binutils-gdb/gdb/target-dcache.c
Tom de Vries f9582a22db [gdb] Fix segfault in for_each_block, part 1
When running test-case gdb.base/vfork-follow-parent.exp on powerpc64 (likewise
on s390x), I run into:
...
(gdb) PASS: gdb.base/vfork-follow-parent.exp: \
  exec_file=vfork-follow-parent-exit: target-non-stop=on: non-stop=off: \
  resolution_method=schedule-multiple: print unblock_parent = 1
continue^M
Continuing.^M
Reading symbols from vfork-follow-parent-exit...^M
^M
^M
Fatal signal: Segmentation fault^M
----- Backtrace -----^M
0x1027d3e7 gdb_internal_backtrace_1^M
        src/gdb/bt-utils.c:122^M
0x1027d54f _Z22gdb_internal_backtracev^M
        src/gdb/bt-utils.c:168^M
0x1057643f handle_fatal_signal^M
        src/gdb/event-top.c:889^M
0x10576677 handle_sigsegv^M
        src/gdb/event-top.c:962^M
0x3fffa7610477 ???^M
0x103f2144 for_each_block^M
        src/gdb/dcache.c:199^M
0x103f235b _Z17dcache_invalidateP13dcache_struct^M
        src/gdb/dcache.c:251^M
0x10bde8c7 _Z24target_dcache_invalidatev^M
        src/gdb/target-dcache.c:50^M
...
or similar.

The root cause for the segmentation fault is that linux_is_uclinux gives an
incorrect result: it should always return false, given that we're running on a
regular linux system, but instead it returns first true, then false.

In more detail, the segmentation fault happens as follows:
- a program space with an address space is created
- a second program space is about to be created. maybe_new_address_space
  is called, and because linux_is_uclinux returns true, maybe_new_address_space
  returns false, and no new address space is created
- a second program space with the same address space is created
- a program space is deleted. Because linux_is_uclinux now returns false,
  gdbarch_has_shared_address_space (current_inferior ()->arch ()) returns
  false, and the address space is deleted
- when gdb uses the address space of the remaining program space, we run into
  the segfault, because the address space is deleted.

Hardcoding linux_is_uclinux to false makes the test-case pass.

We leave addressing the root cause for the following commit in this series.

For now, prevent the segmentation fault by making the address space a refcounted
object.

This was already suggested here [1]:
...
A better solution might be to have the address spaces be reference counted
...

Tested on top of trunk on x86_64-linux and ppc64le-linux.
Tested on top of gdb-14-branch on ppc64-linux.

Co-Authored-By: Simon Marchi <simon.marchi@polymtl.ca>

PR gdb/30547
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30547

[1] https://sourceware.org/pipermail/gdb-patches/2023-October/202928.html
2023-11-28 10:31:25 +01:00

201 lines
5.6 KiB
C

/* Copyright (C) 1992-2023 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "target-dcache.h"
#include "gdbcmd.h"
#include "progspace.h"
#include "cli/cli-cmds.h"
/* The target dcache is kept per-address-space. This key lets us
associate the cache with the address space. */
static const registry<address_space>::key<DCACHE, dcache_deleter>
target_dcache_aspace_key;
/* Target dcache is initialized or not. */
int
target_dcache_init_p (address_space_ref_ptr aspace)
{
DCACHE *dcache
= target_dcache_aspace_key.get (aspace.get ());
return (dcache != NULL);
}
/* Invalidate the target dcache. */
void
target_dcache_invalidate (address_space_ref_ptr aspace)
{
DCACHE *dcache
= target_dcache_aspace_key.get (aspace.get ());
if (dcache != NULL)
dcache_invalidate (dcache);
}
/* Return the target dcache. Return NULL if target dcache is not
initialized yet. */
DCACHE *
target_dcache_get (address_space_ref_ptr aspace)
{
return target_dcache_aspace_key.get (aspace.get ());
}
/* Return the target dcache. If it is not initialized yet, initialize
it. */
DCACHE *
target_dcache_get_or_init (address_space_ref_ptr aspace)
{
DCACHE *dcache
= target_dcache_aspace_key.get (aspace.get ());
if (dcache == NULL)
{
dcache = dcache_init ();
target_dcache_aspace_key.set (aspace.get (), dcache);
}
return dcache;
}
/* The option sets this. */
static bool stack_cache_enabled_1 = true;
/* And set_stack_cache updates this.
The reason for the separation is so that we don't flush the cache for
on->on transitions. */
static int stack_cache_enabled = 1;
/* This is called *after* the stack-cache has been set.
Flush the cache for off->on and on->off transitions.
There's no real need to flush the cache for on->off transitions,
except cleanliness. */
static void
set_stack_cache (const char *args, int from_tty, struct cmd_list_element *c)
{
if (stack_cache_enabled != stack_cache_enabled_1)
target_dcache_invalidate (current_program_space->aspace);
stack_cache_enabled = stack_cache_enabled_1;
}
static void
show_stack_cache (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
gdb_printf (file, _("Cache use for stack accesses is %s.\n"), value);
}
/* Return true if "stack cache" is enabled, otherwise, return false. */
int
stack_cache_enabled_p (void)
{
return stack_cache_enabled;
}
/* The option sets this. */
static bool code_cache_enabled_1 = true;
/* And set_code_cache updates this.
The reason for the separation is so that we don't flush the cache for
on->on transitions. */
static int code_cache_enabled = 1;
/* This is called *after* the code-cache has been set.
Flush the cache for off->on and on->off transitions.
There's no real need to flush the cache for on->off transitions,
except cleanliness. */
static void
set_code_cache (const char *args, int from_tty, struct cmd_list_element *c)
{
if (code_cache_enabled != code_cache_enabled_1)
target_dcache_invalidate (current_program_space->aspace);
code_cache_enabled = code_cache_enabled_1;
}
/* Show option "code-cache". */
static void
show_code_cache (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
gdb_printf (file, _("Cache use for code accesses is %s.\n"), value);
}
/* Return true if "code cache" is enabled, otherwise, return false. */
int
code_cache_enabled_p (void)
{
return code_cache_enabled;
}
/* Implement the 'maint flush dcache' command. */
static void
maint_flush_dcache_command (const char *command, int from_tty)
{
target_dcache_invalidate (current_program_space->aspace);
if (from_tty)
gdb_printf (_("The dcache was flushed.\n"));
}
void _initialize_target_dcache ();
void
_initialize_target_dcache ()
{
add_setshow_boolean_cmd ("stack-cache", class_support,
&stack_cache_enabled_1, _("\
Set cache use for stack access."), _("\
Show cache use for stack access."), _("\
When on, use the target memory cache for all stack access, regardless of any\n\
configured memory regions. This improves remote performance significantly.\n\
By default, caching for stack access is on."),
set_stack_cache,
show_stack_cache,
&setlist, &showlist);
add_setshow_boolean_cmd ("code-cache", class_support,
&code_cache_enabled_1, _("\
Set cache use for code segment access."), _("\
Show cache use for code segment access."), _("\
When on, use the target memory cache for all code segment accesses,\n\
regardless of any configured memory regions. This improves remote\n\
performance significantly. By default, caching for code segment\n\
access is on."),
set_code_cache,
show_code_cache,
&setlist, &showlist);
add_cmd ("dcache", class_maintenance, maint_flush_dcache_command,
_("\
Force gdb to flush its target memory data cache.\n\
\n\
The dcache caches all target memory accesses where possible, this\n\
includes the stack-cache and the code-cache."),
&maintenanceflushlist);
}