mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
fe4e3eb861
instead of system-specific define's like _WIN32 and __MSDOS__. Use IS_DIR_SEPARATOR and IS_ABSOLUTE_PATH instead of SLASH_P and ROOTED_P. (top-level): #include "filenames.h". * solib.c (solib_open): Use IS_DIR_SEPARATOR and IS_ABSOLUTE_PATH instead of SLASH_CHAR, ROOTED_P and SLASH_P. (top-level): #include "filenames.h". * defs.h (SLASH_P, SLASH_CHAR, ROOTED_P): Remove definitions. (SLASH_STRING): Define only for _WIN32. * completer.c: Use HAVE_DOS_BASED_FILE_SYSTEM instead of __MSDOS_. * cli/cli-cmds.c (cd_command): Use IS_DIR_SEPARATOR and IS_ABSOLUTE_PATH instead of SLASH_P and ROOTED_P. Replace system-specific ifdefs with HAVE_DOS_BASED_FILE_SYSTEM. (top-level): #include "filenames.h".
868 lines
24 KiB
C
868 lines
24 KiB
C
/* Handle shared libraries for GDB, the GNU Debugger.
|
|
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
|
2000, 2001
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <fcntl.h>
|
|
#include "gdb_string.h"
|
|
#include "symtab.h"
|
|
#include "bfd.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "gdbcore.h"
|
|
#include "command.h"
|
|
#include "target.h"
|
|
#include "frame.h"
|
|
#include "gdb_regex.h"
|
|
#include "inferior.h"
|
|
#include "environ.h"
|
|
#include "language.h"
|
|
#include "gdbcmd.h"
|
|
#include "completer.h"
|
|
#include "filenames.h" /* for DOSish file names */
|
|
|
|
#include "solist.h"
|
|
|
|
/* external data declarations */
|
|
|
|
/* FIXME: gdbarch needs to control this variable */
|
|
struct target_so_ops *current_target_so_ops;
|
|
|
|
/* local data declarations */
|
|
|
|
static struct so_list *so_list_head; /* List of known shared objects */
|
|
|
|
static int solib_cleanup_queued = 0; /* make_run_cleanup called */
|
|
|
|
/* Local function prototypes */
|
|
|
|
static void do_clear_solib (PTR);
|
|
|
|
/* If non-zero, this is a prefix that will be added to the front of the name
|
|
shared libraries with an absolute filename for loading. */
|
|
static char *solib_absolute_prefix = NULL;
|
|
|
|
/* If non-empty, this is a search path for loading non-absolute shared library
|
|
symbol files. This takes precedence over the environment variables PATH
|
|
and LD_LIBRARY_PATH. */
|
|
static char *solib_search_path = NULL;
|
|
|
|
/*
|
|
|
|
GLOBAL FUNCTION
|
|
|
|
solib_open -- Find a shared library file and open it.
|
|
|
|
SYNOPSIS
|
|
|
|
int solib_open (char *in_patname, char **found_pathname);
|
|
|
|
DESCRIPTION
|
|
|
|
Global variable SOLIB_ABSOLUTE_PREFIX is used as a prefix directory
|
|
to search for shared libraries if they have an absolute path.
|
|
|
|
Global variable SOLIB_SEARCH_PATH is used as a prefix directory
|
|
(or set of directories, as in LD_LIBRARY_PATH) to search for all
|
|
shared libraries if not found in SOLIB_ABSOLUTE_PREFIX.
|
|
|
|
Search order:
|
|
* If path is absolute, look in SOLIB_ABSOLUTE_PREFIX.
|
|
* If path is absolute or relative, look for it literally (unmodified).
|
|
* Look in SOLIB_SEARCH_PATH.
|
|
* Look in inferior's $PATH.
|
|
* Look in inferior's $LD_LIBRARY_PATH.
|
|
|
|
RETURNS
|
|
|
|
file handle for opened solib, or -1 for failure. */
|
|
|
|
int
|
|
solib_open (char *in_pathname, char **found_pathname)
|
|
{
|
|
int found_file = -1;
|
|
char *temp_pathname = NULL;
|
|
char *p = in_pathname;
|
|
|
|
while (*p && !IS_DIR_SEPARATOR (*p))
|
|
p++;
|
|
|
|
if (*p)
|
|
{
|
|
if (! IS_ABSOLUTE_PATH (in_pathname) || solib_absolute_prefix == NULL)
|
|
temp_pathname = in_pathname;
|
|
else
|
|
{
|
|
int prefix_len = strlen (solib_absolute_prefix);
|
|
|
|
/* Remove trailing slashes from absolute prefix. */
|
|
while (prefix_len > 0
|
|
&& IS_DIR_SEPARATOR (solib_absolute_prefix[prefix_len - 1]))
|
|
prefix_len--;
|
|
|
|
/* Cat the prefixed pathname together. */
|
|
temp_pathname = alloca (prefix_len + strlen (in_pathname) + 1);
|
|
strncpy (temp_pathname, solib_absolute_prefix, prefix_len);
|
|
temp_pathname[prefix_len] = '\0';
|
|
strcat (temp_pathname, in_pathname);
|
|
}
|
|
|
|
/* Now see if we can open it. */
|
|
found_file = open (temp_pathname, O_RDONLY, 0);
|
|
}
|
|
|
|
/* If not found, next search the solib_search_path (if any). */
|
|
if (found_file < 0 && solib_search_path != NULL)
|
|
found_file = openp (solib_search_path,
|
|
1, in_pathname, O_RDONLY, 0, &temp_pathname);
|
|
|
|
/* If not found, next search the inferior's $PATH environment variable. */
|
|
if (found_file < 0 && solib_search_path != NULL)
|
|
found_file = openp (get_in_environ (inferior_environ, "PATH"),
|
|
1, in_pathname, O_RDONLY, 0, &temp_pathname);
|
|
|
|
/* If not found, next search the inferior's $LD_LIBRARY_PATH
|
|
environment variable. */
|
|
if (found_file < 0 && solib_search_path != NULL)
|
|
found_file = openp (get_in_environ (inferior_environ, "LD_LIBRARY_PATH"),
|
|
1, in_pathname, O_RDONLY, 0, &temp_pathname);
|
|
|
|
/* Done. If not found, tough luck. Return found_file and
|
|
(optionally) found_pathname. */
|
|
if (found_pathname != NULL && temp_pathname != NULL)
|
|
*found_pathname = xstrdup (temp_pathname);
|
|
return found_file;
|
|
}
|
|
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
solib_map_sections -- open bfd and build sections for shared lib
|
|
|
|
SYNOPSIS
|
|
|
|
static int solib_map_sections (struct so_list *so)
|
|
|
|
DESCRIPTION
|
|
|
|
Given a pointer to one of the shared objects in our list
|
|
of mapped objects, use the recorded name to open a bfd
|
|
descriptor for the object, build a section table, and then
|
|
relocate all the section addresses by the base address at
|
|
which the shared object was mapped.
|
|
|
|
FIXMES
|
|
|
|
In most (all?) cases the shared object file name recorded in the
|
|
dynamic linkage tables will be a fully qualified pathname. For
|
|
cases where it isn't, do we really mimic the systems search
|
|
mechanism correctly in the below code (particularly the tilde
|
|
expansion stuff?).
|
|
*/
|
|
|
|
static int
|
|
solib_map_sections (PTR arg)
|
|
{
|
|
struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
|
|
char *filename;
|
|
char *scratch_pathname;
|
|
int scratch_chan;
|
|
struct section_table *p;
|
|
struct cleanup *old_chain;
|
|
bfd *abfd;
|
|
|
|
filename = tilde_expand (so->so_name);
|
|
|
|
old_chain = make_cleanup (xfree, filename);
|
|
scratch_chan = solib_open (filename, &scratch_pathname);
|
|
|
|
if (scratch_chan < 0)
|
|
{
|
|
perror_with_name (filename);
|
|
}
|
|
|
|
/* Leave scratch_pathname allocated. abfd->name will point to it. */
|
|
abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
|
|
if (!abfd)
|
|
{
|
|
close (scratch_chan);
|
|
error ("Could not open `%s' as an executable file: %s",
|
|
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
|
}
|
|
|
|
/* Leave bfd open, core_xfer_memory and "info files" need it. */
|
|
so->abfd = abfd;
|
|
abfd->cacheable = true;
|
|
|
|
/* copy full path name into so_name, so that later symbol_file_add
|
|
can find it */
|
|
if (strlen (scratch_pathname) >= SO_NAME_MAX_PATH_SIZE)
|
|
error ("Full path name length of shared library exceeds SO_NAME_MAX_PATH_SIZE in so_list structure.");
|
|
strcpy (so->so_name, scratch_pathname);
|
|
|
|
if (!bfd_check_format (abfd, bfd_object))
|
|
{
|
|
error ("\"%s\": not in executable format: %s.",
|
|
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
|
}
|
|
if (build_section_table (abfd, &so->sections, &so->sections_end))
|
|
{
|
|
error ("Can't find the file sections in `%s': %s",
|
|
bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
|
|
}
|
|
|
|
for (p = so->sections; p < so->sections_end; p++)
|
|
{
|
|
/* Relocate the section binding addresses as recorded in the shared
|
|
object's file by the base address to which the object was actually
|
|
mapped. */
|
|
TARGET_SO_RELOCATE_SECTION_ADDRESSES (so, p);
|
|
if (STREQ (p->the_bfd_section->name, ".text"))
|
|
{
|
|
so->textsection = p;
|
|
}
|
|
}
|
|
|
|
/* Free the file names, close the file now. */
|
|
do_cleanups (old_chain);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/* LOCAL FUNCTION
|
|
|
|
free_so --- free a `struct so_list' object
|
|
|
|
SYNOPSIS
|
|
|
|
void free_so (struct so_list *so)
|
|
|
|
DESCRIPTION
|
|
|
|
Free the storage associated with the `struct so_list' object SO.
|
|
If we have opened a BFD for SO, close it.
|
|
|
|
The caller is responsible for removing SO from whatever list it is
|
|
a member of. If we have placed SO's sections in some target's
|
|
section table, the caller is responsible for removing them.
|
|
|
|
This function doesn't mess with objfiles at all. If there is an
|
|
objfile associated with SO that needs to be removed, the caller is
|
|
responsible for taking care of that. */
|
|
|
|
void
|
|
free_so (struct so_list *so)
|
|
{
|
|
char *bfd_filename = 0;
|
|
|
|
if (so->sections)
|
|
xfree (so->sections);
|
|
|
|
if (so->abfd)
|
|
{
|
|
bfd_filename = bfd_get_filename (so->abfd);
|
|
if (! bfd_close (so->abfd))
|
|
warning ("cannot close \"%s\": %s",
|
|
bfd_filename, bfd_errmsg (bfd_get_error ()));
|
|
}
|
|
|
|
if (bfd_filename)
|
|
xfree (bfd_filename);
|
|
|
|
TARGET_SO_FREE_SO (so);
|
|
|
|
xfree (so);
|
|
}
|
|
|
|
|
|
/* A small stub to get us past the arg-passing pinhole of catch_errors. */
|
|
|
|
static int
|
|
symbol_add_stub (PTR arg)
|
|
{
|
|
register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
|
|
struct section_addr_info *sap;
|
|
|
|
/* Have we already loaded this shared object? */
|
|
ALL_OBJFILES (so->objfile)
|
|
{
|
|
if (strcmp (so->objfile->name, so->so_name) == 0)
|
|
return 1;
|
|
}
|
|
|
|
sap = build_section_addr_info_from_section_table (so->sections,
|
|
so->sections_end);
|
|
|
|
so->objfile = symbol_file_add (so->so_name, so->from_tty,
|
|
sap, 0, OBJF_SHARED);
|
|
free_section_addr_info (sap);
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
/* LOCAL FUNCTION
|
|
|
|
update_solib_list --- synchronize GDB's shared object list with inferior's
|
|
|
|
SYNOPSIS
|
|
|
|
void update_solib_list (int from_tty, struct target_ops *TARGET)
|
|
|
|
Extract the list of currently loaded shared objects from the
|
|
inferior, and compare it with the list of shared objects currently
|
|
in GDB's so_list_head list. Edit so_list_head to bring it in sync
|
|
with the inferior's new list.
|
|
|
|
If we notice that the inferior has unloaded some shared objects,
|
|
free any symbolic info GDB had read about those shared objects.
|
|
|
|
Don't load symbolic info for any new shared objects; just add them
|
|
to the list, and leave their symbols_loaded flag clear.
|
|
|
|
If FROM_TTY is non-null, feel free to print messages about what
|
|
we're doing.
|
|
|
|
If TARGET is non-null, add the sections of all new shared objects
|
|
to TARGET's section table. Note that this doesn't remove any
|
|
sections for shared objects that have been unloaded, and it
|
|
doesn't check to see if the new shared objects are already present in
|
|
the section table. But we only use this for core files and
|
|
processes we've just attached to, so that's okay. */
|
|
|
|
void
|
|
update_solib_list (int from_tty, struct target_ops *target)
|
|
{
|
|
struct so_list *inferior = TARGET_SO_CURRENT_SOS ();
|
|
struct so_list *gdb, **gdb_link;
|
|
|
|
/* If we are attaching to a running process for which we
|
|
have not opened a symbol file, we may be able to get its
|
|
symbols now! */
|
|
if (attach_flag &&
|
|
symfile_objfile == NULL)
|
|
catch_errors (TARGET_SO_OPEN_SYMBOL_FILE_OBJECT, (PTR) &from_tty,
|
|
"Error reading attached process's symbol file.\n",
|
|
RETURN_MASK_ALL);
|
|
|
|
/* Since this function might actually add some elements to the
|
|
so_list_head list, arrange for it to be cleaned up when
|
|
appropriate. */
|
|
if (!solib_cleanup_queued)
|
|
{
|
|
make_run_cleanup (do_clear_solib, NULL);
|
|
solib_cleanup_queued = 1;
|
|
}
|
|
|
|
/* GDB and the inferior's dynamic linker each maintain their own
|
|
list of currently loaded shared objects; we want to bring the
|
|
former in sync with the latter. Scan both lists, seeing which
|
|
shared objects appear where. There are three cases:
|
|
|
|
- A shared object appears on both lists. This means that GDB
|
|
knows about it already, and it's still loaded in the inferior.
|
|
Nothing needs to happen.
|
|
|
|
- A shared object appears only on GDB's list. This means that
|
|
the inferior has unloaded it. We should remove the shared
|
|
object from GDB's tables.
|
|
|
|
- A shared object appears only on the inferior's list. This
|
|
means that it's just been loaded. We should add it to GDB's
|
|
tables.
|
|
|
|
So we walk GDB's list, checking each entry to see if it appears
|
|
in the inferior's list too. If it does, no action is needed, and
|
|
we remove it from the inferior's list. If it doesn't, the
|
|
inferior has unloaded it, and we remove it from GDB's list. By
|
|
the time we're done walking GDB's list, the inferior's list
|
|
contains only the new shared objects, which we then add. */
|
|
|
|
gdb = so_list_head;
|
|
gdb_link = &so_list_head;
|
|
while (gdb)
|
|
{
|
|
struct so_list *i = inferior;
|
|
struct so_list **i_link = &inferior;
|
|
|
|
/* Check to see whether the shared object *gdb also appears in
|
|
the inferior's current list. */
|
|
while (i)
|
|
{
|
|
if (! strcmp (gdb->so_original_name, i->so_original_name))
|
|
break;
|
|
|
|
i_link = &i->next;
|
|
i = *i_link;
|
|
}
|
|
|
|
/* If the shared object appears on the inferior's list too, then
|
|
it's still loaded, so we don't need to do anything. Delete
|
|
it from the inferior's list, and leave it on GDB's list. */
|
|
if (i)
|
|
{
|
|
*i_link = i->next;
|
|
free_so (i);
|
|
gdb_link = &gdb->next;
|
|
gdb = *gdb_link;
|
|
}
|
|
|
|
/* If it's not on the inferior's list, remove it from GDB's tables. */
|
|
else
|
|
{
|
|
*gdb_link = gdb->next;
|
|
|
|
/* Unless the user loaded it explicitly, free SO's objfile. */
|
|
if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED))
|
|
free_objfile (gdb->objfile);
|
|
|
|
/* Some targets' section tables might be referring to
|
|
sections from so->abfd; remove them. */
|
|
remove_target_sections (gdb->abfd);
|
|
|
|
free_so (gdb);
|
|
gdb = *gdb_link;
|
|
}
|
|
}
|
|
|
|
/* Now the inferior's list contains only shared objects that don't
|
|
appear in GDB's list --- those that are newly loaded. Add them
|
|
to GDB's shared object list. */
|
|
if (inferior)
|
|
{
|
|
struct so_list *i;
|
|
|
|
/* Add the new shared objects to GDB's list. */
|
|
*gdb_link = inferior;
|
|
|
|
/* Fill in the rest of each of the `struct so_list' nodes. */
|
|
for (i = inferior; i; i = i->next)
|
|
{
|
|
i->from_tty = from_tty;
|
|
|
|
/* Fill in the rest of the `struct so_list' node. */
|
|
catch_errors (solib_map_sections, i,
|
|
"Error while mapping shared library sections:\n",
|
|
RETURN_MASK_ALL);
|
|
|
|
/* If requested, add the shared object's sections to the TARGET's
|
|
section table. Do this immediately after mapping the object so
|
|
that later nodes in the list can query this object, as is needed
|
|
in solib-osf.c. */
|
|
if (target)
|
|
{
|
|
int count = (i->sections_end - i->sections);
|
|
if (count > 0)
|
|
{
|
|
int space = target_resize_to_sections (target, count);
|
|
memcpy (target->to_sections + space,
|
|
i->sections,
|
|
count * sizeof (i->sections[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* GLOBAL FUNCTION
|
|
|
|
solib_add -- read in symbol info for newly added shared libraries
|
|
|
|
SYNOPSIS
|
|
|
|
void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
|
|
|
|
DESCRIPTION
|
|
|
|
Read in symbolic information for any shared objects whose names
|
|
match PATTERN. (If we've already read a shared object's symbol
|
|
info, leave it alone.) If PATTERN is zero, read them all.
|
|
|
|
FROM_TTY and TARGET are as described for update_solib_list, above. */
|
|
|
|
void
|
|
solib_add (char *pattern, int from_tty, struct target_ops *target)
|
|
{
|
|
struct so_list *gdb;
|
|
|
|
if (pattern)
|
|
{
|
|
char *re_err = re_comp (pattern);
|
|
|
|
if (re_err)
|
|
error ("Invalid regexp: %s", re_err);
|
|
}
|
|
|
|
update_solib_list (from_tty, target);
|
|
|
|
/* Walk the list of currently loaded shared libraries, and read
|
|
symbols for any that match the pattern --- or any whose symbols
|
|
aren't already loaded, if no pattern was given. */
|
|
{
|
|
int any_matches = 0;
|
|
int loaded_any_symbols = 0;
|
|
|
|
for (gdb = so_list_head; gdb; gdb = gdb->next)
|
|
if (! pattern || re_exec (gdb->so_name))
|
|
{
|
|
any_matches = 1;
|
|
|
|
if (gdb->symbols_loaded)
|
|
{
|
|
if (from_tty)
|
|
printf_unfiltered ("Symbols already loaded for %s\n",
|
|
gdb->so_name);
|
|
}
|
|
else
|
|
{
|
|
if (catch_errors
|
|
(symbol_add_stub, gdb,
|
|
"Error while reading shared library symbols:\n",
|
|
RETURN_MASK_ALL))
|
|
{
|
|
if (from_tty)
|
|
printf_unfiltered ("Loaded symbols for %s\n",
|
|
gdb->so_name);
|
|
gdb->symbols_loaded = 1;
|
|
loaded_any_symbols = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (from_tty && pattern && ! any_matches)
|
|
printf_unfiltered
|
|
("No loaded shared libraries match the pattern `%s'.\n", pattern);
|
|
|
|
if (loaded_any_symbols)
|
|
{
|
|
/* Getting new symbols may change our opinion about what is
|
|
frameless. */
|
|
reinit_frame_cache ();
|
|
|
|
TARGET_SO_SPECIAL_SYMBOL_HANDLING ();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
info_sharedlibrary_command -- code for "info sharedlibrary"
|
|
|
|
SYNOPSIS
|
|
|
|
static void info_sharedlibrary_command ()
|
|
|
|
DESCRIPTION
|
|
|
|
Walk through the shared library list and print information
|
|
about each attached library.
|
|
*/
|
|
|
|
static void
|
|
info_sharedlibrary_command (char *ignore, int from_tty)
|
|
{
|
|
register struct so_list *so = NULL; /* link map state variable */
|
|
int header_done = 0;
|
|
int addr_width;
|
|
char *addr_fmt;
|
|
int arch_size;
|
|
|
|
if (exec_bfd == NULL)
|
|
{
|
|
printf_unfiltered ("No executable file.\n");
|
|
return;
|
|
}
|
|
|
|
arch_size = bfd_get_arch_size (exec_bfd);
|
|
if (arch_size == -1)
|
|
arch_size = bfd_arch_bits_per_address(exec_bfd);
|
|
|
|
/* Default to 32-bit in case of failure. */
|
|
if (arch_size == 32 || arch_size == -1)
|
|
{
|
|
addr_width = 8 + 4;
|
|
addr_fmt = "08l";
|
|
}
|
|
else if (arch_size == 64)
|
|
{
|
|
addr_width = 16 + 4;
|
|
addr_fmt = "016l";
|
|
}
|
|
else
|
|
{
|
|
internal_error (__FILE__, __LINE__,
|
|
"bfd_get_arch_size() returned unknown size %d",
|
|
arch_size);
|
|
}
|
|
|
|
update_solib_list (from_tty, 0);
|
|
|
|
for (so = so_list_head; so; so = so->next)
|
|
{
|
|
if (so->so_name[0])
|
|
{
|
|
if (!header_done)
|
|
{
|
|
printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
|
|
addr_width, "To", "Syms Read",
|
|
"Shared Object Library");
|
|
header_done++;
|
|
}
|
|
|
|
printf_unfiltered ("%-*s", addr_width,
|
|
so->textsection != NULL
|
|
? longest_local_hex_string_custom (
|
|
(LONGEST) so->textsection->addr,
|
|
addr_fmt)
|
|
: "");
|
|
printf_unfiltered ("%-*s", addr_width,
|
|
so->textsection != NULL
|
|
? longest_local_hex_string_custom (
|
|
(LONGEST) so->textsection->endaddr,
|
|
addr_fmt)
|
|
: "");
|
|
printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
|
|
printf_unfiltered ("%s\n", so->so_name);
|
|
}
|
|
}
|
|
if (so_list_head == NULL)
|
|
{
|
|
printf_unfiltered ("No shared libraries loaded at this time.\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
GLOBAL FUNCTION
|
|
|
|
solib_address -- check to see if an address is in a shared lib
|
|
|
|
SYNOPSIS
|
|
|
|
char * solib_address (CORE_ADDR address)
|
|
|
|
DESCRIPTION
|
|
|
|
Provides a hook for other gdb routines to discover whether or
|
|
not a particular address is within the mapped address space of
|
|
a shared library.
|
|
|
|
For example, this routine is called at one point to disable
|
|
breakpoints which are in shared libraries that are not currently
|
|
mapped in.
|
|
*/
|
|
|
|
char *
|
|
solib_address (CORE_ADDR address)
|
|
{
|
|
register struct so_list *so = 0; /* link map state variable */
|
|
|
|
for (so = so_list_head; so; so = so->next)
|
|
{
|
|
struct section_table *p;
|
|
|
|
for (p = so->sections; p < so->sections_end; p++)
|
|
{
|
|
if (p->addr <= address && address < p->endaddr)
|
|
return (so->so_name);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Called by free_all_symtabs */
|
|
|
|
void
|
|
clear_solib (void)
|
|
{
|
|
/* This function is expected to handle ELF shared libraries. It is
|
|
also used on Solaris, which can run either ELF or a.out binaries
|
|
(for compatibility with SunOS 4), both of which can use shared
|
|
libraries. So we don't know whether we have an ELF executable or
|
|
an a.out executable until the user chooses an executable file.
|
|
|
|
ELF shared libraries don't get mapped into the address space
|
|
until after the program starts, so we'd better not try to insert
|
|
breakpoints in them immediately. We have to wait until the
|
|
dynamic linker has loaded them; we'll hit a bp_shlib_event
|
|
breakpoint (look for calls to create_solib_event_breakpoint) when
|
|
it's ready.
|
|
|
|
SunOS shared libraries seem to be different --- they're present
|
|
as soon as the process begins execution, so there's no need to
|
|
put off inserting breakpoints. There's also nowhere to put a
|
|
bp_shlib_event breakpoint, so if we put it off, we'll never get
|
|
around to it.
|
|
|
|
So: disable breakpoints only if we're using ELF shared libs. */
|
|
if (exec_bfd != NULL
|
|
&& bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
|
|
disable_breakpoints_in_shlibs (1);
|
|
|
|
while (so_list_head)
|
|
{
|
|
struct so_list *so = so_list_head;
|
|
so_list_head = so->next;
|
|
free_so (so);
|
|
}
|
|
|
|
TARGET_SO_CLEAR_SOLIB ();
|
|
}
|
|
|
|
static void
|
|
do_clear_solib (PTR dummy)
|
|
{
|
|
solib_cleanup_queued = 0;
|
|
clear_solib ();
|
|
}
|
|
|
|
/* GLOBAL FUNCTION
|
|
|
|
solib_create_inferior_hook -- shared library startup support
|
|
|
|
SYNOPSIS
|
|
|
|
void solib_create_inferior_hook()
|
|
|
|
DESCRIPTION
|
|
|
|
When gdb starts up the inferior, it nurses it along (through the
|
|
shell) until it is ready to execute it's first instruction. At this
|
|
point, this function gets called via expansion of the macro
|
|
SOLIB_CREATE_INFERIOR_HOOK. */
|
|
|
|
void
|
|
solib_create_inferior_hook (void)
|
|
{
|
|
TARGET_SO_SOLIB_CREATE_INFERIOR_HOOK ();
|
|
}
|
|
|
|
/* GLOBAL FUNCTION
|
|
|
|
in_solib_dynsym_resolve_code -- check to see if an address is in
|
|
dynamic loader's dynamic symbol
|
|
resolution code
|
|
|
|
SYNOPSIS
|
|
|
|
int in_solib_dynsym_resolve_code (CORE_ADDR pc)
|
|
|
|
DESCRIPTION
|
|
|
|
Determine if PC is in the dynamic linker's symbol resolution
|
|
code. Return 1 if so, 0 otherwise.
|
|
*/
|
|
|
|
int
|
|
in_solib_dynsym_resolve_code (CORE_ADDR pc)
|
|
{
|
|
return TARGET_SO_IN_DYNSYM_RESOLVE_CODE (pc);
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
sharedlibrary_command -- handle command to explicitly add library
|
|
|
|
SYNOPSIS
|
|
|
|
static void sharedlibrary_command (char *args, int from_tty)
|
|
|
|
DESCRIPTION
|
|
|
|
*/
|
|
|
|
static void
|
|
sharedlibrary_command (char *args, int from_tty)
|
|
{
|
|
dont_repeat ();
|
|
solib_add (args, from_tty, (struct target_ops *) 0);
|
|
}
|
|
|
|
/* LOCAL FUNCTION
|
|
|
|
no_shared_libraries -- handle command to explicitly discard symbols
|
|
from shared libraries.
|
|
|
|
DESCRIPTION
|
|
|
|
Implements the command "nosharedlibrary", which discards symbols
|
|
that have been auto-loaded from shared libraries. Symbols from
|
|
shared libraries that were added by explicit request of the user
|
|
are not discarded. Also called from remote.c. */
|
|
|
|
void
|
|
no_shared_libraries (char *ignored, int from_tty)
|
|
{
|
|
objfile_purge_solibs ();
|
|
do_clear_solib (NULL);
|
|
}
|
|
|
|
void
|
|
_initialize_solib (void)
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
add_com ("sharedlibrary", class_files, sharedlibrary_command,
|
|
"Load shared object library symbols for files matching REGEXP.");
|
|
add_info ("sharedlibrary", info_sharedlibrary_command,
|
|
"Status of loaded shared object libraries.");
|
|
add_com ("nosharedlibrary", class_files, no_shared_libraries,
|
|
"Unload all shared object library symbols.");
|
|
|
|
add_show_from_set
|
|
(add_set_cmd ("auto-solib-add", class_support, var_zinteger,
|
|
(char *) &auto_solib_add,
|
|
"Set autoloading of shared library symbols.\n\
|
|
If nonzero, symbols from all shared object libraries will be loaded\n\
|
|
automatically when the inferior begins execution or when the dynamic linker\n\
|
|
informs gdb that a new library has been loaded. Otherwise, symbols\n\
|
|
must be loaded manually, using `sharedlibrary'.",
|
|
&setlist),
|
|
&showlist);
|
|
|
|
c = add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
|
|
(char *) &solib_absolute_prefix,
|
|
"Set prefix for loading absolute shared library symbol files.\n\
|
|
For other (relative) files, you can add values using `set solib-search-path'.",
|
|
&setlist);
|
|
add_show_from_set (c, &showlist);
|
|
c->completer = filename_completer;
|
|
|
|
c = add_set_cmd ("solib-search-path", class_support, var_string,
|
|
(char *) &solib_search_path,
|
|
"Set the search path for loading non-absolute shared library symbol files.\n\
|
|
This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
|
|
&setlist);
|
|
add_show_from_set (c, &showlist);
|
|
c->completer = filename_completer;
|
|
}
|