binutils-gdb/gdb/m32r-linux-tdep.c
Joel Brobecker a9762ec78a Switch the license of all .c files to GPLv3.
Switch the license of all .h files to GPLv3.
        Switch the license of all .cc files to GPLv3.
2007-08-23 18:08:50 +00:00

437 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for GNU/Linux m32r.
Copyright (C) 2004, 2007 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbcore.h"
#include "frame.h"
#include "value.h"
#include "regcache.h"
#include "inferior.h"
#include "osabi.h"
#include "reggroups.h"
#include "regset.h"
#include "gdb_string.h"
#include "glibc-tdep.h"
#include "solib-svr4.h"
#include "symtab.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "m32r-tdep.h"
/* Recognizing signal handler frames. */
/* GNU/Linux has two flavors of signals. Normal signal handlers, and
"realtime" (RT) signals. The RT signals can provide additional
information to the signal handler if the SA_SIGINFO flag is set
when establishing a signal handler using `sigaction'. It is not
unlikely that future versions of GNU/Linux will support SA_SIGINFO
for normal signals too. */
/* When the m32r Linux kernel calls a signal handler and the
SA_RESTORER flag isn't set, the return address points to a bit of
code on the stack. This function returns whether the PC appears to
be within this bit of code.
The instruction sequence for normal signals is
ldi r7, #__NR_sigreturn
trap #2
or 0x67 0x77 0x10 0xf2.
Checking for the code sequence should be somewhat reliable, because
the effect is to call the system call sigreturn. This is unlikely
to occur anywhere other than in a signal trampoline.
It kind of sucks that we have to read memory from the process in
order to identify a signal trampoline, but there doesn't seem to be
any other way. Therefore we only do the memory reads if no
function name could be identified, which should be the case since
the code is on the stack.
Detection of signal trampolines for handlers that set the
SA_RESTORER flag is in general not possible. Unfortunately this is
what the GNU C Library has been doing for quite some time now.
However, as of version 2.1.2, the GNU C Library uses signal
trampolines (named __restore and __restore_rt) that are identical
to the ones used by the kernel. Therefore, these trampolines are
supported too. */
static const gdb_byte linux_sigtramp_code[] = {
0x67, 0x77, 0x10, 0xf2,
};
/* If PC is in a sigtramp routine, return the address of the start of
the routine. Otherwise, return 0. */
static CORE_ADDR
m32r_linux_sigtramp_start (CORE_ADDR pc, struct frame_info *next_frame)
{
gdb_byte buf[4];
/* We only recognize a signal trampoline if PC is at the start of
one of the instructions. We optimize for finding the PC at the
start of the instruction sequence, as will be the case when the
trampoline is not the first frame on the stack. We assume that
in the case where the PC is not at the start of the instruction
sequence, there will be a few trailing readable bytes on the
stack. */
if (pc % 2 != 0)
{
if (!safe_frame_unwind_memory (next_frame, pc, buf, 2))
return 0;
if (memcmp (buf, linux_sigtramp_code, 2) == 0)
pc -= 2;
else
return 0;
}
if (!safe_frame_unwind_memory (next_frame, pc, buf, 4))
return 0;
if (memcmp (buf, linux_sigtramp_code, 4) != 0)
return 0;
return pc;
}
/* This function does the same for RT signals. Here the instruction
sequence is
ldi r7, #__NR_rt_sigreturn
trap #2
or 0x97 0xf0 0x00 0xad 0x10 0xf2 0xf0 0x00.
The effect is to call the system call rt_sigreturn. */
static const gdb_byte linux_rt_sigtramp_code[] = {
0x97, 0xf0, 0x00, 0xad, 0x10, 0xf2, 0xf0, 0x00,
};
/* If PC is in a RT sigtramp routine, return the address of the start
of the routine. Otherwise, return 0. */
static CORE_ADDR
m32r_linux_rt_sigtramp_start (CORE_ADDR pc, struct frame_info *next_frame)
{
gdb_byte buf[4];
/* We only recognize a signal trampoline if PC is at the start of
one of the instructions. We optimize for finding the PC at the
start of the instruction sequence, as will be the case when the
trampoline is not the first frame on the stack. We assume that
in the case where the PC is not at the start of the instruction
sequence, there will be a few trailing readable bytes on the
stack. */
if (pc % 2 != 0)
return 0;
if (!safe_frame_unwind_memory (next_frame, pc, buf, 4))
return 0;
if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
{
if (!safe_frame_unwind_memory (next_frame, pc + 4, buf, 4))
return 0;
if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
return pc;
}
else if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
{
if (!safe_frame_unwind_memory (next_frame, pc - 4, buf, 4))
return 0;
if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
return pc - 4;
}
return 0;
}
static int
m32r_linux_pc_in_sigtramp (CORE_ADDR pc, char *name,
struct frame_info *next_frame)
{
/* If we have NAME, we can optimize the search. The trampolines are
named __restore and __restore_rt. However, they aren't dynamically
exported from the shared C library, so the trampoline may appear to
be part of the preceding function. This should always be sigaction,
__sigaction, or __libc_sigaction (all aliases to the same function). */
if (name == NULL || strstr (name, "sigaction") != NULL)
return (m32r_linux_sigtramp_start (pc, next_frame) != 0
|| m32r_linux_rt_sigtramp_start (pc, next_frame) != 0);
return (strcmp ("__restore", name) == 0
|| strcmp ("__restore_rt", name) == 0);
}
/* From <asm/sigcontext.h>. */
static int m32r_linux_sc_reg_offset[] = {
4 * 4, /* r0 */
5 * 4, /* r1 */
6 * 4, /* r2 */
7 * 4, /* r3 */
0 * 4, /* r4 */
1 * 4, /* r5 */
2 * 4, /* r6 */
8 * 4, /* r7 */
9 * 4, /* r8 */
10 * 4, /* r9 */
11 * 4, /* r10 */
12 * 4, /* r11 */
13 * 4, /* r12 */
21 * 4, /* fp */
22 * 4, /* lr */
-1 * 4, /* sp */
16 * 4, /* psw */
-1 * 4, /* cbr */
23 * 4, /* spi */
20 * 4, /* spu */
19 * 4, /* bpc */
17 * 4, /* pc */
15 * 4, /* accl */
14 * 4 /* acch */
};
struct m32r_frame_cache
{
CORE_ADDR base, pc;
struct trad_frame_saved_reg *saved_regs;
};
static struct m32r_frame_cache *
m32r_linux_sigtramp_frame_cache (struct frame_info *next_frame,
void **this_cache)
{
struct m32r_frame_cache *cache;
CORE_ADDR sigcontext_addr, addr;
int regnum;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct m32r_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
cache->base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
sigcontext_addr = cache->base + 4;
cache->pc = frame_pc_unwind (next_frame);
addr = m32r_linux_sigtramp_start (cache->pc, next_frame);
if (addr == 0)
{
/* If this is a RT signal trampoline, adjust SIGCONTEXT_ADDR
accordingly. */
addr = m32r_linux_rt_sigtramp_start (cache->pc, next_frame);
if (addr)
sigcontext_addr += 128;
else
addr = frame_func_unwind (next_frame, NORMAL_FRAME);
}
cache->pc = addr;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
for (regnum = 0; regnum < sizeof (m32r_linux_sc_reg_offset) / 4; regnum++)
{
if (m32r_linux_sc_reg_offset[regnum] >= 0)
cache->saved_regs[regnum].addr =
sigcontext_addr + m32r_linux_sc_reg_offset[regnum];
}
return cache;
}
static void
m32r_linux_sigtramp_frame_this_id (struct frame_info *next_frame,
void **this_cache,
struct frame_id *this_id)
{
struct m32r_frame_cache *cache =
m32r_linux_sigtramp_frame_cache (next_frame, this_cache);
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static void
m32r_linux_sigtramp_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp,
CORE_ADDR *addrp,
int *realnump, gdb_byte *valuep)
{
struct m32r_frame_cache *cache =
m32r_linux_sigtramp_frame_cache (next_frame, this_cache);
trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind m32r_linux_sigtramp_frame_unwind = {
SIGTRAMP_FRAME,
m32r_linux_sigtramp_frame_this_id,
m32r_linux_sigtramp_frame_prev_register
};
static const struct frame_unwind *
m32r_linux_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
if (m32r_linux_pc_in_sigtramp (pc, name, next_frame))
return &m32r_linux_sigtramp_frame_unwind;
return NULL;
}
/* Mapping between the registers in `struct pt_regs'
format and GDB's register array layout. */
static int m32r_pt_regs_offset[] = {
4 * 4, /* r0 */
4 * 5, /* r1 */
4 * 6, /* r2 */
4 * 7, /* r3 */
4 * 0, /* r4 */
4 * 1, /* r5 */
4 * 2, /* r6 */
4 * 8, /* r7 */
4 * 9, /* r8 */
4 * 10, /* r9 */
4 * 11, /* r10 */
4 * 12, /* r11 */
4 * 13, /* r12 */
4 * 24, /* fp */
4 * 25, /* lr */
4 * 23, /* sp */
4 * 19, /* psw */
4 * 19, /* cbr */
4 * 26, /* spi */
4 * 23, /* spu */
4 * 22, /* bpc */
4 * 20, /* pc */
4 * 16, /* accl */
4 * 15 /* acch */
};
#define PSW_OFFSET (4 * 19)
#define BBPSW_OFFSET (4 * 21)
#define SPU_OFFSET (4 * 23)
#define SPI_OFFSET (4 * 26)
static void
m32r_linux_supply_gregset (const struct regset *regset,
struct regcache *regcache, int regnum,
const void *gregs, size_t size)
{
const char *regs = gregs;
unsigned long psw, bbpsw;
int i;
psw = *((unsigned long *) (regs + PSW_OFFSET));
bbpsw = *((unsigned long *) (regs + BBPSW_OFFSET));
for (i = 0; i < sizeof (m32r_pt_regs_offset) / 4; i++)
{
if (regnum != -1 && regnum != i)
continue;
switch (i)
{
case PSW_REGNUM:
*((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
((0x00c1 & bbpsw) << 8) | ((0xc100 & psw) >> 8);
break;
case CBR_REGNUM:
*((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
((psw >> 8) & 1);
break;
case M32R_SP_REGNUM:
if (psw & 0x8000)
*((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
*((unsigned long *) (regs + SPU_OFFSET));
else
*((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
*((unsigned long *) (regs + SPI_OFFSET));
break;
}
regcache_raw_supply (regcache, i,
regs + m32r_pt_regs_offset[i]);
}
}
static struct regset m32r_linux_gregset = {
NULL, m32r_linux_supply_gregset
};
static const struct regset *
m32r_linux_regset_from_core_section (struct gdbarch *core_arch,
const char *sect_name, size_t sect_size)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
if (strcmp (sect_name, ".reg") == 0)
return &m32r_linux_gregset;
return NULL;
}
static void
m32r_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* Since EVB register is not available for native debug, we reduce
the number of registers. */
set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS - 1);
frame_unwind_append_sniffer (gdbarch, m32r_linux_sigtramp_frame_sniffer);
/* GNU/Linux uses SVR4-style shared libraries. */
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
/* Core file support. */
set_gdbarch_regset_from_core_section
(gdbarch, m32r_linux_regset_from_core_section);
/* Enable TLS support. */
set_gdbarch_fetch_tls_load_module_address (gdbarch,
svr4_fetch_objfile_link_map);
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern void _initialize_m32r_linux_tdep (void);
void
_initialize_m32r_linux_tdep (void)
{
gdbarch_register_osabi (bfd_arch_m32r, 0, GDB_OSABI_LINUX,
m32r_linux_init_abi);
}