mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-03 04:12:10 +08:00
1933 lines
53 KiB
C
1933 lines
53 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 2000
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "xcoffsolib.h"
|
||
|
||
extern int errno;
|
||
|
||
/* Breakpoint shadows for the single step instructions will be kept here. */
|
||
|
||
static struct sstep_breaks
|
||
{
|
||
/* Address, or 0 if this is not in use. */
|
||
CORE_ADDR address;
|
||
/* Shadow contents. */
|
||
char data[4];
|
||
}
|
||
stepBreaks[2];
|
||
|
||
/* Hook for determining the TOC address when calling functions in the
|
||
inferior under AIX. The initialization code in rs6000-nat.c sets
|
||
this hook to point to find_toc_address. */
|
||
|
||
CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR)) = NULL;
|
||
|
||
/* Static function prototypes */
|
||
|
||
static CORE_ADDR branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc,
|
||
CORE_ADDR safety));
|
||
|
||
static void frame_get_saved_regs PARAMS ((struct frame_info * fi,
|
||
struct rs6000_framedata * fdatap));
|
||
|
||
static void pop_dummy_frame PARAMS ((void));
|
||
|
||
static CORE_ADDR frame_initial_stack_address PARAMS ((struct frame_info *));
|
||
|
||
CORE_ADDR
|
||
rs6000_skip_prologue (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
struct rs6000_framedata frame;
|
||
pc = skip_prologue (pc, &frame);
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Fill in fi->saved_regs */
|
||
|
||
struct frame_extra_info
|
||
{
|
||
/* Functions calling alloca() change the value of the stack
|
||
pointer. We need to use initial stack pointer (which is saved in
|
||
r31 by gcc) in such cases. If a compiler emits traceback table,
|
||
then we should use the alloca register specified in traceback
|
||
table. FIXME. */
|
||
CORE_ADDR initial_sp; /* initial stack pointer. */
|
||
};
|
||
|
||
void
|
||
rs6000_init_extra_frame_info (fromleaf, fi)
|
||
int fromleaf;
|
||
struct frame_info *fi;
|
||
{
|
||
fi->extra_info = (struct frame_extra_info *)
|
||
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
||
fi->extra_info->initial_sp = 0;
|
||
if (fi->next != (CORE_ADDR) 0
|
||
&& fi->pc < TEXT_SEGMENT_BASE)
|
||
/* We're in get_prev_frame */
|
||
/* and this is a special signal frame. */
|
||
/* (fi->pc will be some low address in the kernel, */
|
||
/* to which the signal handler returns). */
|
||
fi->signal_handler_caller = 1;
|
||
}
|
||
|
||
|
||
void
|
||
rs6000_frame_init_saved_regs (fi)
|
||
struct frame_info *fi;
|
||
{
|
||
frame_get_saved_regs (fi, NULL);
|
||
}
|
||
|
||
CORE_ADDR
|
||
rs6000_frame_args_address (fi)
|
||
struct frame_info *fi;
|
||
{
|
||
if (fi->extra_info->initial_sp != 0)
|
||
return fi->extra_info->initial_sp;
|
||
else
|
||
return frame_initial_stack_address (fi);
|
||
}
|
||
|
||
|
||
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
||
|
||
static CORE_ADDR
|
||
branch_dest (opcode, instr, pc, safety)
|
||
int opcode;
|
||
int instr;
|
||
CORE_ADDR pc;
|
||
CORE_ADDR safety;
|
||
{
|
||
CORE_ADDR dest;
|
||
int immediate;
|
||
int absolute;
|
||
int ext_op;
|
||
|
||
absolute = (int) ((instr >> 1) & 1);
|
||
|
||
switch (opcode)
|
||
{
|
||
case 18:
|
||
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 16:
|
||
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 19:
|
||
ext_op = (instr >> 1) & 0x3ff;
|
||
|
||
if (ext_op == 16) /* br conditional register */
|
||
{
|
||
dest = read_register (LR_REGNUM) & ~3;
|
||
|
||
/* If we are about to return from a signal handler, dest is
|
||
something like 0x3c90. The current frame is a signal handler
|
||
caller frame, upon completion of the sigreturn system call
|
||
execution will return to the saved PC in the frame. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
{
|
||
struct frame_info *fi;
|
||
|
||
fi = get_current_frame ();
|
||
if (fi != NULL)
|
||
dest = read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET,
|
||
4);
|
||
}
|
||
}
|
||
|
||
else if (ext_op == 528) /* br cond to count reg */
|
||
{
|
||
dest = read_register (CTR_REGNUM) & ~3;
|
||
|
||
/* If we are about to execute a system call, dest is something
|
||
like 0x22fc or 0x3b00. Upon completion the system call
|
||
will return to the address in the link register. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
dest = read_register (LR_REGNUM) & ~3;
|
||
}
|
||
else
|
||
return -1;
|
||
break;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
|
||
}
|
||
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
|
||
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
|
||
|
||
unsigned char *
|
||
rs6000_breakpoint_from_pc (bp_addr, bp_size)
|
||
CORE_ADDR *bp_addr;
|
||
int *bp_size;
|
||
{
|
||
static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
|
||
static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
|
||
*bp_size = 4;
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
return big_breakpoint;
|
||
else
|
||
return little_breakpoint;
|
||
}
|
||
|
||
|
||
/* AIX does not support PT_STEP. Simulate it. */
|
||
|
||
void
|
||
rs6000_software_single_step (signal, insert_breakpoints_p)
|
||
unsigned int signal;
|
||
int insert_breakpoints_p;
|
||
{
|
||
#define INSNLEN(OPCODE) 4
|
||
|
||
static char le_breakp[] = LITTLE_BREAKPOINT;
|
||
static char be_breakp[] = BIG_BREAKPOINT;
|
||
char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
|
||
int ii, insn;
|
||
CORE_ADDR loc;
|
||
CORE_ADDR breaks[2];
|
||
int opcode;
|
||
|
||
if (insert_breakpoints_p)
|
||
{
|
||
|
||
loc = read_pc ();
|
||
|
||
insn = read_memory_integer (loc, 4);
|
||
|
||
breaks[0] = loc + INSNLEN (insn);
|
||
opcode = insn >> 26;
|
||
breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
|
||
|
||
/* Don't put two breakpoints on the same address. */
|
||
if (breaks[1] == breaks[0])
|
||
breaks[1] = -1;
|
||
|
||
stepBreaks[1].address = 0;
|
||
|
||
for (ii = 0; ii < 2; ++ii)
|
||
{
|
||
|
||
/* ignore invalid breakpoint. */
|
||
if (breaks[ii] == -1)
|
||
continue;
|
||
|
||
read_memory (breaks[ii], stepBreaks[ii].data, 4);
|
||
|
||
write_memory (breaks[ii], breakp, 4);
|
||
stepBreaks[ii].address = breaks[ii];
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
|
||
/* remove step breakpoints. */
|
||
for (ii = 0; ii < 2; ++ii)
|
||
if (stepBreaks[ii].address != 0)
|
||
write_memory
|
||
(stepBreaks[ii].address, stepBreaks[ii].data, 4);
|
||
|
||
}
|
||
errno = 0; /* FIXME, don't ignore errors! */
|
||
/* What errors? {read,write}_memory call error(). */
|
||
}
|
||
|
||
|
||
/* return pc value after skipping a function prologue and also return
|
||
information about a function frame.
|
||
|
||
in struct rs6000_framedata fdata:
|
||
- frameless is TRUE, if function does not have a frame.
|
||
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
||
- offset is the initial size of this stack frame --- the amount by
|
||
which we decrement the sp to allocate the frame.
|
||
- saved_gpr is the number of the first saved gpr.
|
||
- saved_fpr is the number of the first saved fpr.
|
||
- alloca_reg is the number of the register used for alloca() handling.
|
||
Otherwise -1.
|
||
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
||
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
||
- lr_offset is the offset of the saved lr
|
||
- cr_offset is the offset of the saved cr
|
||
*/
|
||
|
||
#define SIGNED_SHORT(x) \
|
||
((sizeof (short) == 2) \
|
||
? ((int)(short)(x)) \
|
||
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
||
|
||
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
||
|
||
CORE_ADDR
|
||
skip_prologue (CORE_ADDR pc, struct rs6000_framedata *fdata)
|
||
{
|
||
CORE_ADDR orig_pc = pc;
|
||
CORE_ADDR last_prologue_pc;
|
||
char buf[4];
|
||
unsigned long op;
|
||
long offset = 0;
|
||
int lr_reg = -1;
|
||
int cr_reg = -1;
|
||
int reg;
|
||
int framep = 0;
|
||
int minimal_toc_loaded = 0;
|
||
int prev_insn_was_prologue_insn = 1;
|
||
|
||
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
||
fdata->saved_gpr = -1;
|
||
fdata->saved_fpr = -1;
|
||
fdata->alloca_reg = -1;
|
||
fdata->frameless = 1;
|
||
fdata->nosavedpc = 1;
|
||
|
||
pc -= 4;
|
||
for (;;)
|
||
{
|
||
pc += 4;
|
||
|
||
/* Sometimes it isn't clear if an instruction is a prologue
|
||
instruction or not. When we encounter one of these ambiguous
|
||
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
||
Otherwise, we'll assume that it really is a prologue instruction. */
|
||
if (prev_insn_was_prologue_insn)
|
||
last_prologue_pc = pc;
|
||
prev_insn_was_prologue_insn = 1;
|
||
|
||
if (target_read_memory (pc, buf, 4))
|
||
break;
|
||
op = extract_signed_integer (buf, 4);
|
||
|
||
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
||
{ /* mflr Rx */
|
||
lr_reg = (op & 0x03e00000) | 0x90010000;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c000026)
|
||
{ /* mfcr Rx */
|
||
cr_reg = (op & 0x03e00000) | 0x90010000;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0xd8010000)
|
||
{ /* stfd Rx,NUM(r1) */
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
||
{
|
||
fdata->saved_fpr = reg;
|
||
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
||
((op & 0xfc1f0000) == 0x90010000 && /* st rx,NUM(r1),
|
||
rx >= r13 */
|
||
(op & 0x03e00000) >= 0x01a00000))
|
||
{
|
||
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
||
{
|
||
fdata->saved_gpr = reg;
|
||
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
/* nop */
|
||
/* Allow nops in the prologue, but do not consider them to
|
||
be part of the prologue unless followed by other prologue
|
||
instructions. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3c000000)
|
||
{ /* addis 0,0,NUM, used
|
||
for >= 32k frames */
|
||
fdata->offset = (op & 0x0000ffff) << 16;
|
||
fdata->frameless = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{ /* ori 0,0,NUM, 2nd ha
|
||
lf of >= 32k frames */
|
||
fdata->offset |= (op & 0x0000ffff);
|
||
fdata->frameless = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
|
||
{ /* st Rx,NUM(r1)
|
||
where Rx == lr */
|
||
fdata->lr_offset = SIGNED_SHORT (op) + offset;
|
||
fdata->nosavedpc = 0;
|
||
lr_reg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
|
||
{ /* st Rx,NUM(r1)
|
||
where Rx == cr */
|
||
fdata->cr_offset = SIGNED_SHORT (op) + offset;
|
||
cr_reg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000005)
|
||
{ /* bl .+4 used in
|
||
-mrelocatable */
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000004)
|
||
{ /* b .+4 (xlc) */
|
||
break;
|
||
|
||
}
|
||
else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
|
||
in V.4 -mrelocatable */
|
||
op == 0x7fc0f214) && /* add r30,r0,r30, used
|
||
in V.4 -mrelocatable */
|
||
lr_reg == 0x901e0000)
|
||
{
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
||
in V.4 -mminimal-toc */
|
||
(op & 0xffff0000) == 0x3bde0000)
|
||
{ /* addi 30,30,foo@l */
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo,
|
||
to save fprs??? */
|
||
|
||
fdata->frameless = 0;
|
||
/* Don't skip over the subroutine call if it is not within the first
|
||
three instructions of the prologue. */
|
||
if ((pc - orig_pc) > 8)
|
||
break;
|
||
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
/* At this point, make sure this is not a trampoline function
|
||
(a function that simply calls another functions, and nothing else).
|
||
If the next is not a nop, this branch was part of the function
|
||
prologue. */
|
||
|
||
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
||
break; /* don't skip over
|
||
this branch */
|
||
continue;
|
||
|
||
/* update stack pointer */
|
||
}
|
||
else if ((op & 0xffff0000) == 0x94210000)
|
||
{ /* stu r1,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x7c21016e)
|
||
{ /* stwux 1,1,0 */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
|
||
/* Load up minimal toc pointer */
|
||
}
|
||
else if ((op >> 22) == 0x20f
|
||
&& !minimal_toc_loaded)
|
||
{ /* l r31,... or l r30,... */
|
||
minimal_toc_loaded = 1;
|
||
continue;
|
||
|
||
/* move parameters from argument registers to local variable
|
||
registers */
|
||
}
|
||
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
||
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
||
(((op >> 21) & 31) <= 10) &&
|
||
(((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack */
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xfc010000)
|
||
{ /* frsp, fp?,NUM(r1) */
|
||
continue;
|
||
|
||
/* store parameters in stack via frame pointer */
|
||
}
|
||
else if (framep &&
|
||
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xfc1f0000))
|
||
{ /* frsp, fp?,NUM(r1) */
|
||
continue;
|
||
|
||
/* Set up frame pointer */
|
||
}
|
||
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
||
|| op == 0x7c3f0b78)
|
||
{ /* mr r31, r1 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = 31;
|
||
continue;
|
||
|
||
/* Another way to set up the frame pointer. */
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x38010000)
|
||
{ /* addi rX, r1, 0x0 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (op & ~0x38010000) >> 21;
|
||
continue;
|
||
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
/* I have problems with skipping over __main() that I need to address
|
||
* sometime. Previously, I used to use misc_function_vector which
|
||
* didn't work as well as I wanted to be. -MGO */
|
||
|
||
/* If the first thing after skipping a prolog is a branch to a function,
|
||
this might be a call to an initializer in main(), introduced by gcc2.
|
||
We'd like to skip over it as well. Fortunately, xlc does some extra
|
||
work before calling a function right after a prologue, thus we can
|
||
single out such gcc2 behaviour. */
|
||
|
||
|
||
if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo, an initializer function? */
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
if (op == 0x4def7b82)
|
||
{ /* cror 0xf, 0xf, 0xf (nop) */
|
||
|
||
/* check and see if we are in main. If so, skip over this initializer
|
||
function as well. */
|
||
|
||
tmp = find_pc_misc_function (pc);
|
||
if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
|
||
return pc + 8;
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
fdata->offset = -fdata->offset;
|
||
return last_prologue_pc;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Support for creating pushing a dummy frame into the stack, and popping
|
||
frames, etc.
|
||
*************************************************************************/
|
||
|
||
/* The total size of dummy frame is 436, which is;
|
||
|
||
32 gpr's - 128 bytes
|
||
32 fpr's - 256 bytes
|
||
7 the rest - 28 bytes
|
||
callee's link area - 24 bytes
|
||
padding - 12 bytes
|
||
|
||
Note that the last 24 bytes for the link area might not be necessary,
|
||
since it will be taken care of by push_arguments(). */
|
||
|
||
#define DUMMY_FRAME_SIZE 448
|
||
|
||
#define DUMMY_FRAME_ADDR_SIZE 10
|
||
|
||
/* Make sure you initialize these in somewhere, in case gdb gives up what it
|
||
was debugging and starts debugging something else. FIXMEibm */
|
||
|
||
static int dummy_frame_count = 0;
|
||
static int dummy_frame_size = 0;
|
||
static CORE_ADDR *dummy_frame_addr = 0;
|
||
|
||
extern int stop_stack_dummy;
|
||
|
||
/* push a dummy frame into stack, save all register. Currently we are saving
|
||
only gpr's and fpr's, which is not good enough! FIXMEmgo */
|
||
|
||
void
|
||
push_dummy_frame ()
|
||
{
|
||
/* stack pointer. */
|
||
CORE_ADDR sp;
|
||
/* Same thing, target byte order. */
|
||
char sp_targ[4];
|
||
|
||
/* link register. */
|
||
CORE_ADDR pc;
|
||
/* Same thing, target byte order. */
|
||
char pc_targ[4];
|
||
|
||
/* Needed to figure out where to save the dummy link area.
|
||
FIXME: There should be an easier way to do this, no? tiemann 9/9/95. */
|
||
struct rs6000_framedata fdata;
|
||
|
||
int ii;
|
||
|
||
target_fetch_registers (-1);
|
||
|
||
if (dummy_frame_count >= dummy_frame_size)
|
||
{
|
||
dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
|
||
if (dummy_frame_addr)
|
||
dummy_frame_addr = (CORE_ADDR *) xrealloc
|
||
(dummy_frame_addr, sizeof (CORE_ADDR) * (dummy_frame_size));
|
||
else
|
||
dummy_frame_addr = (CORE_ADDR *)
|
||
xmalloc (sizeof (CORE_ADDR) * (dummy_frame_size));
|
||
}
|
||
|
||
sp = read_register (SP_REGNUM);
|
||
pc = read_register (PC_REGNUM);
|
||
store_address (pc_targ, 4, pc);
|
||
|
||
skip_prologue (get_pc_function_start (pc), &fdata);
|
||
|
||
dummy_frame_addr[dummy_frame_count++] = sp;
|
||
|
||
/* Be careful! If the stack pointer is not decremented first, then kernel
|
||
thinks he is free to use the space underneath it. And kernel actually
|
||
uses that area for IPC purposes when executing ptrace(2) calls. So
|
||
before writing register values into the new frame, decrement and update
|
||
%sp first in order to secure your frame. */
|
||
|
||
/* FIXME: We don't check if the stack really has this much space.
|
||
This is a problem on the ppc simulator (which only grants one page
|
||
(4096 bytes) by default. */
|
||
|
||
write_register (SP_REGNUM, sp - DUMMY_FRAME_SIZE);
|
||
|
||
/* gdb relies on the state of current_frame. We'd better update it,
|
||
otherwise things like do_registers_info() wouldn't work properly! */
|
||
|
||
flush_cached_frames ();
|
||
|
||
/* save program counter in link register's space. */
|
||
write_memory (sp + (fdata.lr_offset ? fdata.lr_offset : DEFAULT_LR_SAVE),
|
||
pc_targ, 4);
|
||
|
||
/* save all floating point and general purpose registers here. */
|
||
|
||
/* fpr's, f0..f31 */
|
||
for (ii = 0; ii < 32; ++ii)
|
||
write_memory (sp - 8 - (ii * 8), ®isters[REGISTER_BYTE (31 - ii + FP0_REGNUM)], 8);
|
||
|
||
/* gpr's r0..r31 */
|
||
for (ii = 1; ii <= 32; ++ii)
|
||
write_memory (sp - 256 - (ii * 4), ®isters[REGISTER_BYTE (32 - ii)], 4);
|
||
|
||
/* so far, 32*2 + 32 words = 384 bytes have been written.
|
||
7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
|
||
|
||
for (ii = 1; ii <= (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1); ++ii)
|
||
{
|
||
write_memory (sp - 384 - (ii * 4),
|
||
®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
|
||
}
|
||
|
||
/* Save sp or so called back chain right here. */
|
||
store_address (sp_targ, 4, sp);
|
||
write_memory (sp - DUMMY_FRAME_SIZE, sp_targ, 4);
|
||
sp -= DUMMY_FRAME_SIZE;
|
||
|
||
/* And finally, this is the back chain. */
|
||
write_memory (sp + 8, pc_targ, 4);
|
||
}
|
||
|
||
|
||
/* Pop a dummy frame.
|
||
|
||
In rs6000 when we push a dummy frame, we save all of the registers. This
|
||
is usually done before user calls a function explicitly.
|
||
|
||
After a dummy frame is pushed, some instructions are copied into stack,
|
||
and stack pointer is decremented even more. Since we don't have a frame
|
||
pointer to get back to the parent frame of the dummy, we start having
|
||
trouble poping it. Therefore, we keep a dummy frame stack, keeping
|
||
addresses of dummy frames as such. When poping happens and when we
|
||
detect that was a dummy frame, we pop it back to its parent by using
|
||
dummy frame stack (`dummy_frame_addr' array).
|
||
|
||
FIXME: This whole concept is broken. You should be able to detect
|
||
a dummy stack frame *on the user's stack itself*. When you do,
|
||
then you know the format of that stack frame -- including its
|
||
saved SP register! There should *not* be a separate stack in the
|
||
GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
|
||
*/
|
||
|
||
static void
|
||
pop_dummy_frame ()
|
||
{
|
||
CORE_ADDR sp, pc;
|
||
int ii;
|
||
sp = dummy_frame_addr[--dummy_frame_count];
|
||
|
||
/* restore all fpr's. */
|
||
for (ii = 1; ii <= 32; ++ii)
|
||
read_memory (sp - (ii * 8), ®isters[REGISTER_BYTE (32 - ii + FP0_REGNUM)], 8);
|
||
|
||
/* restore all gpr's */
|
||
for (ii = 1; ii <= 32; ++ii)
|
||
{
|
||
read_memory (sp - 256 - (ii * 4), ®isters[REGISTER_BYTE (32 - ii)], 4);
|
||
}
|
||
|
||
/* restore the rest of the registers. */
|
||
for (ii = 1; ii <= (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1); ++ii)
|
||
read_memory (sp - 384 - (ii * 4),
|
||
®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
|
||
|
||
read_memory (sp - (DUMMY_FRAME_SIZE - 8),
|
||
®isters[REGISTER_BYTE (PC_REGNUM)], 4);
|
||
|
||
/* when a dummy frame was being pushed, we had to decrement %sp first, in
|
||
order to secure astack space. Thus, saved %sp (or %r1) value, is not the
|
||
one we should restore. Change it with the one we need. */
|
||
|
||
memcpy (®isters[REGISTER_BYTE (FP_REGNUM)], (char *) &sp, sizeof (int));
|
||
|
||
/* Now we can restore all registers. */
|
||
|
||
target_store_registers (-1);
|
||
pc = read_pc ();
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
|
||
/* pop the innermost frame, go back to the caller. */
|
||
|
||
void
|
||
pop_frame ()
|
||
{
|
||
CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
|
||
struct rs6000_framedata fdata;
|
||
struct frame_info *frame = get_current_frame ();
|
||
int addr, ii;
|
||
|
||
pc = read_pc ();
|
||
sp = FRAME_FP (frame);
|
||
|
||
if (stop_stack_dummy)
|
||
{
|
||
if (USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
generic_pop_dummy_frame ();
|
||
flush_cached_frames ();
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (dummy_frame_count)
|
||
pop_dummy_frame ();
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Make sure that all registers are valid. */
|
||
read_register_bytes (0, NULL, REGISTER_BYTES);
|
||
|
||
/* figure out previous %pc value. If the function is frameless, it is
|
||
still in the link register, otherwise walk the frames and retrieve the
|
||
saved %pc value in the previous frame. */
|
||
|
||
addr = get_pc_function_start (frame->pc);
|
||
(void) skip_prologue (addr, &fdata);
|
||
|
||
if (fdata.frameless)
|
||
prev_sp = sp;
|
||
else
|
||
prev_sp = read_memory_integer (sp, 4);
|
||
if (fdata.lr_offset == 0)
|
||
lr = read_register (LR_REGNUM);
|
||
else
|
||
lr = read_memory_integer (prev_sp + fdata.lr_offset, 4);
|
||
|
||
/* reset %pc value. */
|
||
write_register (PC_REGNUM, lr);
|
||
|
||
/* reset register values if any was saved earlier. */
|
||
|
||
if (fdata.saved_gpr != -1)
|
||
{
|
||
addr = prev_sp + fdata.gpr_offset;
|
||
for (ii = fdata.saved_gpr; ii <= 31; ++ii)
|
||
{
|
||
read_memory (addr, ®isters[REGISTER_BYTE (ii)], 4);
|
||
addr += 4;
|
||
}
|
||
}
|
||
|
||
if (fdata.saved_fpr != -1)
|
||
{
|
||
addr = prev_sp + fdata.fpr_offset;
|
||
for (ii = fdata.saved_fpr; ii <= 31; ++ii)
|
||
{
|
||
read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
|
||
addr += 8;
|
||
}
|
||
}
|
||
|
||
write_register (SP_REGNUM, prev_sp);
|
||
target_store_registers (-1);
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* fixup the call sequence of a dummy function, with the real function address.
|
||
its argumets will be passed by gdb. */
|
||
|
||
void
|
||
rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
|
||
char *dummyname;
|
||
CORE_ADDR pc;
|
||
CORE_ADDR fun;
|
||
int nargs;
|
||
value_ptr *args;
|
||
struct type *type;
|
||
int gcc_p;
|
||
{
|
||
#define TOC_ADDR_OFFSET 20
|
||
#define TARGET_ADDR_OFFSET 28
|
||
|
||
int ii;
|
||
CORE_ADDR target_addr;
|
||
|
||
if (USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
if (find_toc_address_hook != NULL)
|
||
{
|
||
CORE_ADDR tocvalue = (*find_toc_address_hook) (fun);
|
||
write_register (TOC_REGNUM, tocvalue);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (find_toc_address_hook != NULL)
|
||
{
|
||
CORE_ADDR tocvalue;
|
||
|
||
tocvalue = (*find_toc_address_hook) (fun);
|
||
ii = *(int *) ((char *) dummyname + TOC_ADDR_OFFSET);
|
||
ii = (ii & 0xffff0000) | (tocvalue >> 16);
|
||
*(int *) ((char *) dummyname + TOC_ADDR_OFFSET) = ii;
|
||
|
||
ii = *(int *) ((char *) dummyname + TOC_ADDR_OFFSET + 4);
|
||
ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
|
||
*(int *) ((char *) dummyname + TOC_ADDR_OFFSET + 4) = ii;
|
||
}
|
||
|
||
target_addr = fun;
|
||
ii = *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET);
|
||
ii = (ii & 0xffff0000) | (target_addr >> 16);
|
||
*(int *) ((char *) dummyname + TARGET_ADDR_OFFSET) = ii;
|
||
|
||
ii = *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET + 4);
|
||
ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
|
||
*(int *) ((char *) dummyname + TARGET_ADDR_OFFSET + 4) = ii;
|
||
}
|
||
}
|
||
|
||
/* Pass the arguments in either registers, or in the stack. In RS6000,
|
||
the first eight words of the argument list (that might be less than
|
||
eight parameters if some parameters occupy more than one word) are
|
||
passed in r3..r11 registers. float and double parameters are
|
||
passed in fpr's, in addition to that. Rest of the parameters if any
|
||
are passed in user stack. There might be cases in which half of the
|
||
parameter is copied into registers, the other half is pushed into
|
||
stack.
|
||
|
||
If the function is returning a structure, then the return address is passed
|
||
in r3, then the first 7 words of the parameters can be passed in registers,
|
||
starting from r4. */
|
||
|
||
CORE_ADDR
|
||
rs6000_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
||
int nargs;
|
||
value_ptr *args;
|
||
CORE_ADDR sp;
|
||
int struct_return;
|
||
CORE_ADDR struct_addr;
|
||
{
|
||
int ii;
|
||
int len = 0;
|
||
int argno; /* current argument number */
|
||
int argbytes; /* current argument byte */
|
||
char tmp_buffer[50];
|
||
int f_argno = 0; /* current floating point argno */
|
||
|
||
value_ptr arg = 0;
|
||
struct type *type;
|
||
|
||
CORE_ADDR saved_sp;
|
||
|
||
if (!USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
if (dummy_frame_count <= 0)
|
||
printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
|
||
}
|
||
|
||
/* The first eight words of ther arguments are passed in registers. Copy
|
||
them appropriately.
|
||
|
||
If the function is returning a `struct', then the first word (which
|
||
will be passed in r3) is used for struct return address. In that
|
||
case we should advance one word and start from r4 register to copy
|
||
parameters. */
|
||
|
||
ii = struct_return ? 1 : 0;
|
||
|
||
/*
|
||
effectively indirect call... gcc does...
|
||
|
||
return_val example( float, int);
|
||
|
||
eabi:
|
||
float in fp0, int in r3
|
||
offset of stack on overflow 8/16
|
||
for varargs, must go by type.
|
||
power open:
|
||
float in r3&r4, int in r5
|
||
offset of stack on overflow different
|
||
both:
|
||
return in r3 or f0. If no float, must study how gcc emulates floats;
|
||
pay attention to arg promotion.
|
||
User may have to cast\args to handle promotion correctly
|
||
since gdb won't know if prototype supplied or not.
|
||
*/
|
||
|
||
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
||
{
|
||
int reg_size = REGISTER_RAW_SIZE (ii + 3);
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (VALUE_TYPE (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
/* floating point arguments are passed in fpr's, as well as gpr's.
|
||
There are 13 fpr's reserved for passing parameters. At this point
|
||
there is no way we would run out of them. */
|
||
|
||
if (len > 8)
|
||
printf_unfiltered (
|
||
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
||
VALUE_CONTENTS (arg),
|
||
len);
|
||
++f_argno;
|
||
}
|
||
|
||
if (len > reg_size)
|
||
{
|
||
|
||
/* Argument takes more than one register. */
|
||
while (argbytes < len)
|
||
{
|
||
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
||
memcpy (®isters[REGISTER_BYTE (ii + 3)],
|
||
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
||
(len - argbytes) > reg_size
|
||
? reg_size : len - argbytes);
|
||
++ii, argbytes += reg_size;
|
||
|
||
if (ii >= 8)
|
||
goto ran_out_of_registers_for_arguments;
|
||
}
|
||
argbytes = 0;
|
||
--ii;
|
||
}
|
||
else
|
||
{ /* Argument can fit in one register. No problem. */
|
||
int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
|
||
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
||
memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj,
|
||
VALUE_CONTENTS (arg), len);
|
||
}
|
||
++argno;
|
||
}
|
||
|
||
ran_out_of_registers_for_arguments:
|
||
|
||
if (USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
saved_sp = read_sp ();
|
||
#ifndef ELF_OBJECT_FORMAT
|
||
/* location for 8 parameters are always reserved. */
|
||
sp -= 4 * 8;
|
||
|
||
/* another six words for back chain, TOC register, link register, etc. */
|
||
sp -= 24;
|
||
|
||
/* stack pointer must be quadword aligned */
|
||
sp &= -16;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* location for 8 parameters are always reserved. */
|
||
sp -= 4 * 8;
|
||
|
||
/* another six words for back chain, TOC register, link register, etc. */
|
||
sp -= 24;
|
||
|
||
/* stack pointer must be quadword aligned */
|
||
sp &= -16;
|
||
}
|
||
|
||
/* if there are more arguments, allocate space for them in
|
||
the stack, then push them starting from the ninth one. */
|
||
|
||
if ((argno < nargs) || argbytes)
|
||
{
|
||
int space = 0, jj;
|
||
|
||
if (argbytes)
|
||
{
|
||
space += ((len - argbytes + 3) & -4);
|
||
jj = argno + 1;
|
||
}
|
||
else
|
||
jj = argno;
|
||
|
||
for (; jj < nargs; ++jj)
|
||
{
|
||
value_ptr val = args[jj];
|
||
space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
|
||
}
|
||
|
||
/* add location required for the rest of the parameters */
|
||
space = (space + 15) & -16;
|
||
sp -= space;
|
||
|
||
/* This is another instance we need to be concerned about securing our
|
||
stack space. If we write anything underneath %sp (r1), we might conflict
|
||
with the kernel who thinks he is free to use this area. So, update %sp
|
||
first before doing anything else. */
|
||
|
||
write_register (SP_REGNUM, sp);
|
||
|
||
/* if the last argument copied into the registers didn't fit there
|
||
completely, push the rest of it into stack. */
|
||
|
||
if (argbytes)
|
||
{
|
||
write_memory (sp + 24 + (ii * 4),
|
||
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
||
len - argbytes);
|
||
++argno;
|
||
ii += ((len - argbytes + 3) & -4) / 4;
|
||
}
|
||
|
||
/* push the rest of the arguments into stack. */
|
||
for (; argno < nargs; ++argno)
|
||
{
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (VALUE_TYPE (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
|
||
/* float types should be passed in fpr's, as well as in the stack. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
||
{
|
||
|
||
if (len > 8)
|
||
printf_unfiltered (
|
||
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
||
VALUE_CONTENTS (arg),
|
||
len);
|
||
++f_argno;
|
||
}
|
||
|
||
write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
|
||
ii += ((len + 3) & -4) / 4;
|
||
}
|
||
}
|
||
else
|
||
/* Secure stack areas first, before doing anything else. */
|
||
write_register (SP_REGNUM, sp);
|
||
|
||
if (!USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
/* we want to copy 24 bytes of target's frame to dummy's frame,
|
||
then set back chain to point to new frame. */
|
||
|
||
saved_sp = dummy_frame_addr[dummy_frame_count - 1];
|
||
read_memory (saved_sp, tmp_buffer, 24);
|
||
write_memory (sp, tmp_buffer, 24);
|
||
}
|
||
|
||
/* set back chain properly */
|
||
store_address (tmp_buffer, 4, saved_sp);
|
||
write_memory (sp, tmp_buffer, 4);
|
||
|
||
target_store_registers (-1);
|
||
return sp;
|
||
}
|
||
/* #ifdef ELF_OBJECT_FORMAT */
|
||
|
||
/* Function: ppc_push_return_address (pc, sp)
|
||
Set up the return address for the inferior function call. */
|
||
|
||
CORE_ADDR
|
||
ppc_push_return_address (pc, sp)
|
||
CORE_ADDR pc;
|
||
CORE_ADDR sp;
|
||
{
|
||
write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
|
||
return sp;
|
||
}
|
||
|
||
/* #endif */
|
||
|
||
/* a given return value in `regbuf' with a type `valtype', extract and copy its
|
||
value into `valbuf' */
|
||
|
||
void
|
||
extract_return_value (valtype, regbuf, valbuf)
|
||
struct type *valtype;
|
||
char regbuf[REGISTER_BYTES];
|
||
char *valbuf;
|
||
{
|
||
int offset = 0;
|
||
|
||
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
double dd;
|
||
float ff;
|
||
/* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
|
||
We need to truncate the return value into float size (4 byte) if
|
||
necessary. */
|
||
|
||
if (TYPE_LENGTH (valtype) > 4) /* this is a double */
|
||
memcpy (valbuf,
|
||
®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
|
||
TYPE_LENGTH (valtype));
|
||
else
|
||
{ /* float */
|
||
memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
|
||
ff = (float) dd;
|
||
memcpy (valbuf, &ff, sizeof (float));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* return value is copied starting from r3. */
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
&& TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
|
||
offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
|
||
|
||
memcpy (valbuf,
|
||
regbuf + REGISTER_BYTE (3) + offset,
|
||
TYPE_LENGTH (valtype));
|
||
}
|
||
}
|
||
|
||
|
||
/* keep structure return address in this variable.
|
||
FIXME: This is a horrid kludge which should not be allowed to continue
|
||
living. This only allows a single nested call to a structure-returning
|
||
function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
|
||
|
||
CORE_ADDR rs6000_struct_return_address;
|
||
|
||
|
||
/* Indirect function calls use a piece of trampoline code to do context
|
||
switching, i.e. to set the new TOC table. Skip such code if we are on
|
||
its first instruction (as when we have single-stepped to here).
|
||
Also skip shared library trampoline code (which is different from
|
||
indirect function call trampolines).
|
||
Result is desired PC to step until, or NULL if we are not in
|
||
trampoline code. */
|
||
|
||
CORE_ADDR
|
||
skip_trampoline_code (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
register unsigned int ii, op;
|
||
CORE_ADDR solib_target_pc;
|
||
|
||
static unsigned trampoline_code[] =
|
||
{
|
||
0x800b0000, /* l r0,0x0(r11) */
|
||
0x90410014, /* st r2,0x14(r1) */
|
||
0x7c0903a6, /* mtctr r0 */
|
||
0x804b0004, /* l r2,0x4(r11) */
|
||
0x816b0008, /* l r11,0x8(r11) */
|
||
0x4e800420, /* bctr */
|
||
0x4e800020, /* br */
|
||
0
|
||
};
|
||
|
||
/* If pc is in a shared library trampoline, return its target. */
|
||
solib_target_pc = find_solib_trampoline_target (pc);
|
||
if (solib_target_pc)
|
||
return solib_target_pc;
|
||
|
||
for (ii = 0; trampoline_code[ii]; ++ii)
|
||
{
|
||
op = read_memory_integer (pc + (ii * 4), 4);
|
||
if (op != trampoline_code[ii])
|
||
return 0;
|
||
}
|
||
ii = read_register (11); /* r11 holds destination addr */
|
||
pc = read_memory_integer (ii, 4); /* (r11) value */
|
||
return pc;
|
||
}
|
||
|
||
/* Determines whether the function FI has a frame on the stack or not. */
|
||
|
||
int
|
||
rs6000_frameless_function_invocation (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR func_start;
|
||
struct rs6000_framedata fdata;
|
||
|
||
/* Don't even think about framelessness except on the innermost frame
|
||
or if the function was interrupted by a signal. */
|
||
if (fi->next != NULL && !fi->next->signal_handler_caller)
|
||
return 0;
|
||
|
||
func_start = get_pc_function_start (fi->pc);
|
||
|
||
/* If we failed to find the start of the function, it is a mistake
|
||
to inspect the instructions. */
|
||
|
||
if (!func_start)
|
||
{
|
||
/* A frame with a zero PC is usually created by dereferencing a NULL
|
||
function pointer, normally causing an immediate core dump of the
|
||
inferior. Mark function as frameless, as the inferior has no chance
|
||
of setting up a stack frame. */
|
||
if (fi->pc == 0)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
(void) skip_prologue (func_start, &fdata);
|
||
return fdata.frameless;
|
||
}
|
||
|
||
/* Return the PC saved in a frame */
|
||
|
||
unsigned long
|
||
rs6000_frame_saved_pc (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR func_start;
|
||
struct rs6000_framedata fdata;
|
||
|
||
if (fi->signal_handler_caller)
|
||
return read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, 4);
|
||
|
||
if (USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
|
||
}
|
||
|
||
func_start = get_pc_function_start (fi->pc);
|
||
|
||
/* If we failed to find the start of the function, it is a mistake
|
||
to inspect the instructions. */
|
||
if (!func_start)
|
||
return 0;
|
||
|
||
(void) skip_prologue (func_start, &fdata);
|
||
|
||
if (fdata.lr_offset == 0 && fi->next != NULL)
|
||
{
|
||
if (fi->next->signal_handler_caller)
|
||
return read_memory_integer (fi->next->frame + SIG_FRAME_LR_OFFSET, 4);
|
||
else
|
||
return read_memory_integer (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE, 4);
|
||
}
|
||
|
||
if (fdata.lr_offset == 0)
|
||
return read_register (LR_REGNUM);
|
||
|
||
return read_memory_integer (FRAME_CHAIN (fi) + fdata.lr_offset, 4);
|
||
}
|
||
|
||
/* If saved registers of frame FI are not known yet, read and cache them.
|
||
&FDATAP contains rs6000_framedata; TDATAP can be NULL,
|
||
in which case the framedata are read. */
|
||
|
||
static void
|
||
frame_get_saved_regs (fi, fdatap)
|
||
struct frame_info *fi;
|
||
struct rs6000_framedata *fdatap;
|
||
{
|
||
CORE_ADDR frame_addr;
|
||
struct rs6000_framedata work_fdata;
|
||
|
||
if (fi->saved_regs)
|
||
return;
|
||
|
||
if (fdatap == NULL)
|
||
{
|
||
fdatap = &work_fdata;
|
||
(void) skip_prologue (get_pc_function_start (fi->pc), fdatap);
|
||
}
|
||
|
||
frame_saved_regs_zalloc (fi);
|
||
|
||
/* If there were any saved registers, figure out parent's stack
|
||
pointer. */
|
||
/* The following is true only if the frame doesn't have a call to
|
||
alloca(), FIXME. */
|
||
|
||
if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
|
||
&& fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
|
||
frame_addr = 0;
|
||
else if (fi->prev && fi->prev->frame)
|
||
frame_addr = fi->prev->frame;
|
||
else
|
||
frame_addr = read_memory_integer (fi->frame, 4);
|
||
|
||
/* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
|
||
All fpr's from saved_fpr to fp31 are saved. */
|
||
|
||
if (fdatap->saved_fpr >= 0)
|
||
{
|
||
int i;
|
||
int fpr_offset = frame_addr + fdatap->fpr_offset;
|
||
for (i = fdatap->saved_fpr; i < 32; i++)
|
||
{
|
||
fi->saved_regs[FP0_REGNUM + i] = fpr_offset;
|
||
fpr_offset += 8;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
|
||
All gpr's from saved_gpr to gpr31 are saved. */
|
||
|
||
if (fdatap->saved_gpr >= 0)
|
||
{
|
||
int i;
|
||
int gpr_offset = frame_addr + fdatap->gpr_offset;
|
||
for (i = fdatap->saved_gpr; i < 32; i++)
|
||
{
|
||
fi->saved_regs[i] = gpr_offset;
|
||
gpr_offset += 4;
|
||
}
|
||
}
|
||
|
||
/* If != 0, fdatap->cr_offset is the offset from the frame that holds
|
||
the CR. */
|
||
if (fdatap->cr_offset != 0)
|
||
fi->saved_regs[CR_REGNUM] = frame_addr + fdatap->cr_offset;
|
||
|
||
/* If != 0, fdatap->lr_offset is the offset from the frame that holds
|
||
the LR. */
|
||
if (fdatap->lr_offset != 0)
|
||
fi->saved_regs[LR_REGNUM] = frame_addr + fdatap->lr_offset;
|
||
}
|
||
|
||
/* Return the address of a frame. This is the inital %sp value when the frame
|
||
was first allocated. For functions calling alloca(), it might be saved in
|
||
an alloca register. */
|
||
|
||
static CORE_ADDR
|
||
frame_initial_stack_address (fi)
|
||
struct frame_info *fi;
|
||
{
|
||
CORE_ADDR tmpaddr;
|
||
struct rs6000_framedata fdata;
|
||
struct frame_info *callee_fi;
|
||
|
||
/* if the initial stack pointer (frame address) of this frame is known,
|
||
just return it. */
|
||
|
||
if (fi->extra_info->initial_sp)
|
||
return fi->extra_info->initial_sp;
|
||
|
||
/* find out if this function is using an alloca register.. */
|
||
|
||
(void) skip_prologue (get_pc_function_start (fi->pc), &fdata);
|
||
|
||
/* if saved registers of this frame are not known yet, read and cache them. */
|
||
|
||
if (!fi->saved_regs)
|
||
frame_get_saved_regs (fi, &fdata);
|
||
|
||
/* If no alloca register used, then fi->frame is the value of the %sp for
|
||
this frame, and it is good enough. */
|
||
|
||
if (fdata.alloca_reg < 0)
|
||
{
|
||
fi->extra_info->initial_sp = fi->frame;
|
||
return fi->extra_info->initial_sp;
|
||
}
|
||
|
||
/* This function has an alloca register. If this is the top-most frame
|
||
(with the lowest address), the value in alloca register is good. */
|
||
|
||
if (!fi->next)
|
||
return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
||
|
||
/* Otherwise, this is a caller frame. Callee has usually already saved
|
||
registers, but there are exceptions (such as when the callee
|
||
has no parameters). Find the address in which caller's alloca
|
||
register is saved. */
|
||
|
||
for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
|
||
{
|
||
|
||
if (!callee_fi->saved_regs)
|
||
frame_get_saved_regs (callee_fi, NULL);
|
||
|
||
/* this is the address in which alloca register is saved. */
|
||
|
||
tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
|
||
if (tmpaddr)
|
||
{
|
||
fi->extra_info->initial_sp = read_memory_integer (tmpaddr, 4);
|
||
return fi->extra_info->initial_sp;
|
||
}
|
||
|
||
/* Go look into deeper levels of the frame chain to see if any one of
|
||
the callees has saved alloca register. */
|
||
}
|
||
|
||
/* If alloca register was not saved, by the callee (or any of its callees)
|
||
then the value in the register is still good. */
|
||
|
||
fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
||
return fi->extra_info->initial_sp;
|
||
}
|
||
|
||
CORE_ADDR
|
||
rs6000_frame_chain (thisframe)
|
||
struct frame_info *thisframe;
|
||
{
|
||
CORE_ADDR fp;
|
||
|
||
if (USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
|
||
return thisframe->frame; /* dummy frame same as caller's frame */
|
||
}
|
||
|
||
if (inside_entry_file (thisframe->pc) ||
|
||
thisframe->pc == entry_point_address ())
|
||
return 0;
|
||
|
||
if (thisframe->signal_handler_caller)
|
||
fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
|
||
else if (thisframe->next != NULL
|
||
&& thisframe->next->signal_handler_caller
|
||
&& FRAMELESS_FUNCTION_INVOCATION (thisframe))
|
||
/* A frameless function interrupted by a signal did not change the
|
||
frame pointer. */
|
||
fp = FRAME_FP (thisframe);
|
||
else
|
||
fp = read_memory_integer ((thisframe)->frame, 4);
|
||
|
||
if (USE_GENERIC_DUMMY_FRAMES)
|
||
{
|
||
CORE_ADDR fpp, lr;
|
||
|
||
lr = read_register (LR_REGNUM);
|
||
if (lr == entry_point_address ())
|
||
if (fp != 0 && (fpp = read_memory_integer (fp, 4)) != 0)
|
||
if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
|
||
return fpp;
|
||
}
|
||
|
||
return fp;
|
||
}
|
||
|
||
/* Return nonzero if ADDR (a function pointer) is in the data space and
|
||
is therefore a special function pointer. */
|
||
|
||
int
|
||
is_magic_function_pointer (addr)
|
||
CORE_ADDR addr;
|
||
{
|
||
struct obj_section *s;
|
||
|
||
s = find_pc_section (addr);
|
||
if (s && s->the_bfd_section->flags & SEC_CODE)
|
||
return 0;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
#ifdef GDB_TARGET_POWERPC
|
||
int
|
||
gdb_print_insn_powerpc (memaddr, info)
|
||
bfd_vma memaddr;
|
||
disassemble_info *info;
|
||
{
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
return print_insn_big_powerpc (memaddr, info);
|
||
else
|
||
return print_insn_little_powerpc (memaddr, info);
|
||
}
|
||
#endif
|
||
|
||
|
||
/* Handling the various PowerPC/RS6000 variants. */
|
||
|
||
|
||
/* The arrays here called register_names_MUMBLE hold names that
|
||
the rs6000_register_name function returns.
|
||
|
||
For each family of PPC variants, I've tried to isolate out the
|
||
common registers and put them up front, so that as long as you get
|
||
the general family right, GDB will correctly identify the registers
|
||
common to that family. The common register sets are:
|
||
|
||
For the 60x family: hid0 hid1 iabr dabr pir
|
||
|
||
For the 505 and 860 family: eie eid nri
|
||
|
||
For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
|
||
tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
|
||
pbu1 pbl2 pbu2
|
||
|
||
Most of these register groups aren't anything formal. I arrived at
|
||
them by looking at the registers that occurred in more than one
|
||
processor. */
|
||
|
||
/* UISA register names common across all architectures, including POWER. */
|
||
|
||
#define COMMON_UISA_REG_NAMES \
|
||
/* 0 */ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||
/* 8 */ "r8", "r9", "r10","r11","r12","r13","r14","r15", \
|
||
/* 16 */ "r16","r17","r18","r19","r20","r21","r22","r23", \
|
||
/* 24 */ "r24","r25","r26","r27","r28","r29","r30","r31", \
|
||
/* 32 */ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
||
/* 40 */ "f8", "f9", "f10","f11","f12","f13","f14","f15", \
|
||
/* 48 */ "f16","f17","f18","f19","f20","f21","f22","f23", \
|
||
/* 56 */ "f24","f25","f26","f27","f28","f29","f30","f31", \
|
||
/* 64 */ "pc", "ps"
|
||
|
||
/* UISA-level SPR names for PowerPC. */
|
||
#define PPC_UISA_SPR_NAMES \
|
||
/* 66 */ "cr", "lr", "ctr", "xer", ""
|
||
|
||
/* Segment register names, for PowerPC. */
|
||
#define PPC_SEGMENT_REG_NAMES \
|
||
/* 71 */ "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", \
|
||
/* 79 */ "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
||
|
||
/* OEA SPR names for 32-bit PowerPC implementations.
|
||
The blank space is for "asr", which is only present on 64-bit
|
||
implementations. */
|
||
#define PPC_32_OEA_SPR_NAMES \
|
||
/* 87 */ "pvr", \
|
||
/* 88 */ "ibat0u", "ibat0l", "ibat1u", "ibat1l", \
|
||
/* 92 */ "ibat2u", "ibat2l", "ibat3u", "ibat3l", \
|
||
/* 96 */ "dbat0u", "dbat0l", "dbat1u", "dbat1l", \
|
||
/* 100 */ "dbat2u", "dbat2l", "dbat3u", "dbat3l", \
|
||
/* 104 */ "sdr1", "", "dar", "dsisr", "sprg0", "sprg1", "sprg2", "sprg3",\
|
||
/* 112 */ "srr0", "srr1", "tbl", "tbu", "dec", "dabr", "ear"
|
||
|
||
/* For the RS6000, we only cover user-level SPR's. */
|
||
char *register_names_rs6000[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
/* 66 */ "cnd", "lr", "cnt", "xer", "mq"
|
||
};
|
||
|
||
/* a UISA-only view of the PowerPC. */
|
||
char *register_names_uisa[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES
|
||
};
|
||
|
||
char *register_names_403[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
|
||
/* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
|
||
/* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2"
|
||
};
|
||
|
||
char *register_names_403GC[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
|
||
/* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
|
||
/* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2",
|
||
/* 143 */ "zpr", "pid", "sgr", "dcwr", "tbhu", "tblu"
|
||
};
|
||
|
||
char *register_names_505[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "eie", "eid", "nri"
|
||
};
|
||
|
||
char *register_names_860[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "eie", "eid", "nri", "cmpa", "cmpb", "cmpc", "cmpd", "icr",
|
||
/* 127 */ "der", "counta", "countb", "cmpe", "cmpf", "cmpg", "cmph",
|
||
/* 134 */ "lctrl1", "lctrl2", "ictrl", "bar", "ic_cst", "ic_adr", "ic_dat",
|
||
/* 141 */ "dc_cst", "dc_adr", "dc_dat", "dpdr", "dpir", "immr", "mi_ctr",
|
||
/* 148 */ "mi_ap", "mi_epn", "mi_twc", "mi_rpn", "md_ctr", "m_casid",
|
||
/* 154 */ "md_ap", "md_epn", "md_twb", "md_twc", "md_rpn", "m_tw",
|
||
/* 160 */ "mi_dbcam", "mi_dbram0", "mi_dbram1", "md_dbcam", "md_dbram0",
|
||
/* 165 */ "md_dbram1"
|
||
};
|
||
|
||
/* Note that the 601 has different register numbers for reading and
|
||
writing RTCU and RTCL. However, how one reads and writes a
|
||
register is the stub's problem. */
|
||
char *register_names_601[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mq", "rtcu",
|
||
/* 126 */ "rtcl"
|
||
};
|
||
|
||
char *register_names_602[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "hid0", "hid1", "iabr", "", "", "tcr", "ibr", "esassr", "sebr",
|
||
/* 128 */ "ser", "sp", "lt"
|
||
};
|
||
|
||
char *register_names_603[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "hid0", "hid1", "iabr", "", "", "dmiss", "dcmp", "hash1",
|
||
/* 127 */ "hash2", "imiss", "icmp", "rpa"
|
||
};
|
||
|
||
char *register_names_604[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mmcr0", "pmc1", "pmc2",
|
||
/* 127 */ "sia", "sda"
|
||
};
|
||
|
||
char *register_names_750[] =
|
||
{
|
||
COMMON_UISA_REG_NAMES,
|
||
PPC_UISA_SPR_NAMES,
|
||
PPC_SEGMENT_REG_NAMES,
|
||
PPC_32_OEA_SPR_NAMES,
|
||
/* 119 */ "hid0", "hid1", "iabr", "dabr", "", "ummcr0", "upmc1", "upmc2",
|
||
/* 127 */ "usia", "ummcr1", "upmc3", "upmc4", "mmcr0", "pmc1", "pmc2",
|
||
/* 134 */ "sia", "mmcr1", "pmc3", "pmc4", "l2cr", "ictc", "thrm1", "thrm2",
|
||
/* 142 */ "thrm3"
|
||
};
|
||
|
||
|
||
/* Information about a particular processor variant. */
|
||
struct variant
|
||
{
|
||
/* Name of this variant. */
|
||
char *name;
|
||
|
||
/* English description of the variant. */
|
||
char *description;
|
||
|
||
/* Table of register names; registers[R] is the name of the register
|
||
number R. */
|
||
int num_registers;
|
||
char **registers;
|
||
};
|
||
|
||
#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
|
||
|
||
|
||
/* Information in this table comes from the following web sites:
|
||
IBM: http://www.chips.ibm.com:80/products/embedded/
|
||
Motorola: http://www.mot.com/SPS/PowerPC/
|
||
|
||
I'm sure I've got some of the variant descriptions not quite right.
|
||
Please report any inaccuracies you find to GDB's maintainer.
|
||
|
||
If you add entries to this table, please be sure to allow the new
|
||
value as an argument to the --with-cpu flag, in configure.in. */
|
||
|
||
static struct variant
|
||
variants[] =
|
||
{
|
||
{"ppc-uisa", "PowerPC UISA - a PPC processor as viewed by user-level code",
|
||
num_registers (register_names_uisa), register_names_uisa},
|
||
{"rs6000", "IBM RS6000 (\"POWER\") architecture, user-level view",
|
||
num_registers (register_names_rs6000), register_names_rs6000},
|
||
{"403", "IBM PowerPC 403",
|
||
num_registers (register_names_403), register_names_403},
|
||
{"403GC", "IBM PowerPC 403GC",
|
||
num_registers (register_names_403GC), register_names_403GC},
|
||
{"505", "Motorola PowerPC 505",
|
||
num_registers (register_names_505), register_names_505},
|
||
{"860", "Motorola PowerPC 860 or 850",
|
||
num_registers (register_names_860), register_names_860},
|
||
{"601", "Motorola PowerPC 601",
|
||
num_registers (register_names_601), register_names_601},
|
||
{"602", "Motorola PowerPC 602",
|
||
num_registers (register_names_602), register_names_602},
|
||
{"603", "Motorola/IBM PowerPC 603 or 603e",
|
||
num_registers (register_names_603), register_names_603},
|
||
{"604", "Motorola PowerPC 604 or 604e",
|
||
num_registers (register_names_604), register_names_604},
|
||
{"750", "Motorola/IBM PowerPC 750 or 740",
|
||
num_registers (register_names_750), register_names_750},
|
||
{0, 0, 0, 0}
|
||
};
|
||
|
||
|
||
static struct variant *current_variant;
|
||
|
||
char *
|
||
rs6000_register_name (int i)
|
||
{
|
||
if (i < 0 || i >= NUM_REGS)
|
||
error ("GDB bug: rs6000-tdep.c (rs6000_register_name): strange register number");
|
||
|
||
return ((i < current_variant->num_registers)
|
||
? current_variant->registers[i]
|
||
: "");
|
||
}
|
||
|
||
|
||
static void
|
||
install_variant (struct variant *v)
|
||
{
|
||
current_variant = v;
|
||
}
|
||
|
||
|
||
/* Look up the variant named NAME in the `variants' table. Return a
|
||
pointer to the struct variant, or null if we couldn't find it. */
|
||
static struct variant *
|
||
find_variant_by_name (char *name)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; variants[i].name; i++)
|
||
if (!strcmp (name, variants[i].name))
|
||
return &variants[i];
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Install the PPC/RS6000 variant named NAME in the `variants' table.
|
||
Return zero if we installed it successfully, or a non-zero value if
|
||
we couldn't do it.
|
||
|
||
This might be useful to code outside this file, which doesn't want
|
||
to depend on the exact indices of the entries in the `variants'
|
||
table. Just make it non-static if you want that. */
|
||
static int
|
||
install_variant_by_name (char *name)
|
||
{
|
||
struct variant *v = find_variant_by_name (name);
|
||
|
||
if (v)
|
||
{
|
||
install_variant (v);
|
||
return 0;
|
||
}
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
|
||
static void
|
||
list_variants ()
|
||
{
|
||
int i;
|
||
|
||
printf_filtered ("GDB knows about the following PowerPC and RS6000 variants:\n");
|
||
|
||
for (i = 0; variants[i].name; i++)
|
||
printf_filtered (" %-8s %s\n",
|
||
variants[i].name, variants[i].description);
|
||
}
|
||
|
||
|
||
static void
|
||
show_current_variant ()
|
||
{
|
||
printf_filtered ("PowerPC / RS6000 processor variant is set to `%s'.\n",
|
||
current_variant->name);
|
||
}
|
||
|
||
|
||
static void
|
||
set_processor (char *arg, int from_tty)
|
||
{
|
||
if (!arg || arg[0] == '\0')
|
||
{
|
||
list_variants ();
|
||
return;
|
||
}
|
||
|
||
if (install_variant_by_name (arg))
|
||
{
|
||
error_begin ();
|
||
fprintf_filtered (gdb_stderr,
|
||
"`%s' is not a recognized PowerPC / RS6000 variant name.\n\n", arg);
|
||
list_variants ();
|
||
return_to_top_level (RETURN_ERROR);
|
||
}
|
||
|
||
show_current_variant ();
|
||
}
|
||
|
||
static void
|
||
show_processor (char *arg, int from_tty)
|
||
{
|
||
show_current_variant ();
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Initialization code. */
|
||
|
||
void
|
||
_initialize_rs6000_tdep ()
|
||
{
|
||
/* FIXME, this should not be decided via ifdef. */
|
||
#ifdef GDB_TARGET_POWERPC
|
||
tm_print_insn = gdb_print_insn_powerpc;
|
||
#else
|
||
tm_print_insn = print_insn_rs6000;
|
||
#endif
|
||
|
||
/* I don't think we should use the set/show command arrangement
|
||
here, because the way that's implemented makes it hard to do the
|
||
error checking we want in a reasonable way. So we just add them
|
||
as two separate commands. */
|
||
add_cmd ("processor", class_support, set_processor,
|
||
"`set processor NAME' sets the PowerPC/RS6000 variant to NAME.\n\
|
||
If you set this, GDB will know about the special-purpose registers that are\n\
|
||
available on the given variant.\n\
|
||
Type `set processor' alone for a list of recognized variant names.",
|
||
&setlist);
|
||
add_cmd ("processor", class_support, show_processor,
|
||
"Show the variant of the PowerPC or RS6000 processor in use.\n\
|
||
Use `set processor' to change this.",
|
||
&showlist);
|
||
|
||
/* Set the current PPC processor variant. */
|
||
{
|
||
int status = 1;
|
||
|
||
#ifdef TARGET_CPU_DEFAULT
|
||
status = install_variant_by_name (TARGET_CPU_DEFAULT);
|
||
#endif
|
||
|
||
if (status)
|
||
{
|
||
#ifdef GDB_TARGET_POWERPC
|
||
install_variant_by_name ("ppc-uisa");
|
||
#else
|
||
install_variant_by_name ("rs6000");
|
||
#endif
|
||
}
|
||
}
|
||
}
|