binutils-gdb/gdb/break-catch-sig.c
Simon Marchi 183be22290 gdb, gdbserver: make target_waitstatus safe
I stumbled on a bug caused by the fact that a code path read
target_waitstatus::value::sig (expecting it to contain a gdb_signal
value) while target_waitstatus::kind was TARGET_WAITKIND_FORKED.  This
meant that the active union field was in fact
target_waitstatus::value::related_pid, and contained a ptid.  The read
signal value was therefore garbage, and that caused GDB to crash soon
after.  Or, since that GDB was built with ubsan, this nice error
message:

    /home/simark/src/binutils-gdb/gdb/linux-nat.c:1271:12: runtime error: load of value 2686365, which is not a valid value for type 'gdb_signal'

Despite being a large-ish change, I think it would be nice to make
target_waitstatus safe against that kind of bug.  As already done
elsewhere (e.g. dynamic_prop), validate that the type of value read from
the union matches what is supposed to be the active field.

 - Make the kind and value of target_waitstatus private.
 - Make the kind initialized to TARGET_WAITKIND_IGNORE on
   target_waitstatus construction.  This is what most users appear to do
   explicitly.
 - Add setters, one for each kind.  Each setter takes as a parameter the
   data associated to that kind, if any.  This makes it impossible to
   forget to attach the associated data.
 - Add getters, one for each associated data type.  Each getter
   validates that the data type fetched by the user matches the wait
   status kind.
 - Change "integer" to "exit_status", "related_pid" to "child_ptid",
   just because that's more precise terminology.
 - Fix all users.

That last point is semi-mechanical.  There are a lot of obvious changes,
but some less obvious ones.  For example, it's not possible to set the
kind at some point and the associated data later, as some users did.
But in any case, the intent of the code should not change in this patch.

This was tested on x86-64 Linux (unix, native-gdbserver and
native-extended-gdbserver boards).  It was built-tested on x86-64
FreeBSD, NetBSD, MinGW and macOS.  The rest of the changes to native
files was done as a best effort.  If I forgot any place to update in
these files, it should be easy to fix (unless the change happens to
reveal an actual bug).

Change-Id: I0ae967df1ff6e28de78abbe3ac9b4b2ff4ad03b7
2021-10-21 16:13:56 -04:00

447 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Everything about signal catchpoints, for GDB.
Copyright (C) 2011-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "arch-utils.h"
#include <ctype.h>
#include "breakpoint.h"
#include "gdbcmd.h"
#include "inferior.h"
#include "infrun.h"
#include "annotate.h"
#include "valprint.h"
#include "cli/cli-utils.h"
#include "completer.h"
#include "cli/cli-style.h"
#include "cli/cli-decode.h"
#include <string>
#define INTERNAL_SIGNAL(x) ((x) == GDB_SIGNAL_TRAP || (x) == GDB_SIGNAL_INT)
/* An instance of this type is used to represent a signal catchpoint.
A breakpoint is really of this type iff its ops pointer points to
SIGNAL_CATCHPOINT_OPS. */
struct signal_catchpoint : public breakpoint
{
/* Signal numbers used for the 'catch signal' feature. If no signal
has been specified for filtering, it is empty. Otherwise,
it holds a list of all signals to be caught. */
std::vector<gdb_signal> signals_to_be_caught;
/* If SIGNALS_TO_BE_CAUGHT is empty, then all "ordinary" signals are
caught. If CATCH_ALL is true, then internal signals are caught
as well. If SIGNALS_TO_BE_CAUGHT is not empty, then this field
is ignored. */
bool catch_all;
};
/* The breakpoint_ops structure to be used in signal catchpoints. */
static struct breakpoint_ops signal_catchpoint_ops;
/* Count of each signal. */
static unsigned int signal_catch_counts[GDB_SIGNAL_LAST];
/* A convenience wrapper for gdb_signal_to_name that returns the
integer value if the name is not known. */
static const char *
signal_to_name_or_int (enum gdb_signal sig)
{
const char *result = gdb_signal_to_name (sig);
if (strcmp (result, "?") == 0)
result = plongest (sig);
return result;
}
/* Implement the "insert_location" breakpoint_ops method for signal
catchpoints. */
static int
signal_catchpoint_insert_location (struct bp_location *bl)
{
struct signal_catchpoint *c = (struct signal_catchpoint *) bl->owner;
if (!c->signals_to_be_caught.empty ())
{
for (gdb_signal iter : c->signals_to_be_caught)
++signal_catch_counts[iter];
}
else
{
for (int i = 0; i < GDB_SIGNAL_LAST; ++i)
{
if (c->catch_all || !INTERNAL_SIGNAL (i))
++signal_catch_counts[i];
}
}
signal_catch_update (signal_catch_counts);
return 0;
}
/* Implement the "remove_location" breakpoint_ops method for signal
catchpoints. */
static int
signal_catchpoint_remove_location (struct bp_location *bl,
enum remove_bp_reason reason)
{
struct signal_catchpoint *c = (struct signal_catchpoint *) bl->owner;
if (!c->signals_to_be_caught.empty ())
{
for (gdb_signal iter : c->signals_to_be_caught)
{
gdb_assert (signal_catch_counts[iter] > 0);
--signal_catch_counts[iter];
}
}
else
{
for (int i = 0; i < GDB_SIGNAL_LAST; ++i)
{
if (c->catch_all || !INTERNAL_SIGNAL (i))
{
gdb_assert (signal_catch_counts[i] > 0);
--signal_catch_counts[i];
}
}
}
signal_catch_update (signal_catch_counts);
return 0;
}
/* Implement the "breakpoint_hit" breakpoint_ops method for signal
catchpoints. */
static int
signal_catchpoint_breakpoint_hit (const struct bp_location *bl,
const address_space *aspace,
CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
const struct signal_catchpoint *c
= (const struct signal_catchpoint *) bl->owner;
gdb_signal signal_number;
if (ws->kind () != TARGET_WAITKIND_STOPPED)
return 0;
signal_number = ws->sig ();
/* If we are catching specific signals in this breakpoint, then we
must guarantee that the called signal is the same signal we are
catching. */
if (!c->signals_to_be_caught.empty ())
{
for (gdb_signal iter : c->signals_to_be_caught)
if (signal_number == iter)
return 1;
/* Not the same. */
return 0;
}
else
return c->catch_all || !INTERNAL_SIGNAL (signal_number);
}
/* Implement the "print_it" breakpoint_ops method for signal
catchpoints. */
static enum print_stop_action
signal_catchpoint_print_it (bpstat bs)
{
struct breakpoint *b = bs->breakpoint_at;
struct target_waitstatus last;
const char *signal_name;
struct ui_out *uiout = current_uiout;
get_last_target_status (nullptr, nullptr, &last);
signal_name = signal_to_name_or_int (last.sig ());
annotate_catchpoint (b->number);
maybe_print_thread_hit_breakpoint (uiout);
printf_filtered (_("Catchpoint %d (signal %s), "), b->number, signal_name);
return PRINT_SRC_AND_LOC;
}
/* Implement the "print_one" breakpoint_ops method for signal
catchpoints. */
static void
signal_catchpoint_print_one (struct breakpoint *b,
struct bp_location **last_loc)
{
struct signal_catchpoint *c = (struct signal_catchpoint *) b;
struct value_print_options opts;
struct ui_out *uiout = current_uiout;
get_user_print_options (&opts);
/* Field 4, the address, is omitted (which makes the columns
not line up too nicely with the headers, but the effect
is relatively readable). */
if (opts.addressprint)
uiout->field_skip ("addr");
annotate_field (5);
if (c->signals_to_be_caught.size () > 1)
uiout->text ("signals \"");
else
uiout->text ("signal \"");
if (!c->signals_to_be_caught.empty ())
{
std::string text;
bool first = true;
for (gdb_signal iter : c->signals_to_be_caught)
{
const char *name = signal_to_name_or_int (iter);
if (!first)
text += " ";
first = false;
text += name;
}
uiout->field_string ("what", text);
}
else
uiout->field_string ("what",
c->catch_all ? "<any signal>" : "<standard signals>",
metadata_style.style ());
uiout->text ("\" ");
if (uiout->is_mi_like_p ())
uiout->field_string ("catch-type", "signal");
}
/* Implement the "print_mention" breakpoint_ops method for signal
catchpoints. */
static void
signal_catchpoint_print_mention (struct breakpoint *b)
{
struct signal_catchpoint *c = (struct signal_catchpoint *) b;
if (!c->signals_to_be_caught.empty ())
{
if (c->signals_to_be_caught.size () > 1)
printf_filtered (_("Catchpoint %d (signals"), b->number);
else
printf_filtered (_("Catchpoint %d (signal"), b->number);
for (gdb_signal iter : c->signals_to_be_caught)
{
const char *name = signal_to_name_or_int (iter);
printf_filtered (" %s", name);
}
printf_filtered (")");
}
else if (c->catch_all)
printf_filtered (_("Catchpoint %d (any signal)"), b->number);
else
printf_filtered (_("Catchpoint %d (standard signals)"), b->number);
}
/* Implement the "print_recreate" breakpoint_ops method for signal
catchpoints. */
static void
signal_catchpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
{
struct signal_catchpoint *c = (struct signal_catchpoint *) b;
fprintf_unfiltered (fp, "catch signal");
if (!c->signals_to_be_caught.empty ())
{
for (gdb_signal iter : c->signals_to_be_caught)
fprintf_unfiltered (fp, " %s", signal_to_name_or_int (iter));
}
else if (c->catch_all)
fprintf_unfiltered (fp, " all");
fputc_unfiltered ('\n', fp);
}
/* Implement the "explains_signal" breakpoint_ops method for signal
catchpoints. */
static int
signal_catchpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
{
return 1;
}
/* Create a new signal catchpoint. TEMPFLAG is true if this should be
a temporary catchpoint. FILTER is the list of signals to catch; it
can be empty, meaning all signals. CATCH_ALL is a flag indicating
whether signals used internally by gdb should be caught; it is only
valid if FILTER is NULL. If FILTER is empty and CATCH_ALL is zero,
then internal signals like SIGTRAP are not caught. */
static void
create_signal_catchpoint (int tempflag, std::vector<gdb_signal> &&filter,
bool catch_all)
{
struct gdbarch *gdbarch = get_current_arch ();
std::unique_ptr<signal_catchpoint> c (new signal_catchpoint ());
init_catchpoint (c.get (), gdbarch, tempflag, NULL, &signal_catchpoint_ops);
c->signals_to_be_caught = std::move (filter);
c->catch_all = catch_all;
install_breakpoint (0, std::move (c), 1);
}
/* Splits the argument using space as delimiter. Returns a filter
list, which is empty if no filtering is required. */
static std::vector<gdb_signal>
catch_signal_split_args (const char *arg, bool *catch_all)
{
std::vector<gdb_signal> result;
bool first = true;
while (*arg != '\0')
{
int num;
gdb_signal signal_number;
char *endptr;
std::string one_arg = extract_arg (&arg);
if (one_arg.empty ())
break;
/* Check for the special flag "all". */
if (one_arg == "all")
{
arg = skip_spaces (arg);
if (*arg != '\0' || !first)
error (_("'all' cannot be caught with other signals"));
*catch_all = true;
gdb_assert (result.empty ());
return result;
}
first = false;
/* Check if the user provided a signal name or a number. */
num = (int) strtol (one_arg.c_str (), &endptr, 0);
if (*endptr == '\0')
signal_number = gdb_signal_from_command (num);
else
{
signal_number = gdb_signal_from_name (one_arg.c_str ());
if (signal_number == GDB_SIGNAL_UNKNOWN)
error (_("Unknown signal name '%s'."), one_arg.c_str ());
}
result.push_back (signal_number);
}
result.shrink_to_fit ();
return result;
}
/* Implement the "catch signal" command. */
static void
catch_signal_command (const char *arg, int from_tty,
struct cmd_list_element *command)
{
int tempflag;
bool catch_all = false;
std::vector<gdb_signal> filter;
tempflag = command->context () == CATCH_TEMPORARY;
arg = skip_spaces (arg);
/* The allowed syntax is:
catch signal
catch signal <name | number> [<name | number> ... <name | number>]
Let's check if there's a signal name. */
if (arg != NULL)
filter = catch_signal_split_args (arg, &catch_all);
create_signal_catchpoint (tempflag, std::move (filter), catch_all);
}
static void
initialize_signal_catchpoint_ops (void)
{
struct breakpoint_ops *ops;
initialize_breakpoint_ops ();
ops = &signal_catchpoint_ops;
*ops = base_breakpoint_ops;
ops->insert_location = signal_catchpoint_insert_location;
ops->remove_location = signal_catchpoint_remove_location;
ops->breakpoint_hit = signal_catchpoint_breakpoint_hit;
ops->print_it = signal_catchpoint_print_it;
ops->print_one = signal_catchpoint_print_one;
ops->print_mention = signal_catchpoint_print_mention;
ops->print_recreate = signal_catchpoint_print_recreate;
ops->explains_signal = signal_catchpoint_explains_signal;
}
void _initialize_break_catch_sig ();
void
_initialize_break_catch_sig ()
{
initialize_signal_catchpoint_ops ();
add_catch_command ("signal", _("\
Catch signals by their names and/or numbers.\n\
Usage: catch signal [[NAME|NUMBER] [NAME|NUMBER]...|all]\n\
Arguments say which signals to catch. If no arguments\n\
are given, every \"normal\" signal will be caught.\n\
The argument \"all\" means to also catch signals used by GDB.\n\
Arguments, if given, should be one or more signal names\n\
(if your system supports that), or signal numbers."),
catch_signal_command,
signal_completer,
CATCH_PERMANENT,
CATCH_TEMPORARY);
}