mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
416 lines
11 KiB
C
416 lines
11 KiB
C
/* atof_tahoe.c - turn a string into a Tahoe floating point number
|
||
Copyright 1987, 1993, 2000 Free Software Foundation, Inc.
|
||
|
||
/* This is really a simplified version of atof_vax.c. I glommed it wholesale
|
||
and then shaved it down. I don't even know how it works. (Don't you find
|
||
my honesty refreshing? Devon E Bowen <bowen@cs.buffalo.edu>
|
||
|
||
I don't allow uppercase letters in the precision descrpitors.
|
||
i.e. 'f' and 'd' are allowed but 'F' and 'D' aren't. */
|
||
|
||
#include "as.h"
|
||
|
||
/* Precision in LittleNums. */
|
||
#define MAX_PRECISION (4)
|
||
#define D_PRECISION (4)
|
||
#define F_PRECISION (2)
|
||
|
||
/* Precision in chars. */
|
||
#define D_PRECISION_CHARS (8)
|
||
#define F_PRECISION_CHARS (4)
|
||
|
||
/* Length in LittleNums of guard bits. */
|
||
#define GUARD (2)
|
||
|
||
static const long int mask[] =
|
||
{
|
||
0x00000000,
|
||
0x00000001,
|
||
0x00000003,
|
||
0x00000007,
|
||
0x0000000f,
|
||
0x0000001f,
|
||
0x0000003f,
|
||
0x0000007f,
|
||
0x000000ff,
|
||
0x000001ff,
|
||
0x000003ff,
|
||
0x000007ff,
|
||
0x00000fff,
|
||
0x00001fff,
|
||
0x00003fff,
|
||
0x00007fff,
|
||
0x0000ffff,
|
||
0x0001ffff,
|
||
0x0003ffff,
|
||
0x0007ffff,
|
||
0x000fffff,
|
||
0x001fffff,
|
||
0x003fffff,
|
||
0x007fffff,
|
||
0x00ffffff,
|
||
0x01ffffff,
|
||
0x03ffffff,
|
||
0x07ffffff,
|
||
0x0fffffff,
|
||
0x1fffffff,
|
||
0x3fffffff,
|
||
0x7fffffff,
|
||
0xffffffff
|
||
};
|
||
|
||
/* Shared between flonum_gen2tahoe and next_bits. */
|
||
static int bits_left_in_littlenum;
|
||
static LITTLENUM_TYPE *littlenum_pointer;
|
||
static LITTLENUM_TYPE *littlenum_end;
|
||
|
||
#if __STDC__ == 1
|
||
|
||
int flonum_gen2tahoe (int format_letter, FLONUM_TYPE * f,
|
||
LITTLENUM_TYPE * words);
|
||
|
||
#else /* not __STDC__ */
|
||
|
||
int flonum_gen2tahoe ();
|
||
|
||
#endif /* not __STDC__ */
|
||
|
||
static int
|
||
next_bits (number_of_bits)
|
||
int number_of_bits;
|
||
{
|
||
int return_value;
|
||
|
||
if (littlenum_pointer < littlenum_end)
|
||
return 0;
|
||
if (number_of_bits >= bits_left_in_littlenum)
|
||
{
|
||
return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
|
||
number_of_bits -= bits_left_in_littlenum;
|
||
return_value <<= number_of_bits;
|
||
bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
|
||
littlenum_pointer--;
|
||
if (littlenum_pointer >= littlenum_end)
|
||
return_value |= ((*littlenum_pointer) >> (bits_left_in_littlenum)) &
|
||
mask[number_of_bits];
|
||
}
|
||
else
|
||
{
|
||
bits_left_in_littlenum -= number_of_bits;
|
||
return_value = mask[number_of_bits] &
|
||
((*littlenum_pointer) >> bits_left_in_littlenum);
|
||
}
|
||
return return_value;
|
||
}
|
||
|
||
static void
|
||
make_invalid_floating_point_number (words)
|
||
LITTLENUM_TYPE *words;
|
||
{
|
||
/* Floating Reserved Operand Code. */
|
||
*words = 0x8000;
|
||
}
|
||
|
||
static int /* 0 means letter is OK. */
|
||
what_kind_of_float (letter, precisionP, exponent_bitsP)
|
||
/* In: lowercase please. What kind of float? */
|
||
char letter;
|
||
|
||
/* Number of 16-bit words in the float. */
|
||
int *precisionP;
|
||
|
||
/* Number of exponent bits. */
|
||
long int *exponent_bitsP;
|
||
{
|
||
int retval; /* 0: OK. */
|
||
|
||
retval = 0;
|
||
switch (letter)
|
||
{
|
||
case 'f':
|
||
*precisionP = F_PRECISION;
|
||
*exponent_bitsP = 8;
|
||
break;
|
||
|
||
case 'd':
|
||
*precisionP = D_PRECISION;
|
||
*exponent_bitsP = 8;
|
||
break;
|
||
|
||
default:
|
||
retval = 69;
|
||
break;
|
||
}
|
||
return (retval);
|
||
}
|
||
|
||
/* Warning: This returns 16-bit LITTLENUMs, because that is what the
|
||
VAX thinks in. It is up to the caller to figure out any alignment
|
||
problems and to conspire for the bytes/word to be emitted in the
|
||
right order. Bigendians beware! */
|
||
|
||
char * /* Return pointer past text consumed. */
|
||
atof_tahoe (str, what_kind, words)
|
||
char *str; /* Text to convert to binary. */
|
||
char what_kind; /* 'd', 'f', 'g', 'h' */
|
||
LITTLENUM_TYPE *words; /* Build the binary here. */
|
||
{
|
||
FLONUM_TYPE f;
|
||
LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
|
||
/* Extra bits for zeroed low-order bits. */
|
||
/* The 1st MAX_PRECISION are zeroed, the last contain flonum bits. */
|
||
char *return_value;
|
||
int precision; /* Number of 16-bit words in the format. */
|
||
long int exponent_bits;
|
||
|
||
return_value = str;
|
||
f.low = bits + MAX_PRECISION;
|
||
f.high = NULL;
|
||
f.leader = NULL;
|
||
f.exponent = NULL;
|
||
f.sign = '\0';
|
||
|
||
if (what_kind_of_float (what_kind, &precision, &exponent_bits))
|
||
{
|
||
/* We lost. */
|
||
return_value = NULL;
|
||
make_invalid_floating_point_number (words);
|
||
}
|
||
if (return_value)
|
||
{
|
||
memset (bits, '\0', sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
|
||
|
||
/* Use more LittleNums than seems necessary:
|
||
the highest flonum may have 15 leading 0 bits, so could be
|
||
useless. */
|
||
f.high = f.low + precision - 1 + GUARD;
|
||
|
||
if (atof_generic (&return_value, ".", "eE", &f))
|
||
{
|
||
make_invalid_floating_point_number (words);
|
||
/* We lost. */
|
||
return_value = NULL;
|
||
}
|
||
else
|
||
{
|
||
if (flonum_gen2tahoe (what_kind, &f, words))
|
||
return_value = NULL;
|
||
}
|
||
}
|
||
return return_value;
|
||
}
|
||
|
||
/* In: a flonum, a Tahoe floating point format.
|
||
Out: a Tahoe floating-point bit pattern. */
|
||
|
||
int /* 0: OK. */
|
||
flonum_gen2tahoe (format_letter, f, words)
|
||
char format_letter; /* One of 'd' 'f'. */
|
||
FLONUM_TYPE *f;
|
||
LITTLENUM_TYPE *words; /* Deliver answer here. */
|
||
{
|
||
LITTLENUM_TYPE *lp;
|
||
int precision;
|
||
long int exponent_bits;
|
||
int return_value; /* 0 == OK. */
|
||
|
||
return_value =
|
||
what_kind_of_float (format_letter, &precision, &exponent_bits);
|
||
if (return_value != 0)
|
||
{
|
||
make_invalid_floating_point_number (words);
|
||
}
|
||
else
|
||
{
|
||
if (f->low > f->leader)
|
||
{
|
||
/* 0.0e0 seen. */
|
||
memset (words, '\0', sizeof (LITTLENUM_TYPE) * precision);
|
||
}
|
||
else
|
||
{
|
||
long int exponent_1;
|
||
long int exponent_2;
|
||
long int exponent_3;
|
||
long int exponent_4;
|
||
int exponent_skippage;
|
||
LITTLENUM_TYPE word1;
|
||
|
||
/* JF: Deal with new Nan, +Inf and -Inf codes. */
|
||
if (f->sign != '-' && f->sign != '+')
|
||
{
|
||
make_invalid_floating_point_number (words);
|
||
return return_value;
|
||
}
|
||
/* All tahoe floating_point formats have:
|
||
Bit 15 is sign bit.
|
||
Bits 14:n are excess-whatever exponent.
|
||
Bits n-1:0 (if any) are most significant bits of fraction.
|
||
Bits 15:0 of the next word are the next most significant bits.
|
||
And so on for each other word.
|
||
|
||
So we need: number of bits of exponent, number of bits of
|
||
mantissa. */
|
||
|
||
bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
|
||
littlenum_pointer = f->leader;
|
||
littlenum_end = f->low;
|
||
|
||
/* Seek (and forget) 1st significant bit. */
|
||
for (exponent_skippage = 0;
|
||
!next_bits (1);
|
||
exponent_skippage++)
|
||
;
|
||
|
||
exponent_1 = f->exponent + f->leader + 1 - f->low;
|
||
|
||
/* Radix LITTLENUM_RADIX, point just higher than f -> leader. */
|
||
exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
|
||
|
||
/* Radix 2. */
|
||
exponent_3 = exponent_2 - exponent_skippage;
|
||
|
||
/* Forget leading zeros, forget 1st bit. */
|
||
exponent_4 = exponent_3 + (1 << (exponent_bits - 1));
|
||
|
||
/* Offset exponent. */
|
||
|
||
if (exponent_4 & ~mask[exponent_bits])
|
||
{
|
||
/* Exponent overflow. Lose immediately. */
|
||
|
||
make_invalid_floating_point_number (words);
|
||
|
||
/* We leave return_value alone: admit we read the
|
||
number, but return a floating exception because we
|
||
can't encode the number. */
|
||
}
|
||
else
|
||
{
|
||
lp = words;
|
||
|
||
/* Word 1. Sign, exponent and perhaps high bits. */
|
||
/* Assume 2's complement integers. */
|
||
word1 = ((exponent_4 & mask[exponent_bits])
|
||
<< (15 - exponent_bits))
|
||
| ((f->sign == '+') ? 0 : 0x8000)
|
||
| next_bits (15 - exponent_bits);
|
||
*lp++ = word1;
|
||
|
||
/* The rest of the words are just mantissa bits. */
|
||
for (; lp < words + precision; lp++)
|
||
*lp = next_bits (LITTLENUM_NUMBER_OF_BITS);
|
||
|
||
if (next_bits (1))
|
||
{
|
||
/* Since the NEXT bit is a 1, round UP the mantissa.
|
||
The cunning design of these hidden-1 floats permits
|
||
us to let the mantissa overflow into the exponent, and
|
||
it 'does the right thing'. However, we lose if the
|
||
highest-order bit of the lowest-order word flips.
|
||
Is that clear? */
|
||
|
||
unsigned long int carry;
|
||
|
||
/* #if (sizeof(carry)) < ((sizeof(bits[0]) *
|
||
BITS_PER_CHAR) + 2) Please allow at least 1 more
|
||
bit in carry than is in a LITTLENUM. We need
|
||
that extra bit to hold a carry during a LITTLENUM
|
||
carry propagation. Another extra bit (kept 0)
|
||
will assure us that we don't get a sticky sign
|
||
bit after shifting right, and that permits us to
|
||
propagate the carry without any masking of bits.
|
||
#endif */
|
||
for (carry = 1, lp--;
|
||
carry && (lp >= words);
|
||
lp--)
|
||
{
|
||
carry = *lp + carry;
|
||
*lp = carry;
|
||
carry >>= LITTLENUM_NUMBER_OF_BITS;
|
||
}
|
||
|
||
if ((word1 ^ *words)
|
||
& (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
|
||
{
|
||
make_invalid_floating_point_number (words);
|
||
/* We leave return_value alone: admit we read
|
||
the number, but return a floating exception
|
||
because we can't encode the number. */
|
||
}
|
||
} /* if (we needed to round up) */
|
||
} /* if (exponent overflow) */
|
||
} /* if (0.0e0) */
|
||
} /* if (float_type was OK) */
|
||
return return_value;
|
||
}
|
||
|
||
/* In: input_line_pointer -> the 1st character of a floating-point
|
||
* number.
|
||
* 1 letter denoting the type of statement that wants a
|
||
* binary floating point number returned.
|
||
* Address of where to build floating point literal.
|
||
* Assumed to be 'big enough'.
|
||
* Address of where to return size of literal (in chars).
|
||
*
|
||
* Out: Input_line_pointer -> of next char after floating number.
|
||
* Error message, or 0.
|
||
* Floating point literal.
|
||
* Number of chars we used for the literal. */
|
||
|
||
char *
|
||
md_atof (what_statement_type, literalP, sizeP)
|
||
char what_statement_type;
|
||
char *literalP;
|
||
int *sizeP;
|
||
{
|
||
LITTLENUM_TYPE words[MAX_PRECISION];
|
||
register char kind_of_float;
|
||
register int number_of_chars;
|
||
register LITTLENUM_TYPE *littlenum_pointer;
|
||
|
||
switch (what_statement_type)
|
||
{
|
||
case 'f': /* .ffloat */
|
||
case 'd': /* .dfloat */
|
||
kind_of_float = what_statement_type;
|
||
break;
|
||
|
||
default:
|
||
kind_of_float = 0;
|
||
break;
|
||
}
|
||
|
||
if (kind_of_float)
|
||
{
|
||
register LITTLENUM_TYPE *limit;
|
||
|
||
input_line_pointer = atof_tahoe (input_line_pointer,
|
||
kind_of_float,
|
||
words);
|
||
/* The atof_tahoe() builds up 16-bit numbers.
|
||
Since the assembler may not be running on
|
||
a different-endian machine, be very careful about
|
||
converting words to chars. */
|
||
number_of_chars = (kind_of_float == 'f' ? F_PRECISION_CHARS :
|
||
(kind_of_float == 'd' ? D_PRECISION_CHARS : 0));
|
||
know (number_of_chars <= MAX_PRECISION * sizeof (LITTLENUM_TYPE));
|
||
limit = words + (number_of_chars / sizeof (LITTLENUM_TYPE));
|
||
for (littlenum_pointer = words;
|
||
littlenum_pointer < limit;
|
||
littlenum_pointer++)
|
||
{
|
||
md_number_to_chars (literalP, *littlenum_pointer,
|
||
sizeof (LITTLENUM_TYPE));
|
||
literalP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
number_of_chars = 0;
|
||
}
|
||
|
||
*sizeP = number_of_chars;
|
||
return kind_of_float ? 0 : _("Bad call to md_atof()");
|
||
}
|