mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
743 lines
20 KiB
C
743 lines
20 KiB
C
/* ARC target-dependent stuff.
|
||
Copyright (C) 1995, 1997 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "target.h"
|
||
#include "floatformat.h"
|
||
#include "symtab.h"
|
||
#include "gdbcmd.h"
|
||
|
||
/* Current CPU, set with the "set cpu" command. */
|
||
static int arc_bfd_mach_type;
|
||
char *arc_cpu_type;
|
||
char *tmp_arc_cpu_type;
|
||
|
||
/* Table of cpu names. */
|
||
struct {
|
||
char *name;
|
||
int value;
|
||
} arc_cpu_type_table[] = {
|
||
{ "base", bfd_mach_arc_base },
|
||
{ NULL, 0 }
|
||
};
|
||
|
||
/* Used by simulator. */
|
||
int display_pipeline_p;
|
||
int cpu_timer;
|
||
/* This one must have the same type as used in the emulator.
|
||
It's currently an enum so this should be ok for now. */
|
||
int debug_pipeline_p;
|
||
|
||
#define ARC_CALL_SAVED_REG(r) ((r) >= 16 && (r) < 24)
|
||
|
||
#define OPMASK 0xf8000000
|
||
|
||
/* Instruction field accessor macros.
|
||
See the Programmer's Reference Manual. */
|
||
#define X_OP(i) (((i) >> 27) & 0x1f)
|
||
#define X_A(i) (((i) >> 21) & 0x3f)
|
||
#define X_B(i) (((i) >> 15) & 0x3f)
|
||
#define X_C(i) (((i) >> 9) & 0x3f)
|
||
#define X_D(i) ((((i) & 0x1ff) ^ 0x100) - 0x100)
|
||
#define X_L(i) (((((i) >> 5) & 0x3ffffc) ^ 0x200000) - 0x200000)
|
||
#define X_N(i) (((i) >> 5) & 3)
|
||
#define X_Q(i) ((i) & 0x1f)
|
||
|
||
/* Return non-zero if X is a short immediate data indicator. */
|
||
#define SHIMM_P(x) ((x) == 61 || (x) == 63)
|
||
|
||
/* Return non-zero if X is a "long" (32 bit) immediate data indicator. */
|
||
#define LIMM_P(x) ((x) == 62)
|
||
|
||
/* Build a simple instruction. */
|
||
#define BUILD_INSN(op, a, b, c, d) \
|
||
((((op) & 31) << 27) \
|
||
| (((a) & 63) << 21) \
|
||
| (((b) & 63) << 15) \
|
||
| (((c) & 63) << 9) \
|
||
| ((d) & 511))
|
||
|
||
/* Codestream stuff. */
|
||
static void codestream_read PARAMS ((unsigned int *, int));
|
||
static void codestream_seek PARAMS ((CORE_ADDR));
|
||
static unsigned int codestream_fill PARAMS ((int));
|
||
|
||
#define CODESTREAM_BUFSIZ 16
|
||
static CORE_ADDR codestream_next_addr;
|
||
static CORE_ADDR codestream_addr;
|
||
static unsigned int codestream_buf[CODESTREAM_BUFSIZ];
|
||
static int codestream_off;
|
||
static int codestream_cnt;
|
||
|
||
#define codestream_tell() \
|
||
(codestream_addr + codestream_off * sizeof (codestream_buf[0]))
|
||
#define codestream_peek() \
|
||
(codestream_cnt == 0 \
|
||
? codestream_fill (1) \
|
||
: codestream_buf[codestream_off])
|
||
#define codestream_get() \
|
||
(codestream_cnt-- == 0 \
|
||
? codestream_fill (0) \
|
||
: codestream_buf[codestream_off++])
|
||
|
||
static unsigned int
|
||
codestream_fill (peek_flag)
|
||
int peek_flag;
|
||
{
|
||
codestream_addr = codestream_next_addr;
|
||
codestream_next_addr += CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]);
|
||
codestream_off = 0;
|
||
codestream_cnt = CODESTREAM_BUFSIZ;
|
||
read_memory (codestream_addr, (char *) codestream_buf,
|
||
CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]));
|
||
/* FIXME: check return code? */
|
||
|
||
/* Handle byte order differences. */
|
||
if (HOST_BYTE_ORDER != TARGET_BYTE_ORDER)
|
||
{
|
||
register unsigned int i, j, n = sizeof (codestream_buf[0]);
|
||
register char tmp, *p;
|
||
for (i = 0, p = (char *) codestream_buf; i < CODESTREAM_BUFSIZ;
|
||
++i, p += n)
|
||
for (j = 0; j < n / 2; ++j)
|
||
tmp = p[j], p[j] = p[n - 1 - j], p[n - 1 - j] = tmp;
|
||
}
|
||
|
||
if (peek_flag)
|
||
return codestream_peek ();
|
||
else
|
||
return codestream_get ();
|
||
}
|
||
|
||
static void
|
||
codestream_seek (place)
|
||
CORE_ADDR place;
|
||
{
|
||
codestream_next_addr = place / CODESTREAM_BUFSIZ;
|
||
codestream_next_addr *= CODESTREAM_BUFSIZ;
|
||
codestream_cnt = 0;
|
||
codestream_fill (1);
|
||
while (codestream_tell () != place)
|
||
codestream_get ();
|
||
}
|
||
|
||
/* This function is currently unused but leave in for now. */
|
||
|
||
static void
|
||
codestream_read (buf, count)
|
||
unsigned int *buf;
|
||
int count;
|
||
{
|
||
unsigned int *p;
|
||
int i;
|
||
p = buf;
|
||
for (i = 0; i < count; i++)
|
||
*p++ = codestream_get ();
|
||
}
|
||
|
||
/* Set up prologue scanning and return the first insn. */
|
||
|
||
static unsigned int
|
||
setup_prologue_scan (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
unsigned int insn;
|
||
|
||
codestream_seek (pc);
|
||
insn = codestream_get ();
|
||
|
||
return insn;
|
||
}
|
||
|
||
/*
|
||
* Find & return amount a local space allocated, and advance codestream to
|
||
* first register push (if any).
|
||
* If entry sequence doesn't make sense, return -1, and leave
|
||
* codestream pointer random.
|
||
*/
|
||
|
||
static long
|
||
arc_get_frame_setup (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
unsigned int insn;
|
||
/* Size of frame or -1 if unrecognizable prologue. */
|
||
int frame_size = -1;
|
||
/* An initial "sub sp,sp,N" may or may not be for a stdarg fn. */
|
||
int maybe_stdarg_decr = -1;
|
||
|
||
insn = setup_prologue_scan (pc);
|
||
|
||
/* The authority for what appears here is the home-grown ABI.
|
||
The most recent version is 1.2. */
|
||
|
||
/* First insn may be "sub sp,sp,N" if stdarg fn. */
|
||
if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
|
||
== BUILD_INSN (10, SP_REGNUM, SP_REGNUM, SHIMM_REGNUM, 0))
|
||
{
|
||
maybe_stdarg_decr = X_D (insn);
|
||
insn = codestream_get ();
|
||
}
|
||
|
||
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
|
||
== BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
|
||
{
|
||
insn = codestream_get ();
|
||
/* Frame may not be necessary, even though blink is saved.
|
||
At least this is something we recognize. */
|
||
frame_size = 0;
|
||
}
|
||
|
||
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st fp,[sp] */
|
||
== BUILD_INSN (2, 0, SP_REGNUM, FP_REGNUM, 0))
|
||
{
|
||
insn = codestream_get ();
|
||
if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
|
||
!= BUILD_INSN (12, FP_REGNUM, SP_REGNUM, SP_REGNUM, 0))
|
||
return -1;
|
||
|
||
/* Check for stack adjustment sub sp,sp,N. */
|
||
insn = codestream_peek ();
|
||
if ((insn & BUILD_INSN (-1, -1, -1, 0, 0))
|
||
== BUILD_INSN (10, SP_REGNUM, SP_REGNUM, 0, 0))
|
||
{
|
||
if (LIMM_P (X_C (insn)))
|
||
frame_size = codestream_get ();
|
||
else if (SHIMM_P (X_C (insn)))
|
||
frame_size = X_D (insn);
|
||
else
|
||
return -1;
|
||
if (frame_size < 0)
|
||
return -1;
|
||
|
||
codestream_get ();
|
||
|
||
/* This sequence is used to get the address of the return
|
||
buffer for a function that returns a structure. */
|
||
insn = codestream_peek ();
|
||
if (insn & OPMASK == 0x60000000)
|
||
codestream_get ();
|
||
}
|
||
/* Frameless fn. */
|
||
else
|
||
{
|
||
frame_size = 0;
|
||
}
|
||
}
|
||
|
||
/* If we found a "sub sp,sp,N" and nothing else, it may or may not be a
|
||
stdarg fn. The stdarg decrement is not treated as part of the frame size,
|
||
so we have a dilemma: what do we return? For now, if we get a
|
||
"sub sp,sp,N" and nothing else assume this isn't a stdarg fn. One way
|
||
to fix this completely would be to add a bit to the function descriptor
|
||
that says the function is a stdarg function. */
|
||
|
||
if (frame_size < 0 && maybe_stdarg_decr > 0)
|
||
return maybe_stdarg_decr;
|
||
return frame_size;
|
||
}
|
||
|
||
/* Given a pc value, skip it forward past the function prologue by
|
||
disassembling instructions that appear to be a prologue.
|
||
|
||
If FRAMELESS_P is set, we are only testing to see if the function
|
||
is frameless. If it is a frameless function, return PC unchanged.
|
||
This allows a quicker answer. */
|
||
|
||
CORE_ADDR
|
||
skip_prologue (pc, frameless_p)
|
||
CORE_ADDR pc;
|
||
int frameless_p;
|
||
{
|
||
unsigned int insn;
|
||
int i, frame_size;
|
||
|
||
if ((frame_size = arc_get_frame_setup (pc)) < 0)
|
||
return (pc);
|
||
|
||
if (frameless_p)
|
||
return frame_size == 0 ? pc : codestream_tell ();
|
||
|
||
/* Skip over register saves. */
|
||
for (i = 0; i < 8; i++)
|
||
{
|
||
insn = codestream_peek ();
|
||
if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
|
||
!= BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
|
||
break; /* not st insn */
|
||
if (! ARC_CALL_SAVED_REG (X_C (insn)))
|
||
break;
|
||
codestream_get ();
|
||
}
|
||
|
||
return codestream_tell ();
|
||
}
|
||
|
||
/* Return the return address for a frame.
|
||
This is used to implement FRAME_SAVED_PC.
|
||
This is taken from frameless_look_for_prologue. */
|
||
|
||
CORE_ADDR
|
||
arc_frame_saved_pc (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
CORE_ADDR func_start;
|
||
unsigned int insn;
|
||
|
||
func_start = get_pc_function_start (frame->pc) + FUNCTION_START_OFFSET;
|
||
if (func_start == 0)
|
||
{
|
||
/* Best guess. */
|
||
return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
|
||
}
|
||
|
||
/* The authority for what appears here is the home-grown ABI.
|
||
The most recent version is 1.2. */
|
||
|
||
insn = setup_prologue_scan (func_start);
|
||
|
||
/* First insn may be "sub sp,sp,N" if stdarg fn. */
|
||
if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
|
||
== BUILD_INSN (10, SP_REGNUM, SP_REGNUM, SHIMM_REGNUM, 0))
|
||
insn = codestream_get ();
|
||
|
||
/* If the next insn is "st blink,[sp,4]" we can get blink from there.
|
||
Otherwise this is a leaf function and we can use blink. Note that
|
||
this still allows for the case where a leaf function saves/clobbers/
|
||
restores blink. */
|
||
|
||
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
|
||
!= BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
|
||
return ARC_PC_TO_REAL_ADDRESS (read_register (BLINK_REGNUM));
|
||
else
|
||
return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
|
||
}
|
||
|
||
/*
|
||
* Parse the first few instructions of the function to see
|
||
* what registers were stored.
|
||
*
|
||
* The startup sequence can be at the start of the function.
|
||
* 'st blink,[sp+4], st fp,[sp], mov fp,sp'
|
||
*
|
||
* Local space is allocated just below by sub sp,sp,nnn.
|
||
* Next, the registers used by this function are stored (as offsets from sp).
|
||
*/
|
||
|
||
void
|
||
frame_find_saved_regs (fip, fsrp)
|
||
struct frame_info *fip;
|
||
struct frame_saved_regs *fsrp;
|
||
{
|
||
long locals;
|
||
unsigned int insn;
|
||
CORE_ADDR dummy_bottom;
|
||
CORE_ADDR adr;
|
||
int i, regnum, offset;
|
||
|
||
memset (fsrp, 0, sizeof *fsrp);
|
||
|
||
/* If frame is the end of a dummy, compute where the beginning would be. */
|
||
dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
|
||
|
||
/* Check if the PC is in the stack, in a dummy frame. */
|
||
if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
|
||
{
|
||
/* all regs were saved by push_call_dummy () */
|
||
adr = fip->frame;
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
{
|
||
adr -= REGISTER_RAW_SIZE (i);
|
||
fsrp->regs[i] = adr;
|
||
}
|
||
return;
|
||
}
|
||
|
||
locals = arc_get_frame_setup (get_pc_function_start (fip->pc));
|
||
|
||
if (locals >= 0)
|
||
{
|
||
/* Set `adr' to the value of `sp'. */
|
||
adr = fip->frame - locals;
|
||
for (i = 0; i < 8; i++)
|
||
{
|
||
insn = codestream_get ();
|
||
if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
|
||
!= BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
|
||
break;
|
||
regnum = X_C (insn);
|
||
offset = X_D (insn);
|
||
fsrp->regs[regnum] = adr + offset;
|
||
}
|
||
}
|
||
|
||
fsrp->regs[PC_REGNUM] = fip->frame + 4;
|
||
fsrp->regs[FP_REGNUM] = fip->frame;
|
||
}
|
||
|
||
void
|
||
push_dummy_frame ()
|
||
{
|
||
CORE_ADDR sp = read_register (SP_REGNUM);
|
||
int regnum;
|
||
char regbuf[MAX_REGISTER_RAW_SIZE];
|
||
|
||
read_register_gen (PC_REGNUM, regbuf);
|
||
write_memory (sp+4, regbuf, REGISTER_SIZE);
|
||
read_register_gen (FP_REGNUM, regbuf);
|
||
write_memory (sp, regbuf, REGISTER_SIZE);
|
||
write_register (FP_REGNUM, sp);
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||
{
|
||
read_register_gen (regnum, regbuf);
|
||
sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
sp += (2*REGISTER_SIZE);
|
||
write_register (SP_REGNUM, sp);
|
||
}
|
||
|
||
void
|
||
pop_frame ()
|
||
{
|
||
struct frame_info *frame = get_current_frame ();
|
||
CORE_ADDR fp;
|
||
int regnum;
|
||
struct frame_saved_regs fsr;
|
||
char regbuf[MAX_REGISTER_RAW_SIZE];
|
||
|
||
fp = FRAME_FP (frame);
|
||
get_frame_saved_regs (frame, &fsr);
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||
{
|
||
CORE_ADDR adr;
|
||
adr = fsr.regs[regnum];
|
||
if (adr)
|
||
{
|
||
read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
|
||
write_register_bytes (REGISTER_BYTE (regnum), regbuf,
|
||
REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
}
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
||
write_register (SP_REGNUM, fp + 8);
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* Simulate single-step. */
|
||
|
||
typedef enum
|
||
{
|
||
NORMAL4, /* a normal 4 byte insn */
|
||
NORMAL8, /* a normal 8 byte insn */
|
||
BRANCH4, /* a 4 byte branch insn, including ones without delay slots */
|
||
BRANCH8, /* an 8 byte branch insn, including ones with delay slots */
|
||
} insn_type;
|
||
|
||
/* Return the type of INSN and store in TARGET the destination address of a
|
||
branch if this is one. */
|
||
/* ??? Need to verify all cases are properly handled. */
|
||
|
||
static insn_type
|
||
get_insn_type (insn, pc, target)
|
||
unsigned long insn;
|
||
CORE_ADDR pc, *target;
|
||
{
|
||
unsigned long limm;
|
||
|
||
switch (insn >> 27)
|
||
{
|
||
case 0 : case 1 : case 2 : /* load/store insns */
|
||
if (LIMM_P (X_A (insn))
|
||
|| LIMM_P (X_B (insn))
|
||
|| LIMM_P (X_C (insn)))
|
||
return NORMAL8;
|
||
return NORMAL4;
|
||
case 4 : case 5 : case 6 : /* branch insns */
|
||
*target = pc + 4 + X_L (insn);
|
||
/* ??? It isn't clear that this is always the right answer.
|
||
The problem occurs when the next insn is an 8 byte insn. If the
|
||
branch is conditional there's no worry as there shouldn't be an 8
|
||
byte insn following. The programmer may be cheating if s/he knows
|
||
the branch will never be taken, but we don't deal with that.
|
||
Note that the programmer is also allowed to play games by putting
|
||
an insn with long immediate data in the delay slot and then duplicate
|
||
the long immediate data at the branch target. Ugh! */
|
||
if (X_N (insn) == 0)
|
||
return BRANCH4;
|
||
return BRANCH8;
|
||
case 7 : /* jump insns */
|
||
if (LIMM_P (X_B (insn)))
|
||
{
|
||
limm = read_memory_integer (pc + 4, 4);
|
||
*target = ARC_PC_TO_REAL_ADDRESS (limm);
|
||
return BRANCH8;
|
||
}
|
||
if (SHIMM_P (X_B (insn)))
|
||
*target = ARC_PC_TO_REAL_ADDRESS (X_D (insn));
|
||
else
|
||
*target = ARC_PC_TO_REAL_ADDRESS (read_register (X_B (insn)));
|
||
if (X_Q (insn) == 0 && X_N (insn) == 0)
|
||
return BRANCH4;
|
||
return BRANCH8;
|
||
default : /* arithmetic insns, etc. */
|
||
if (LIMM_P (X_A (insn))
|
||
|| LIMM_P (X_B (insn))
|
||
|| LIMM_P (X_C (insn)))
|
||
return NORMAL8;
|
||
return NORMAL4;
|
||
}
|
||
}
|
||
|
||
/* Non-zero if we just simulated a single-step. This is needed because we
|
||
cannot remove the breakpoints in the inferior process until after the
|
||
`wait' in `wait_for_inferior'. */
|
||
|
||
int one_stepped;
|
||
|
||
/* single_step() is called just before we want to resume the inferior, if we
|
||
want to single-step it but there is no hardware or kernel single-step
|
||
support. We find all the possible targets of the coming instruction and
|
||
breakpoint them.
|
||
|
||
single_step is also called just after the inferior stops. If we had
|
||
set up a simulated single-step, we undo our damage. */
|
||
|
||
void
|
||
single_step (ignore)
|
||
enum target_signal ignore; /* sig, but we don't need it */
|
||
{
|
||
static CORE_ADDR next_pc, target;
|
||
static int brktrg_p;
|
||
typedef char binsn_quantum[BREAKPOINT_MAX];
|
||
static binsn_quantum break_mem[2];
|
||
|
||
if (!one_stepped)
|
||
{
|
||
insn_type type;
|
||
CORE_ADDR pc;
|
||
unsigned long insn;
|
||
|
||
pc = read_register (PC_REGNUM);
|
||
insn = read_memory_integer (pc, 4);
|
||
type = get_insn_type (insn, pc, &target);
|
||
|
||
/* Always set a breakpoint for the insn after the branch. */
|
||
next_pc = pc + ((type == NORMAL8 || type == BRANCH8) ? 8 : 4);
|
||
target_insert_breakpoint (next_pc, break_mem[0]);
|
||
|
||
brktrg_p = 0;
|
||
|
||
if ((type == BRANCH4 || type == BRANCH8)
|
||
/* Watch out for branches to the following location.
|
||
We just stored a breakpoint there and another call to
|
||
target_insert_breakpoint will think the real insn is the
|
||
breakpoint we just stored there. */
|
||
&& target != next_pc)
|
||
{
|
||
brktrg_p = 1;
|
||
target_insert_breakpoint (target, break_mem[1]);
|
||
}
|
||
|
||
/* We are ready to let it go. */
|
||
one_stepped = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Remove breakpoints. */
|
||
target_remove_breakpoint (next_pc, break_mem[0]);
|
||
|
||
if (brktrg_p)
|
||
target_remove_breakpoint (target, break_mem[1]);
|
||
|
||
/* Fix the pc. */
|
||
stop_pc -= DECR_PC_AFTER_BREAK;
|
||
write_pc (stop_pc);
|
||
|
||
one_stepped = 0;
|
||
}
|
||
}
|
||
|
||
#ifdef GET_LONGJMP_TARGET
|
||
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
||
We expect the first arg to be a pointer to the jmp_buf structure from which
|
||
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
||
This routine returns true on success. */
|
||
|
||
int
|
||
get_longjmp_target(pc)
|
||
CORE_ADDR *pc;
|
||
{
|
||
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
||
CORE_ADDR sp, jb_addr;
|
||
|
||
sp = read_register (SP_REGNUM);
|
||
|
||
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
|
||
buf,
|
||
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
||
return 0;
|
||
|
||
jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
|
||
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
||
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
||
return 0;
|
||
|
||
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
|
||
return 1;
|
||
}
|
||
#endif /* GET_LONGJMP_TARGET */
|
||
|
||
/* Disassemble one instruction. */
|
||
|
||
static int
|
||
arc_print_insn (vma, info)
|
||
bfd_vma vma;
|
||
disassemble_info *info;
|
||
{
|
||
static int current_mach;
|
||
static int current_endian;
|
||
static disassembler_ftype current_disasm;
|
||
|
||
if (current_disasm == NULL
|
||
|| arc_bfd_mach_type != current_mach
|
||
|| TARGET_BYTE_ORDER != current_endian)
|
||
{
|
||
current_mach = arc_bfd_mach_type;
|
||
current_endian = TARGET_BYTE_ORDER;
|
||
current_disasm = arc_get_disassembler (current_mach,
|
||
current_endian == BIG_ENDIAN);
|
||
}
|
||
|
||
return (*current_disasm) (vma, info);
|
||
}
|
||
|
||
/* Command to set cpu type. */
|
||
|
||
void
|
||
arc_set_cpu_type_command (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
int i;
|
||
|
||
if (tmp_arc_cpu_type == NULL || *tmp_arc_cpu_type == '\0')
|
||
{
|
||
printf_unfiltered ("The known ARC cpu types are as follows:\n");
|
||
for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
|
||
printf_unfiltered ("%s\n", arc_cpu_type_table[i].name);
|
||
|
||
/* Restore the value. */
|
||
tmp_arc_cpu_type = strsave (arc_cpu_type);
|
||
|
||
return;
|
||
}
|
||
|
||
if (!arc_set_cpu_type (tmp_arc_cpu_type))
|
||
{
|
||
error ("Unknown cpu type `%s'.", tmp_arc_cpu_type);
|
||
/* Restore its value. */
|
||
tmp_arc_cpu_type = strsave (arc_cpu_type);
|
||
}
|
||
}
|
||
|
||
static void
|
||
arc_show_cpu_type_command (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
}
|
||
|
||
/* Modify the actual cpu type.
|
||
Result is a boolean indicating success. */
|
||
|
||
int
|
||
arc_set_cpu_type (str)
|
||
char *str;
|
||
{
|
||
int i, j;
|
||
|
||
if (str == NULL)
|
||
return 0;
|
||
|
||
for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
|
||
{
|
||
if (strcasecmp (str, arc_cpu_type_table[i].name) == 0)
|
||
{
|
||
arc_cpu_type = str;
|
||
arc_bfd_mach_type = arc_cpu_type_table[i].value;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
_initialize_arc_tdep ()
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
c = add_set_cmd ("cpu", class_support, var_string_noescape,
|
||
(char *) &tmp_arc_cpu_type,
|
||
"Set the type of ARC cpu in use.\n\
|
||
This command has two purposes. In a multi-cpu system it lets one\n\
|
||
change the cpu being debugged. It also gives one access to\n\
|
||
cpu-type-specific registers and recognize cpu-type-specific instructions.\
|
||
",
|
||
&setlist);
|
||
c->function.cfunc = arc_set_cpu_type_command;
|
||
c = add_show_from_set (c, &showlist);
|
||
c->function.cfunc = arc_show_cpu_type_command;
|
||
|
||
/* We have to use strsave here because the `set' command frees it before
|
||
setting a new value. */
|
||
tmp_arc_cpu_type = strsave (DEFAULT_ARC_CPU_TYPE);
|
||
arc_set_cpu_type (tmp_arc_cpu_type);
|
||
|
||
c = add_set_cmd ("displaypipeline", class_support, var_zinteger,
|
||
(char *) &display_pipeline_p,
|
||
"Set pipeline display (simulator only).\n\
|
||
When enabled, the state of the pipeline after each cycle is displayed.",
|
||
&setlist);
|
||
c = add_show_from_set (c, &showlist);
|
||
|
||
c = add_set_cmd ("debugpipeline", class_support, var_zinteger,
|
||
(char *) &debug_pipeline_p,
|
||
"Set pipeline debug display (simulator only).\n\
|
||
When enabled, debugging information about the pipeline is displayed.",
|
||
&setlist);
|
||
c = add_show_from_set (c, &showlist);
|
||
|
||
c = add_set_cmd ("cputimer", class_support, var_zinteger,
|
||
(char *) &cpu_timer,
|
||
"Set maximum cycle count (simulator only).\n\
|
||
Control will return to gdb if the timer expires.\n\
|
||
A negative value disables the timer.",
|
||
&setlist);
|
||
c = add_show_from_set (c, &showlist);
|
||
|
||
tm_print_insn = arc_print_insn;
|
||
}
|