mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
44d469c5f8
This commit adds a separate Fortran compiler identification mechanism to the testsuite, similar to the existing one for C/C++. Before this change, the options and version for the Fortran compiler specified when running the testsuite with F90_FOR_TARGET set, was detected via its respective C compiler. So running the testsuite as make check TEST=gdb.fortran/*.exp CC_FOR_TARGET=gcc F90_FOR_TARGET=ifx or even make check TEST=gdb.fortran/*.exp F90_FOR_TARGET=ifx would use the gcc compiler inside the procedures get_compiler_info and test_compiler_info to identify compiler flags and the compiler version. This could sometimes lead to unpredictable outputs. It also limited testsuite execution to combinations where C and Fortran compiler would come from the same family of compiers (gcc/gfortran, icc/ifort, icx/ifx, clang/flang ..). This commit enables GDB to detect C and Fortran compilers independently of each other. As most/nearly all Fortran compilers have a mechanism for preprocessing files in a C like fashion we added the exact same meachnism that already existed for C/CXX. We let GDB preprocess a file with the compilers Fortran preprocessor and evaluate the preprocessor defined macros in that file. This enables GDB to properly run heterogeneous combinations of C and Fortran compilers such as CC_FOR_TARGET='gcc' and F90_FOR_TARGET='ifort' or enables one to run the testsuite without specifying a C compiler as in make check TESTS=gdb.fortran/*.exp F90_FOR_TARGET='ifx' make check TESTS=gdb.fortran/*.exp F90_FOR_TARGET='flang' On the other hand this also requires one to always specify a identification mechanism for Fortran compilers in the compiler.F90 file. We added identification for GFORTRAN, FLANG (CLASSIC and LLVM) IFX, IFORT, and ARMFLANG for now. Classic and LLVM flang were each tested with their latest releases on their respective release pages. Both get recognized by the new compiler identification and we introduced the two names flang-classic and flang-llvm to distinguish the two. While LLVM flang is not quite mature enough yet for running the testsuite we still thought it would be a good idea to include it already. For this we added a case for the fortran_main procedure. LLVM flang uses 'MAIN__' as opposed to classic flang which uses 'MAIN_' here. We did not have the possibility to test ARMFLANG - the versioning scheme here was extracted from its latest online documentation. We changed the test_compiler_info procedure to take another optional argument, the language string, which will be passed though to the get_compiler_info procedure. Passing 'f90' or 'c++' here will then trigger the C++/Fortran compiler identification within get_compiler_info. The latter procedure was extended to also handle the 'f90' argument (similarly to the already existing 'c++' one). Co-authored-by: Nils-Christian Kempke <nils-christian.kempke@intel.com>
50 lines
1.8 KiB
Plaintext
50 lines
1.8 KiB
Plaintext
# Copyright 2020-2022 Free Software Foundation, Inc.
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/> .
|
|
|
|
# Test that GDB can print an allocatable array that is a data field
|
|
# within a class like type.
|
|
|
|
if {[skip_fortran_tests]} { return -1 }
|
|
|
|
standard_testfile ".f90"
|
|
load_lib fortran.exp
|
|
|
|
if {[prepare_for_testing ${testfile}.exp ${testfile} ${srcfile} \
|
|
{debug f90}]} {
|
|
return -1
|
|
}
|
|
|
|
if ![fortran_runto_main] {
|
|
return -1
|
|
}
|
|
|
|
gdb_breakpoint [gdb_get_line_number "Break Here"]
|
|
gdb_continue_to_breakpoint "Break Here"
|
|
|
|
# If this first test fails then the Fortran compiler being used uses
|
|
# different names, or maybe a completely different approach, for
|
|
# representing class like structures. The following tests are
|
|
# cetainly going to fail.
|
|
# Hence the test case is modified for flang.
|
|
if { [test_compiler_info {flang-*} f90] } {
|
|
gdb_test "print this" " = \\( a = 0, b = \\(\\(1, 2, 3\\) \\(4, 5, 6\\)\\) \\)"
|
|
gdb_test "print this%a" " = 0"
|
|
gdb_test "print this%b" " = \\(\\(1, 2, 3\\) \\(4, 5, 6\\)\\)"
|
|
} else {
|
|
gdb_test "print this" " = \\( _data = \[^\r\n\]+, _vptr = \[^\r\n\]+\\)"
|
|
gdb_test "print this%_data" " = \\(PTR TO -> \\( Type test_type \\)\\) \[^\r\n\]+"
|
|
gdb_test "print this%_data%b" " = \\(\\(1, 2, 3\\) \\(4, 5, 6\\)\\)"
|
|
}
|