character after the end
of the buffer. */
limit = bufptr + nfetch * width;
while (bufptr < limit)
{
unsigned long c;
c = extract_unsigned_integer (bufptr, width, byte_order);
addr += width;
bufptr += width;
if (c == 0)
{
/* We don't care about any error which happened after
the NUL terminator. */
errcode = 0;
found_nul = 1;
break;
}
}
}
while (errcode == 0 /* no error */
&& bufptr - buffer->get () < fetchlimit * width /* no overrun */
&& !found_nul); /* haven't found NUL yet */
}
else
{ /* Length of string is really 0! */
/* We always allocate *buffer. */
buffer->reset ((gdb_byte *) xmalloc (1));
bufptr = buffer->get ();
errcode = 0;
}
/* bufptr and addr now point immediately beyond the last byte which we
consider part of the string (including a '\0' which ends the string). */
*bytes_read = bufptr - buffer->get ();
QUIT;
return errcode;
}
/* Return true if print_wchar can display W without resorting to a
numeric escape, false otherwise. */
static int
wchar_printable (gdb_wchar_t w)
{
return (gdb_iswprint (w)
|| w == LCST ('\a') || w == LCST ('\b')
|| w == LCST ('\f') || w == LCST ('\n')
|| w == LCST ('\r') || w == LCST ('\t')
|| w == LCST ('\v'));
}
/* A helper function that converts the contents of STRING to wide
characters and then appends them to OUTPUT. */
static void
append_string_as_wide (const char *string,
struct obstack *output)
{
for (; *string; ++string)
{
gdb_wchar_t w = gdb_btowc (*string);
obstack_grow (output, &w, sizeof (gdb_wchar_t));
}
}
/* Print a wide character W to OUTPUT. ORIG is a pointer to the
original (target) bytes representing the character, ORIG_LEN is the
number of valid bytes. WIDTH is the number of bytes in a base
characters of the type. OUTPUT is an obstack to which wide
characters are emitted. QUOTER is a (narrow) character indicating
the style of quotes surrounding the character to be printed.
NEED_ESCAPE is an in/out flag which is used to track numeric
escapes across calls. */
static void
print_wchar (gdb_wint_t w, const gdb_byte *orig,
int orig_len, int width,
enum bfd_endian byte_order,
struct obstack *output,
int quoter, int *need_escapep)
{
int need_escape = *need_escapep;
*need_escapep = 0;
/* iswprint implementation on Windows returns 1 for tab character.
In order to avoid different printout on this host, we explicitly
use wchar_printable function. */
switch (w)
{
case LCST ('\a'):
obstack_grow_wstr (output, LCST ("\\a"));
break;
case LCST ('\b'):
obstack_grow_wstr (output, LCST ("\\b"));
break;
case LCST ('\f'):
obstack_grow_wstr (output, LCST ("\\f"));
break;
case LCST ('\n'):
obstack_grow_wstr (output, LCST ("\\n"));
break;
case LCST ('\r'):
obstack_grow_wstr (output, LCST ("\\r"));
break;
case LCST ('\t'):
obstack_grow_wstr (output, LCST ("\\t"));
break;
case LCST ('\v'):
obstack_grow_wstr (output, LCST ("\\v"));
break;
default:
{
if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
&& w != LCST ('8')
&& w != LCST ('9'))))
{
gdb_wchar_t wchar = w;
if (w == gdb_btowc (quoter) || w == LCST ('\\'))
obstack_grow_wstr (output, LCST ("\\"));
obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
}
else
{
int i;
for (i = 0; i + width <= orig_len; i += width)
{
char octal[30];
ULONGEST value;
value = extract_unsigned_integer (&orig[i], width,
byte_order);
/* If the value fits in 3 octal digits, print it that
way. Otherwise, print it as a hex escape. */
if (value <= 0777)
xsnprintf (octal, sizeof (octal), "\\%.3o",
(int) (value & 0777));
else
xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
append_string_as_wide (octal, output);
}
/* If we somehow have extra bytes, print them now. */
while (i < orig_len)
{
char octal[5];
xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
append_string_as_wide (octal, output);
++i;
}
*need_escapep = 1;
}
break;
}
}
}
/* Print the character C on STREAM as part of the contents of a
literal string whose delimiter is QUOTER. ENCODING names the
encoding of C. */
void
generic_emit_char (int c, struct type *type, struct ui_file *stream,
int quoter, const char *encoding)
{
enum bfd_endian byte_order
= type_byte_order (type);
gdb_byte *c_buf;
int need_escape = 0;
c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
pack_long (c_buf, type, c);
wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
/* This holds the printable form of the wchar_t data. */
auto_obstack wchar_buf;
while (1)
{
int num_chars;
gdb_wchar_t *chars;
const gdb_byte *buf;
size_t buflen;
int print_escape = 1;
enum wchar_iterate_result result;
num_chars = iter.iterate (&result, &chars, &buf, &buflen);
if (num_chars < 0)
break;
if (num_chars > 0)
{
/* If all characters are printable, print them. Otherwise,
we're going to have to print an escape sequence. We
check all characters because we want to print the target
bytes in the escape sequence, and we don't know character
boundaries there. */
int i;
print_escape = 0;
for (i = 0; i < num_chars; ++i)
if (!wchar_printable (chars[i]))
{
print_escape = 1;
break;
}
if (!print_escape)
{
for (i = 0; i < num_chars; ++i)
print_wchar (chars[i], buf, buflen,
TYPE_LENGTH (type), byte_order,
&wchar_buf, quoter, &need_escape);
}
}
/* This handles the NUM_CHARS == 0 case as well. */
if (print_escape)
print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
byte_order, &wchar_buf, quoter, &need_escape);
}
/* The output in the host encoding. */
auto_obstack output;
convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
(gdb_byte *) obstack_base (&wchar_buf),
obstack_object_size (&wchar_buf),
sizeof (gdb_wchar_t), &output, translit_char);
obstack_1grow (&output, '\0');
fputs_filtered ((const char *) obstack_base (&output), stream);
}
/* Return the repeat count of the next character/byte in ITER,
storing the result in VEC. */
static int
count_next_character (wchar_iterator *iter,
std::vector<converted_character> *vec)
{
struct converted_character *current;
if (vec->empty ())
{
struct converted_character tmp;
gdb_wchar_t *chars;
tmp.num_chars
= iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
if (tmp.num_chars > 0)
{
gdb_assert (tmp.num_chars < MAX_WCHARS);
memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
}
vec->push_back (tmp);
}
current = &vec->back ();
/* Count repeated characters or bytes. */
current->repeat_count = 1;
if (current->num_chars == -1)
{
/* EOF */
return -1;
}
else
{
gdb_wchar_t *chars;
struct converted_character d;
int repeat;
d.repeat_count = 0;
while (1)
{
/* Get the next character. */
d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
/* If a character was successfully converted, save the character
into the converted character. */
if (d.num_chars > 0)
{
gdb_assert (d.num_chars < MAX_WCHARS);
memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
}
/* Determine if the current character is the same as this
new character. */
if (d.num_chars == current->num_chars && d.result == current->result)
{
/* There are two cases to consider:
1) Equality of converted character (num_chars > 0)
2) Equality of non-converted character (num_chars == 0) */
if ((current->num_chars > 0
&& memcmp (current->chars, d.chars,
WCHAR_BUFLEN (current->num_chars)) == 0)
|| (current->num_chars == 0
&& current->buflen == d.buflen
&& memcmp (current->buf, d.buf, current->buflen) == 0))
++current->repeat_count;
else
break;
}
else
break;
}
/* Push this next converted character onto the result vector. */
repeat = current->repeat_count;
vec->push_back (d);
return repeat;
}
}
/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
character to use with string output. WIDTH is the size of the output
character type. BYTE_ORDER is the target byte order. OPTIONS
is the user's print options. */
static void
print_converted_chars_to_obstack (struct obstack *obstack,
const std::vector<converted_character> &chars,
int quote_char, int width,
enum bfd_endian byte_order,
const struct value_print_options *options)
{
unsigned int idx;
const converted_character *elem;
enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
int need_escape = 0;
/* Set the start state. */
idx = 0;
last = state = START;
elem = NULL;
while (1)
{
switch (state)
{
case START:
/* Nothing to do. */
break;
case SINGLE:
{
int j;
/* We are outputting a single character
(< options->repeat_count_threshold). */
if (last != SINGLE)
{
/* We were outputting some other type of content, so we
must output and a comma and a quote. */
if (last != START)
obstack_grow_wstr (obstack, LCST (", "));
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
}
/* Output the character. */
for (j = 0; j < elem->repeat_count; ++j)
{
if (elem->result == wchar_iterate_ok)
print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
byte_order, obstack, quote_char, &need_escape);
else
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
byte_order, obstack, quote_char, &need_escape);
}
}
break;
case REPEAT:
{
int j;
/* We are outputting a character with a repeat count
greater than options->repeat_count_threshold. */
if (last == SINGLE)
{
/* We were outputting a single string. Terminate the
string. */
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
}
if (last != START)
obstack_grow_wstr (obstack, LCST (", "));
/* Output the character and repeat string. */
obstack_grow_wstr (obstack, LCST ("'"));
if (elem->result == wchar_iterate_ok)
print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
byte_order, obstack, quote_char, &need_escape);
else
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
byte_order, obstack, quote_char, &need_escape);
obstack_grow_wstr (obstack, LCST ("'"));
std::string s = string_printf (_(" <repeats %u times>"),
elem->repeat_count);
for (j = 0; s[j]; ++j)
{
gdb_wchar_t w = gdb_btowc (s[j]);
obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
}
}
break;
case INCOMPLETE:
/* We are outputting an incomplete sequence. */
if (last == SINGLE)
{
/* If we were outputting a string of SINGLE characters,
terminate the quote. */
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
}
if (last != START)
obstack_grow_wstr (obstack, LCST (", "));
/* Output the incomplete sequence string. */
obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
obstack, 0, &need_escape);
obstack_grow_wstr (obstack, LCST (">"));
/* We do not attempt to output anything after this. */
state = FINISH;
break;
case FINISH:
/* All done. If we were outputting a string of SINGLE
characters, the string must be terminated. Otherwise,
REPEAT and INCOMPLETE are always left properly terminated. */
if (last == SINGLE)
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
return;
}
/* Get the next element and state. */
last = state;
if (state != FINISH)
{
elem = &chars[idx++];
switch (elem->result)
{
case wchar_iterate_ok:
case wchar_iterate_invalid:
if (elem->repeat_count > options->repeat_count_threshold)
state = REPEAT;
else
state = SINGLE;
break;
case wchar_iterate_incomplete:
state = INCOMPLETE;
break;
case wchar_iterate_eof:
state = FINISH;
break;
}
}
}
}
/* Print the character string STRING, printing at most LENGTH
characters. LENGTH is -1 if the string is nul terminated. TYPE is
the type of each character. OPTIONS holds the printing options;
printing stops early if the number hits print_max; repeat counts
are printed as appropriate. Print ellipses at the end if we had to
stop before printing LENGTH characters, or if FORCE_ELLIPSES.
QUOTE_CHAR is the character to print at each end of the string. If
C_STYLE_TERMINATOR is true, and the last character is 0, then it is
omitted. */
void
generic_printstr (struct ui_file *stream, struct type *type,
const gdb_byte *string, unsigned int length,
const char *encoding, int force_ellipses,
int quote_char, int c_style_terminator,
const struct value_print_options *options)
{
enum bfd_endian byte_order = type_byte_order (type);
unsigned int i;
int width = TYPE_LENGTH (type);
int finished = 0;
struct converted_character *last;
if (length == -1)
{
unsigned long current_char = 1;
for (i = 0; current_char; ++i)
{
QUIT;
current_char = extract_unsigned_integer (string + i * width,
width, byte_order);
}
length = i;
}
/* If the string was not truncated due to `set print elements', and
the last byte of it is a null, we don't print that, in
traditional C style. */
if (c_style_terminator
&& !force_ellipses
&& length > 0
&& (extract_unsigned_integer (string + (length - 1) * width,
width, byte_order) == 0))
length--;
if (length == 0)
{
fputs_filtered ("\"\"", stream);
return;
}
/* Arrange to iterate over the characters, in wchar_t form. */
wchar_iterator iter (string, length * width, encoding, width);
std::vector<converted_character> converted_chars;
/* Convert characters until the string is over or the maximum
number of printed characters has been reached. */
i = 0;
while (i < options->print_max)
{
int r;
QUIT;
/* Grab the next character and repeat count. */
r = count_next_character (&iter, &converted_chars);
/* If less than zero, the end of the input string was reached. */
if (r < 0)
break;
/* Otherwise, add the count to the total print count and get
the next character. */
i += r;
}
/* Get the last element and determine if the entire string was
processed. */
last = &converted_chars.back ();
finished = (last->result == wchar_iterate_eof);
/* Ensure that CONVERTED_CHARS is terminated. */
last->result = wchar_iterate_eof;
/* WCHAR_BUF is the obstack we use to represent the string in
wchar_t form. */
auto_obstack wchar_buf;
/* Print the output string to the obstack. */
print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
width, byte_order, options);
if (force_ellipses || !finished)
obstack_grow_wstr (&wchar_buf, LCST ("..."));
/* OUTPUT is where we collect `char's for printing. */
auto_obstack output;
convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
(gdb_byte *) obstack_base (&wchar_buf),
obstack_object_size (&wchar_buf),
sizeof (gdb_wchar_t), &output, translit_char);
obstack_1grow (&output, '\0');
fputs_filtered ((const char *) obstack_base (&output), stream);
}
/* Print a string from the inferior, starting at ADDR and printing up to LEN
characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
stops at the first null byte, otherwise printing proceeds (including null
bytes) until either print_max or LEN characters have been printed,
whichever is smaller. ENCODING is the name of the string's
encoding. It can be NULL, in which case the target encoding is
assumed. */
int
val_print_string (struct type *elttype, const char *encoding,
CORE_ADDR addr, int len,
struct ui_file *stream,
const struct value_print_options *options)
{
int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
int err; /* Non-zero if we got a bad read. */
int found_nul; /* Non-zero if we found the nul char. */
unsigned int fetchlimit; /* Maximum number of chars to print. */
int bytes_read;
gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
struct gdbarch *gdbarch = get_type_arch (elttype);
enum bfd_endian byte_order = type_byte_order (elttype);
int width = TYPE_LENGTH (elttype);
/* First we need to figure out the limit on the number of characters we are
going to attempt to fetch and print. This is actually pretty simple. If
LEN >= zero, then the limit is the minimum of LEN and print_max. If
LEN is -1, then the limit is print_max. This is true regardless of
whether print_max is zero, UINT_MAX (unlimited), or something in between,
because finding the null byte (or available memory) is what actually
limits the fetch. */
fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
options->print_max));
err = read_string (addr, len, width, fetchlimit, byte_order,
&buffer, &bytes_read);
addr += bytes_read;
/* We now have either successfully filled the buffer to fetchlimit,
or terminated early due to an error or finding a null char when
LEN is -1. */
/* Determine found_nul by looking at the last character read. */
found_nul = 0;
if (bytes_read >= width)
found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
width, byte_order) == 0;
if (len == -1 && !found_nul)
{
gdb_byte *peekbuf;
/* We didn't find a NUL terminator we were looking for. Attempt
to peek at the next character. If not successful, or it is not
a null byte, then force ellipsis to be printed. */
peekbuf = (gdb_byte *) alloca (width);
if (target_read_memory (addr, peekbuf, width) == 0
&& extract_unsigned_integer (peekbuf, width, byte_order) != 0)
force_ellipsis = 1;
}
else if ((len >= 0 && err != 0) || (len > bytes_read / width))
{
/* Getting an error when we have a requested length, or fetching less
than the number of characters actually requested, always make us
print ellipsis. */
force_ellipsis = 1;
}
/* If we get an error before fetching anything, don't print a string.
But if we fetch something and then get an error, print the string
and then the error message. */
if (err == 0 || bytes_read > 0)
{
LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
encoding, force_ellipsis, options);
}
if (err != 0)
{
std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
fprintf_filtered (stream, _("<error: %ps>"),
styled_string (metadata_style.style (),
str.c_str ()));
}
return (bytes_read / width);
}
/* Handle 'show print max-depth'. */
static void
show_print_max_depth (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
}
/* The 'set input-radix' command writes to this auxiliary variable.
If the requested radix is valid, INPUT_RADIX is updated; otherwise,
it is left unchanged. */
static unsigned input_radix_1 = 10;
/* Validate an input or output radix setting, and make sure the user
knows what they really did here. Radix setting is confusing, e.g.
setting the input radix to "10" never changes it! */
static void
set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
{
set_input_radix_1 (from_tty, input_radix_1);
}
static void
set_input_radix_1 (int from_tty, unsigned radix)
{
/* We don't currently disallow any input radix except 0 or 1, which don't
make any mathematical sense. In theory, we can deal with any input
radix greater than 1, even if we don't have unique digits for every
value from 0 to radix-1, but in practice we lose on large radix values.
We should either fix the lossage or restrict the radix range more.
(FIXME). */
if (radix < 2)
{
input_radix_1 = input_radix;
error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
radix);
}
input_radix_1 = input_radix = radix;
if (from_tty)
{
printf_filtered (_("Input radix now set to "
"decimal %u, hex %x, octal %o.\n"),
radix, radix, radix);
}
}
/* The 'set output-radix' command writes to this auxiliary variable.
If the requested radix is valid, OUTPUT_RADIX is updated,
otherwise, it is left unchanged. */
static unsigned output_radix_1 = 10;
static void
set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
{
set_output_radix_1 (from_tty, output_radix_1);
}
static void
set_output_radix_1 (int from_tty, unsigned radix)
{
/* Validate the radix and disallow ones that we aren't prepared to
handle correctly, leaving the radix unchanged. */
switch (radix)
{
case 16:
user_print_options.output_format = 'x'; /* hex */
break;
case 10:
user_print_options.output_format = 0; /* decimal */
break;
case 8:
user_print_options.output_format = 'o'; /* octal */
break;
default:
output_radix_1 = output_radix;
error (_("Unsupported output radix ``decimal %u''; "
"output radix unchanged."),
radix);
}
output_radix_1 = output_radix = radix;
if (from_tty)
{
printf_filtered (_("Output radix now set to "
"decimal %u, hex %x, octal %o.\n"),
radix, radix, radix);
}
}
/* Set both the input and output radix at once. Try to set the output radix
first, since it has the most restrictive range. An radix that is valid as
an output radix is also valid as an input radix.
It may be useful to have an unusual input radix. If the user wishes to
set an input radix that is not valid as an output radix, he needs to use
the 'set input-radix' command. */
static void
set_radix (const char *arg, int from_tty)
{
unsigned radix;
radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
set_output_radix_1 (0, radix);
set_input_radix_1 (0, radix);
if (from_tty)
{
printf_filtered (_("Input and output radices now set to "
"decimal %u, hex %x, octal %o.\n"),
radix, radix, radix);
}
}
/* Show both the input and output radices. */
static void
show_radix (const char *arg, int from_tty)
{
if (from_tty)
{
if (input_radix == output_radix)
{
printf_filtered (_("Input and output radices set to "
"decimal %u, hex %x, octal %o.\n"),
input_radix, input_radix, input_radix);
}
else
{
printf_filtered (_("Input radix set to decimal "
"%u, hex %x, octal %o.\n"),
input_radix, input_radix, input_radix);
printf_filtered (_("Output radix set to decimal "
"%u, hex %x, octal %o.\n"),
output_radix, output_radix, output_radix);
}
}
}
/* Controls printing of vtbl's. */
static void
show_vtblprint (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("\
Printing of C++ virtual function tables is %s.\n"),
value);
}
/* Controls looking up an object's derived type using what we find in
its vtables. */
static void
show_objectprint (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file, _("\
Printing of object's derived type based on vtable info is %s.\n"),
value);
}
static void
show_static_field_print (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file,
_("Printing of C++ static members is %s.\n"),
value);
}
/* A couple typedefs to make writing the options a bit more
convenient. */
using boolean_option_def
= gdb::option::boolean_option_def<value_print_options>;
using uinteger_option_def
= gdb::option::uinteger_option_def<value_print_options>;
using zuinteger_unlimited_option_def
= gdb::option::zuinteger_unlimited_option_def<value_print_options>;
/* Definitions of options for the "print" and "compile print"
commands. */
static const gdb::option::option_def value_print_option_defs[] = {
boolean_option_def {
"address",
[] (value_print_options *opt) { return &opt->addressprint; },
show_addressprint, /* show_cmd_cb */
N_("Set printing of addresses."),
N_("Show printing of addresses."),
NULL, /* help_doc */
},
boolean_option_def {
"array",
[] (value_print_options *opt) { return &opt->prettyformat_arrays; },
show_prettyformat_arrays, /* show_cmd_cb */
N_("Set pretty formatting of arrays."),
N_("Show pretty formatting of arrays."),
NULL, /* help_doc */
},
boolean_option_def {
"array-indexes",
[] (value_print_options *opt) { return &opt->print_array_indexes; },
show_print_array_indexes, /* show_cmd_cb */
N_("Set printing of array indexes."),
N_("Show printing of array indexes."),
NULL, /* help_doc */
},
uinteger_option_def {
"elements",
[] (value_print_options *opt) { return &opt->print_max; },
show_print_max, /* show_cmd_cb */
N_("Set limit on string chars or array elements to print."),
N_("Show limit on string chars or array elements to print."),
N_("\"unlimited\" causes there to be no limit."),
},
zuinteger_unlimited_option_def {
"max-depth",
[] (value_print_options *opt) { return &opt->max_depth; },
show_print_max_depth, /* show_cmd_cb */
N_("Set maximum print depth for nested structures, unions and arrays."),
N_("Show maximum print depth for nested structures, unions, and arrays."),
N_("When structures, unions, or arrays are nested beyond this depth then they\n\
will be replaced with either '{...}' or '(...)' depending on the language.\n\
Use \"unlimited\" to print the complete structure.")
},
boolean_option_def {
"null-stop",
[] (value_print_options *opt) { return &opt->stop_print_at_null; },
show_stop_print_at_null, /* show_cmd_cb */
N_("Set printing of char arrays to stop at first null char."),
N_("Show printing of char arrays to stop at first null char."),
NULL, /* help_doc */
},
boolean_option_def {
"object",
[] (value_print_options *opt) { return &opt->objectprint; },
show_objectprint, /* show_cmd_cb */
_("Set printing of C++ virtual function tables."),
_("Show printing of C++ virtual function tables."),
NULL, /* help_doc */
},
boolean_option_def {
"pretty",
[] (value_print_options *opt) { return &opt->prettyformat_structs; },
show_prettyformat_structs, /* show_cmd_cb */
N_("Set pretty formatting of structures."),
N_("Show pretty formatting of structures."),
NULL, /* help_doc */
},
boolean_option_def {
"raw-values",
[] (value_print_options *opt) { return &opt->raw; },
NULL, /* show_cmd_cb */
N_("Set whether to print values in raw form."),
N_("Show whether to print values in raw form."),
N_("If set, values are printed in raw form, bypassing any\n\
pretty-printers for that value.")
},
uinteger_option_def {
"repeats",
[] (value_print_options *opt) { return &opt->repeat_count_threshold; },
show_repeat_count_threshold, /* show_cmd_cb */
N_("Set threshold for repeated print elements."),
N_("Show threshold for repeated print elements."),
N_("\"unlimited\" causes all elements to be individually printed."),
},
boolean_option_def {
"static-members",
[] (value_print_options *opt) { return &opt->static_field_print; },
show_static_field_print, /* show_cmd_cb */
N_("Set printing of C++ static members."),
N_("Show printing of C++ static members."),
NULL, /* help_doc */
},
boolean_option_def {
"symbol",
[] (value_print_options *opt) { return &opt->symbol_print; },
show_symbol_print, /* show_cmd_cb */
N_("Set printing of symbol names when printing pointers."),
N_("Show printing of symbol names when printing pointers."),
NULL, /* help_doc */
},
boolean_option_def {
"union",
[] (value_print_options *opt) { return &opt->unionprint; },
show_unionprint, /* show_cmd_cb */
N_("Set printing of unions interior to structures."),
N_("Show printing of unions interior to structures."),
NULL, /* help_doc */
},
boolean_option_def {
"vtbl",
[] (value_print_options *opt) { return &opt->vtblprint; },
show_vtblprint, /* show_cmd_cb */
N_("Set printing of C++ virtual function tables."),
N_("Show printing of C++ virtual function tables."),
NULL, /* help_doc */
},
};
/* See valprint.h. */
gdb::option::option_def_group
make_value_print_options_def_group (value_print_options *opts)
{
return {{value_print_option_defs}, opts};
}
void _initialize_valprint ();
void
_initialize_valprint ()
{
cmd_list_element *cmd;
add_basic_prefix_cmd ("print", no_class,
_("Generic command for setting how things print."),
&setprintlist, "set print ", 0, &setlist);
add_alias_cmd ("p", "print", no_class, 1, &setlist);
/* Prefer set print to set prompt. */
add_alias_cmd ("pr", "print", no_class, 1, &setlist);
add_show_prefix_cmd ("print", no_class,
_("Generic command for showing print settings."),
&showprintlist, "show print ", 0, &showlist);
add_alias_cmd ("p", "print", no_class, 1, &showlist);
add_alias_cmd ("pr", "print", no_class, 1, &showlist);
cmd = add_basic_prefix_cmd ("raw", no_class,
_("\
Generic command for setting what things to print in \"raw\" mode."),
&setprintrawlist, "set print raw ", 0,
&setprintlist);
deprecate_cmd (cmd, nullptr);
cmd = add_show_prefix_cmd ("raw", no_class,
_("Generic command for showing \"print raw\" settings."),
&showprintrawlist, "show print raw ", 0,
&showprintlist);
deprecate_cmd (cmd, nullptr);
gdb::option::add_setshow_cmds_for_options
(class_support, &user_print_options, value_print_option_defs,
&setprintlist, &showprintlist);
add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
_("\
Set default input radix for entering numbers."), _("\
Show default input radix for entering numbers."), NULL,
set_input_radix,
show_input_radix,
&setlist, &showlist);
add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
_("\
Set default output radix for printing of values."), _("\
Show default output radix for printing of values."), NULL,
set_output_radix,
show_output_radix,
&setlist, &showlist);
/* The "set radix" and "show radix" commands are special in that
they are like normal set and show commands but allow two normally
independent variables to be either set or shown with a single
command. So the usual deprecated_add_set_cmd() and [deleted]
add_show_from_set() commands aren't really appropriate. */
/* FIXME: i18n: With the new add_setshow_integer command, that is no
longer true - show can display anything. */
add_cmd ("radix", class_support, set_radix, _("\
Set default input and output number radices.\n\
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
Without an argument, sets both radices back to the default value of 10."),
&setlist);
add_cmd ("radix", class_support, show_radix, _("\
Show the default input and output number radices.\n\
Use 'show input-radix' or 'show output-radix' to independently show each."),
&showlist);
}