binutils-gdb/bfd/elf64-s390.c
Alan Modra c94cb02662 HOWTO size encoding
This changes the HOWTO macro to encode the howto.size field from a
value given in bytes.  This of course requires editing all target
uses of HOWTO, a major pain, but makes it a little nicer to specify
new target HOWTOs.  Object files before/after this patch are
unchanged in .data and .rodata.

bfd/
	* reloc.c (HOWTO_RSIZE): Encode size in bytes.
	(EMPTY_HOWTO): Adjust to keep it all zero.
	* aout-ns32k.c, * aoutx.h, * coff-alpha.c, * coff-arm.c,
	* coff-i386.c, * coff-mcore.c, * coff-mips.c, * coff-rs6000.c,
	* coff-sh.c, * coff-tic30.c, * coff-tic4x.c, * coff-tic54x.c,
	* coff-x86_64.c, * coff-z80.c, * coff-z8k.c, * coff64-rs6000.c,
	* elf-hppa.h, * elf-m10200.c, * elf-m10300.c, * elf32-arc.c,
	* elf32-arm.c, * elf32-avr.c, * elf32-bfin.c, * elf32-cr16.c,
	* elf32-cris.c, * elf32-crx.c, * elf32-csky.c, * elf32-d10v.c,
	* elf32-d30v.c, * elf32-dlx.c, * elf32-epiphany.c,
	* elf32-fr30.c, * elf32-frv.c, * elf32-ft32.c, * elf32-gen.c,
	* elf32-h8300.c, * elf32-i386.c, * elf32-ip2k.c, * elf32-iq2000.c,
	* elf32-lm32.c, * elf32-m32c.c, * elf32-m32r.c, * elf32-m68hc11.c,
	* elf32-m68hc12.c, * elf32-m68k.c, * elf32-mcore.c, * elf32-mep.c,
	* elf32-metag.c, * elf32-microblaze.c, * elf32-mips.c,
	* elf32-moxie.c, * elf32-msp430.c, * elf32-mt.c, * elf32-nds32.c,
	* elf32-nios2.c, * elf32-or1k.c, * elf32-pj.c, * elf32-ppc.c,
	* elf32-pru.c, * elf32-rl78.c, * elf32-rx.c, * elf32-s12z.c,
	* elf32-s390.c, * elf32-score.c, * elf32-score7.c,
	* elf32-sh-relocs.h, * elf32-spu.c, * elf32-tic6x.c,
	* elf32-tilepro.c, * elf32-v850.c, * elf32-vax.c,
	* elf32-visium.c, * elf32-wasm32.c, * elf32-xc16x.c,
	* elf32-xgate.c, * elf32-xstormy16.c, * elf32-xtensa.c,
	* elf32-z80.c, * elf64-alpha.c, * elf64-bpf.c, * elf64-gen.c,
	* elf64-mips.c, * elf64-mmix.c, * elf64-nfp.c, * elf64-ppc.c,
	* elf64-s390.c, * elf64-x86-64.c, * elfn32-mips.c,
	* elfnn-aarch64.c, * elfxx-ia64.c, * elfxx-loongarch.c,
	* elfxx-mips.c, * elfxx-riscv.c, * elfxx-sparc.c,
	* elfxx-tilegx.c, * mach-o-aarch64.c, * mach-o-arm.c,
	* mach-o-i386.c, * mach-o-x86-64.c, * pdp11.c, * reloc.c,
	* som.c, * vms-alpha.c: Adjust all uses of HOWTO.
	* bfd-in2.h: Regenerate.
include/
	* elf/arc-reloc.def: Adjust all uses of HOWTO.
2022-06-08 21:33:00 +09:30

3911 lines
118 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* IBM S/390-specific support for 64-bit ELF
Copyright (C) 2000-2022 Free Software Foundation, Inc.
Contributed Martin Schwidefsky (schwidefsky@de.ibm.com).
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/s390.h"
#include "elf-s390.h"
#include <stdarg.h>
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
from smaller values. Start with zero, widen, *then* decrement. */
#define MINUS_ONE (((bfd_vma)0) - 1)
static bfd_reloc_status_type
s390_tls_reloc (bfd *, arelent *, asymbol *, void *,
asection *, bfd *, char **);
static bfd_reloc_status_type
s390_elf_ldisp_reloc (bfd *, arelent *, asymbol *, void *,
asection *, bfd *, char **);
/* The relocation "howto" table. */
static reloc_howto_type elf_howto_table[] =
{
HOWTO (R_390_NONE, /* type */
0, /* rightshift */
0, /* size */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_390_NONE", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
HOWTO(R_390_8, 0, 1, 8, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
HOWTO(R_390_12, 0, 2, 12, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
HOWTO(R_390_16, 0, 2, 16, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
HOWTO(R_390_32, 0, 4, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
HOWTO(R_390_PC32, 0, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
HOWTO(R_390_GOT12, 0, 2, 12, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
HOWTO(R_390_GOT32, 0, 4, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
HOWTO(R_390_PLT32, 0, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
HOWTO(R_390_COPY, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_COPY", false, 0,MINUS_ONE, false),
HOWTO(R_390_GLOB_DAT, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GLOB_DAT", false, 0,MINUS_ONE, false),
HOWTO(R_390_JMP_SLOT, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_JMP_SLOT", false, 0,MINUS_ONE, false),
HOWTO(R_390_RELATIVE, 0, 8, 64, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_RELATIVE", false, 0,MINUS_ONE, false),
HOWTO(R_390_GOTOFF32, 0, 4, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTOFF32", false, 0,MINUS_ONE, false),
HOWTO(R_390_GOTPC, 0, 8, 64, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,MINUS_ONE, true),
HOWTO(R_390_GOT16, 0, 2, 16, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
HOWTO(R_390_PC16, 0, 2, 16, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
HOWTO(R_390_PC16DBL, 1, 2, 16, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
HOWTO(R_390_PLT16DBL, 1, 2, 16, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
HOWTO(R_390_PC32DBL, 1, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PC32DBL", false, 0,0xffffffff, true),
HOWTO(R_390_PLT32DBL, 1, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLT32DBL", false, 0,0xffffffff, true),
HOWTO(R_390_GOTPCDBL, 1, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTPCDBL", false, 0,MINUS_ONE, true),
HOWTO(R_390_64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_64", false, 0,MINUS_ONE, false),
HOWTO(R_390_PC64, 0, 8, 64, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PC64", false, 0,MINUS_ONE, true),
HOWTO(R_390_GOT64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOT64", false, 0,MINUS_ONE, false),
HOWTO(R_390_PLT64, 0, 8, 64, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLT64", false, 0,MINUS_ONE, true),
HOWTO(R_390_GOTENT, 1, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTENT", false, 0,MINUS_ONE, true),
HOWTO(R_390_GOTOFF16, 0, 2, 16, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTOFF16", false, 0,0x0000ffff, false),
HOWTO(R_390_GOTOFF64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTOFF64", false, 0,MINUS_ONE, false),
HOWTO(R_390_GOTPLT12, 0, 2, 12, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "R_390_GOTPLT12", false, 0,0x00000fff, false),
HOWTO(R_390_GOTPLT16, 0, 2, 16, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTPLT16", false, 0,0x0000ffff, false),
HOWTO(R_390_GOTPLT32, 0, 4, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTPLT32", false, 0,0xffffffff, false),
HOWTO(R_390_GOTPLT64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTPLT64", false, 0,MINUS_ONE, false),
HOWTO(R_390_GOTPLTENT, 1, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_GOTPLTENT",false, 0,MINUS_ONE, true),
HOWTO(R_390_PLTOFF16, 0, 2, 16, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLTOFF16", false, 0,0x0000ffff, false),
HOWTO(R_390_PLTOFF32, 0, 4, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLTOFF32", false, 0,0xffffffff, false),
HOWTO(R_390_PLTOFF64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLTOFF64", false, 0,MINUS_ONE, false),
HOWTO(R_390_TLS_LOAD, 0, 1, 0, false, 0, complain_overflow_dont,
s390_tls_reloc, "R_390_TLS_LOAD", false, 0, 0, false),
HOWTO(R_390_TLS_GDCALL, 0, 1, 0, false, 0, complain_overflow_dont,
s390_tls_reloc, "R_390_TLS_GDCALL", false, 0, 0, false),
HOWTO(R_390_TLS_LDCALL, 0, 1, 0, false, 0, complain_overflow_dont,
s390_tls_reloc, "R_390_TLS_LDCALL", false, 0, 0, false),
EMPTY_HOWTO (R_390_TLS_GD32), /* Empty entry for R_390_TLS_GD32. */
HOWTO(R_390_TLS_GD64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_GD64", false, 0, MINUS_ONE, false),
HOWTO(R_390_TLS_GOTIE12, 0, 2, 12, false, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "R_390_TLS_GOTIE12", false, 0, 0x00000fff, false),
EMPTY_HOWTO (R_390_TLS_GOTIE32), /* Empty entry for R_390_TLS_GOTIE32. */
HOWTO(R_390_TLS_GOTIE64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_GOTIE64", false, 0, MINUS_ONE, false),
EMPTY_HOWTO (R_390_TLS_LDM32), /* Empty entry for R_390_TLS_LDM32. */
HOWTO(R_390_TLS_LDM64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_LDM64", false, 0, MINUS_ONE, false),
EMPTY_HOWTO (R_390_TLS_IE32), /* Empty entry for R_390_TLS_IE32. */
HOWTO(R_390_TLS_IE64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_IE64", false, 0, MINUS_ONE, false),
HOWTO(R_390_TLS_IEENT, 1, 4, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_IEENT", false, 0, MINUS_ONE, true),
EMPTY_HOWTO (R_390_TLS_LE32), /* Empty entry for R_390_TLS_LE32. */
HOWTO(R_390_TLS_LE64, 0, 4, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_LE64", false, 0, MINUS_ONE, false),
EMPTY_HOWTO (R_390_TLS_LDO32), /* Empty entry for R_390_TLS_LDO32. */
HOWTO(R_390_TLS_LDO64, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_LDO64", false, 0, MINUS_ONE, false),
HOWTO(R_390_TLS_DTPMOD, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_DTPMOD", false, 0, MINUS_ONE, false),
HOWTO(R_390_TLS_DTPOFF, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_DTPOFF", false, 0, MINUS_ONE, false),
HOWTO(R_390_TLS_TPOFF, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_TLS_TPOFF", false, 0, MINUS_ONE, false),
HOWTO(R_390_20, 0, 4, 20, false, 8, complain_overflow_dont,
s390_elf_ldisp_reloc, "R_390_20", false, 0,0x0fffff00, false),
HOWTO(R_390_GOT20, 0, 4, 20, false, 8, complain_overflow_dont,
s390_elf_ldisp_reloc, "R_390_GOT20", false, 0,0x0fffff00, false),
HOWTO(R_390_GOTPLT20, 0, 4, 20, false, 8, complain_overflow_dont,
s390_elf_ldisp_reloc, "R_390_GOTPLT20", false, 0,0x0fffff00, false),
HOWTO(R_390_TLS_GOTIE20, 0, 4, 20, false, 8, complain_overflow_dont,
s390_elf_ldisp_reloc, "R_390_TLS_GOTIE20", false, 0,0x0fffff00, false),
HOWTO(R_390_IRELATIVE, 0, 8, 64, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_IRELATIVE", false, 0, MINUS_ONE, false),
HOWTO(R_390_PC12DBL, 1, 2, 12, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PC12DBL", false, 0,0x00000fff, true),
HOWTO(R_390_PLT12DBL, 1, 2, 12, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLT12DBL", false, 0,0x00000fff, true),
HOWTO(R_390_PC24DBL, 1, 4, 24, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PC24DBL", false, 0,0x00ffffff, true),
HOWTO(R_390_PLT24DBL, 1, 4, 24, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_390_PLT24DBL", false, 0,0x00ffffff, true),
};
/* GNU extension to record C++ vtable hierarchy. */
static reloc_howto_type elf64_s390_vtinherit_howto =
HOWTO (R_390_GNU_VTINHERIT, 0,8,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
static reloc_howto_type elf64_s390_vtentry_howto =
HOWTO (R_390_GNU_VTENTRY, 0,8,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
static reloc_howto_type *
elf_s390_reloc_type_lookup (bfd *abfd,
bfd_reloc_code_real_type code)
{
switch (code)
{
case BFD_RELOC_NONE:
return &elf_howto_table[(int) R_390_NONE];
case BFD_RELOC_8:
return &elf_howto_table[(int) R_390_8];
case BFD_RELOC_390_12:
return &elf_howto_table[(int) R_390_12];
case BFD_RELOC_16:
return &elf_howto_table[(int) R_390_16];
case BFD_RELOC_32:
return &elf_howto_table[(int) R_390_32];
case BFD_RELOC_CTOR:
return &elf_howto_table[(int) R_390_32];
case BFD_RELOC_32_PCREL:
return &elf_howto_table[(int) R_390_PC32];
case BFD_RELOC_390_GOT12:
return &elf_howto_table[(int) R_390_GOT12];
case BFD_RELOC_32_GOT_PCREL:
return &elf_howto_table[(int) R_390_GOT32];
case BFD_RELOC_390_PLT32:
return &elf_howto_table[(int) R_390_PLT32];
case BFD_RELOC_390_COPY:
return &elf_howto_table[(int) R_390_COPY];
case BFD_RELOC_390_GLOB_DAT:
return &elf_howto_table[(int) R_390_GLOB_DAT];
case BFD_RELOC_390_JMP_SLOT:
return &elf_howto_table[(int) R_390_JMP_SLOT];
case BFD_RELOC_390_RELATIVE:
return &elf_howto_table[(int) R_390_RELATIVE];
case BFD_RELOC_32_GOTOFF:
return &elf_howto_table[(int) R_390_GOTOFF32];
case BFD_RELOC_390_GOTPC:
return &elf_howto_table[(int) R_390_GOTPC];
case BFD_RELOC_390_GOT16:
return &elf_howto_table[(int) R_390_GOT16];
case BFD_RELOC_16_PCREL:
return &elf_howto_table[(int) R_390_PC16];
case BFD_RELOC_390_PC12DBL:
return &elf_howto_table[(int) R_390_PC12DBL];
case BFD_RELOC_390_PLT12DBL:
return &elf_howto_table[(int) R_390_PLT12DBL];
case BFD_RELOC_390_PC16DBL:
return &elf_howto_table[(int) R_390_PC16DBL];
case BFD_RELOC_390_PLT16DBL:
return &elf_howto_table[(int) R_390_PLT16DBL];
case BFD_RELOC_390_PC24DBL:
return &elf_howto_table[(int) R_390_PC24DBL];
case BFD_RELOC_390_PLT24DBL:
return &elf_howto_table[(int) R_390_PLT24DBL];
case BFD_RELOC_390_PC32DBL:
return &elf_howto_table[(int) R_390_PC32DBL];
case BFD_RELOC_390_PLT32DBL:
return &elf_howto_table[(int) R_390_PLT32DBL];
case BFD_RELOC_390_GOTPCDBL:
return &elf_howto_table[(int) R_390_GOTPCDBL];
case BFD_RELOC_64:
return &elf_howto_table[(int) R_390_64];
case BFD_RELOC_64_PCREL:
return &elf_howto_table[(int) R_390_PC64];
case BFD_RELOC_390_GOT64:
return &elf_howto_table[(int) R_390_GOT64];
case BFD_RELOC_390_PLT64:
return &elf_howto_table[(int) R_390_PLT64];
case BFD_RELOC_390_GOTENT:
return &elf_howto_table[(int) R_390_GOTENT];
case BFD_RELOC_16_GOTOFF:
return &elf_howto_table[(int) R_390_GOTOFF16];
case BFD_RELOC_390_GOTOFF64:
return &elf_howto_table[(int) R_390_GOTOFF64];
case BFD_RELOC_390_GOTPLT12:
return &elf_howto_table[(int) R_390_GOTPLT12];
case BFD_RELOC_390_GOTPLT16:
return &elf_howto_table[(int) R_390_GOTPLT16];
case BFD_RELOC_390_GOTPLT32:
return &elf_howto_table[(int) R_390_GOTPLT32];
case BFD_RELOC_390_GOTPLT64:
return &elf_howto_table[(int) R_390_GOTPLT64];
case BFD_RELOC_390_GOTPLTENT:
return &elf_howto_table[(int) R_390_GOTPLTENT];
case BFD_RELOC_390_PLTOFF16:
return &elf_howto_table[(int) R_390_PLTOFF16];
case BFD_RELOC_390_PLTOFF32:
return &elf_howto_table[(int) R_390_PLTOFF32];
case BFD_RELOC_390_PLTOFF64:
return &elf_howto_table[(int) R_390_PLTOFF64];
case BFD_RELOC_390_TLS_LOAD:
return &elf_howto_table[(int) R_390_TLS_LOAD];
case BFD_RELOC_390_TLS_GDCALL:
return &elf_howto_table[(int) R_390_TLS_GDCALL];
case BFD_RELOC_390_TLS_LDCALL:
return &elf_howto_table[(int) R_390_TLS_LDCALL];
case BFD_RELOC_390_TLS_GD64:
return &elf_howto_table[(int) R_390_TLS_GD64];
case BFD_RELOC_390_TLS_GOTIE12:
return &elf_howto_table[(int) R_390_TLS_GOTIE12];
case BFD_RELOC_390_TLS_GOTIE64:
return &elf_howto_table[(int) R_390_TLS_GOTIE64];
case BFD_RELOC_390_TLS_LDM64:
return &elf_howto_table[(int) R_390_TLS_LDM64];
case BFD_RELOC_390_TLS_IE64:
return &elf_howto_table[(int) R_390_TLS_IE64];
case BFD_RELOC_390_TLS_IEENT:
return &elf_howto_table[(int) R_390_TLS_IEENT];
case BFD_RELOC_390_TLS_LE64:
return &elf_howto_table[(int) R_390_TLS_LE64];
case BFD_RELOC_390_TLS_LDO64:
return &elf_howto_table[(int) R_390_TLS_LDO64];
case BFD_RELOC_390_TLS_DTPMOD:
return &elf_howto_table[(int) R_390_TLS_DTPMOD];
case BFD_RELOC_390_TLS_DTPOFF:
return &elf_howto_table[(int) R_390_TLS_DTPOFF];
case BFD_RELOC_390_TLS_TPOFF:
return &elf_howto_table[(int) R_390_TLS_TPOFF];
case BFD_RELOC_390_20:
return &elf_howto_table[(int) R_390_20];
case BFD_RELOC_390_GOT20:
return &elf_howto_table[(int) R_390_GOT20];
case BFD_RELOC_390_GOTPLT20:
return &elf_howto_table[(int) R_390_GOTPLT20];
case BFD_RELOC_390_TLS_GOTIE20:
return &elf_howto_table[(int) R_390_TLS_GOTIE20];
case BFD_RELOC_390_IRELATIVE:
return &elf_howto_table[(int) R_390_IRELATIVE];
case BFD_RELOC_VTABLE_INHERIT:
return &elf64_s390_vtinherit_howto;
case BFD_RELOC_VTABLE_ENTRY:
return &elf64_s390_vtentry_howto;
default:
break;
}
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
static reloc_howto_type *
elf_s390_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0;
i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]);
i++)
if (elf_howto_table[i].name != NULL
&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
return &elf_howto_table[i];
if (strcasecmp (elf64_s390_vtinherit_howto.name, r_name) == 0)
return &elf64_s390_vtinherit_howto;
if (strcasecmp (elf64_s390_vtentry_howto.name, r_name) == 0)
return &elf64_s390_vtentry_howto;
return NULL;
}
/* We need to use ELF64_R_TYPE so we have our own copy of this function,
and elf64-s390.c has its own copy. */
static bool
elf_s390_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
unsigned int r_type = ELF64_R_TYPE(dst->r_info);
switch (r_type)
{
case R_390_GNU_VTINHERIT:
cache_ptr->howto = &elf64_s390_vtinherit_howto;
break;
case R_390_GNU_VTENTRY:
cache_ptr->howto = &elf64_s390_vtentry_howto;
break;
default:
if (r_type >= sizeof (elf_howto_table) / sizeof (elf_howto_table[0]))
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return false;
}
cache_ptr->howto = &elf_howto_table[r_type];
}
return true;
}
/* A relocation function which doesn't do anything. */
static bfd_reloc_status_type
s390_tls_reloc (bfd *abfd ATTRIBUTE_UNUSED,
arelent *reloc_entry,
asymbol *symbol ATTRIBUTE_UNUSED,
void * data ATTRIBUTE_UNUSED,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
if (output_bfd)
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* Handle the large displacement relocs. */
static bfd_reloc_status_type
s390_elf_ldisp_reloc (bfd *abfd,
arelent *reloc_entry,
asymbol *symbol,
void * data,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
reloc_howto_type *howto = reloc_entry->howto;
bfd_vma relocation;
bfd_vma insn;
if (output_bfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& (! howto->partial_inplace
|| reloc_entry->addend == 0))
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
if (output_bfd != NULL)
return bfd_reloc_continue;
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
relocation = (symbol->value
+ symbol->section->output_section->vma
+ symbol->section->output_offset);
relocation += reloc_entry->addend;
if (howto->pc_relative)
{
relocation -= (input_section->output_section->vma
+ input_section->output_offset);
relocation -= reloc_entry->address;
}
insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
insn |= (relocation & 0xfff) << 16 | (relocation & 0xff000) >> 4;
bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
if ((bfd_signed_vma) relocation < - 0x80000
|| (bfd_signed_vma) relocation > 0x7ffff)
return bfd_reloc_overflow;
else
return bfd_reloc_ok;
}
static bool
elf_s390_is_local_label_name (bfd *abfd, const char *name)
{
if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
return true;
return _bfd_elf_is_local_label_name (abfd, name);
}
/* Functions for the 390 ELF linker. */
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
copying dynamic variables from a shared lib into an app's dynbss
section, and instead use a dynamic relocation to point into the
shared lib. */
#define ELIMINATE_COPY_RELOCS 1
/* The size in bytes of the first entry in the procedure linkage table. */
#define PLT_FIRST_ENTRY_SIZE 32
/* The size in bytes of an entry in the procedure linkage table. */
#define PLT_ENTRY_SIZE 32
#define GOT_ENTRY_SIZE 8
#define RELA_ENTRY_SIZE sizeof (Elf64_External_Rela)
/* The first three entries in a global offset table are reserved,
and the initial contents are unimportant (we zero them out).
Subsequent entries look like this. See the SVR4 ABI 386
supplement to see how this works. */
/* For the s390, simple addr offset can only be 0 - 4096.
To use the full 16777216 TB address space, several instructions
are needed to load an address in a register and execute
a branch( or just saving the address)
Furthermore, only r 0 and 1 are free to use!!! */
/* The first 3 words in the GOT are then reserved.
Word 0 is the address of the dynamic table.
Word 1 is a pointer to a structure describing the object
Word 2 is used to point to the loader entry address.
The code for PLT entries looks like this:
The GOT holds the address in the PLT to be executed.
The loader then gets:
48(15) = Pointer to the structure describing the object.
56(15) = Offset in symbol table
The loader must then find the module where the function is
and insert the address in the GOT.
PLT1: LARL 1,<fn>@GOTENT # 6 bytes Load address of GOT entry in r1
LG 1,0(1) # 6 bytes Load address from GOT in r1
BCR 15,1 # 2 bytes Jump to address
RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
LGF 1,12(1) # 6 bytes Load rela.plt offset into r1
BRCL 15,-x # 6 bytes Jump to first PLT entry
.long ? # 4 bytes offset into .rela.plt
Total = 32 bytes per PLT entry
Fixup at offset 2: relative address to GOT entry
Fixup at offset 22: relative branch to PLT0
Fixup at offset 28: 32 bit offset into .rela.plt
A 32 bit offset into the symbol table is enough. It allows for
.rela.plt sections up to a size of 2 gigabyte. A single dynamic
object (the main program, any shared library) is limited to 4GB in
size. Having a .rela.plt of 2GB would already make the .plt
section bigger than 8GB. */
static const bfd_byte elf_s390x_plt_entry[PLT_ENTRY_SIZE] =
{
0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, /* larl %r1,. */
0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, /* lg %r1,0(%r1) */
0x07, 0xf1, /* br %r1 */
0x0d, 0x10, /* basr %r1,%r0 */
0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, /* lgf %r1,12(%r1) */
0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, /* jg first plt */
0x00, 0x00, 0x00, 0x00 /* .long 0x00000000 */
};
/* The first PLT entry pushes the offset into the symbol table
from R1 onto the stack at 56(15) and the loader object info
at 48(15), loads the loader address in R1 and jumps to it. */
/* The first entry in the PLT:
PLT0:
STG 1,56(15) # r1 contains the offset into the symbol table
LARL 1,_GLOBAL_OFFSET_TABLE # load address of global offset table
MVC 48(8,15),8(1) # move loader ino (object struct address) to stack
LG 1,16(1) # get entry address of loader
BCR 15,1 # jump to loader
Fixup at offset 8: relative address to start of GOT. */
static const bfd_byte elf_s390x_first_plt_entry[PLT_FIRST_ENTRY_SIZE] =
{
0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, /* stg %r1,56(%r15) */
0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, /* larl %r1,. */
0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, /* mvc 48(8,%r15),8(%r1) */
0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, /* lg %r1,16(%r1) */
0x07, 0xf1, /* br %r1 */
0x07, 0x00, /* nopr %r0 */
0x07, 0x00, /* nopr %r0 */
0x07, 0x00 /* nopr %r0 */
};
/* s390 ELF linker hash entry. */
struct elf_s390_link_hash_entry
{
struct elf_link_hash_entry elf;
/* Number of GOTPLT references for a function. */
bfd_signed_vma gotplt_refcount;
#define GOT_UNKNOWN 0
#define GOT_NORMAL 1
#define GOT_TLS_GD 2
#define GOT_TLS_IE 3
#define GOT_TLS_IE_NLT 3
unsigned char tls_type;
/* For pointer equality reasons we might need to change the symbol
type from STT_GNU_IFUNC to STT_FUNC together with its value and
section entry. So after alloc_dynrelocs only these values should
be used. In order to check whether a symbol is IFUNC use
s390_is_ifunc_symbol_p. */
bfd_vma ifunc_resolver_address;
asection *ifunc_resolver_section;
};
#define elf_s390_hash_entry(ent) \
((struct elf_s390_link_hash_entry *)(ent))
/* This structure represents an entry in the local PLT list needed for
local IFUNC symbols. */
struct plt_entry
{
/* The section of the local symbol.
Set in relocate_section and used in finish_dynamic_sections. */
asection *sec;
union
{
bfd_signed_vma refcount;
bfd_vma offset;
} plt;
};
/* NOTE: Keep this structure in sync with
the one declared in elf32-s390.c. */
struct elf_s390_obj_tdata
{
struct elf_obj_tdata root;
/* A local PLT is needed for ifunc symbols. */
struct plt_entry *local_plt;
/* TLS type for each local got entry. */
char *local_got_tls_type;
};
#define elf_s390_tdata(abfd) \
((struct elf_s390_obj_tdata *) (abfd)->tdata.any)
#define elf_s390_local_plt(abfd) \
(elf_s390_tdata (abfd)->local_plt)
#define elf_s390_local_got_tls_type(abfd) \
(elf_s390_tdata (abfd)->local_got_tls_type)
#define is_s390_elf(bfd) \
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
&& elf_tdata (bfd) != NULL \
&& elf_object_id (bfd) == S390_ELF_DATA)
static bool
elf_s390_mkobject (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct elf_s390_obj_tdata),
S390_ELF_DATA);
}
static bool
elf_s390_object_p (bfd *abfd)
{
/* Set the right machine number for an s390 elf32 file. */
return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_64);
}
/* s390 ELF linker hash table. */
struct elf_s390_link_hash_table
{
struct elf_link_hash_table elf;
/* Short-cuts to get to dynamic linker sections. */
asection *irelifunc;
union {
bfd_signed_vma refcount;
bfd_vma offset;
} tls_ldm_got;
/* Options passed from the linker. */
struct s390_elf_params *params;
};
/* Get the s390 ELF linker hash table from a link_info structure. */
#define elf_s390_hash_table(p) \
((is_elf_hash_table ((p)->hash) \
&& elf_hash_table_id (elf_hash_table (p)) == S390_ELF_DATA) \
? (struct elf_s390_link_hash_table *) (p)->hash : NULL)
#define ELF64 1
#include "elf-s390-common.c"
/* Create an entry in an s390 ELF linker hash table. */
static struct bfd_hash_entry *
link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct elf_s390_link_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf_s390_link_hash_entry *eh;
eh = (struct elf_s390_link_hash_entry *) entry;
eh->gotplt_refcount = 0;
eh->tls_type = GOT_UNKNOWN;
eh->ifunc_resolver_address = 0;
eh->ifunc_resolver_section = NULL;
}
return entry;
}
/* Create an s390 ELF linker hash table. */
static struct bfd_link_hash_table *
elf_s390_link_hash_table_create (bfd *abfd)
{
struct elf_s390_link_hash_table *ret;
size_t amt = sizeof (struct elf_s390_link_hash_table);
ret = (struct elf_s390_link_hash_table *) bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
sizeof (struct elf_s390_link_hash_entry),
S390_ELF_DATA))
{
free (ret);
return NULL;
}
return &ret->elf.root;
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
static void
elf_s390_copy_indirect_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *dir,
struct elf_link_hash_entry *ind)
{
struct elf_s390_link_hash_entry *edir, *eind;
edir = (struct elf_s390_link_hash_entry *) dir;
eind = (struct elf_s390_link_hash_entry *) ind;
if (ind->root.type == bfd_link_hash_indirect
&& dir->got.refcount <= 0)
{
edir->tls_type = eind->tls_type;
eind->tls_type = GOT_UNKNOWN;
}
if (ELIMINATE_COPY_RELOCS
&& ind->root.type != bfd_link_hash_indirect
&& dir->dynamic_adjusted)
{
/* If called to transfer flags for a weakdef during processing
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
if (dir->versioned != versioned_hidden)
dir->ref_dynamic |= ind->ref_dynamic;
dir->ref_regular |= ind->ref_regular;
dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
dir->needs_plt |= ind->needs_plt;
}
else
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
}
static int
elf_s390_tls_transition (struct bfd_link_info *info,
int r_type,
int is_local)
{
if (bfd_link_dll (info))
return r_type;
switch (r_type)
{
case R_390_TLS_GD64:
case R_390_TLS_IE64:
if (is_local)
return R_390_TLS_LE64;
return R_390_TLS_IE64;
case R_390_TLS_GOTIE64:
if (is_local)
return R_390_TLS_LE64;
return R_390_TLS_GOTIE64;
case R_390_TLS_LDM64:
return R_390_TLS_LE64;
}
return r_type;
}
/* Look through the relocs for a section during the first phase, and
allocate space in the global offset table or procedure linkage
table. */
static bool
elf_s390_check_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
struct elf_s390_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sreloc;
bfd_signed_vma *local_got_refcounts;
int tls_type, old_tls_type;
if (bfd_link_relocatable (info))
return true;
BFD_ASSERT (is_s390_elf (abfd));
htab = elf_s390_hash_table (info);
if (htab == NULL)
return false;
symtab_hdr = &elf_symtab_hdr (abfd);
sym_hashes = elf_sym_hashes (abfd);
local_got_refcounts = elf_local_got_refcounts (abfd);
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned int r_type;
unsigned int r_symndx;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *isym;
r_symndx = ELF64_R_SYM (rel->r_info);
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: bad symbol index: %d"),
abfd, r_symndx);
return false;
}
if (r_symndx < symtab_hdr->sh_info)
{
/* A local symbol. */
isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
abfd, r_symndx);
if (isym == NULL)
return false;
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
{
struct plt_entry *plt;
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!s390_elf_create_ifunc_sections (htab->elf.dynobj, info))
return false;
if (local_got_refcounts == NULL)
{
if (!elf_s390_allocate_local_syminfo (abfd, symtab_hdr))
return false;
local_got_refcounts = elf_local_got_refcounts (abfd);
}
plt = elf_s390_local_plt (abfd);
plt[r_symndx].plt.refcount++;
}
h = NULL;
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
/* Create got section and local_got_refcounts array if they
are needed. */
r_type = elf_s390_tls_transition (info,
ELF64_R_TYPE (rel->r_info),
h == NULL);
switch (r_type)
{
case R_390_GOT12:
case R_390_GOT16:
case R_390_GOT20:
case R_390_GOT32:
case R_390_GOT64:
case R_390_GOTENT:
case R_390_GOTPLT12:
case R_390_GOTPLT16:
case R_390_GOTPLT20:
case R_390_GOTPLT32:
case R_390_GOTPLT64:
case R_390_GOTPLTENT:
case R_390_TLS_GD64:
case R_390_TLS_GOTIE12:
case R_390_TLS_GOTIE20:
case R_390_TLS_GOTIE64:
case R_390_TLS_IEENT:
case R_390_TLS_IE64:
case R_390_TLS_LDM64:
if (h == NULL
&& local_got_refcounts == NULL)
{
if (!elf_s390_allocate_local_syminfo (abfd, symtab_hdr))
return false;
local_got_refcounts = elf_local_got_refcounts (abfd);
}
/* Fall through. */
case R_390_GOTOFF16:
case R_390_GOTOFF32:
case R_390_GOTOFF64:
case R_390_GOTPC:
case R_390_GOTPCDBL:
if (htab->elf.sgot == NULL)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!_bfd_elf_create_got_section (htab->elf.dynobj, info))
return false;
}
}
if (h != NULL)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!s390_elf_create_ifunc_sections (htab->elf.dynobj, info))
return false;
/* Make sure an IFUNC symbol defined in a non-shared object
always gets a PLT slot. */
if (s390_is_ifunc_symbol_p (h) && h->def_regular)
{
/* The symbol is called by the dynamic loader in order
to resolve the relocation. So it is in fact also
referenced. */
h->ref_regular = 1;
h->needs_plt = 1;
}
}
switch (r_type)
{
case R_390_GOTPC:
case R_390_GOTPCDBL:
/* These relocs do not need a GOT slot. They just load the
GOT pointer itself or address something else relative to
the GOT. Since the GOT pointer has been set up above we
are done. */
break;
case R_390_GOTOFF16:
case R_390_GOTOFF32:
case R_390_GOTOFF64:
if (h == NULL || !s390_is_ifunc_symbol_p (h) || !h->def_regular)
break;
/* Fall through. */
case R_390_PLT12DBL:
case R_390_PLT16DBL:
case R_390_PLT24DBL:
case R_390_PLT32:
case R_390_PLT32DBL:
case R_390_PLT64:
case R_390_PLTOFF16:
case R_390_PLTOFF32:
case R_390_PLTOFF64:
/* This symbol requires a procedure linkage table entry. We
actually build the entry in adjust_dynamic_symbol,
because this might be a case of linking PIC code which is
never referenced by a dynamic object, in which case we
don't need to generate a procedure linkage table entry
after all. */
/* If this is a local symbol, we resolve it directly without
creating a procedure linkage table entry. */
if (h != NULL)
{
h->needs_plt = 1;
h->plt.refcount += 1;
}
break;
case R_390_GOTPLT12:
case R_390_GOTPLT16:
case R_390_GOTPLT20:
case R_390_GOTPLT32:
case R_390_GOTPLT64:
case R_390_GOTPLTENT:
/* This symbol requires either a procedure linkage table entry
or an entry in the local got. We actually build the entry
in adjust_dynamic_symbol because whether this is really a
global reference can change and with it the fact if we have
to create a plt entry or a local got entry. To be able to
make a once global symbol a local one we have to keep track
of the number of gotplt references that exist for this
symbol. */
if (h != NULL)
{
((struct elf_s390_link_hash_entry *) h)->gotplt_refcount++;
h->needs_plt = 1;
h->plt.refcount += 1;
}
else
local_got_refcounts[r_symndx] += 1;
break;
case R_390_TLS_LDM64:
htab->tls_ldm_got.refcount += 1;
break;
case R_390_TLS_IE64:
case R_390_TLS_GOTIE12:
case R_390_TLS_GOTIE20:
case R_390_TLS_GOTIE64:
case R_390_TLS_IEENT:
if (bfd_link_dll (info))
info->flags |= DF_STATIC_TLS;
/* Fall through */
case R_390_GOT12:
case R_390_GOT16:
case R_390_GOT20:
case R_390_GOT32:
case R_390_GOT64:
case R_390_GOTENT:
case R_390_TLS_GD64:
/* This symbol requires a global offset table entry. */
switch (r_type)
{
default:
case R_390_GOT12:
case R_390_GOT16:
case R_390_GOT20:
case R_390_GOT32:
case R_390_GOTENT:
tls_type = GOT_NORMAL;
break;
case R_390_TLS_GD64:
tls_type = GOT_TLS_GD;
break;
case R_390_TLS_IE64:
case R_390_TLS_GOTIE64:
tls_type = GOT_TLS_IE;
break;
case R_390_TLS_GOTIE12:
case R_390_TLS_GOTIE20:
case R_390_TLS_IEENT:
tls_type = GOT_TLS_IE_NLT;
break;
}
if (h != NULL)
{
h->got.refcount += 1;
old_tls_type = elf_s390_hash_entry(h)->tls_type;
}
else
{
local_got_refcounts[r_symndx] += 1;
old_tls_type = elf_s390_local_got_tls_type (abfd) [r_symndx];
}
/* If a TLS symbol is accessed using IE at least once,
there is no point to use dynamic model for it. */
if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN)
{
if (old_tls_type == GOT_NORMAL || tls_type == GOT_NORMAL)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: `%s' accessed both as normal and thread local symbol"),
abfd, h->root.root.string);
return false;
}
if (old_tls_type > tls_type)
tls_type = old_tls_type;
}
if (old_tls_type != tls_type)
{
if (h != NULL)
elf_s390_hash_entry (h)->tls_type = tls_type;
else
elf_s390_local_got_tls_type (abfd) [r_symndx] = tls_type;
}
if (r_type != R_390_TLS_IE64)
break;
/* Fall through */
case R_390_TLS_LE64:
/* For static linking and executables this reloc will be
calculated at linktime otherwise a TLS_TPOFF runtime
reloc will be generated. */
if (r_type == R_390_TLS_LE64 && bfd_link_pie (info))
break;
if (!bfd_link_dll (info))
break;
info->flags |= DF_STATIC_TLS;
/* Fall through */
case R_390_8:
case R_390_16:
case R_390_32:
case R_390_64:
case R_390_PC12DBL:
case R_390_PC16:
case R_390_PC16DBL:
case R_390_PC24DBL:
case R_390_PC32:
case R_390_PC32DBL:
case R_390_PC64:
if (h != NULL && bfd_link_executable (info))
{
/* If this reloc is in a read-only section, we might
need a copy reloc. We can't check reliably at this
stage whether the section is read-only, as input
sections have not yet been mapped to output sections.
Tentatively set the flag for now, and correct in
adjust_dynamic_symbol. */
h->non_got_ref = 1;
if (!bfd_link_pic (info))
{
/* We may need a .plt entry if the function this reloc
refers to is in a shared lib. */
h->plt.refcount += 1;
}
}
/* If we are creating a shared library, and this is a reloc
against a global symbol, or a non PC relative reloc
against a local symbol, then we need to copy the reloc
into the shared library. However, if we are linking with
-Bsymbolic, we do not need to copy a reloc against a
global symbol which is defined in an object we are
including in the link (i.e., DEF_REGULAR is set). At
this point we have not seen all the input files, so it is
possible that DEF_REGULAR is not set now but will be set
later (it is never cleared). In case of a weak definition,
DEF_REGULAR may be cleared later by a strong definition in
a shared library. We account for that possibility below by
storing information in the relocs_copied field of the hash
table entry. A similar situation occurs when creating
shared libraries and symbol visibility changes render the
symbol local.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol. */
if ((bfd_link_pic (info)
&& (sec->flags & SEC_ALLOC) != 0
&& ((ELF64_R_TYPE (rel->r_info) != R_390_PC16
&& ELF64_R_TYPE (rel->r_info) != R_390_PC12DBL
&& ELF64_R_TYPE (rel->r_info) != R_390_PC16DBL
&& ELF64_R_TYPE (rel->r_info) != R_390_PC24DBL
&& ELF64_R_TYPE (rel->r_info) != R_390_PC32
&& ELF64_R_TYPE (rel->r_info) != R_390_PC32DBL
&& ELF64_R_TYPE (rel->r_info) != R_390_PC64)
|| (h != NULL
&& (! SYMBOLIC_BIND (info, h)
|| h->root.type == bfd_link_hash_defweak
|| !h->def_regular))))
|| (ELIMINATE_COPY_RELOCS
&& !bfd_link_pic (info)
&& (sec->flags & SEC_ALLOC) != 0
&& h != NULL
&& (h->root.type == bfd_link_hash_defweak
|| !h->def_regular)))
{
struct elf_dyn_relocs *p;
struct elf_dyn_relocs **head;
/* We must copy these reloc types into the output file.
Create a reloc section in dynobj and make room for
this reloc. */
if (sreloc == NULL)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
sreloc = _bfd_elf_make_dynamic_reloc_section
(sec, htab->elf.dynobj, 3, abfd, /*rela?*/ true);
if (sreloc == NULL)
return false;
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (h != NULL)
{
head = &h->dyn_relocs;
}
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
asection *s;
void *vpp;
isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
abfd, r_symndx);
if (isym == NULL)
return false;
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
if (s == NULL)
s = sec;
vpp = &elf_section_data (s)->local_dynrel;
head = (struct elf_dyn_relocs **) vpp;
}
p = *head;
if (p == NULL || p->sec != sec)
{
size_t amt = sizeof *p;
p = ((struct elf_dyn_relocs *)
bfd_alloc (htab->elf.dynobj, amt));
if (p == NULL)
return false;
p->next = *head;
*head = p;
p->sec = sec;
p->count = 0;
p->pc_count = 0;
}
p->count += 1;
if (ELF64_R_TYPE (rel->r_info) == R_390_PC16
|| ELF64_R_TYPE (rel->r_info) == R_390_PC12DBL
|| ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL
|| ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL
|| ELF64_R_TYPE (rel->r_info) == R_390_PC32
|| ELF64_R_TYPE (rel->r_info) == R_390_PC32DBL
|| ELF64_R_TYPE (rel->r_info) == R_390_PC64)
p->pc_count += 1;
}
break;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_390_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return false;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_390_GNU_VTENTRY:
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return false;
break;
default:
break;
}
}
return true;
}
/* Return the section that should be marked against GC for a given
relocation. */
static asection *
elf_s390_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
if (h != NULL)
switch (ELF64_R_TYPE (rel->r_info))
{
case R_390_GNU_VTINHERIT:
case R_390_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
/* Make sure we emit a GOT entry if the symbol was supposed to have a PLT
entry but we found we will not create any. Called when we find we will
not have any PLT for this symbol, by for example
elf_s390_adjust_dynamic_symbol when we're doing a proper dynamic link,
or elf_s390_size_dynamic_sections if no dynamic sections will be
created (we're only linking static objects). */
static void
elf_s390_adjust_gotplt (struct elf_s390_link_hash_entry *h)
{
if (h->elf.root.type == bfd_link_hash_warning)
h = (struct elf_s390_link_hash_entry *) h->elf.root.u.i.link;
if (h->gotplt_refcount <= 0)
return;
/* We simply add the number of gotplt references to the number
* of got references for this symbol. */
h->elf.got.refcount += h->gotplt_refcount;
h->gotplt_refcount = -1;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bool
elf_s390_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
struct elf_s390_link_hash_table *htab;
asection *s, *srel;
/* STT_GNU_IFUNC symbol must go through PLT. */
if (s390_is_ifunc_symbol_p (h))
{
/* All local STT_GNU_IFUNC references must be treated as local
calls via local PLT. */
if (h->ref_regular && SYMBOL_CALLS_LOCAL (info, h))
{
bfd_size_type pc_count = 0, count = 0;
struct elf_dyn_relocs **pp;
struct elf_dyn_relocs *p;
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
{
pc_count += p->pc_count;
p->count -= p->pc_count;
p->pc_count = 0;
count += p->count;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
if (pc_count || count)
{
h->needs_plt = 1;
h->non_got_ref = 1;
if (h->plt.refcount <= 0)
h->plt.refcount = 1;
else
h->plt.refcount += 1;
}
}
if (h->plt.refcount <= 0)
{
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
return true;
}
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later
(although we could actually do it here). */
if (h->type == STT_FUNC
|| h->needs_plt)
{
if (h->plt.refcount <= 0
|| SYMBOL_CALLS_LOCAL (info, h)
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
{
/* This case can occur if we saw a PLT32 reloc in an input
file, but the symbol was never referred to by a dynamic
object, or if all references were garbage collected. In
such a case, we don't actually need to build a procedure
linkage table, and we can just do a PC32 reloc instead. */
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
elf_s390_adjust_gotplt((struct elf_s390_link_hash_entry *) h);
}
return true;
}
else
/* It's possible that we incorrectly decided a .plt reloc was
needed for an R_390_PC32 reloc to a non-function sym in
check_relocs. We can't decide accurately between function and
non-function syms in check-relocs; Objects loaded later in
the link may change h->type. So fix it now. */
h->plt.offset = (bfd_vma) -1;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->is_weakalias)
{
struct elf_link_hash_entry *def = weakdef (h);
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
h->root.u.def.section = def->root.u.def.section;
h->root.u.def.value = def->root.u.def.value;
if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
h->non_got_ref = def->non_got_ref;
return true;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (bfd_link_pic (info))
return true;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if (!h->non_got_ref)
return true;
/* If -z nocopyreloc was given, we won't generate them either. */
if (info->nocopyreloc)
{
h->non_got_ref = 0;
return true;
}
/* If we don't find any dynamic relocs in read-only sections, then
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
if (ELIMINATE_COPY_RELOCS && !_bfd_elf_readonly_dynrelocs (h))
{
h->non_got_ref = 0;
return true;
}
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
htab = elf_s390_hash_table (info);
if (htab == NULL)
return false;
/* We must generate a R_390_COPY reloc to tell the dynamic linker to
copy the initial value out of the dynamic object and into the
runtime process image. */
if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
{
s = htab->elf.sdynrelro;
srel = htab->elf.sreldynrelro;
}
else
{
s = htab->elf.sdynbss;
srel = htab->elf.srelbss;
}
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
{
srel->size += sizeof (Elf64_External_Rela);
h->needs_copy = 1;
}
return _bfd_elf_adjust_dynamic_copy (info, h, s);
}
/* Allocate space in .plt, .got and associated reloc sections for
dynamic relocs. */
static bool
allocate_dynrelocs (struct elf_link_hash_entry *h,
void * inf)
{
struct bfd_link_info *info;
struct elf_s390_link_hash_table *htab;
struct elf_dyn_relocs *p;
if (h->root.type == bfd_link_hash_indirect)
return true;
info = (struct bfd_link_info *) inf;
htab = elf_s390_hash_table (info);
if (htab == NULL)
return false;
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
here if it is defined and referenced in a non-shared object. */
if (s390_is_ifunc_symbol_p (h) && h->def_regular)
return s390_elf_allocate_ifunc_dyn_relocs (info, h);
else if (htab->elf.dynamic_sections_created
&& h->plt.refcount > 0)
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
if (bfd_link_pic (info)
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
{
asection *s = htab->elf.splt;
/* If this is the first .plt entry, make room for the special
first entry. */
if (s->size == 0)
s->size += PLT_FIRST_ENTRY_SIZE;
h->plt.offset = s->size;
/* If this symbol is not defined in a regular file, and we are
not generating a shared library, then set the symbol to this
location in the .plt. This is required to make function
pointers compare as equal between the normal executable and
the shared library. */
if (! bfd_link_pic (info)
&& !h->def_regular)
{
h->root.u.def.section = s;
h->root.u.def.value = h->plt.offset;
}
/* Make room for this entry. */
s->size += PLT_ENTRY_SIZE;
/* We also need to make an entry in the .got.plt section. */
htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
/* We also need to make an entry in the .rela.plt section. */
htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
}
else
{
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
elf_s390_adjust_gotplt((struct elf_s390_link_hash_entry *) h);
}
}
else
{
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
elf_s390_adjust_gotplt((struct elf_s390_link_hash_entry *) h);
}
/* If R_390_TLS_{IE64,GOTIE64,GOTIE12,IEENT} symbol is now local to
the binary, we can optimize a bit. IE64 and GOTIE64 get converted
to R_390_TLS_LE64 requiring no TLS entry. For GOTIE12 and IEENT
we can save the dynamic TLS relocation. */
if (h->got.refcount > 0
&& !bfd_link_dll (info)
&& h->dynindx == -1
&& elf_s390_hash_entry(h)->tls_type >= GOT_TLS_IE)
{
if (elf_s390_hash_entry(h)->tls_type == GOT_TLS_IE_NLT)
/* For the GOTIE access without a literal pool entry the offset has
to be stored somewhere. The immediate value in the instruction
is not bit enough so the value is stored in the got. */
{
h->got.offset = htab->elf.sgot->size;
htab->elf.sgot->size += GOT_ENTRY_SIZE;
}
else
h->got.offset = (bfd_vma) -1;
}
else if (h->got.refcount > 0)
{
asection *s;
bool dyn;
int tls_type = elf_s390_hash_entry(h)->tls_type;
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
s = htab->elf.sgot;
h->got.offset = s->size;
s->size += GOT_ENTRY_SIZE;
/* R_390_TLS_GD64 needs 2 consecutive GOT slots. */
if (tls_type == GOT_TLS_GD)
s->size += GOT_ENTRY_SIZE;
dyn = htab->elf.dynamic_sections_created;
/* R_390_TLS_IE64 needs one dynamic relocation,
R_390_TLS_GD64 needs one if local symbol and two if global. */
if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
|| tls_type >= GOT_TLS_IE)
htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
else if (tls_type == GOT_TLS_GD)
htab->elf.srelgot->size += 2 * sizeof (Elf64_External_Rela);
else if (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)
&& (bfd_link_pic (info)
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
}
else
h->got.offset = (bfd_vma) -1;
if (h->dyn_relocs == NULL)
return true;
/* In the shared -Bsymbolic case, discard space allocated for
dynamic pc-relative relocs against symbols which turn out to be
defined in regular objects. For the normal shared case, discard
space for pc-relative relocs that have become local due to symbol
visibility changes. */
if (bfd_link_pic (info))
{
if (SYMBOL_CALLS_LOCAL (info, h))
{
struct elf_dyn_relocs **pp;
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
{
p->count -= p->pc_count;
p->pc_count = 0;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
}
/* Also discard relocs on undefined weak syms with non-default
visibility. */
if (h->dyn_relocs != NULL
&& h->root.type == bfd_link_hash_undefweak)
{
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
h->dyn_relocs = NULL;
/* Make sure undefined weak symbols are output as a dynamic
symbol in PIEs. */
else if (h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
}
}
else if (ELIMINATE_COPY_RELOCS)
{
/* For the non-shared case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. */
if (!h->non_got_ref
&& ((h->def_dynamic
&& !h->def_regular)
|| (htab->elf.dynamic_sections_created
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined))))
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
/* If that succeeded, we know we'll be keeping all the
relocs. */
if (h->dynindx != -1)
goto keep;
}
h->dyn_relocs = NULL;
keep: ;
}
/* Finally, allocate space. */
for (p = h->dyn_relocs; p != NULL; p = p->next)
{
asection *sreloc = elf_section_data (p->sec)->sreloc;
sreloc->size += p->count * sizeof (Elf64_External_Rela);
}
return true;
}
/* Set the sizes of the dynamic sections. */
static bool
elf_s390_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
struct elf_s390_link_hash_table *htab;
bfd *dynobj;
asection *s;
bool relocs;
bfd *ibfd;
htab = elf_s390_hash_table (info);
if (htab == NULL)
return false;
dynobj = htab->elf.dynobj;
if (dynobj == NULL)
abort ();
if (htab->elf.dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
s = bfd_get_linker_section (dynobj, ".interp");
if (s == NULL)
abort ();
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
if (htab->elf.sgot && s390_gotplt_after_got_p (info))
{
/* _bfd_elf_create_got_section adds the got header size always
to .got.plt but we need it in .got if this section comes
first. */
htab->elf.sgot->size += 3 * GOT_ENTRY_SIZE;
htab->elf.sgotplt->size -= 3 * GOT_ENTRY_SIZE;
/* Make the _GLOBAL_OFFSET_TABLE_ symbol point to the .got
instead of .got.plt. */
htab->elf.hgot->root.u.def.section = htab->elf.sgot;
htab->elf.hgot->root.u.def.value = 0;
}
/* Set up .got offsets for local syms, and space for local dynamic
relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
char *local_tls_type;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
asection *srela;
struct plt_entry *local_plt;
unsigned int i;
if (! is_s390_elf (ibfd))
continue;
for (s = ibfd->sections; s != NULL; s = s->next)
{
struct elf_dyn_relocs *p;
for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
{
if (!bfd_is_abs_section (p->sec)
&& bfd_is_abs_section (p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (p->count != 0)
{
srela = elf_section_data (p->sec)->sreloc;
srela->size += p->count * sizeof (Elf64_External_Rela);
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
info->flags |= DF_TEXTREL;
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_symtab_hdr (ibfd);
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_tls_type = elf_s390_local_got_tls_type (ibfd);
s = htab->elf.sgot;
srela = htab->elf.srelgot;
for (; local_got < end_local_got; ++local_got, ++local_tls_type)
{
if (*local_got > 0)
{
*local_got = s->size;
s->size += GOT_ENTRY_SIZE;
if (*local_tls_type == GOT_TLS_GD)
s->size += GOT_ENTRY_SIZE;
if (bfd_link_pic (info))
srela->size += sizeof (Elf64_External_Rela);
}
else
*local_got = (bfd_vma) -1;
}
local_plt = elf_s390_local_plt (ibfd);
for (i = 0; i < symtab_hdr->sh_info; i++)
{
if (local_plt[i].plt.refcount > 0)
{
local_plt[i].plt.offset = htab->elf.iplt->size;
htab->elf.iplt->size += PLT_ENTRY_SIZE;
htab->elf.igotplt->size += GOT_ENTRY_SIZE;
htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
}
else
local_plt[i].plt.offset = (bfd_vma) -1;
}
}
if (htab->tls_ldm_got.refcount > 0)
{
/* Allocate 2 got entries and 1 dynamic reloc for R_390_TLS_LDM64
relocs. */
htab->tls_ldm_got.offset = htab->elf.sgot->size;
htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
}
else
htab->tls_ldm_got.offset = -1;
/* Allocate global sym .plt and .got entries, and space for global
sym dynamic relocs. */
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
/* We now have determined the sizes of the various dynamic sections.
Allocate memory for them. */
relocs = false;
for (s = dynobj->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
if (s == htab->elf.splt
|| s == htab->elf.sgot
|| s == htab->elf.sgotplt
|| s == htab->elf.sdynbss
|| s == htab->elf.sdynrelro
|| s == htab->elf.iplt
|| s == htab->elf.igotplt
|| s == htab->irelifunc)
{
/* Strip this section if we don't need it; see the
comment below. */
}
else if (startswith (bfd_section_name (s), ".rela"))
{
if (s->size != 0 && s != htab->elf.srelplt)
{
relocs = true;
if (s == htab->elf.irelplt)
{
/* In static-pie case, there are IRELATIVE-relocs in
.rela.iplt (htab->irelplt), which will later be grouped
to .rela.plt. On s390, the IRELATIVE relocations are
always located in .rela.iplt - even for non-static case.
Ensure that DT_JMPREL, DT_PLTRELA, DT_PLTRELASZ is added
to the dynamic section even if htab->srelplt->size == 0.
See _bfd_elf_add_dynamic_tags in bfd/elflink.c. */
htab->elf.dt_jmprel_required = true;
}
}
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
else
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (s->size == 0)
{
/* If we don't need this section, strip it from the
output file. This is to handle .rela.bss and
.rela.plt. We must create it in
create_dynamic_sections, because it must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
s->flags |= SEC_EXCLUDE;
continue;
}
if ((s->flags & SEC_HAS_CONTENTS) == 0)
continue;
/* Allocate memory for the section contents. We use bfd_zalloc
here in case unused entries are not reclaimed before the
section's contents are written out. This should not happen,
but this way if it does, we get a R_390_NONE reloc instead
of garbage. */
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
if (s->contents == NULL)
return false;
}
return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
}
/* Return the base VMA address which should be subtracted from real addresses
when resolving @dtpoff relocation.
This is PT_TLS segment p_vaddr. */
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
{
/* If tls_sec is NULL, we should have signalled an error already. */
if (elf_hash_table (info)->tls_sec == NULL)
return 0;
return elf_hash_table (info)->tls_sec->vma;
}
/* Return the relocation value for @tpoff relocation
if STT_TLS virtual address is ADDRESS. */
static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
/* If tls_sec is NULL, we should have signalled an error already. */
if (htab->tls_sec == NULL)
return 0;
return htab->tls_size + htab->tls_sec->vma - address;
}
/* Complain if TLS instruction relocation is against an invalid
instruction. */
static void
invalid_tls_insn (bfd *input_bfd,
asection *input_section,
Elf_Internal_Rela *rel)
{
reloc_howto_type *howto;
howto = elf_howto_table + ELF64_R_TYPE (rel->r_info);
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): invalid instruction for TLS relocation %s"),
input_bfd,
input_section,
(uint64_t) rel->r_offset,
howto->name);
bfd_set_error (bfd_error_bad_value);
}
/* Relocate a 390 ELF section. */
static int
elf_s390_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
struct elf_s390_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
if (!is_s390_elf (input_bfd))
{
bfd_set_error (bfd_error_wrong_format);
return false;
}
htab = elf_s390_hash_table (info);
if (htab == NULL)
return false;
symtab_hdr = &elf_symtab_hdr (input_bfd);
sym_hashes = elf_sym_hashes (input_bfd);
local_got_offsets = elf_local_got_offsets (input_bfd);
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
unsigned int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma off;
bfd_vma relocation;
bool unresolved_reloc;
bfd_reloc_status_type r;
int tls_type;
bool resolved_to_zero;
r_type = ELF64_R_TYPE (rel->r_info);
if (r_type == (int) R_390_GNU_VTINHERIT
|| r_type == (int) R_390_GNU_VTENTRY)
continue;
if (r_type >= (int) R_390_max)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
howto = elf_howto_table + r_type;
r_symndx = ELF64_R_SYM (rel->r_info);
h = NULL;
sym = NULL;
sec = NULL;
unresolved_reloc = false;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
{
struct plt_entry *local_plt = elf_s390_local_plt (input_bfd);
if (local_plt == NULL)
return false;
/* Address of the PLT slot. */
relocation = (htab->elf.iplt->output_section->vma
+ htab->elf.iplt->output_offset
+ local_plt[r_symndx].plt.offset);
switch (r_type)
{
case R_390_PLTOFF16:
case R_390_PLTOFF32:
case R_390_PLTOFF64:
relocation -= s390_got_pointer (info);
break;
case R_390_GOTPLT12:
case R_390_GOTPLT16:
case R_390_GOTPLT20:
case R_390_GOTPLT32:
case R_390_GOTPLT64:
case R_390_GOTPLTENT:
case R_390_GOT12:
case R_390_GOT16:
case R_390_GOT20:
case R_390_GOT32:
case R_390_GOT64:
case R_390_GOTENT:
{
/* Write the PLT slot address into the GOT slot. */
bfd_put_64 (output_bfd, relocation,
htab->elf.sgot->contents +
local_got_offsets[r_symndx]);
relocation = (local_got_offsets[r_symndx] +
s390_got_offset (info));
if (r_type == R_390_GOTENT || r_type == R_390_GOTPLTENT)
relocation += s390_got_pointer (info);
break;
}
default:
break;
}
/* The output section is needed later in
finish_dynamic_section when creating the dynamic
relocation. */
local_plt[r_symndx].sec = sec;
goto do_relocation;
}
else
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
}
else
{
bool warned ATTRIBUTE_UNUSED;
bool ignored ATTRIBUTE_UNUSED;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned, ignored);
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (bfd_link_relocatable (info))
continue;
resolved_to_zero = (h != NULL
&& UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
switch (r_type)
{
case R_390_GOTPLT12:
case R_390_GOTPLT16:
case R_390_GOTPLT20:
case R_390_GOTPLT32:
case R_390_GOTPLT64:
case R_390_GOTPLTENT:
/* There are three cases for a GOTPLT relocation. 1) The
relocation is against the jump slot entry of a plt that
will get emitted to the output file. 2) The relocation
is against the jump slot of a plt entry that has been
removed. elf_s390_adjust_gotplt has created a GOT entry
as replacement. 3) The relocation is against a local symbol.
Cases 2) and 3) are the same as the GOT relocation code
so we just have to test for case 1 and fall through for
the other two. */
if (h != NULL && h->plt.offset != (bfd_vma) -1)
{
bfd_vma plt_index;
if (s390_is_ifunc_symbol_p (h))
{
/* Entry indices of .iplt and .igot.plt match
1:1. No magic PLT first entry here. */
plt_index = h->plt.offset / PLT_ENTRY_SIZE;
relocation = (plt_index * GOT_ENTRY_SIZE
+ s390_gotplt_offset (info)
+ htab->elf.igotplt->output_offset);
}
else
{
plt_index = ((h->plt.offset - PLT_FIRST_ENTRY_SIZE)
/ PLT_ENTRY_SIZE);
relocation = (plt_index * GOT_ENTRY_SIZE
+ s390_gotplt_offset (info));
}
if (r_type == R_390_GOTPLTENT)
relocation += s390_got_pointer (info);
unresolved_reloc = false;
break;
}
/* Fall through. */
case R_390_GOT12:
case R_390_GOT16:
case R_390_GOT20:
case R_390_GOT32:
case R_390_GOT64:
case R_390_GOTENT:
/* Relocation is to the entry for this symbol in the global
offset table. */
if (htab->elf.sgot == NULL)
abort ();
if (h != NULL)
{
bool dyn;
off = h->got.offset;
dyn = htab->elf.dynamic_sections_created;
if (s390_is_ifunc_symbol_p (h))
{
BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
if (off == (bfd_vma)-1)
{
/* No explicit GOT usage so redirect to the
got.iplt slot. */
relocation = (s390_gotplt_offset (info)
+ htab->elf.igotplt->output_offset
+ (h->plt.offset / PLT_ENTRY_SIZE
* GOT_ENTRY_SIZE));
/* For @GOTENT the relocation is against the offset between
the instruction and the symbols entry in the GOT and not
between the start of the GOT and the symbols entry. We
add the vma of the GOT to get the correct value. */
if (r_type == R_390_GOTENT || r_type == R_390_GOTPLTENT)
relocation += s390_got_pointer (info);
break;
}
else
{
/* Explicit GOT slots must contain the address
of the PLT slot. This will be handled in
finish_dynamic_symbol. */
}
}
else if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
bfd_link_pic (info),
h)
|| (bfd_link_pic (info)
&& SYMBOL_REFERENCES_LOCAL (info, h))
|| resolved_to_zero)
{
Elf_Internal_Sym *isym;
asection *sym_sec;
/* This is actually a static link, or it is a
-Bsymbolic link and the symbol is defined
locally, or the symbol was forced to be local
because of a version file. We must initialize
this entry in the global offset table. Since the
offset must always be a multiple of 2, we use the
least significant bit to record whether we have
initialized it already.
When doing a dynamic link, we create a .rel.got
relocation entry to initialize the value. This
is done in the finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, relocation,
htab->elf.sgot->contents + off);
h->got.offset |= 1;
}
/* When turning a GOT slot dereference into a direct
reference using larl we have to make sure that
the symbol is 1. properly aligned and 2. it is no
ABS symbol or will become one. */
if ((h->def_regular
&& bfd_link_pic (info)
&& SYMBOL_REFERENCES_LOCAL (info, h))
/* lgrl rx,sym@GOTENT -> larl rx, sym */
&& ((r_type == R_390_GOTENT
&& (bfd_get_16 (input_bfd,
contents + rel->r_offset - 2)
& 0xff0f) == 0xc408)
/* lg rx, sym@GOT(r12) -> larl rx, sym */
|| (r_type == R_390_GOT20
&& (bfd_get_32 (input_bfd,
contents + rel->r_offset - 2)
& 0xff00f000) == 0xe300c000
&& bfd_get_8 (input_bfd,
contents + rel->r_offset + 3) == 0x04))
&& (isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
input_bfd, r_symndx))
&& isym->st_shndx != SHN_ABS
&& h != htab->elf.hdynamic
&& h != htab->elf.hgot
&& h != htab->elf.hplt
&& !(isym->st_value & 1)
&& (sym_sec = bfd_section_from_elf_index (input_bfd,
isym->st_shndx))
&& sym_sec->alignment_power)
{
unsigned short new_insn =
(0xc000 | (bfd_get_8 (input_bfd,
contents + rel->r_offset - 1) & 0xf0));
bfd_put_16 (output_bfd, new_insn,
contents + rel->r_offset - 2);
r_type = R_390_PC32DBL;
rel->r_addend = 2;
howto = elf_howto_table + r_type;
relocation = h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset;
goto do_relocation;
}
}
else
unresolved_reloc = false;
}
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
/* The offset must always be a multiple of 8. We use
the least significant bit to record whether we have
already generated the necessary reloc. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, relocation,
htab->elf.sgot->contents + off);
if (bfd_link_pic (info))
{
asection *s;
Elf_Internal_Rela outrel;
bfd_byte *loc;
s = htab->elf.srelgot;
if (s == NULL)
abort ();
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ off);
outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
outrel.r_addend = relocation;
loc = s->contents;
loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
}
local_got_offsets[r_symndx] |= 1;
}
}
if (off >= (bfd_vma) -2)
abort ();
relocation = s390_got_offset (info) + off;
/* For @GOTENT the relocation is against the offset between
the instruction and the symbols entry in the GOT and not
between the start of the GOT and the symbols entry. We
add the vma of the GOT to get the correct value. */
if ( r_type == R_390_GOTENT
|| r_type == R_390_GOTPLTENT)
relocation += s390_got_pointer (info);
break;
case R_390_GOTOFF16:
case R_390_GOTOFF32:
case R_390_GOTOFF64:
/* Relocation is relative to the start of the global offset
table. */
if (h != NULL
&& s390_is_ifunc_symbol_p (h)
&& h->def_regular
&& !bfd_link_executable (info))
{
relocation = (htab->elf.iplt->output_section->vma
+ htab->elf.iplt->output_offset
+ h->plt.offset
- s390_got_pointer (info));
goto do_relocation;
}
relocation -= s390_got_pointer (info);
break;
case R_390_GOTPC:
case R_390_GOTPCDBL:
/* Use global offset table as symbol value. */
relocation = s390_got_pointer (info);
unresolved_reloc = false;
break;
case R_390_PLT12DBL:
case R_390_PLT16DBL:
case R_390_PLT24DBL:
case R_390_PLT32:
case R_390_PLT32DBL:
case R_390_PLT64:
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
/* Resolve a PLT32 reloc against a local symbol directly,
without using the procedure linkage table. */
if (h == NULL)
break;
if (h->plt.offset == (bfd_vma) -1
|| (htab->elf.splt == NULL && !s390_is_ifunc_symbol_p (h)))
{
/* We didn't make a PLT entry for this symbol. This
happens when statically linking PIC code, or when
using -Bsymbolic. */
break;
}
if (s390_is_ifunc_symbol_p (h))
relocation = (htab->elf.iplt->output_section->vma
+ htab->elf.iplt->output_offset
+ h->plt.offset);
else
relocation = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ h->plt.offset);
unresolved_reloc = false;
break;
case R_390_PLTOFF16:
case R_390_PLTOFF32:
case R_390_PLTOFF64:
/* Relocation is to the entry for this symbol in the
procedure linkage table relative to the start of the GOT. */
/* For local symbols or if we didn't make a PLT entry for
this symbol resolve the symbol directly. */
if (h == NULL
|| h->plt.offset == (bfd_vma) -1
|| (htab->elf.splt == NULL && !s390_is_ifunc_symbol_p (h)))
{
relocation -= s390_got_pointer (info);
break;
}
if (s390_is_ifunc_symbol_p (h))
relocation = (htab->elf.iplt->output_section->vma
+ htab->elf.iplt->output_offset
+ h->plt.offset
- s390_got_pointer (info));
else
relocation = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ h->plt.offset
- s390_got_pointer (info));
unresolved_reloc = false;
break;
case R_390_PC16:
case R_390_PC12DBL:
case R_390_PC16DBL:
case R_390_PC24DBL:
case R_390_PC32:
case R_390_PC32DBL:
case R_390_PC64:
if (h != NULL
&& bfd_link_pie (info)
&& !h->def_regular)
{
_bfd_error_handler (_("%pB: `%s' non-PLT reloc for symbol defined "
"in shared library and accessed "
"from executable "
"(rebuild file with -fPIC ?)"),
input_bfd, h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return false;
}
/* The target of these relocs are instruction operands
residing in read-only sections. We cannot emit a runtime
reloc for it. */
if (h != NULL
&& s390_is_ifunc_symbol_p (h)
&& h->def_regular
&& bfd_link_pic (info))
{
relocation = (htab->elf.iplt->output_section->vma
+ htab->elf.iplt->output_offset
+ h->plt.offset);
goto do_relocation;
}
/* Fall through. */
case R_390_8:
case R_390_16:
case R_390_32:
case R_390_64:
if ((input_section->flags & SEC_ALLOC) == 0)
break;
if (h != NULL
&& s390_is_ifunc_symbol_p (h)
&& h->def_regular)
{
if (!bfd_link_pic (info))
{
/* For a non-shared object the symbol will not
change. Hence we can write the address of the
target IPLT slot now. */
relocation = (htab->elf.iplt->output_section->vma
+ htab->elf.iplt->output_offset
+ h ->plt.offset);
goto do_relocation;
}
else
{
/* For shared objects a runtime relocation is needed. */
Elf_Internal_Rela outrel;
asection *sreloc;
/* Need a dynamic relocation to get the real function
address. */
outrel.r_offset = _bfd_elf_section_offset (output_bfd,
info,
input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1
|| outrel.r_offset == (bfd_vma) -2)
abort ();
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (h->dynindx == -1
|| h->forced_local
|| bfd_link_executable (info))
{
/* This symbol is resolved locally. */
outrel.r_info = ELF64_R_INFO (0, R_390_IRELATIVE);
outrel.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
outrel.r_addend = 0;
}
sreloc = htab->elf.irelifunc;
elf_append_rela (output_bfd, sreloc, &outrel);
/* If this reloc is against an external symbol, we
do not want to fiddle with the addend. Otherwise,
we need to include the symbol value so that it
becomes an addend for the dynamic reloc. For an
internal symbol, we have updated addend. */
continue;
}
}
if ((bfd_link_pic (info)
&& (h == NULL
|| (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
&& !resolved_to_zero)
|| h->root.type != bfd_link_hash_undefweak)
&& ((r_type != R_390_PC16
&& r_type != R_390_PC12DBL
&& r_type != R_390_PC16DBL
&& r_type != R_390_PC24DBL
&& r_type != R_390_PC32
&& r_type != R_390_PC32DBL
&& r_type != R_390_PC64)
|| !SYMBOL_CALLS_LOCAL (info, h)))
|| (ELIMINATE_COPY_RELOCS
&& !bfd_link_pic (info)
&& h != NULL
&& h->dynindx != -1
&& !h->non_got_ref
&& ((h->def_dynamic
&& !h->def_regular)
|| h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined)))
{
Elf_Internal_Rela outrel;
bool skip, relocate;
asection *sreloc;
bfd_byte *loc;
/* When generating a shared object, these relocations
are copied into the output file to be resolved at run
time. */
skip = false;
relocate = false;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1)
skip = true;
else if (outrel.r_offset == (bfd_vma) -2)
skip = true, relocate = true;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (skip)
memset (&outrel, 0, sizeof outrel);
else if (h != NULL
&& h->dynindx != -1
&& (r_type == R_390_PC16
|| r_type == R_390_PC12DBL
|| r_type == R_390_PC16DBL
|| r_type == R_390_PC24DBL
|| r_type == R_390_PC32
|| r_type == R_390_PC32DBL
|| r_type == R_390_PC64
|| !bfd_link_pic (info)
|| !SYMBOLIC_BIND (info, h)
|| !h->def_regular))
{
outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
outrel.r_addend = rel->r_addend;
}
else
{
/* This symbol is local, or marked to become local. */
outrel.r_addend = relocation + rel->r_addend;
if (r_type == R_390_64)
{
relocate = true;
outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
}
else
{
long sindx;
if (bfd_is_abs_section (sec))
sindx = 0;
else if (sec == NULL || sec->owner == NULL)
{
bfd_set_error(bfd_error_bad_value);
return false;
}
else
{
asection *osec;
osec = sec->output_section;
sindx = elf_section_data (osec)->dynindx;
if (sindx == 0)
{
osec = htab->elf.text_index_section;
sindx = elf_section_data (osec)->dynindx;
}
BFD_ASSERT (sindx != 0);
/* We are turning this relocation into one
against a section symbol, so subtract out
the output section's address but not the
offset of the input section in the output
section. */
outrel.r_addend -= osec->vma;
}
outrel.r_info = ELF64_R_INFO (sindx, r_type);
}
}
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc == NULL)
abort ();
loc = sreloc->contents;
loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
/* If this reloc is against an external symbol, we do
not want to fiddle with the addend. Otherwise, we
need to include the symbol value so that it becomes
an addend for the dynamic reloc. */
if (! relocate)
continue;
}
break;
/* Relocations for tls literal pool entries. */
case R_390_TLS_IE64:
if (bfd_link_dll (info))
{
Elf_Internal_Rela outrel;
asection *sreloc;
bfd_byte *loc;
outrel.r_offset = rel->r_offset
+ input_section->output_section->vma
+ input_section->output_offset;
outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc == NULL)
abort ();
loc = sreloc->contents;
loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloc_out (output_bfd, &outrel, loc);
}
/* Fall through. */
case R_390_TLS_GD64:
case R_390_TLS_GOTIE64:
r_type = elf_s390_tls_transition (info, r_type, h == NULL);
tls_type = GOT_UNKNOWN;
if (h == NULL && local_got_offsets)
tls_type = elf_s390_local_got_tls_type (input_bfd) [r_symndx];
else if (h != NULL)
{
tls_type = elf_s390_hash_entry(h)->tls_type;
if (!bfd_link_dll (info) && h->dynindx == -1 && tls_type >= GOT_TLS_IE)
r_type = R_390_TLS_LE64;
}
if (r_type == R_390_TLS_GD64 && tls_type >= GOT_TLS_IE)
r_type = R_390_TLS_IE64;
if (r_type == R_390_TLS_LE64)
{
/* This relocation gets optimized away by the local exec
access optimization. */
BFD_ASSERT (! unresolved_reloc);
bfd_put_64 (output_bfd, -tpoff (info, relocation),
contents + rel->r_offset);
continue;
}
if (htab->elf.sgot == NULL)
abort ();
if (h != NULL)
off = h->got.offset;
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
}
emit_tls_relocs:
if ((off & 1) != 0)
off &= ~1;
else
{
Elf_Internal_Rela outrel;
bfd_byte *loc;
int dr_type, indx;
if (htab->elf.srelgot == NULL)
abort ();
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off);
indx = h && h->dynindx != -1 ? h->dynindx : 0;
if (r_type == R_390_TLS_GD64)
dr_type = R_390_TLS_DTPMOD;
else
dr_type = R_390_TLS_TPOFF;
if (dr_type == R_390_TLS_TPOFF && indx == 0)
outrel.r_addend = relocation - dtpoff_base (info);
else
outrel.r_addend = 0;
outrel.r_info = ELF64_R_INFO (indx, dr_type);
loc = htab->elf.srelgot->contents;
loc += htab->elf.srelgot->reloc_count++
* sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
if (r_type == R_390_TLS_GD64)
{
if (indx == 0)
{
BFD_ASSERT (! unresolved_reloc);
bfd_put_64 (output_bfd,
relocation - dtpoff_base (info),
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
}
else
{
outrel.r_info = ELF64_R_INFO (indx, R_390_TLS_DTPOFF);
outrel.r_offset += GOT_ENTRY_SIZE;
outrel.r_addend = 0;
htab->elf.srelgot->reloc_count++;
loc += sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
}
}
if (h != NULL)
h->got.offset |= 1;
else
local_got_offsets[r_symndx] |= 1;
}
if (off >= (bfd_vma) -2)
abort ();
if (r_type == ELF64_R_TYPE (rel->r_info))
{
relocation = htab->elf.sgot->output_offset + off;
if (r_type == R_390_TLS_IE64 || r_type == R_390_TLS_IEENT)
relocation += htab->elf.sgot->output_section->vma;
unresolved_reloc = false;
}
else
{
bfd_put_64 (output_bfd, htab->elf.sgot->output_offset + off,
contents + rel->r_offset);
continue;
}
break;
case R_390_TLS_GOTIE12:
case R_390_TLS_GOTIE20:
case R_390_TLS_IEENT:
if (h == NULL)
{
if (local_got_offsets == NULL)
abort();
off = local_got_offsets[r_symndx];
if (bfd_link_dll (info))
goto emit_tls_relocs;
}
else
{
off = h->got.offset;
tls_type = elf_s390_hash_entry(h)->tls_type;
if (bfd_link_dll (info) || h->dynindx != -1 || tls_type < GOT_TLS_IE)
goto emit_tls_relocs;
}
if (htab->elf.sgot == NULL)
abort ();
BFD_ASSERT (! unresolved_reloc);
bfd_put_64 (output_bfd, -tpoff (info, relocation),
htab->elf.sgot->contents + off);
relocation = htab->elf.sgot->output_offset + off;
if (r_type == R_390_TLS_IEENT)
relocation += htab->elf.sgot->output_section->vma;
unresolved_reloc = false;
break;
case R_390_TLS_LDM64:
if (! bfd_link_dll (info))
/* The literal pool entry this relocation refers to gets ignored
by the optimized code of the local exec model. Do nothing
and the value will turn out zero. */
continue;
if (htab->elf.sgot == NULL)
abort ();
off = htab->tls_ldm_got.offset;
if (off & 1)
off &= ~1;
else
{
Elf_Internal_Rela outrel;
bfd_byte *loc;
if (htab->elf.srelgot == NULL)
abort ();
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off);
bfd_put_64 (output_bfd, 0,
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
outrel.r_info = ELF64_R_INFO (0, R_390_TLS_DTPMOD);
outrel.r_addend = 0;
loc = htab->elf.srelgot->contents;
loc += htab->elf.srelgot->reloc_count++
* sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
htab->tls_ldm_got.offset |= 1;
}
relocation = htab->elf.sgot->output_offset + off;
unresolved_reloc = false;
break;
case R_390_TLS_LE64:
if (bfd_link_dll (info))
{
/* Linking a shared library with non-fpic code requires
a R_390_TLS_TPOFF relocation. */
Elf_Internal_Rela outrel;
asection *sreloc;
bfd_byte *loc;
int indx;
outrel.r_offset = rel->r_offset
+ input_section->output_section->vma
+ input_section->output_offset;
if (h != NULL && h->dynindx != -1)
indx = h->dynindx;
else
indx = 0;
outrel.r_info = ELF64_R_INFO (indx, R_390_TLS_TPOFF);
if (indx == 0)
outrel.r_addend = relocation - dtpoff_base (info);
else
outrel.r_addend = 0;
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc == NULL)
abort ();
loc = sreloc->contents;
loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
}
else
{
BFD_ASSERT (! unresolved_reloc);
bfd_put_64 (output_bfd, -tpoff (info, relocation),
contents + rel->r_offset);
}
continue;
case R_390_TLS_LDO64:
if (bfd_link_dll (info) || (input_section->flags & SEC_DEBUGGING))
relocation -= dtpoff_base (info);
else
/* When converting LDO to LE, we must negate. */
relocation = -tpoff (info, relocation);
break;
/* Relocations for tls instructions. */
case R_390_TLS_LOAD:
case R_390_TLS_GDCALL:
case R_390_TLS_LDCALL:
tls_type = GOT_UNKNOWN;
if (h == NULL && local_got_offsets)
tls_type = elf_s390_local_got_tls_type (input_bfd) [r_symndx];
else if (h != NULL)
tls_type = elf_s390_hash_entry(h)->tls_type;
if (tls_type == GOT_TLS_GD)
continue;
if (r_type == R_390_TLS_LOAD)
{
if (!bfd_link_dll (info) && (h == NULL || h->dynindx == -1))
{
/* IE->LE transition. Four valid cases:
lg %rx,(0,%ry) -> sllg %rx,%ry,0
lg %rx,(%ry,0) -> sllg %rx,%ry,0
lg %rx,(%ry,%r12) -> sllg %rx,%ry,0
lg %rx,(%r12,%ry) -> sllg %rx,%ry,0 */
unsigned int insn0, insn1, ry;
insn0 = bfd_get_32 (input_bfd, contents + rel->r_offset);
insn1 = bfd_get_16 (input_bfd, contents + rel->r_offset + 4);
if (insn1 != 0x0004)
{
invalid_tls_insn (input_bfd, input_section, rel);
return false;
}
if ((insn0 & 0xff00f000) == 0xe3000000)
/* lg %rx,0(%ry,0) -> sllg %rx,%ry,0 */
ry = (insn0 & 0x000f0000);
else if ((insn0 & 0xff0f0000) == 0xe3000000)
/* lg %rx,0(0,%ry) -> sllg %rx,%ry,0 */
ry = (insn0 & 0x0000f000) << 4;
else if ((insn0 & 0xff00f000) == 0xe300c000)
/* lg %rx,0(%ry,%r12) -> sllg %rx,%ry,0 */
ry = (insn0 & 0x000f0000);
else if ((insn0 & 0xff0f0000) == 0xe30c0000)
/* lg %rx,0(%r12,%ry) -> sllg %rx,%ry,0 */
ry = (insn0 & 0x0000f000) << 4;
else
{
invalid_tls_insn (input_bfd, input_section, rel);
return false;
}
insn0 = 0xeb000000 | (insn0 & 0x00f00000) | ry;
insn1 = 0x000d;
bfd_put_32 (output_bfd, insn0, contents + rel->r_offset);
bfd_put_16 (output_bfd, insn1, contents + rel->r_offset + 4);
}
}
else if (r_type == R_390_TLS_GDCALL)
{
unsigned int insn0, insn1;
insn0 = bfd_get_32 (input_bfd, contents + rel->r_offset);
insn1 = bfd_get_16 (input_bfd, contents + rel->r_offset + 4);
if ((insn0 & 0xffff0000) != 0xc0e50000)
{
invalid_tls_insn (input_bfd, input_section, rel);
return false;
}
if (!bfd_link_dll (info) && (h == NULL || h->dynindx == -1))
{
/* GD->LE transition.
brasl %r14,__tls_get_addr@plt -> brcl 0,. */
insn0 = 0xc0040000;
insn1 = 0x0000;
}
else
{
/* GD->IE transition.
brasl %r14,__tls_get_addr@plt -> lg %r2,0(%r2,%r12) */
insn0 = 0xe322c000;
insn1 = 0x0004;
}
bfd_put_32 (output_bfd, insn0, contents + rel->r_offset);
bfd_put_16 (output_bfd, insn1, contents + rel->r_offset + 4);
}
else if (r_type == R_390_TLS_LDCALL)
{
if (!bfd_link_dll (info))
{
unsigned int insn0, insn1;
insn0 = bfd_get_32 (input_bfd, contents + rel->r_offset);
insn1 = bfd_get_16 (input_bfd, contents + rel->r_offset + 4);
if ((insn0 & 0xffff0000) != 0xc0e50000)
{
invalid_tls_insn (input_bfd, input_section, rel);
return false;
}
/* LD->LE transition.
brasl %r14,__tls_get_addr@plt -> brcl 0,. */
insn0 = 0xc0040000;
insn1 = 0x0000;
bfd_put_32 (output_bfd, insn0, contents + rel->r_offset);
bfd_put_16 (output_bfd, insn1, contents + rel->r_offset + 4);
}
}
continue;
default:
break;
}
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
because such sections are not SEC_ALLOC and thus ld.so will
not process them. */
if (unresolved_reloc
&& !((input_section->flags & SEC_DEBUGGING) != 0
&& h->def_dynamic)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): "
"unresolvable %s relocation against symbol `%s'"),
input_bfd,
input_section,
(uint64_t) rel->r_offset,
howto->name,
h->root.root.string);
do_relocation:
/* When applying a 24 bit reloc we need to start one byte
earlier. Otherwise the 32 bit get/put bfd operations might
access a byte after the actual section. */
if (r_type == R_390_PC24DBL
|| r_type == R_390_PLT24DBL)
rel->r_offset--;
if (r_type == R_390_20
|| r_type == R_390_GOT20
|| r_type == R_390_GOTPLT20
|| r_type == R_390_TLS_GOTIE20)
{
relocation += rel->r_addend;
relocation = (relocation&0xfff) << 8 | (relocation&0xff000) >> 12;
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, 0);
}
else
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, rel->r_addend);
if (r != bfd_reloc_ok)
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
{
name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
return false;
if (*name == '\0')
name = bfd_section_name (sec);
}
if (r == bfd_reloc_overflow)
(*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
input_bfd, input_section,
(uint64_t) rel->r_offset, name, (int) r);
return false;
}
}
}
return true;
}
/* Generate the PLT slots together with the dynamic relocations needed
for IFUNC symbols. */
static void
elf_s390_finish_ifunc_symbol (bfd *output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *h,
struct elf_s390_link_hash_table *htab,
bfd_vma plt_offset,
bfd_vma resolver_address)
{
bfd_vma plt_index;
bfd_vma got_offset;
Elf_Internal_Rela rela;
bfd_byte *loc;
asection *plt, *gotplt, *relplt;
if (htab->elf.iplt == NULL
|| htab->elf.igotplt == NULL
|| htab->elf.irelplt == NULL)
abort ();
/* Index of the PLT slot within iplt section. */
plt_index = plt_offset / PLT_ENTRY_SIZE;
plt = htab->elf.iplt;
/* Offset into the igot.plt section. */
got_offset = plt_index * GOT_ENTRY_SIZE;
gotplt = htab->elf.igotplt;
relplt = htab->elf.irelplt;
/* Fill in the blueprint of a PLT. */
memcpy (plt->contents + plt_offset, elf_s390x_plt_entry,
PLT_ENTRY_SIZE);
/* Fixup the relative address to the GOT entry */
bfd_put_32 (output_bfd,
(gotplt->output_section->vma +
gotplt->output_offset + got_offset
- (plt->output_section->vma +
plt->output_offset +
plt_offset))/2,
plt->contents + plt_offset + 2);
/* Fixup the relative branch to PLT 0 */
bfd_put_32 (output_bfd, - (plt->output_offset +
(PLT_ENTRY_SIZE * plt_index) + 22)/2,
plt->contents + plt_offset + 24);
/* Fixup offset into .rela.plt section. */
bfd_put_32 (output_bfd, relplt->output_offset +
plt_index * sizeof (Elf64_External_Rela),
plt->contents + plt_offset + 28);
/* Fill in the entry in the global offset table.
Points to instruction after GOT offset. */
bfd_put_64 (output_bfd,
(plt->output_section->vma
+ plt->output_offset
+ plt_offset
+ 14),
gotplt->contents + got_offset);
/* Fill in the entry in the .rela.plt section. */
rela.r_offset = (gotplt->output_section->vma
+ gotplt->output_offset
+ got_offset);
if (!h
|| h->dynindx == -1
|| ((bfd_link_executable (info)
|| ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
&& h->def_regular))
{
/* The symbol can be locally resolved. */
rela.r_info = ELF64_R_INFO (0, R_390_IRELATIVE);
rela.r_addend = resolver_address;
}
else
{
rela.r_info = ELF64_R_INFO (h->dynindx, R_390_JMP_SLOT);
rela.r_addend = 0;
}
loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static bool
elf_s390_finish_dynamic_symbol (bfd *output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
struct elf_s390_link_hash_table *htab;
struct elf_s390_link_hash_entry *eh = (struct elf_s390_link_hash_entry*)h;
htab = elf_s390_hash_table (info);
if (htab == NULL)
return false;
if (h->plt.offset != (bfd_vma) -1)
{
bfd_vma plt_index;
bfd_vma gotplt_offset;
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol has an entry in the procedure linkage table. Set
it up. */
if (s390_is_ifunc_symbol_p (h) && h->def_regular)
{
elf_s390_finish_ifunc_symbol (output_bfd, info, h,
htab, h->plt.offset,
eh->ifunc_resolver_address +
eh->ifunc_resolver_section->output_offset +
eh->ifunc_resolver_section->output_section->vma);
/* Do not return yet. Handling of explicit GOT slots of
IFUNC symbols is below. */
}
else
{
if (h->dynindx == -1
|| htab->elf.splt == NULL
|| htab->elf.sgotplt == NULL
|| htab->elf.srelplt == NULL)
abort ();
/* Calc. index no.
Current offset - size first entry / entry size. */
plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
/* The slots in the .got.plt correspond to the PLT slots in
the same order. */
gotplt_offset = plt_index * GOT_ENTRY_SIZE;
/* If .got.plt comes first it needs to contain the 3 header
entries. */
if (!s390_gotplt_after_got_p (info))
gotplt_offset += 3 * GOT_ENTRY_SIZE;
/* Fill in the blueprint of a PLT. */
memcpy (htab->elf.splt->contents + h->plt.offset, elf_s390x_plt_entry,
PLT_ENTRY_SIZE);
/* The first instruction in the PLT entry is a LARL loading
the address of the GOT slot. We write the 4 byte
immediate operand of the LARL instruction here. */
bfd_put_32 (output_bfd,
(htab->elf.sgotplt->output_section->vma +
htab->elf.sgotplt->output_offset + gotplt_offset
- (htab->elf.splt->output_section->vma +
htab->elf.splt->output_offset +
h->plt.offset))/2,
htab->elf.splt->contents + h->plt.offset + 2);
/* Fixup the relative branch to PLT 0 */
bfd_put_32 (output_bfd, - (PLT_FIRST_ENTRY_SIZE +
(PLT_ENTRY_SIZE * plt_index) + 22)/2,
htab->elf.splt->contents + h->plt.offset + 24);
/* Fixup offset into .rela.plt section. */
bfd_put_32 (output_bfd, plt_index * sizeof (Elf64_External_Rela),
htab->elf.splt->contents + h->plt.offset + 28);
/* Fill in the entry in the global offset table.
Points to instruction after GOT offset. */
bfd_put_64 (output_bfd,
(htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ h->plt.offset
+ 14),
htab->elf.sgotplt->contents + gotplt_offset);
/* Fill in the entry in the .rela.plt section. */
rela.r_offset = (htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ gotplt_offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_390_JMP_SLOT);
rela.r_addend = 0;
loc = htab->elf.srelplt->contents + plt_index *
sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
if (!h->def_regular)
{
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value alone. This is a clue
for the dynamic linker, to make function pointer
comparisons work between an application and shared
library. */
sym->st_shndx = SHN_UNDEF;
}
}
}
if (h->got.offset != (bfd_vma) -1
&& elf_s390_hash_entry(h)->tls_type != GOT_TLS_GD
&& elf_s390_hash_entry(h)->tls_type != GOT_TLS_IE
&& elf_s390_hash_entry(h)->tls_type != GOT_TLS_IE_NLT)
{
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol has an entry in the global offset table. Set it
up. */
if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
abort ();
rela.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ (h->got.offset &~ (bfd_vma) 1));
if (h->def_regular && s390_is_ifunc_symbol_p (h))
{
if (bfd_link_pic (info))
{
/* An explicit GOT slot usage needs GLOB_DAT. If the
symbol references local the implicit got.iplt slot
will be used and the IRELATIVE reloc has been created
above. */
goto do_glob_dat;
}
else
{
/* For non-shared objects explicit GOT slots must be
filled with the PLT slot address for pointer
equality reasons. */
bfd_put_64 (output_bfd, (htab->elf.iplt->output_section->vma
+ htab->elf.iplt->output_offset
+ h->plt.offset),
htab->elf.sgot->contents + h->got.offset);
return true;
}
}
else if (bfd_link_pic (info)
&& SYMBOL_REFERENCES_LOCAL (info, h))
{
if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
return true;
/* If this is a static link, or it is a -Bsymbolic link and
the symbol is defined locally or was forced to be local
because of a version file, we just want to emit a
RELATIVE reloc. The entry in the global offset table
will already have been initialized in the
relocate_section function. */
if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
return false;
BFD_ASSERT((h->got.offset & 1) != 0);
rela.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
rela.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
BFD_ASSERT((h->got.offset & 1) == 0);
do_glob_dat:
bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgot->contents + h->got.offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_390_GLOB_DAT);
rela.r_addend = 0;
}
loc = htab->elf.srelgot->contents;
loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
if (h->needs_copy)
{
Elf_Internal_Rela rela;
asection *s;
bfd_byte *loc;
/* This symbols needs a copy reloc. Set it up. */
if (h->dynindx == -1
|| (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
|| htab->elf.srelbss == NULL)
abort ();
rela.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_390_COPY);
rela.r_addend = 0;
if (h->root.u.def.section == htab->elf.sdynrelro)
s = htab->elf.sreldynrelro;
else
s = htab->elf.srelbss;
loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
/* Mark some specially defined symbols as absolute. */
if (h == htab->elf.hdynamic
|| h == htab->elf.hgot
|| h == htab->elf.hplt)
sym->st_shndx = SHN_ABS;
return true;
}
/* Used to decide how to sort relocs in an optimal manner for the
dynamic linker, before writing them out. */
static enum elf_reloc_type_class
elf_s390_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
const asection *rel_sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela *rela)
{
bfd *abfd = info->output_bfd;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
struct elf_s390_link_hash_table *htab = elf_s390_hash_table (info);
unsigned long r_symndx = ELF64_R_SYM (rela->r_info);
Elf_Internal_Sym sym;
if (htab->elf.dynsym == NULL
|| !bed->s->swap_symbol_in (abfd,
(htab->elf.dynsym->contents
+ r_symndx * bed->s->sizeof_sym),
0, &sym))
abort ();
/* Check relocation against STT_GNU_IFUNC symbol. */
if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
return reloc_class_ifunc;
switch ((int) ELF64_R_TYPE (rela->r_info))
{
case R_390_RELATIVE:
return reloc_class_relative;
case R_390_JMP_SLOT:
return reloc_class_plt;
case R_390_COPY:
return reloc_class_copy;
default:
return reloc_class_normal;
}
}
/* Finish up the dynamic sections. */
static bool
elf_s390_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
struct elf_s390_link_hash_table *htab;
bfd *dynobj;
asection *sdyn;
bfd *ibfd;
unsigned int i;
htab = elf_s390_hash_table (info);
if (htab == NULL)
return false;
dynobj = htab->elf.dynobj;
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
if (htab->elf.dynamic_sections_created)
{
Elf64_External_Dyn *dyncon, *dynconend;
if (sdyn == NULL || htab->elf.sgot == NULL)
abort ();
dyncon = (Elf64_External_Dyn *) sdyn->contents;
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection *s;
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
continue;
case DT_PLTGOT:
/* DT_PLTGOT matches _GLOBAL_OFFSET_TABLE_ */
dyn.d_un.d_ptr = s390_got_pointer (info);
break;
case DT_JMPREL:
s = htab->elf.srelplt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
break;
case DT_PLTRELSZ:
dyn.d_un.d_val = htab->elf.srelplt->size;
if (htab->elf.irelplt)
dyn.d_un.d_val += htab->elf.irelplt->size;
break;
case DT_RELASZ:
/* The procedure linkage table relocs (DT_JMPREL) should
not be included in the overall relocs (DT_RELA).
Therefore, we override the DT_RELASZ entry here to
make it not include the JMPREL relocs. Since the
linker script arranges for .rela.plt to follow all
other relocation sections, we don't have to worry
about changing the DT_RELA entry. */
dyn.d_un.d_val -= htab->elf.srelplt->size;
if (htab->elf.irelplt)
dyn.d_un.d_val -= htab->elf.irelplt->size;
break;
}
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
}
/* Fill in the special first entry in the procedure linkage table. */
if (htab->elf.splt && htab->elf.splt->size > 0)
{
/* fill in blueprint for plt 0 entry */
memcpy (htab->elf.splt->contents, elf_s390x_first_plt_entry,
PLT_FIRST_ENTRY_SIZE);
/* The second instruction in the first PLT entry is a LARL
loading the GOT pointer. Fill in the LARL immediate
address. */
bfd_put_32 (output_bfd,
(s390_got_pointer (info)
- htab->elf.splt->output_section->vma
- htab->elf.splt->output_offset - 6)/2,
htab->elf.splt->contents + 8);
}
if (elf_section_data (htab->elf.splt->output_section) != NULL)
elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
= PLT_ENTRY_SIZE;
}
if (htab->elf.hgot && htab->elf.hgot->root.u.def.section)
{
/* Fill in the first three entries in the global offset table. */
if (htab->elf.hgot->root.u.def.section->size > 0)
{
bfd_put_64 (output_bfd,
(sdyn == NULL ? (bfd_vma) 0
: sdyn->output_section->vma + sdyn->output_offset),
htab->elf.hgot->root.u.def.section->contents);
/* One entry for shared object struct ptr. */
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->elf.hgot->root.u.def.section->contents + 8);
/* One entry for _dl_runtime_resolve. */
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->elf.hgot->root.u.def.section->contents + 16);
}
if (htab->elf.sgot != NULL && htab->elf.sgot->size > 0)
elf_section_data (htab->elf.sgot->output_section)
->this_hdr.sh_entsize = 8;
}
/* Finish dynamic symbol for local IFUNC symbols. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
struct plt_entry *local_plt;
Elf_Internal_Sym *isym;
Elf_Internal_Shdr *symtab_hdr;
symtab_hdr = &elf_symtab_hdr (ibfd);
if (!is_s390_elf (ibfd))
continue;
local_plt = elf_s390_local_plt (ibfd);
if (local_plt != NULL)
for (i = 0; i < symtab_hdr->sh_info; i++)
{
if (local_plt[i].plt.offset != (bfd_vma) -1)
{
asection *sec = local_plt[i].sec;
isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, ibfd, i);
if (isym == NULL)
return false;
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
elf_s390_finish_ifunc_symbol (output_bfd, info, NULL, htab,
local_plt[i].plt.offset,
isym->st_value
+ sec->output_section->vma
+ sec->output_offset);
}
}
}
return true;
}
/* Support for core dump NOTE sections. */
static bool
elf_s390_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
int offset;
size_t size;
switch (note->descsz)
{
default:
return false;
case 336: /* sizeof(struct elf_prstatus) on s390x */
/* pr_cursig */
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
/* pr_pid */
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
/* pr_reg */
offset = 112;
size = 216;
break;
}
/* Make a ".reg/999" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
size, note->descpos + offset);
}
static bool
elf_s390_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
switch (note->descsz)
{
default:
return false;
case 136: /* sizeof(struct elf_prpsinfo) on s390x */
elf_tdata (abfd)->core->pid
= bfd_get_32 (abfd, note->descdata + 24);
elf_tdata (abfd)->core->program
= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
elf_tdata (abfd)->core->command
= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
}
/* Note that for some reason, a spurious space is tacked
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core->command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return true;
}
static char *
elf_s390_write_core_note (bfd *abfd, char *buf, int *bufsiz,
int note_type, ...)
{
va_list ap;
switch (note_type)
{
default:
return NULL;
case NT_PRPSINFO:
{
char data[136] ATTRIBUTE_NONSTRING = { 0 };
const char *fname, *psargs;
va_start (ap, note_type);
fname = va_arg (ap, const char *);
psargs = va_arg (ap, const char *);
va_end (ap);
strncpy (data + 40, fname, 16);
#if GCC_VERSION == 8000 || GCC_VERSION == 8001
DIAGNOSTIC_PUSH;
/* GCC 8.0 and 8.1 warn about 80 equals destination size with
-Wstringop-truncation:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
*/
DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
#endif
strncpy (data + 56, psargs, 80);
#if GCC_VERSION == 8000 || GCC_VERSION == 8001
DIAGNOSTIC_POP;
#endif
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
&data, sizeof (data));
}
case NT_PRSTATUS:
{
char data[336] = { 0 };
long pid;
int cursig;
const void *gregs;
va_start (ap, note_type);
pid = va_arg (ap, long);
cursig = va_arg (ap, int);
gregs = va_arg (ap, const void *);
va_end (ap);
bfd_put_16 (abfd, cursig, data + 12);
bfd_put_32 (abfd, pid, data + 32);
memcpy (data + 112, gregs, 216);
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
&data, sizeof (data));
}
}
/* NOTREACHED */
}
/* Return address for Ith PLT stub in section PLT, for relocation REL
or (bfd_vma) -1 if it should not be included. */
static bfd_vma
elf_s390_plt_sym_val (bfd_vma i, const asection *plt,
const arelent *rel ATTRIBUTE_UNUSED)
{
return plt->vma + PLT_FIRST_ENTRY_SIZE + i * PLT_ENTRY_SIZE;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bool
elf64_s390_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
{
if (!is_s390_elf (ibfd) || !is_s390_elf (info->output_bfd))
return true;
return elf_s390_merge_obj_attributes (ibfd, info);
}
/* We may add a PT_S390_PGSTE program header. */
static int
elf_s390_additional_program_headers (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
struct elf_s390_link_hash_table *htab;
if (info)
{
htab = elf_s390_hash_table (info);
if (htab)
return htab->params->pgste;
}
return 0;
}
/* Add the PT_S390_PGSTE program header. */
static bool
elf_s390_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
{
struct elf_s390_link_hash_table *htab;
struct elf_segment_map *m, *pm = NULL;
if (!abfd || !info)
return true;
htab = elf_s390_hash_table (info);
if (!htab || !htab->params->pgste)
return true;
/* If there is already a PT_S390_PGSTE header, avoid adding
another. */
m = elf_seg_map (abfd);
while (m && m->p_type != PT_S390_PGSTE)
{
pm = m;
m = m->next;
}
if (m)
return true;
m = (struct elf_segment_map *)
bfd_zalloc (abfd, sizeof (struct elf_segment_map));
if (m == NULL)
return false;
m->p_type = PT_S390_PGSTE;
m->count = 0;
m->next = NULL;
if (pm)
pm->next = m;
return true;
}
bool
bfd_elf_s390_set_options (struct bfd_link_info *info,
struct s390_elf_params *params)
{
struct elf_s390_link_hash_table *htab;
if (info)
{
htab = elf_s390_hash_table (info);
if (htab)
htab->params = params;
}
return true;
}
/* Why was the hash table entry size definition changed from
ARCH_SIZE/8 to 4? This breaks the 64 bit dynamic linker and
this is the only reason for the s390_elf64_size_info structure. */
const struct elf_size_info s390_elf64_size_info =
{
sizeof (Elf64_External_Ehdr),
sizeof (Elf64_External_Phdr),
sizeof (Elf64_External_Shdr),
sizeof (Elf64_External_Rel),
sizeof (Elf64_External_Rela),
sizeof (Elf64_External_Sym),
sizeof (Elf64_External_Dyn),
sizeof (Elf_External_Note),
8, /* hash-table entry size. */
1, /* internal relocations per external relocations. */
64, /* arch_size. */
3, /* log_file_align. */
ELFCLASS64, EV_CURRENT,
bfd_elf64_write_out_phdrs,
bfd_elf64_write_shdrs_and_ehdr,
bfd_elf64_checksum_contents,
bfd_elf64_write_relocs,
bfd_elf64_swap_symbol_in,
bfd_elf64_swap_symbol_out,
bfd_elf64_slurp_reloc_table,
bfd_elf64_slurp_symbol_table,
bfd_elf64_swap_dyn_in,
bfd_elf64_swap_dyn_out,
bfd_elf64_swap_reloc_in,
bfd_elf64_swap_reloc_out,
bfd_elf64_swap_reloca_in,
bfd_elf64_swap_reloca_out
};
#define TARGET_BIG_SYM s390_elf64_vec
#define TARGET_BIG_NAME "elf64-s390"
#define ELF_ARCH bfd_arch_s390
#define ELF_TARGET_ID S390_ELF_DATA
#define ELF_MACHINE_CODE EM_S390
#define ELF_MACHINE_ALT1 EM_S390_OLD
#define ELF_MAXPAGESIZE 0x1000
#define elf_backend_size_info s390_elf64_size_info
#define elf_backend_can_gc_sections 1
#define elf_backend_can_refcount 1
#define elf_backend_want_got_plt 1
#define elf_backend_plt_readonly 1
#define elf_backend_want_plt_sym 0
#define elf_backend_got_header_size 24
#define elf_backend_want_dynrelro 1
#define elf_backend_rela_normal 1
#define elf_info_to_howto elf_s390_info_to_howto
#define bfd_elf64_bfd_is_local_label_name elf_s390_is_local_label_name
#define bfd_elf64_bfd_link_hash_table_create elf_s390_link_hash_table_create
#define bfd_elf64_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
#define bfd_elf64_bfd_reloc_name_lookup elf_s390_reloc_name_lookup
#define bfd_elf64_bfd_merge_private_bfd_data elf64_s390_merge_private_bfd_data
#define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
#define elf_backend_check_relocs elf_s390_check_relocs
#define elf_backend_copy_indirect_symbol elf_s390_copy_indirect_symbol
#define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
#define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
#define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
#define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
#define elf_backend_reloc_type_class elf_s390_reloc_type_class
#define elf_backend_relocate_section elf_s390_relocate_section
#define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
#define elf_backend_grok_prstatus elf_s390_grok_prstatus
#define elf_backend_grok_psinfo elf_s390_grok_psinfo
#define elf_backend_write_core_note elf_s390_write_core_note
#define elf_backend_plt_sym_val elf_s390_plt_sym_val
#define elf_backend_sort_relocs_p elf_s390_elf_sort_relocs_p
#define elf_backend_additional_program_headers elf_s390_additional_program_headers
#define elf_backend_modify_segment_map elf_s390_modify_segment_map
#define bfd_elf64_mkobject elf_s390_mkobject
#define elf_backend_object_p elf_s390_object_p
#include "elf64-target.h"