mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
8e8d48f91c
This replaces ALL_DICT_SYMBOLS with an iterator so that for-each can be used.
1322 lines
36 KiB
C
1322 lines
36 KiB
C
/* GDB routines for manipulating objfiles.
|
||
|
||
Copyright (C) 1992-2023 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains support routines for creating, manipulating, and
|
||
destroying objfile structures. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h" /* Binary File Description */
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "target.h"
|
||
#include "bcache.h"
|
||
#include "expression.h"
|
||
#include "parser-defs.h"
|
||
|
||
#include <sys/types.h>
|
||
#include <sys/stat.h>
|
||
#include <fcntl.h>
|
||
#include "gdbsupport/gdb_obstack.h"
|
||
#include "hashtab.h"
|
||
|
||
#include "breakpoint.h"
|
||
#include "block.h"
|
||
#include "dictionary.h"
|
||
#include "source.h"
|
||
#include "addrmap.h"
|
||
#include "arch-utils.h"
|
||
#include "exec.h"
|
||
#include "observable.h"
|
||
#include "complaints.h"
|
||
#include "psymtab.h"
|
||
#include "solist.h"
|
||
#include "gdb_bfd.h"
|
||
#include "btrace.h"
|
||
#include "gdbsupport/pathstuff.h"
|
||
|
||
#include <algorithm>
|
||
#include <vector>
|
||
|
||
/* Externally visible variables that are owned by this module.
|
||
See declarations in objfile.h for more info. */
|
||
|
||
struct objfile_pspace_info
|
||
{
|
||
objfile_pspace_info () = default;
|
||
~objfile_pspace_info ();
|
||
|
||
struct obj_section **sections = nullptr;
|
||
int num_sections = 0;
|
||
|
||
/* Nonzero if object files have been added since the section map
|
||
was last updated. */
|
||
int new_objfiles_available = 0;
|
||
|
||
/* Nonzero if the section map MUST be updated before use. */
|
||
int section_map_dirty = 0;
|
||
|
||
/* Nonzero if section map updates should be inhibited if possible. */
|
||
int inhibit_updates = 0;
|
||
};
|
||
|
||
/* Per-program-space data key. */
|
||
static const registry<program_space>::key<objfile_pspace_info>
|
||
objfiles_pspace_data;
|
||
|
||
objfile_pspace_info::~objfile_pspace_info ()
|
||
{
|
||
xfree (sections);
|
||
}
|
||
|
||
/* Get the current svr4 data. If none is found yet, add it now. This
|
||
function always returns a valid object. */
|
||
|
||
static struct objfile_pspace_info *
|
||
get_objfile_pspace_data (struct program_space *pspace)
|
||
{
|
||
struct objfile_pspace_info *info;
|
||
|
||
info = objfiles_pspace_data.get (pspace);
|
||
if (info == NULL)
|
||
info = objfiles_pspace_data.emplace (pspace);
|
||
|
||
return info;
|
||
}
|
||
|
||
|
||
|
||
/* Per-BFD data key. */
|
||
|
||
static const registry<bfd>::key<objfile_per_bfd_storage> objfiles_bfd_data;
|
||
|
||
objfile_per_bfd_storage::~objfile_per_bfd_storage ()
|
||
{
|
||
}
|
||
|
||
/* Create the per-BFD storage object for OBJFILE. If ABFD is not
|
||
NULL, and it already has a per-BFD storage object, use that.
|
||
Otherwise, allocate a new per-BFD storage object. */
|
||
|
||
void
|
||
set_objfile_per_bfd (struct objfile *objfile)
|
||
{
|
||
bfd *abfd = objfile->obfd.get ();
|
||
struct objfile_per_bfd_storage *storage = NULL;
|
||
|
||
if (abfd != NULL)
|
||
storage = objfiles_bfd_data.get (abfd);
|
||
|
||
if (storage == NULL)
|
||
{
|
||
storage = new objfile_per_bfd_storage (abfd);
|
||
/* If the object requires gdb to do relocations, we simply fall
|
||
back to not sharing data across users. These cases are rare
|
||
enough that this seems reasonable. */
|
||
if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
|
||
objfiles_bfd_data.set (abfd, storage);
|
||
else
|
||
objfile->per_bfd_storage.reset (storage);
|
||
|
||
/* Look up the gdbarch associated with the BFD. */
|
||
if (abfd != NULL)
|
||
storage->gdbarch = gdbarch_from_bfd (abfd);
|
||
}
|
||
|
||
objfile->per_bfd = storage;
|
||
}
|
||
|
||
/* Set the objfile's per-BFD notion of the "main" name and
|
||
language. */
|
||
|
||
void
|
||
set_objfile_main_name (struct objfile *objfile,
|
||
const char *name, enum language lang)
|
||
{
|
||
if (objfile->per_bfd->name_of_main == NULL
|
||
|| strcmp (objfile->per_bfd->name_of_main, name) != 0)
|
||
objfile->per_bfd->name_of_main
|
||
= obstack_strdup (&objfile->per_bfd->storage_obstack, name);
|
||
objfile->per_bfd->language_of_main = lang;
|
||
}
|
||
|
||
/* Helper structure to map blocks to static link properties in hash tables. */
|
||
|
||
struct static_link_htab_entry
|
||
{
|
||
const struct block *block;
|
||
const struct dynamic_prop *static_link;
|
||
};
|
||
|
||
/* Return a hash code for struct static_link_htab_entry *P. */
|
||
|
||
static hashval_t
|
||
static_link_htab_entry_hash (const void *p)
|
||
{
|
||
const struct static_link_htab_entry *e
|
||
= (const struct static_link_htab_entry *) p;
|
||
|
||
return htab_hash_pointer (e->block);
|
||
}
|
||
|
||
/* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
|
||
mappings for the same block. */
|
||
|
||
static int
|
||
static_link_htab_entry_eq (const void *p1, const void *p2)
|
||
{
|
||
const struct static_link_htab_entry *e1
|
||
= (const struct static_link_htab_entry *) p1;
|
||
const struct static_link_htab_entry *e2
|
||
= (const struct static_link_htab_entry *) p2;
|
||
|
||
return e1->block == e2->block;
|
||
}
|
||
|
||
/* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
|
||
Must not be called more than once for each BLOCK. */
|
||
|
||
void
|
||
objfile_register_static_link (struct objfile *objfile,
|
||
const struct block *block,
|
||
const struct dynamic_prop *static_link)
|
||
{
|
||
void **slot;
|
||
struct static_link_htab_entry lookup_entry;
|
||
struct static_link_htab_entry *entry;
|
||
|
||
if (objfile->static_links == NULL)
|
||
objfile->static_links.reset (htab_create_alloc
|
||
(1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
|
||
xcalloc, xfree));
|
||
|
||
/* Create a slot for the mapping, make sure it's the first mapping for this
|
||
block and then create the mapping itself. */
|
||
lookup_entry.block = block;
|
||
slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
|
||
gdb_assert (*slot == NULL);
|
||
|
||
entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
|
||
entry->block = block;
|
||
entry->static_link = static_link;
|
||
*slot = (void *) entry;
|
||
}
|
||
|
||
/* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
|
||
none was found. */
|
||
|
||
const struct dynamic_prop *
|
||
objfile_lookup_static_link (struct objfile *objfile,
|
||
const struct block *block)
|
||
{
|
||
struct static_link_htab_entry *entry;
|
||
struct static_link_htab_entry lookup_entry;
|
||
|
||
if (objfile->static_links == NULL)
|
||
return NULL;
|
||
lookup_entry.block = block;
|
||
entry = ((struct static_link_htab_entry *)
|
||
htab_find (objfile->static_links.get (), &lookup_entry));
|
||
if (entry == NULL)
|
||
return NULL;
|
||
|
||
gdb_assert (entry->block == block);
|
||
return entry->static_link;
|
||
}
|
||
|
||
|
||
|
||
/* Build up the section table that the objfile references. The
|
||
objfile contains pointers to the start of the table
|
||
(objfile->sections) and to the first location after the end of the
|
||
table (objfile->sections_end). */
|
||
|
||
static void
|
||
add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
|
||
struct objfile *objfile, int force)
|
||
{
|
||
struct obj_section *section;
|
||
|
||
if (!force)
|
||
{
|
||
flagword aflag;
|
||
|
||
aflag = bfd_section_flags (asect);
|
||
if (!(aflag & SEC_ALLOC))
|
||
return;
|
||
}
|
||
|
||
section = &objfile->sections_start[gdb_bfd_section_index (abfd, asect)];
|
||
section->objfile = objfile;
|
||
section->the_bfd_section = asect;
|
||
section->ovly_mapped = 0;
|
||
}
|
||
|
||
/* Builds a section table for OBJFILE.
|
||
|
||
Note that the OFFSET and OVLY_MAPPED in each table entry are
|
||
initialized to zero. */
|
||
|
||
void
|
||
build_objfile_section_table (struct objfile *objfile)
|
||
{
|
||
int count = gdb_bfd_count_sections (objfile->obfd.get ());
|
||
|
||
objfile->sections_start = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
||
count,
|
||
struct obj_section);
|
||
objfile->sections_end = (objfile->sections_start + count);
|
||
for (asection *sect : gdb_bfd_sections (objfile->obfd))
|
||
add_to_objfile_sections (objfile->obfd.get (), sect, objfile, 0);
|
||
|
||
/* See gdb_bfd_section_index. */
|
||
add_to_objfile_sections (objfile->obfd.get (), bfd_com_section_ptr,
|
||
objfile, 1);
|
||
add_to_objfile_sections (objfile->obfd.get (), bfd_und_section_ptr,
|
||
objfile, 1);
|
||
add_to_objfile_sections (objfile->obfd.get (), bfd_abs_section_ptr,
|
||
objfile, 1);
|
||
add_to_objfile_sections (objfile->obfd.get (), bfd_ind_section_ptr,
|
||
objfile, 1);
|
||
}
|
||
|
||
/* Given a pointer to an initialized bfd (ABFD) and some flag bits,
|
||
initialize the new objfile as best we can and link it into the list
|
||
of all known objfiles.
|
||
|
||
NAME should contain original non-canonicalized filename or other
|
||
identifier as entered by user. If there is no better source use
|
||
bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
|
||
NAME content is copied into returned objfile.
|
||
|
||
The FLAGS word contains various bits (OBJF_*) that can be taken as
|
||
requests for specific operations. Other bits like OBJF_SHARED are
|
||
simply copied through to the new objfile flags member. */
|
||
|
||
objfile::objfile (gdb_bfd_ref_ptr bfd_, const char *name, objfile_flags flags_)
|
||
: flags (flags_),
|
||
pspace (current_program_space),
|
||
obfd (std::move (bfd_))
|
||
{
|
||
const char *expanded_name;
|
||
|
||
std::string name_holder;
|
||
if (name == NULL)
|
||
{
|
||
gdb_assert (obfd == nullptr);
|
||
gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
|
||
expanded_name = "<<anonymous objfile>>";
|
||
}
|
||
else if ((flags & OBJF_NOT_FILENAME) != 0
|
||
|| is_target_filename (name))
|
||
expanded_name = name;
|
||
else
|
||
{
|
||
name_holder = gdb_abspath (name);
|
||
expanded_name = name_holder.c_str ();
|
||
}
|
||
original_name = obstack_strdup (&objfile_obstack, expanded_name);
|
||
|
||
/* Update the per-objfile information that comes from the bfd, ensuring
|
||
that any data that is reference is saved in the per-objfile data
|
||
region. */
|
||
|
||
if (obfd != nullptr)
|
||
{
|
||
mtime = bfd_get_mtime (obfd.get ());
|
||
|
||
/* Build section table. */
|
||
build_objfile_section_table (this);
|
||
}
|
||
|
||
set_objfile_per_bfd (this);
|
||
}
|
||
|
||
/* If there is a valid and known entry point, function fills *ENTRY_P with it
|
||
and returns non-zero; otherwise it returns zero. */
|
||
|
||
int
|
||
entry_point_address_query (CORE_ADDR *entry_p)
|
||
{
|
||
objfile *objf = current_program_space->symfile_object_file;
|
||
if (objf == NULL || !objf->per_bfd->ei.entry_point_p)
|
||
return 0;
|
||
|
||
int idx = objf->per_bfd->ei.the_bfd_section_index;
|
||
*entry_p = objf->per_bfd->ei.entry_point + objf->section_offsets[idx];
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Get current entry point address. Call error if it is not known. */
|
||
|
||
CORE_ADDR
|
||
entry_point_address (void)
|
||
{
|
||
CORE_ADDR retval;
|
||
|
||
if (!entry_point_address_query (&retval))
|
||
error (_("Entry point address is not known."));
|
||
|
||
return retval;
|
||
}
|
||
|
||
separate_debug_iterator &
|
||
separate_debug_iterator::operator++ ()
|
||
{
|
||
gdb_assert (m_objfile != nullptr);
|
||
|
||
struct objfile *res;
|
||
|
||
/* If any, return the first child. */
|
||
res = m_objfile->separate_debug_objfile;
|
||
if (res != nullptr)
|
||
{
|
||
m_objfile = res;
|
||
return *this;
|
||
}
|
||
|
||
/* Common case where there is no separate debug objfile. */
|
||
if (m_objfile == m_parent)
|
||
{
|
||
m_objfile = nullptr;
|
||
return *this;
|
||
}
|
||
|
||
/* Return the brother if any. Note that we don't iterate on brothers of
|
||
the parents. */
|
||
res = m_objfile->separate_debug_objfile_link;
|
||
if (res != nullptr)
|
||
{
|
||
m_objfile = res;
|
||
return *this;
|
||
}
|
||
|
||
for (res = m_objfile->separate_debug_objfile_backlink;
|
||
res != m_parent;
|
||
res = res->separate_debug_objfile_backlink)
|
||
{
|
||
gdb_assert (res != nullptr);
|
||
if (res->separate_debug_objfile_link != nullptr)
|
||
{
|
||
m_objfile = res->separate_debug_objfile_link;
|
||
return *this;
|
||
}
|
||
}
|
||
m_objfile = nullptr;
|
||
return *this;
|
||
}
|
||
|
||
/* Add OBJFILE as a separate debug objfile of PARENT. */
|
||
|
||
static void
|
||
add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
|
||
{
|
||
gdb_assert (objfile && parent);
|
||
|
||
/* Must not be already in a list. */
|
||
gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
|
||
gdb_assert (objfile->separate_debug_objfile_link == NULL);
|
||
gdb_assert (objfile->separate_debug_objfile == NULL);
|
||
gdb_assert (parent->separate_debug_objfile_backlink == NULL);
|
||
gdb_assert (parent->separate_debug_objfile_link == NULL);
|
||
|
||
objfile->separate_debug_objfile_backlink = parent;
|
||
objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
|
||
parent->separate_debug_objfile = objfile;
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
objfile *
|
||
objfile::make (gdb_bfd_ref_ptr bfd_, const char *name_, objfile_flags flags_,
|
||
objfile *parent)
|
||
{
|
||
objfile *result = new objfile (std::move (bfd_), name_, flags_);
|
||
if (parent != nullptr)
|
||
add_separate_debug_objfile (result, parent);
|
||
|
||
current_program_space->add_objfile (std::unique_ptr<objfile> (result),
|
||
parent);
|
||
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
void
|
||
objfile::unlink ()
|
||
{
|
||
current_program_space->remove_objfile (this);
|
||
}
|
||
|
||
/* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
|
||
itself. */
|
||
|
||
void
|
||
free_objfile_separate_debug (struct objfile *objfile)
|
||
{
|
||
struct objfile *child;
|
||
|
||
for (child = objfile->separate_debug_objfile; child;)
|
||
{
|
||
struct objfile *next_child = child->separate_debug_objfile_link;
|
||
child->unlink ();
|
||
child = next_child;
|
||
}
|
||
}
|
||
|
||
/* Destroy an objfile and all the symtabs and psymtabs under it. */
|
||
|
||
objfile::~objfile ()
|
||
{
|
||
/* First notify observers that this objfile is about to be freed. */
|
||
gdb::observers::free_objfile.notify (this);
|
||
|
||
/* Free all separate debug objfiles. */
|
||
free_objfile_separate_debug (this);
|
||
|
||
if (separate_debug_objfile_backlink)
|
||
{
|
||
/* We freed the separate debug file, make sure the base objfile
|
||
doesn't reference it. */
|
||
struct objfile *child;
|
||
|
||
child = separate_debug_objfile_backlink->separate_debug_objfile;
|
||
|
||
if (child == this)
|
||
{
|
||
/* THIS is the first child. */
|
||
separate_debug_objfile_backlink->separate_debug_objfile =
|
||
separate_debug_objfile_link;
|
||
}
|
||
else
|
||
{
|
||
/* Find THIS in the list. */
|
||
while (1)
|
||
{
|
||
if (child->separate_debug_objfile_link == this)
|
||
{
|
||
child->separate_debug_objfile_link =
|
||
separate_debug_objfile_link;
|
||
break;
|
||
}
|
||
child = child->separate_debug_objfile_link;
|
||
gdb_assert (child);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove any references to this objfile in the global value
|
||
lists. */
|
||
preserve_values (this);
|
||
|
||
/* It still may reference data modules have associated with the objfile and
|
||
the symbol file data. */
|
||
forget_cached_source_info ();
|
||
|
||
breakpoint_free_objfile (this);
|
||
btrace_free_objfile (this);
|
||
|
||
/* First do any symbol file specific actions required when we are
|
||
finished with a particular symbol file. Note that if the objfile
|
||
is using reusable symbol information (via mmalloc) then each of
|
||
these routines is responsible for doing the correct thing, either
|
||
freeing things which are valid only during this particular gdb
|
||
execution, or leaving them to be reused during the next one. */
|
||
|
||
if (sf != NULL)
|
||
(*sf->sym_finish) (this);
|
||
|
||
/* Before the symbol table code was redone to make it easier to
|
||
selectively load and remove information particular to a specific
|
||
linkage unit, gdb used to do these things whenever the monolithic
|
||
symbol table was blown away. How much still needs to be done
|
||
is unknown, but we play it safe for now and keep each action until
|
||
it is shown to be no longer needed. */
|
||
|
||
/* Not all our callers call clear_symtab_users (objfile_purge_solibs,
|
||
for example), so we need to call this here. */
|
||
clear_pc_function_cache ();
|
||
|
||
/* Check to see if the current_source_symtab belongs to this objfile,
|
||
and if so, call clear_current_source_symtab_and_line. */
|
||
|
||
{
|
||
struct symtab_and_line cursal = get_current_source_symtab_and_line ();
|
||
|
||
if (cursal.symtab && cursal.symtab->compunit ()->objfile () == this)
|
||
clear_current_source_symtab_and_line ();
|
||
}
|
||
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (pspace)->section_map_dirty = 1;
|
||
}
|
||
|
||
|
||
/* A helper function for objfile_relocate1 that relocates a single
|
||
symbol. */
|
||
|
||
static void
|
||
relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
|
||
const section_offsets &delta)
|
||
{
|
||
/* The RS6000 code from which this was taken skipped
|
||
any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
|
||
But I'm leaving out that test, on the theory that
|
||
they can't possibly pass the tests below. */
|
||
if ((sym->aclass () == LOC_LABEL
|
||
|| sym->aclass () == LOC_STATIC)
|
||
&& sym->section_index () >= 0)
|
||
sym->set_value_address (sym->value_address ()
|
||
+ delta[sym->section_index ()]);
|
||
}
|
||
|
||
/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
|
||
entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
|
||
Return non-zero iff any change happened. */
|
||
|
||
static int
|
||
objfile_relocate1 (struct objfile *objfile,
|
||
const section_offsets &new_offsets)
|
||
{
|
||
section_offsets delta (objfile->section_offsets.size ());
|
||
|
||
int something_changed = 0;
|
||
|
||
for (int i = 0; i < objfile->section_offsets.size (); ++i)
|
||
{
|
||
delta[i] = new_offsets[i] - objfile->section_offsets[i];
|
||
if (delta[i] != 0)
|
||
something_changed = 1;
|
||
}
|
||
if (!something_changed)
|
||
return 0;
|
||
|
||
/* OK, get all the symtabs. */
|
||
for (compunit_symtab *cust : objfile->compunits ())
|
||
{
|
||
struct blockvector *bv = cust->blockvector ();
|
||
int block_line_section = SECT_OFF_TEXT (objfile);
|
||
|
||
if (bv->map () != nullptr)
|
||
bv->map ()->relocate (delta[block_line_section]);
|
||
|
||
for (block *b : bv->blocks ())
|
||
{
|
||
b->set_start (b->start () + delta[block_line_section]);
|
||
b->set_end (b->end () + delta[block_line_section]);
|
||
|
||
for (blockrange &r : b->ranges ())
|
||
{
|
||
r.set_start (r.start () + delta[block_line_section]);
|
||
r.set_end (r.end () + delta[block_line_section]);
|
||
}
|
||
|
||
/* We only want to iterate over the local symbols, not any
|
||
symbols in included symtabs. */
|
||
for (struct symbol *sym : b->multidict_symbols ())
|
||
relocate_one_symbol (sym, objfile, delta);
|
||
}
|
||
}
|
||
|
||
/* Relocate isolated symbols. */
|
||
for (symbol *iter = objfile->template_symbols; iter; iter = iter->hash_next)
|
||
relocate_one_symbol (iter, objfile, delta);
|
||
|
||
for (int i = 0; i < objfile->section_offsets.size (); ++i)
|
||
objfile->section_offsets[i] = new_offsets[i];
|
||
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
|
||
|
||
/* Update the table in exec_ops, used to read memory. */
|
||
for (obj_section *s : objfile->sections ())
|
||
{
|
||
int idx = s - objfile->sections_start;
|
||
|
||
exec_set_section_address (bfd_get_filename (objfile->obfd.get ()), idx,
|
||
s->addr ());
|
||
}
|
||
|
||
/* Data changed. */
|
||
return 1;
|
||
}
|
||
|
||
/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
|
||
entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
|
||
|
||
The number and ordering of sections does differ between the two objfiles.
|
||
Only their names match. Also the file offsets will differ (objfile being
|
||
possibly prelinked but separate_debug_objfile is probably not prelinked) but
|
||
the in-memory absolute address as specified by NEW_OFFSETS must match both
|
||
files. */
|
||
|
||
void
|
||
objfile_relocate (struct objfile *objfile,
|
||
const section_offsets &new_offsets)
|
||
{
|
||
int changed = 0;
|
||
|
||
changed |= objfile_relocate1 (objfile, new_offsets);
|
||
|
||
for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
|
||
{
|
||
if (debug_objfile == objfile)
|
||
continue;
|
||
|
||
section_addr_info objfile_addrs
|
||
= build_section_addr_info_from_objfile (objfile);
|
||
|
||
/* Here OBJFILE_ADDRS contain the correct absolute addresses, the
|
||
relative ones must be already created according to debug_objfile. */
|
||
|
||
addr_info_make_relative (&objfile_addrs, debug_objfile->obfd.get ());
|
||
|
||
gdb_assert (debug_objfile->section_offsets.size ()
|
||
== gdb_bfd_count_sections (debug_objfile->obfd.get ()));
|
||
section_offsets new_debug_offsets
|
||
(debug_objfile->section_offsets.size ());
|
||
relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
|
||
|
||
changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
|
||
}
|
||
|
||
/* Relocate breakpoints as necessary, after things are relocated. */
|
||
if (changed)
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
|
||
not touched here.
|
||
Return non-zero iff any change happened. */
|
||
|
||
static int
|
||
objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
|
||
{
|
||
section_offsets new_offsets (objfile->section_offsets.size (), slide);
|
||
return objfile_relocate1 (objfile, new_offsets);
|
||
}
|
||
|
||
/* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
|
||
SEPARATE_DEBUG_OBJFILEs. */
|
||
|
||
void
|
||
objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
|
||
{
|
||
int changed = 0;
|
||
|
||
for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
|
||
changed |= objfile_rebase1 (debug_objfile, slide);
|
||
|
||
/* Relocate breakpoints as necessary, after things are relocated. */
|
||
if (changed)
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* Return non-zero if OBJFILE has full symbols. */
|
||
|
||
int
|
||
objfile_has_full_symbols (struct objfile *objfile)
|
||
{
|
||
return objfile->compunit_symtabs != NULL;
|
||
}
|
||
|
||
/* Return non-zero if OBJFILE has full or partial symbols, either directly
|
||
or through a separate debug file. */
|
||
|
||
int
|
||
objfile_has_symbols (struct objfile *objfile)
|
||
{
|
||
for (::objfile *o : objfile->separate_debug_objfiles ())
|
||
if (o->has_partial_symbols () || objfile_has_full_symbols (o))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Many places in gdb want to test just to see if we have any partial
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_partial_symbols (void)
|
||
{
|
||
for (objfile *ofp : current_program_space->objfiles ())
|
||
{
|
||
if (ofp->has_partial_symbols ())
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Many places in gdb want to test just to see if we have any full
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_full_symbols (void)
|
||
{
|
||
for (objfile *ofp : current_program_space->objfiles ())
|
||
{
|
||
if (objfile_has_full_symbols (ofp))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* This operations deletes all objfile entries that represent solibs that
|
||
weren't explicitly loaded by the user, via e.g., the add-symbol-file
|
||
command. */
|
||
|
||
void
|
||
objfile_purge_solibs (void)
|
||
{
|
||
for (objfile *objf : current_program_space->objfiles_safe ())
|
||
{
|
||
/* We assume that the solib package has been purged already, or will
|
||
be soon. */
|
||
|
||
if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
|
||
objf->unlink ();
|
||
}
|
||
}
|
||
|
||
|
||
/* Many places in gdb want to test just to see if we have any minimal
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_minimal_symbols (void)
|
||
{
|
||
for (objfile *ofp : current_program_space->objfiles ())
|
||
{
|
||
if (ofp->per_bfd->minimal_symbol_count > 0)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Qsort comparison function. */
|
||
|
||
static bool
|
||
sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
|
||
{
|
||
const CORE_ADDR sect1_addr = sect1->addr ();
|
||
const CORE_ADDR sect2_addr = sect2->addr ();
|
||
|
||
if (sect1_addr < sect2_addr)
|
||
return true;
|
||
else if (sect1_addr > sect2_addr)
|
||
return false;
|
||
else
|
||
{
|
||
/* Sections are at the same address. This could happen if
|
||
A) we have an objfile and a separate debuginfo.
|
||
B) we are confused, and have added sections without proper relocation,
|
||
or something like that. */
|
||
|
||
const struct objfile *const objfile1 = sect1->objfile;
|
||
const struct objfile *const objfile2 = sect2->objfile;
|
||
|
||
if (objfile1->separate_debug_objfile == objfile2
|
||
|| objfile2->separate_debug_objfile == objfile1)
|
||
{
|
||
/* Case A. The ordering doesn't matter: separate debuginfo files
|
||
will be filtered out later. */
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Case B. Maintain stable sort order, so bugs in GDB are easier to
|
||
triage. This section could be slow (since we iterate over all
|
||
objfiles in each call to sort_cmp), but this shouldn't happen
|
||
very often (GDB is already in a confused state; one hopes this
|
||
doesn't happen at all). If you discover that significant time is
|
||
spent in the loops below, do 'set complaints 100' and examine the
|
||
resulting complaints. */
|
||
if (objfile1 == objfile2)
|
||
{
|
||
/* Both sections came from the same objfile. We are really
|
||
confused. Sort on sequence order of sections within the
|
||
objfile. The order of checks is important here, if we find a
|
||
match on SECT2 first then either SECT2 is before SECT1, or,
|
||
SECT2 == SECT1, in both cases we should return false. The
|
||
second case shouldn't occur during normal use, but std::sort
|
||
does check that '!(a < a)' when compiled in debug mode. */
|
||
|
||
for (const obj_section *osect : objfile1->sections ())
|
||
if (osect == sect2)
|
||
return false;
|
||
else if (osect == sect1)
|
||
return true;
|
||
|
||
/* We should have found one of the sections before getting here. */
|
||
gdb_assert_not_reached ("section not found");
|
||
}
|
||
else
|
||
{
|
||
/* Sort on sequence number of the objfile in the chain. */
|
||
|
||
for (objfile *objfile : current_program_space->objfiles ())
|
||
if (objfile == objfile1)
|
||
return true;
|
||
else if (objfile == objfile2)
|
||
return false;
|
||
|
||
/* We should have found one of the objfiles before getting here. */
|
||
gdb_assert_not_reached ("objfile not found");
|
||
}
|
||
}
|
||
|
||
/* Unreachable. */
|
||
gdb_assert_not_reached ("unexpected code path");
|
||
return false;
|
||
}
|
||
|
||
/* Select "better" obj_section to keep. We prefer the one that came from
|
||
the real object, rather than the one from separate debuginfo.
|
||
Most of the time the two sections are exactly identical, but with
|
||
prelinking the .rel.dyn section in the real object may have different
|
||
size. */
|
||
|
||
static struct obj_section *
|
||
preferred_obj_section (struct obj_section *a, struct obj_section *b)
|
||
{
|
||
gdb_assert (a->addr () == b->addr ());
|
||
gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
|
||
|| (b->objfile->separate_debug_objfile == a->objfile));
|
||
gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
|
||
|| (b->objfile->separate_debug_objfile_backlink == a->objfile));
|
||
|
||
if (a->objfile->separate_debug_objfile != NULL)
|
||
return a;
|
||
return b;
|
||
}
|
||
|
||
/* Return 1 if SECTION should be inserted into the section map.
|
||
We want to insert only non-overlay non-TLS non-empty sections. */
|
||
|
||
static int
|
||
insert_section_p (const struct bfd *abfd,
|
||
const struct bfd_section *section)
|
||
{
|
||
const bfd_vma lma = bfd_section_lma (section);
|
||
|
||
if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
|
||
&& (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
|
||
/* This is an overlay section. IN_MEMORY check is needed to avoid
|
||
discarding sections from the "system supplied DSO" (aka vdso)
|
||
on some Linux systems (e.g. Fedora 11). */
|
||
return 0;
|
||
if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
|
||
/* This is a TLS section. */
|
||
return 0;
|
||
if (bfd_section_size (section) == 0)
|
||
{
|
||
/* This is an empty section. It has no PCs for find_pc_section (), so
|
||
there is no reason to insert it into the section map. */
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Filter out overlapping sections where one section came from the real
|
||
objfile, and the other from a separate debuginfo file.
|
||
Return the size of table after redundant sections have been eliminated. */
|
||
|
||
static int
|
||
filter_debuginfo_sections (struct obj_section **map, int map_size)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0, j = 0; i < map_size - 1; i++)
|
||
{
|
||
struct obj_section *const sect1 = map[i];
|
||
struct obj_section *const sect2 = map[i + 1];
|
||
const struct objfile *const objfile1 = sect1->objfile;
|
||
const struct objfile *const objfile2 = sect2->objfile;
|
||
const CORE_ADDR sect1_addr = sect1->addr ();
|
||
const CORE_ADDR sect2_addr = sect2->addr ();
|
||
|
||
if (sect1_addr == sect2_addr
|
||
&& (objfile1->separate_debug_objfile == objfile2
|
||
|| objfile2->separate_debug_objfile == objfile1))
|
||
{
|
||
map[j++] = preferred_obj_section (sect1, sect2);
|
||
++i;
|
||
}
|
||
else
|
||
map[j++] = sect1;
|
||
}
|
||
|
||
if (i < map_size)
|
||
{
|
||
gdb_assert (i == map_size - 1);
|
||
map[j++] = map[i];
|
||
}
|
||
|
||
/* The map should not have shrunk to less than half the original size. */
|
||
gdb_assert (map_size / 2 <= j);
|
||
|
||
return j;
|
||
}
|
||
|
||
/* Filter out overlapping sections, issuing a warning if any are found.
|
||
Overlapping sections could really be overlay sections which we didn't
|
||
classify as such in insert_section_p, or we could be dealing with a
|
||
corrupt binary. */
|
||
|
||
static int
|
||
filter_overlapping_sections (struct obj_section **map, int map_size)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0, j = 0; i < map_size - 1; )
|
||
{
|
||
int k;
|
||
|
||
map[j++] = map[i];
|
||
for (k = i + 1; k < map_size; k++)
|
||
{
|
||
struct obj_section *const sect1 = map[i];
|
||
struct obj_section *const sect2 = map[k];
|
||
const CORE_ADDR sect1_addr = sect1->addr ();
|
||
const CORE_ADDR sect2_addr = sect2->addr ();
|
||
const CORE_ADDR sect1_endaddr = sect1->endaddr ();
|
||
|
||
gdb_assert (sect1_addr <= sect2_addr);
|
||
|
||
if (sect1_endaddr <= sect2_addr)
|
||
break;
|
||
else
|
||
{
|
||
/* We have an overlap. Report it. */
|
||
|
||
struct objfile *const objf1 = sect1->objfile;
|
||
struct objfile *const objf2 = sect2->objfile;
|
||
|
||
const struct bfd_section *const bfds1 = sect1->the_bfd_section;
|
||
const struct bfd_section *const bfds2 = sect2->the_bfd_section;
|
||
|
||
const CORE_ADDR sect2_endaddr = sect2->endaddr ();
|
||
|
||
struct gdbarch *const gdbarch = objf1->arch ();
|
||
|
||
complaint (_("unexpected overlap between:\n"
|
||
" (A) section `%s' from `%s' [%s, %s)\n"
|
||
" (B) section `%s' from `%s' [%s, %s).\n"
|
||
"Will ignore section B"),
|
||
bfd_section_name (bfds1), objfile_name (objf1),
|
||
paddress (gdbarch, sect1_addr),
|
||
paddress (gdbarch, sect1_endaddr),
|
||
bfd_section_name (bfds2), objfile_name (objf2),
|
||
paddress (gdbarch, sect2_addr),
|
||
paddress (gdbarch, sect2_endaddr));
|
||
}
|
||
}
|
||
i = k;
|
||
}
|
||
|
||
if (i < map_size)
|
||
{
|
||
gdb_assert (i == map_size - 1);
|
||
map[j++] = map[i];
|
||
}
|
||
|
||
return j;
|
||
}
|
||
|
||
|
||
/* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
|
||
TLS, overlay and overlapping sections. */
|
||
|
||
static void
|
||
update_section_map (struct program_space *pspace,
|
||
struct obj_section ***pmap, int *pmap_size)
|
||
{
|
||
struct objfile_pspace_info *pspace_info;
|
||
int alloc_size, map_size, i;
|
||
struct obj_section **map;
|
||
|
||
pspace_info = get_objfile_pspace_data (pspace);
|
||
gdb_assert (pspace_info->section_map_dirty != 0
|
||
|| pspace_info->new_objfiles_available != 0);
|
||
|
||
map = *pmap;
|
||
xfree (map);
|
||
|
||
alloc_size = 0;
|
||
for (objfile *objfile : pspace->objfiles ())
|
||
for (obj_section *s : objfile->sections ())
|
||
if (insert_section_p (objfile->obfd.get (), s->the_bfd_section))
|
||
alloc_size += 1;
|
||
|
||
/* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
|
||
if (alloc_size == 0)
|
||
{
|
||
*pmap = NULL;
|
||
*pmap_size = 0;
|
||
return;
|
||
}
|
||
|
||
map = XNEWVEC (struct obj_section *, alloc_size);
|
||
|
||
i = 0;
|
||
for (objfile *objfile : pspace->objfiles ())
|
||
for (obj_section *s : objfile->sections ())
|
||
if (insert_section_p (objfile->obfd.get (), s->the_bfd_section))
|
||
map[i++] = s;
|
||
|
||
std::sort (map, map + alloc_size, sort_cmp);
|
||
map_size = filter_debuginfo_sections(map, alloc_size);
|
||
map_size = filter_overlapping_sections(map, map_size);
|
||
|
||
if (map_size < alloc_size)
|
||
/* Some sections were eliminated. Trim excess space. */
|
||
map = XRESIZEVEC (struct obj_section *, map, map_size);
|
||
else
|
||
gdb_assert (alloc_size == map_size);
|
||
|
||
*pmap = map;
|
||
*pmap_size = map_size;
|
||
}
|
||
|
||
/* Bsearch comparison function. */
|
||
|
||
static int
|
||
bsearch_cmp (const void *key, const void *elt)
|
||
{
|
||
const CORE_ADDR pc = *(CORE_ADDR *) key;
|
||
const struct obj_section *section = *(const struct obj_section **) elt;
|
||
|
||
if (pc < section->addr ())
|
||
return -1;
|
||
if (pc < section->endaddr ())
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Returns a section whose range includes PC or NULL if none found. */
|
||
|
||
struct obj_section *
|
||
find_pc_section (CORE_ADDR pc)
|
||
{
|
||
struct objfile_pspace_info *pspace_info;
|
||
struct obj_section *s, **sp;
|
||
|
||
/* Check for mapped overlay section first. */
|
||
s = find_pc_mapped_section (pc);
|
||
if (s)
|
||
return s;
|
||
|
||
pspace_info = get_objfile_pspace_data (current_program_space);
|
||
if (pspace_info->section_map_dirty
|
||
|| (pspace_info->new_objfiles_available
|
||
&& !pspace_info->inhibit_updates))
|
||
{
|
||
update_section_map (current_program_space,
|
||
&pspace_info->sections,
|
||
&pspace_info->num_sections);
|
||
|
||
/* Don't need updates to section map until objfiles are added,
|
||
removed or relocated. */
|
||
pspace_info->new_objfiles_available = 0;
|
||
pspace_info->section_map_dirty = 0;
|
||
}
|
||
|
||
/* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
|
||
bsearch be non-NULL. */
|
||
if (pspace_info->sections == NULL)
|
||
{
|
||
gdb_assert (pspace_info->num_sections == 0);
|
||
return NULL;
|
||
}
|
||
|
||
sp = (struct obj_section **) bsearch (&pc,
|
||
pspace_info->sections,
|
||
pspace_info->num_sections,
|
||
sizeof (*pspace_info->sections),
|
||
bsearch_cmp);
|
||
if (sp != NULL)
|
||
return *sp;
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Return non-zero if PC is in a section called NAME. */
|
||
|
||
bool
|
||
pc_in_section (CORE_ADDR pc, const char *name)
|
||
{
|
||
struct obj_section *s = find_pc_section (pc);
|
||
return (s != nullptr
|
||
&& s->the_bfd_section->name != nullptr
|
||
&& strcmp (s->the_bfd_section->name, name) == 0);
|
||
}
|
||
|
||
|
||
/* Set section_map_dirty so section map will be rebuilt next time it
|
||
is used. Called by reread_symbols. */
|
||
|
||
void
|
||
objfiles_changed (void)
|
||
{
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
|
||
}
|
||
|
||
/* See comments in objfiles.h. */
|
||
|
||
scoped_restore_tmpl<int>
|
||
inhibit_section_map_updates (struct program_space *pspace)
|
||
{
|
||
return scoped_restore_tmpl<int>
|
||
(&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
bool
|
||
is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
|
||
{
|
||
if (objfile == NULL)
|
||
return false;
|
||
|
||
for (obj_section *osect : objfile->sections ())
|
||
{
|
||
if (section_is_overlay (osect) && !section_is_mapped (osect))
|
||
continue;
|
||
|
||
if (osect->addr () <= addr && addr < osect->endaddr ())
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
bool
|
||
shared_objfile_contains_address_p (struct program_space *pspace,
|
||
CORE_ADDR address)
|
||
{
|
||
for (objfile *objfile : pspace->objfiles ())
|
||
{
|
||
if ((objfile->flags & OBJF_SHARED) != 0
|
||
&& is_addr_in_objfile (address, objfile))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* The default implementation for the "iterate_over_objfiles_in_search_order"
|
||
gdbarch method. It is equivalent to use the objfiles iterable,
|
||
searching the objfiles in the order they are stored internally,
|
||
ignoring CURRENT_OBJFILE.
|
||
|
||
On most platforms, it should be close enough to doing the best
|
||
we can without some knowledge specific to the architecture. */
|
||
|
||
void
|
||
default_iterate_over_objfiles_in_search_order
|
||
(gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
|
||
objfile *current_objfile)
|
||
{
|
||
for (objfile *objfile : current_program_space->objfiles ())
|
||
if (cb (objfile))
|
||
return;
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
const char *
|
||
objfile_name (const struct objfile *objfile)
|
||
{
|
||
if (objfile->obfd != NULL)
|
||
return bfd_get_filename (objfile->obfd.get ());
|
||
|
||
return objfile->original_name;
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
const char *
|
||
objfile_filename (const struct objfile *objfile)
|
||
{
|
||
if (objfile->obfd != NULL)
|
||
return bfd_get_filename (objfile->obfd.get ());
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
const char *
|
||
objfile_debug_name (const struct objfile *objfile)
|
||
{
|
||
return lbasename (objfile->original_name);
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
const char *
|
||
objfile_flavour_name (struct objfile *objfile)
|
||
{
|
||
if (objfile->obfd != NULL)
|
||
return bfd_flavour_name (bfd_get_flavour (objfile->obfd.get ()));
|
||
return NULL;
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
struct type *
|
||
objfile_int_type (struct objfile *of, int size_in_bytes, bool unsigned_p)
|
||
{
|
||
struct type *int_type;
|
||
|
||
/* Helper macro to examine the various builtin types. */
|
||
#define TRY_TYPE(F) \
|
||
int_type = (unsigned_p \
|
||
? builtin_type (of)->builtin_unsigned_ ## F \
|
||
: builtin_type (of)->builtin_ ## F); \
|
||
if (int_type != NULL && int_type->length () == size_in_bytes) \
|
||
return int_type
|
||
|
||
TRY_TYPE (char);
|
||
TRY_TYPE (short);
|
||
TRY_TYPE (int);
|
||
TRY_TYPE (long);
|
||
TRY_TYPE (long_long);
|
||
|
||
#undef TRY_TYPE
|
||
|
||
gdb_assert_not_reached ("unable to find suitable integer type");
|
||
}
|