binutils-gdb/gas/config/tc-mips.c
Ian Lance Taylor 9226253a41 * config/tc-mips.c (mips_ip, printInsn): Handle 'k' (from Ted
Lemon <mellon@pepper.ncd.com>).
	(mips_ip): Permit odd numbered floating point registers if -mips3.
1993-11-08 17:09:18 +00:00

5118 lines
125 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-mips.c -- assemble code for a MIPS chip.
Copyright (C) 1993 Free Software Foundation, Inc.
Contributed by the OSF and Ralph Campbell.
Written by Keith Knowles and Ralph Campbell, working independently.
Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
Support.
This file is part of GAS.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "as.h"
#include "config.h"
#include <ctype.h>
#ifndef __STDC__
#ifndef NO_STDARG
#define NO_STDARG
#endif
#endif
#ifndef NO_STDARG
#include <stdarg.h>
#else
#ifndef NO_VARARGS
#include <varargs.h>
#endif /* NO_VARARGS */
#endif /* NO_STDARG */
#include "opcode/mips.h"
#ifdef OBJ_ELF
#include "elf/mips.h"
static char *mips_regmask_frag;
#endif
#define AT 1
#define PIC_CALL_REG 25
#define GP 28
#define SP 29
#define FP 30
#define RA 31
/* Decide whether to do GP reference optimizations based on the object
file format. */
#undef GPOPT
#ifdef OBJ_ECOFF
#define GPOPT
#endif
#ifdef OBJ_ELF
#define GPOPT
#endif
/* These variables are filled in with the masks of registers used.
The object format code reads them and puts them in the appropriate
place. */
unsigned long mips_gprmask;
unsigned long mips_cprmask[4];
/* MIPS ISA (Instruction Set Architecture) level. */
static int mips_isa = -1;
/* MIPS PIC level. 0 is normal, non-PIC code. 2 means to generate
SVR4 ABI PIC calls. FIXME: What does 1 mean? I'm using 2 because
Irix 5 cc outputs .option pic2. */
static int mips_pic;
static int mips_warn_about_macros;
static int mips_noreorder;
static int mips_nomove;
static int mips_noat;
static int mips_nobopt;
#ifdef GPOPT
/* The size of the small data section. */
static int g_switch_value = 8;
#endif
#define N_RMASK 0xc4
#define N_VFP 0xd4
/* handle of the OPCODE hash table */
static struct hash_control *op_hash = NULL;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful */
const char comment_chars[] = "#";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that C style comments are always supported. */
const char line_comment_chars[] = "#";
/* This array holds machine specific line separator characters. */
const char line_separator_chars[] = "";
/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
changed in read.c . Ideally it shouldn't have to know about it at all,
but nothing is ideal around here.
*/
static char *insn_error;
static int byte_order = BYTE_ORDER;
static int auto_align = 1;
/* Symbol labelling the current insn. */
static symbolS *insn_label;
/* When outputting SVR4 PIC code, the assembler needs to know the
offset in the stack frame from which to restore the $gp register.
This is set by the .cprestore pseudo-op, and saved in this
variable. */
static offsetT mips_cprestore_offset;
/* To output NOP instructions correctly, we need to keep information
about the previous two instructions. */
/* Whether we are optimizing. The default value of 2 means to remove
unneeded NOPs and swap branch instructions when possible. A value
of 1 means to not swap branches. A value of 0 means to always
insert NOPs. */
static int mips_optimize = 2;
/* The previous instruction. */
static struct mips_cl_insn prev_insn;
/* The instruction before prev_insn. */
static struct mips_cl_insn prev_prev_insn;
/* If we don't want information for prev_insn or prev_prev_insn, we
point the insn_mo field at this dummy integer. */
static const struct mips_opcode dummy_opcode = { 0 };
/* Non-zero if prev_insn is valid. */
static int prev_insn_valid;
/* The frag for the previous instruction. */
static struct frag *prev_insn_frag;
/* The offset into prev_insn_frag for the previous instruction. */
static long prev_insn_where;
/* The reloc for the previous instruction, if any. */
static fixS *prev_insn_fixp;
/* Non-zero if the previous instruction was in a delay slot. */
static int prev_insn_is_delay_slot;
/* Non-zero if the previous instruction was in a .set noreorder. */
static int prev_insn_unreordered;
/* Non-zero if the previous previous instruction was in a .set
noreorder. */
static int prev_prev_insn_unreordered;
/* Prototypes for static functions. */
#ifdef __STDC__
#define internalError() \
as_fatal ("internal Error, line %d, %s", __LINE__, __FILE__)
#else
#define internalError() as_fatal ("MIPS internal Error");
#endif
static int insn_uses_reg PARAMS ((struct mips_cl_insn *ip,
unsigned int reg, int fpr));
static void append_insn PARAMS ((struct mips_cl_insn * ip,
expressionS * p,
bfd_reloc_code_real_type r));
static void mips_no_prev_insn PARAMS ((void));
static void mips_emit_delays PARAMS ((void));
static int gp_reference PARAMS ((expressionS * ep));
static void macro_build PARAMS ((int *counter, expressionS * ep,
const char *name, const char *fmt,
...));
static void macro_build_lui PARAMS ((int *counter, expressionS * ep,
int regnum));
static void set_at PARAMS ((int *counter, int reg, int unsignedp));
static void check_absolute_expr PARAMS ((struct mips_cl_insn * ip,
expressionS *));
static void load_register PARAMS ((int *counter,
int reg, expressionS * ep));
static void macro PARAMS ((struct mips_cl_insn * ip));
static void mips_ip PARAMS ((char *str, struct mips_cl_insn * ip));
static int my_getSmallExpression PARAMS ((expressionS * ep, char *str));
static void my_getExpression PARAMS ((expressionS * ep, char *str));
static symbolS *get_symbol PARAMS ((void));
static void mips_align PARAMS ((int to, int fill));
static void s_align PARAMS ((int));
static void s_stringer PARAMS ((int));
static void s_change_sec PARAMS ((int));
static void s_cons PARAMS ((int));
static void s_err PARAMS ((int));
static void s_extern PARAMS ((int));
static void s_float_cons PARAMS ((int));
static void s_option PARAMS ((int));
static void s_mipsset PARAMS ((int));
static void s_mips_space PARAMS ((int));
static void s_abicalls PARAMS ((int));
static void s_cpload PARAMS ((int));
static void s_cprestore PARAMS ((int));
#ifndef OBJ_ECOFF
static void md_obj_begin PARAMS ((void));
static void md_obj_end PARAMS ((void));
static long get_number PARAMS ((void));
static void s_ent PARAMS ((int));
static void s_mipsend PARAMS ((int));
static void s_file PARAMS ((int));
#if 0
static void s_frame PARAMS ((int));
static void s_loc PARAMS ((int));
static void s_mask PARAMS ((char));
#endif
#endif
/* Pseudo-op table.
The following pseudo-ops from the Kane and Heinrich MIPS book
should be defined here, but are currently unsupported: .alias,
.galive, .gjaldef, .gjrlive, .livereg, .noalias.
The following pseudo-ops from the Kane and Heinrich MIPS book are
specific to the type of debugging information being generated, and
should be defined by the object format: .aent, .begin, .bend,
.bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
.vreg.
The following pseudo-ops from the Kane and Heinrich MIPS book are
not MIPS CPU specific, but are also not specific to the object file
format. This file is probably the best place to define them, but
they are not currently supported: .asm0, .endr, .lab, .repeat,
.struct, .weakext. */
const pseudo_typeS md_pseudo_table[] =
{
/* MIPS specific pseudo-ops. */
{"option", s_option, 0},
{"set", s_mipsset, 0},
{"rdata", s_change_sec, 'r'},
{"sdata", s_change_sec, 's'},
{"livereg", s_ignore, 0},
{ "abicalls", s_abicalls, 0},
{ "cpload", s_cpload, 0},
{ "cprestore", s_cprestore, 0},
/* Relatively generic pseudo-ops that happen to be used on MIPS
chips. */
{"asciiz", s_stringer, 1},
{"bss", s_change_sec, 'b'},
{"err", s_err, 0},
{"half", s_cons, 1},
{"dword", s_cons, 3},
/* These pseudo-ops are defined in read.c, but must be overridden
here for one reason or another. */
{"align", s_align, 0},
{"ascii", s_stringer, 0},
{"asciz", s_stringer, 1},
{"byte", s_cons, 0},
{"data", s_change_sec, 'd'},
{"double", s_float_cons, 'd'},
{"extern", s_extern, 0},
{"float", s_float_cons, 'f'},
{"space", s_mips_space, 0},
{"text", s_change_sec, 't'},
{"word", s_cons, 2},
#ifndef OBJ_ECOFF
/* These pseudo-ops should be defined by the object file format.
However, ECOFF is the only format which currently defines them,
so we have versions here for a.out. */
{"aent", s_ent, 1},
{"bgnb", s_ignore, 0},
{"end", s_mipsend, 0},
{"endb", s_ignore, 0},
{"ent", s_ent, 0},
{"file", s_file, 0},
{"fmask", s_ignore, 'F'},
{"frame", s_ignore, 0},
{"loc", s_ignore, 0},
{"mask", s_ignore, 'R'},
{"verstamp", s_ignore, 0},
#endif
/* Sentinel. */
{NULL}
};
const relax_typeS md_relax_table[] =
{
{ 0 }
};
static char *expr_end;
static expressionS imm_expr;
static expressionS offset_expr;
static bfd_reloc_code_real_type imm_reloc;
static bfd_reloc_code_real_type offset_reloc;
/* FIXME: This should be handled in a different way. */
extern int target_big_endian;
/*
* This function is called once, at assembler startup time. It should
* set up all the tables, etc. that the MD part of the assembler will need.
*/
void
md_begin ()
{
boolean ok;
register const char *retval = NULL;
register unsigned int i = 0;
if (mips_isa == -1)
{
if (strcmp (TARGET_CPU, "mips") == 0)
mips_isa = 1;
else if (strcmp (TARGET_CPU, "r6000") == 0
|| strcmp (TARGET_CPU, "mips2") == 0)
mips_isa = 2;
else if (strcmp (TARGET_CPU, "mips64") == 0
|| strcmp (TARGET_CPU, "r4000") == 0
|| strcmp (TARGET_CPU, "mips3") == 0)
mips_isa = 3;
else
mips_isa = 1;
}
switch (mips_isa)
{
case 1:
ok = bfd_set_arch_mach (stdoutput, bfd_arch_mips, 3000);
break;
case 2:
ok = bfd_set_arch_mach (stdoutput, bfd_arch_mips, 6000);
break;
case 3:
ok = bfd_set_arch_mach (stdoutput, bfd_arch_mips, 4000);
break;
}
if (! ok)
as_warn ("Could not set architecture and machine");
if ((op_hash = hash_new ()) == NULL)
{
as_fatal ("Virtual memory exhausted");
}
for (i = 0; i < NUMOPCODES;)
{
const char *name = mips_opcodes[i].name;
retval = hash_insert (op_hash, name, (PTR) &mips_opcodes[i]);
if (retval != NULL)
{
fprintf (stderr, "internal error: can't hash `%s': %s\n",
mips_opcodes[i].name, retval);
as_fatal ("Broken assembler. No assembly attempted.");
}
do
{
if (mips_opcodes[i].pinfo != INSN_MACRO
&& ((mips_opcodes[i].match & mips_opcodes[i].mask)
!= mips_opcodes[i].match))
{
fprintf (stderr, "internal error: bad opcode: `%s' \"%s\"\n",
mips_opcodes[i].name, mips_opcodes[i].args);
as_fatal ("Broken assembler. No assembly attempted.");
}
++i;
}
while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
}
mips_no_prev_insn ();
mips_gprmask = 0;
mips_cprmask[0] = 0;
mips_cprmask[1] = 0;
mips_cprmask[2] = 0;
mips_cprmask[3] = 0;
/* set the default alignment for the text section (2**2) */
record_alignment (text_section, 2);
/* FIXME: This should be handled in a different way. */
target_big_endian = byte_order == BIG_ENDIAN;
#ifdef GPOPT
bfd_set_gp_size (stdoutput, g_switch_value);
#endif
#ifdef OBJ_ELF
/* Create a .reginfo section for register masks. */
{
segT seg;
subsegT subseg;
segT regsec;
seg = now_seg;
subseg = now_subseg;
regsec = subseg_new (".reginfo", (subsegT) 0);
/* I don't know why this section should be loaded, but the ABI
says that SHF_ALLOC should be set. */
bfd_set_section_flags (stdoutput, regsec,
SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
subseg_set (seg, subseg);
}
#endif /* OBJ_ELF */
#ifndef OBJ_ECOFF
md_obj_begin ();
#endif
}
void
md_end ()
{
#ifndef OBJ_ECOFF
md_obj_end ();
#endif
}
void
md_assemble (str)
char *str;
{
struct mips_cl_insn insn;
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
mips_ip (str, &insn);
if (insn_error)
{
as_bad ("%s `%s'", insn_error, str);
return;
}
if (insn.insn_mo->pinfo == INSN_MACRO)
{
macro (&insn);
}
else
{
if (imm_expr.X_op != O_absent)
append_insn (&insn, &imm_expr, imm_reloc);
else if (offset_expr.X_op != O_absent)
append_insn (&insn, &offset_expr, offset_reloc);
else
append_insn (&insn, NULL, BFD_RELOC_UNUSED);
}
}
/* See whether instruction IP reads register REG. If FPR is non-zero,
REG is a floating point register. */
static int
insn_uses_reg (ip, reg, fpr)
struct mips_cl_insn *ip;
unsigned int reg;
int fpr;
{
/* Don't report on general register 0, since it never changes. */
if (! fpr && reg == 0)
return 0;
if (fpr)
{
/* If we are called with either $f0 or $f1, we must check $f0.
This is not optimal, because it will introduce an unnecessary
NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
need to distinguish reading both $f0 and $f1 or just one of
them. Note that we don't have to check the other way,
because there is no instruction that sets both $f0 and $f1
and requires a delay. */
if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
&& (((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS)
== (reg &~ (unsigned) 1)))
return 1;
if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
&& (((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT)
== (reg &~ (unsigned) 1)))
return 1;
}
else
{
if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
&& ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == reg)
return 1;
if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
&& ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT) == reg)
return 1;
}
return 0;
}
#define ALIGN_ERR "Attempt to assemble instruction onto non word boundary."
#define ALIGN_ERR2 "GAS doesn't do implicit alignment; use .align directive."
/*
* append insn
* Output an instruction.
*/
static void
append_insn (ip, address_expr, reloc_type)
struct mips_cl_insn *ip;
expressionS *address_expr;
bfd_reloc_code_real_type reloc_type;
{
register unsigned long prev_pinfo, pinfo;
char *f;
fixS *fixp;
int nops = 0;
prev_pinfo = prev_insn.insn_mo->pinfo;
pinfo = ip->insn_mo->pinfo;
if (! mips_noreorder)
{
/* If the previous insn required any delay slots, see if we need
to insert a NOP or two. There are eight kinds of possible
hazards, of which an instruction can have at most one type.
(1) a load from memory delay
(2) a load from a coprocessor delay
(3) an unconditional branch delay
(4) a conditional branch delay
(5) a move to coprocessor register delay
(6) a load coprocessor register from memory delay
(7) a coprocessor condition code delay
(8) a HI/LO special register delay
There are a lot of optimizations we could do that we don't.
In particular, we do not, in general, reorder instructions.
If you use gcc with optimization, it will reorder
instructions and generally do much more optimization then we
do here; repeating all that work in the assembler would only
benefit hand written assembly code, and does not seem worth
it. */
/* This is how a NOP is emitted. */
#define emit_nop() md_number_to_chars (frag_more (4), 0, 4)
/* The previous insn might require a delay slot, depending upon
the contents of the current insn. */
if ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
|| (mips_isa < 2
&& (prev_pinfo & INSN_LOAD_MEMORY_DELAY)))
{
/* A load from a coprocessor or from memory. All load
delays delay the use of general register rt for one
instruction on the r3000. The r6000 and r4000 use
interlocks. */
know (prev_pinfo & INSN_WRITE_GPR_T);
if (mips_optimize == 0
|| insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT),
0))
++nops;
}
else if ((prev_pinfo & INSN_COPROC_MOVE_DELAY)
|| (mips_isa < 2
&& (prev_pinfo & INSN_COPROC_MEMORY_DELAY)))
{
/* A generic coprocessor delay. The previous instruction
modified a coprocessor general or control register. If
it modified a control register, we need to avoid any
coprocessor instruction (this is probably not always
required, but it sometimes is). If it modified a general
register, we avoid using that register.
On the r6000 and r4000 loading a coprocessor register
from memory is interlocked, and does not require a delay.
This case is not handled very well. There is no special
knowledge of CP0 handling, and the coprocessors other
than the floating point unit are not distinguished at
all. */
if (prev_pinfo & INSN_WRITE_FPR_T)
{
if (mips_optimize == 0
|| insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_FT)
& OP_MASK_FT),
1))
++nops;
}
else if (prev_pinfo & INSN_WRITE_FPR_S)
{
if (mips_optimize == 0
|| insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_FS)
& OP_MASK_FS),
1))
++nops;
}
else
{
/* We don't know exactly what the previous instruction
does. If the current instruction uses a coprocessor
register, we must insert a NOP. If previous
instruction may set the condition codes, and the
current instruction uses them, we must insert two
NOPS. */
if (mips_optimize == 0
|| ((prev_pinfo & INSN_WRITE_COND_CODE)
&& (pinfo & INSN_READ_COND_CODE)))
nops += 2;
else if (pinfo & INSN_COP)
++nops;
}
}
else if (prev_pinfo & INSN_WRITE_COND_CODE)
{
/* The previous instruction sets the coprocessor condition
codes, but does not require a general coprocessor delay
(this means it is a floating point comparison
instruction). If this instruction uses the condition
codes, we need to insert a single NOP. */
if (mips_optimize == 0
|| (pinfo & INSN_READ_COND_CODE))
++nops;
}
else if (prev_pinfo & INSN_READ_LO)
{
/* The previous instruction reads the LO register; if the
current instruction writes to the LO register, we must
insert two NOPS. */
if (mips_optimize == 0
|| (pinfo & INSN_WRITE_LO))
nops += 2;
}
else if (prev_insn.insn_mo->pinfo & INSN_READ_HI)
{
/* The previous instruction reads the HI register; if the
current instruction writes to the HI register, we must
insert a NOP. */
if (mips_optimize == 0
|| (pinfo & INSN_WRITE_HI))
nops += 2;
}
/* There are two cases which require two intervening
instructions: 1) setting the condition codes using a move to
coprocessor instruction which requires a general coprocessor
delay and then reading the condition codes 2) reading the HI
or LO register and then writing to it. If we are not already
emitting a NOP instruction, we must check for these cases
compared to the instruction previous to the previous
instruction. */
if (nops == 0
&& (((prev_prev_insn.insn_mo->pinfo & INSN_COPROC_MOVE_DELAY)
&& (prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
&& (pinfo & INSN_READ_COND_CODE))
|| ((prev_prev_insn.insn_mo->pinfo & INSN_READ_LO)
&& (pinfo & INSN_WRITE_LO))
|| ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
&& (pinfo & INSN_WRITE_HI))))
++nops;
/* Now emit the right number of NOP instructions. */
if (nops > 0)
{
emit_nop ();
if (nops > 1)
emit_nop ();
if (insn_label != NULL)
{
assert (S_GET_SEGMENT (insn_label) == now_seg);
insn_label->sy_frag = frag_now;
S_SET_VALUE (insn_label, (valueT) frag_now_fix ());
}
}
}
f = frag_more (4);
#if 0
/* This is testing the address of the frag, not the alignment of
the instruction in the current section. */
if ((int) f & 3)
{
as_bad (ALIGN_ERR);
as_bad (ALIGN_ERR2);
}
#endif
fixp = NULL;
if (address_expr != NULL)
{
if (address_expr->X_op == O_constant)
{
switch (reloc_type)
{
case BFD_RELOC_32:
ip->insn_opcode |= address_expr->X_add_number;
break;
case BFD_RELOC_LO16:
ip->insn_opcode |= address_expr->X_add_number & 0xffff;
break;
case BFD_RELOC_MIPS_JMP:
case BFD_RELOC_16_PCREL_S2:
goto need_reloc;
default:
internalError ();
}
}
else
{
assert (reloc_type != BFD_RELOC_UNUSED);
need_reloc:
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
address_expr,
reloc_type == BFD_RELOC_16_PCREL_S2,
reloc_type);
}
}
md_number_to_chars (f, ip->insn_opcode, 4);
/* Update the register mask information. */
if (pinfo & INSN_WRITE_GPR_D)
mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD);
if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT);
if (pinfo & INSN_READ_GPR_S)
mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS);
if (pinfo & INSN_WRITE_GPR_31)
mips_gprmask |= 1 << 31;
if (pinfo & INSN_WRITE_FPR_D)
mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FD) & OP_MASK_FD);
if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS);
if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT);
if (pinfo & INSN_COP)
{
/* We don't keep enough information to sort these cases out. */
}
/* Never set the bit for $0, which is always zero. */
mips_gprmask &=~ 1 << 0;
if (! mips_noreorder)
{
/* Filling the branch delay slot is more complex. We try to
switch the branch with the previous instruction, which we can
do if the previous instruction does not set up a condition
that the branch tests and if the branch is not itself the
target of any branch. */
if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
|| (pinfo & INSN_COND_BRANCH_DELAY))
{
if (mips_optimize < 2
/* If we have seen .set nobopt, don't optimize. */
|| mips_nobopt != 0
/* If we have seen .set volatile or .set nomove, don't
optimize. */
|| mips_nomove != 0
/* If we had to emit any NOP instructions, then we
already know we can not swap. */
|| nops != 0
/* If we don't even know the previous insn, we can not
swap. */
|| ! prev_insn_valid
/* If the previous insn is already in a branch delay
slot, then we can not swap. */
|| prev_insn_is_delay_slot
/* If the previous previous insn was in a .set
noreorder, we can't swap. Actually, the MIPS
assembler will swap in this situation. However, gcc
configured -with-gnu-as will generate code like
.set noreorder
lw $4,XXX
.set reorder
INSN
bne $4,$0,foo
in which we can not swap the bne and INSN. If gcc is
not configured -with-gnu-as, it does not output the
.set pseudo-ops. We don't have to check
prev_insn_unreordered, because prev_insn_valid will
be 0 in that case. We don't want to use
prev_prev_insn_valid, because we do want to be able
to swap at the start of a function. */
|| prev_prev_insn_unreordered
/* If the branch is itself the target of a branch, we
can not swap. We cheat on this; all we check for is
whether there is a label on this instruction. If
there are any branches to anything other than a
label, users must use .set noreorder. */
|| insn_label != NULL
/* If the branch reads the condition codes, we don't
even try to swap, because in the sequence
ctc1 $X,$31
INSN
INSN
bc1t LABEL
we can not swap, and I don't feel like handling that
case. */
|| (pinfo & INSN_READ_COND_CODE)
/* We can not swap with an instruction that requires a
delay slot, becase the target of the branch might
interfere with that instruction. */
|| (prev_pinfo
& (INSN_LOAD_COPROC_DELAY
| INSN_COPROC_MOVE_DELAY
| INSN_WRITE_COND_CODE
| INSN_READ_LO
| INSN_READ_HI))
|| (mips_isa < 2
&& (prev_pinfo
& (INSN_LOAD_MEMORY_DELAY
| INSN_COPROC_MEMORY_DELAY)))
/* We can not swap with a branch instruction. */
|| (prev_pinfo
& (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY))
/* We do not swap with a trap instruction, since it
complicates trap handlers to have the trap
instruction be in a delay slot. */
|| (prev_pinfo & INSN_TRAP)
/* If the branch reads a register that the previous
instruction sets, we can not swap. */
|| ((prev_pinfo & INSN_WRITE_GPR_T)
&& insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT),
0))
|| ((prev_pinfo & INSN_WRITE_GPR_D)
&& insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_RD)
& OP_MASK_RD),
0))
/* If the branch writes a register that the previous
instruction sets, we can not swap (we know that
branches write only to RD or to $31). */
|| ((prev_pinfo & INSN_WRITE_GPR_T)
&& (((pinfo & INSN_WRITE_GPR_D)
&& (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT)
== ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
|| ((pinfo & INSN_WRITE_GPR_31)
&& (((prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT)
== 31))))
|| ((prev_pinfo & INSN_WRITE_GPR_D)
&& (((pinfo & INSN_WRITE_GPR_D)
&& (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD)
== ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
|| ((pinfo & INSN_WRITE_GPR_31)
&& (((prev_insn.insn_opcode >> OP_SH_RD)
& OP_MASK_RD)
== 31))))
/* If the branch writes a register that the previous
instruction reads, we can not swap (we know that
branches only write to RD or to $31). */
|| ((pinfo & INSN_WRITE_GPR_D)
&& insn_uses_reg (&prev_insn,
((ip->insn_opcode >> OP_SH_RD)
& OP_MASK_RD),
0))
|| ((pinfo & INSN_WRITE_GPR_31)
&& insn_uses_reg (&prev_insn, 31, 0))
/* If the previous previous instruction has a load
delay, and sets a register that the branch reads, we
can not swap. */
|| (((prev_prev_insn.insn_mo->pinfo & INSN_LOAD_COPROC_DELAY)
|| (mips_isa < 2
&& (prev_prev_insn.insn_mo->pinfo
& INSN_LOAD_MEMORY_DELAY)))
&& insn_uses_reg (ip,
((prev_prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT),
0)))
{
/* We could do even better for unconditional branches to
portions of this object file; we could pick up the
instruction at the destination, put it in the delay
slot, and bump the destination address. */
emit_nop ();
/* Update the previous insn information. */
prev_prev_insn = *ip;
prev_insn.insn_mo = &dummy_opcode;
}
else
{
char *prev_f;
char temp[4];
/* It looks like we can actually do the swap. */
prev_f = prev_insn_frag->fr_literal + prev_insn_where;
memcpy (temp, prev_f, 4);
memcpy (prev_f, f, 4);
memcpy (f, temp, 4);
if (prev_insn_fixp)
{
prev_insn_fixp->fx_frag = frag_now;
prev_insn_fixp->fx_where = f - frag_now->fr_literal;
}
if (fixp)
{
fixp->fx_frag = prev_insn_frag;
fixp->fx_where = prev_insn_where;
}
/* Update the previous insn information; leave prev_insn
unchanged. */
prev_prev_insn = *ip;
}
prev_insn_is_delay_slot = 1;
/* If that was an unconditional branch, forget the previous
insn information. */
if (pinfo & INSN_UNCOND_BRANCH_DELAY)
{
prev_prev_insn.insn_mo = &dummy_opcode;
prev_insn.insn_mo = &dummy_opcode;
}
}
else if (pinfo & INSN_COND_BRANCH_LIKELY)
{
/* We don't yet optimize a branch likely. What we should do
is look at the target, copy the instruction found there
into the delay slot, and increment the branch to jump to
the next instruction. */
emit_nop ();
/* Update the previous insn information. */
prev_prev_insn = *ip;
prev_insn.insn_mo = &dummy_opcode;
}
else
{
/* Update the previous insn information. */
if (nops > 0)
prev_prev_insn.insn_mo = &dummy_opcode;
else
prev_prev_insn = prev_insn;
prev_insn = *ip;
/* Any time we see a branch, we always fill the delay slot
immediately; since this insn is not a branch, we know it
is not in a delay slot. */
prev_insn_is_delay_slot = 0;
}
prev_prev_insn_unreordered = prev_insn_unreordered;
prev_insn_unreordered = 0;
prev_insn_frag = frag_now;
prev_insn_where = f - frag_now->fr_literal;
prev_insn_fixp = fixp;
prev_insn_valid = 1;
}
/* We just output an insn, so the next one doesn't have a label. */
insn_label = NULL;
}
/* This function forgets that there was any previous instruction or
label. */
static void
mips_no_prev_insn ()
{
prev_insn.insn_mo = &dummy_opcode;
prev_prev_insn.insn_mo = &dummy_opcode;
prev_insn_valid = 0;
prev_insn_is_delay_slot = 0;
prev_insn_unreordered = 0;
prev_prev_insn_unreordered = 0;
insn_label = NULL;
}
/* This function must be called whenever we turn on noreorder or emit
something other than instructions. It inserts any NOPS which might
be needed by the previous instruction, and clears the information
kept for the previous instructions. */
static void
mips_emit_delays ()
{
if (! mips_noreorder)
{
int nop;
nop = 0;
if ((prev_insn.insn_mo->pinfo
& (INSN_LOAD_COPROC_DELAY
| INSN_COPROC_MOVE_DELAY
| INSN_WRITE_COND_CODE
| INSN_READ_LO
| INSN_READ_HI))
|| (mips_isa < 2
&& (prev_insn.insn_mo->pinfo
& (INSN_LOAD_MEMORY_DELAY
| INSN_COPROC_MEMORY_DELAY))))
{
nop = 1;
if ((prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
|| (prev_insn.insn_mo->pinfo & INSN_READ_HI)
|| (prev_insn.insn_mo->pinfo & INSN_READ_LO))
emit_nop ();
}
else if ((prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
|| (prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
|| (prev_prev_insn.insn_mo->pinfo & INSN_READ_LO))
nop = 1;
if (nop)
{
emit_nop ();
if (insn_label != NULL)
{
assert (S_GET_SEGMENT (insn_label) == now_seg);
insn_label->sy_frag = frag_now;
S_SET_VALUE (insn_label, (valueT) frag_now_fix ());
}
}
mips_no_prev_insn ();
}
}
/* Return 1 if an expression can be accessed via the GP register. */
static int
gp_reference (ep)
expressionS *ep;
{
#ifdef GPOPT
symbolS *sym;
const char *symname;
const char *segname;
sym = ep->X_add_symbol;
if (sym == (symbolS *) NULL
|| ep->X_op_symbol != (symbolS *) NULL)
return 0;
/* Certain symbols can not be referenced off the GP, although it
appears as though they can. */
symname = S_GET_NAME (sym);
if (symname != (const char *) NULL
&& (strcmp (symname, "eprol") == 0
|| strcmp (symname, "etext") == 0
|| strcmp (symname, "_gp") == 0
|| strcmp (symname, "edata") == 0
|| strcmp (symname, "_fbss") == 0
|| strcmp (symname, "_fdata") == 0
|| strcmp (symname, "_ftext") == 0
|| strcmp (symname, "end") == 0
|| strcmp (symname, "_gp_disp") == 0))
return 0;
if (! S_IS_DEFINED (sym)
&& S_GET_VALUE (sym) != 0
&& S_GET_VALUE (sym) <= g_switch_value)
return 1;
segname = segment_name (S_GET_SEGMENT (ep->X_add_symbol));
return (strcmp (segname, ".sdata") == 0
|| strcmp (segname, ".sbss") == 0
|| strcmp (segname, ".lit8") == 0
|| strcmp (segname, ".lit4") == 0);
#else /* ! defined (GPOPT) */
/* We are not optimizing for the GP register. */
return 0;
#endif /* ! defined (GPOPT) */
}
/* Build an instruction created by a macro expansion. This is passed
a pointer to the count of instructions created so far, an
expression, the name of the instruction to build, an operand format
string, and corresponding arguments. */
#ifndef NO_STDARG
static void
macro_build (int *counter,
expressionS * ep,
const char *name,
const char *fmt,
...)
#else /* ! defined (NO_STDARG) */
static void
macro_build (counter, ep, name, fmt, va_alist)
int *counter;
expressionS *ep;
const char *name;
const char *fmt;
va_dcl
#endif /* ! defined (NO_STDARG) */
{
struct mips_cl_insn insn;
bfd_reloc_code_real_type r;
va_list args;
#ifndef NO_STDARG
va_start (args, fmt);
#else
va_start (args);
#endif
/*
* If the macro is about to expand into a second instruction,
* print a warning if needed. We need to pass ip as a parameter
* to generate a better warning message here...
*/
if (mips_warn_about_macros && *counter == 1)
as_warn ("Macro instruction expanded into multiple instructions");
*counter += 1; /* bump instruction counter */
r = BFD_RELOC_UNUSED;
insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
assert (insn.insn_mo);
assert (strcmp (name, insn.insn_mo->name) == 0);
while (strcmp (fmt, insn.insn_mo->args) != 0
|| insn.insn_mo->pinfo == INSN_MACRO)
{
++insn.insn_mo;
assert (insn.insn_mo->name);
assert (strcmp (name, insn.insn_mo->name) == 0);
}
insn.insn_opcode = insn.insn_mo->match;
for (;;)
{
switch (*fmt++)
{
case '\0':
break;
case ',':
case '(':
case ')':
continue;
case 't':
case 'w':
case 'E':
insn.insn_opcode |= va_arg (args, int) << 16;
continue;
case 'c':
case 'T':
case 'W':
insn.insn_opcode |= va_arg (args, int) << 16;
continue;
case 'd':
case 'G':
insn.insn_opcode |= va_arg (args, int) << 11;
continue;
case 'V':
case 'S':
insn.insn_opcode |= va_arg (args, int) << 11;
continue;
case 'z':
continue;
case '<':
insn.insn_opcode |= va_arg (args, int) << 6;
continue;
case 'D':
insn.insn_opcode |= va_arg (args, int) << 6;
continue;
case 'B':
insn.insn_opcode |= va_arg (args, int) << 6;
continue;
case 'b':
case 's':
case 'r':
case 'v':
insn.insn_opcode |= va_arg (args, int) << 21;
continue;
case 'i':
case 'j':
case 'o':
assert (ep != NULL);
r = (bfd_reloc_code_real_type) va_arg (args, int);
assert (ep->X_op == O_constant || ! gp_reference (ep)
? r == BFD_RELOC_LO16 || r == BFD_RELOC_MIPS_CALL16
: r == BFD_RELOC_MIPS_GPREL || r == BFD_RELOC_MIPS_LITERAL);
continue;
case 'u':
assert (ep != NULL && ep->X_op == O_constant);
insn.insn_opcode |= (ep->X_add_number >> 16) & 0xffff;
ep = NULL;
continue;
case 'p':
assert (ep != NULL);
/*
* This allows macro() to pass an immediate expression for
* creating short branches without creating a symbol.
* Note that the expression still might come from the assembly
* input, in which case the value is not checked for range nor
* is a relocation entry generated (yuck).
*/
if (ep->X_op == O_constant)
{
insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
ep = NULL;
}
else
r = BFD_RELOC_16_PCREL_S2;
continue;
case 'a':
assert (ep != NULL);
r = BFD_RELOC_MIPS_JMP;
continue;
default:
internalError ();
}
break;
}
va_end (args);
assert (r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r);
}
/*
* Generate a "lui" instruction.
*/
static void
macro_build_lui (counter, ep, regnum)
int *counter;
expressionS *ep;
int regnum;
{
expressionS high_expr;
struct mips_cl_insn insn;
bfd_reloc_code_real_type r;
CONST char *name = "lui";
CONST char *fmt = "t,u";
high_expr = *ep;
if (high_expr.X_op == O_constant)
{
/* we can compute the instruction now without a relocation entry */
if (high_expr.X_add_number & 0x8000)
high_expr.X_add_number += 0x10000;
high_expr.X_add_number =
((unsigned long) high_expr.X_add_number >> 16) & 0xffff;
r = BFD_RELOC_UNUSED;
}
else
r = BFD_RELOC_HI16_S;
/*
* If the macro is about to expand into a second instruction,
* print a warning if needed. We need to pass ip as a parameter
* to generate a better warning message here...
*/
if (mips_warn_about_macros && *counter == 1)
as_warn ("Macro instruction expanded into multiple instructions");
*counter += 1; /* bump instruction counter */
insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
assert (insn.insn_mo);
assert (strcmp (name, insn.insn_mo->name) == 0);
assert (strcmp (fmt, insn.insn_mo->args) == 0);
insn.insn_opcode = insn.insn_mo->match | (regnum << 16);
if (r == BFD_RELOC_UNUSED)
{
insn.insn_opcode |= high_expr.X_add_number;
append_insn (&insn, NULL, r);
}
else
append_insn (&insn, &high_expr, r);
}
/* set_at()
* Generates code to set the $at register to true (one)
* if reg is less than the immediate expression.
*/
static void
set_at (counter, reg, unsignedp)
int *counter;
int reg;
int unsignedp;
{
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
macro_build (counter, &imm_expr,
unsignedp ? "sltiu" : "slti",
"t,r,j", AT, reg, (int) BFD_RELOC_LO16);
else
{
load_register (counter, AT, &imm_expr);
macro_build (counter, NULL,
unsignedp ? "sltu" : "slt",
"d,v,t", AT, reg, AT);
}
}
/* Warn if an expression is not a constant. */
static void
check_absolute_expr (ip, ex)
struct mips_cl_insn *ip;
expressionS *ex;
{
if (ex->X_op != O_constant)
as_warn ("Instruction %s requires absolute expression", ip->insn_mo->name);
}
/* load_register()
* This routine generates the least number of instructions neccessary to load
* an absolute expression value into a register.
*/
static void
load_register (counter, reg, ep)
int *counter;
int reg;
expressionS *ep;
{
assert (ep->X_op == O_constant);
if (ep->X_add_number >= -0x8000 && ep->X_add_number < 0x8000)
macro_build (counter, ep,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, 0, (int) BFD_RELOC_LO16);
else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
macro_build (counter, ep, "ori", "t,r,i", reg, 0, (int) BFD_RELOC_LO16);
else if ((ep->X_add_number &~ (offsetT) 0x7fffffff) == 0
|| ((ep->X_add_number &~ (offsetT) 0x7fffffff)
== ~ (offsetT) 0x7fffffff))
{
macro_build (counter, ep, "lui", "t,u", reg);
if ((ep->X_add_number & 0xffff) != 0)
macro_build (counter, ep, "ori", "t,r,i", reg, reg,
(int) BFD_RELOC_LO16);
}
else if (mips_isa < 3)
{
as_bad ("Number larger than 32 bits");
macro_build (counter, ep, "addiu", "t,r,j", reg, 0,
(int) BFD_RELOC_LO16);
}
else
{
int shift;
expressionS hi32, lo32;
hi32 = *ep;
shift = 32;
hi32.X_add_number >>= shift;
hi32.X_add_number &= 0xffffffff;
if ((hi32.X_add_number & 0x80000000) != 0)
hi32.X_add_number |= ~ (offsetT) 0xffffffff;
load_register (counter, reg, &hi32);
lo32 = *ep;
lo32.X_add_number &= 0xffffffff;
if ((lo32.X_add_number & 0xffff0000) == 0)
macro_build (counter, NULL, "dsll32", "d,w,<", reg, reg, 0);
else
{
expressionS mid16;
macro_build (counter, NULL, "dsll", "d,w,<", reg, reg, 16);
mid16 = lo32;
mid16.X_add_number >>= 16;
macro_build (counter, &mid16, "ori", "t,r,i", reg, reg,
(int) BFD_RELOC_LO16);
macro_build (counter, NULL, "dsll", "d,w,<", reg, reg, 16);
}
if ((lo32.X_add_number & 0xffff) != 0)
macro_build (counter, &lo32, "ori", "t,r,i", reg, reg,
(int) BFD_RELOC_LO16);
}
}
/*
* Build macros
* This routine implements the seemingly endless macro or synthesized
* instructions and addressing modes in the mips assembly language. Many
* of these macros are simple and are similar to each other. These could
* probably be handled by some kind of table or grammer aproach instead of
* this verbose method. Others are not simple macros but are more like
* optimizing code generation.
* One interesting optimization is when several store macros appear
* consecutivly that would load AT with the upper half of the same address.
* The ensuing load upper instructions are ommited. This implies some kind
* of global optimization. We currently only optimize within a single macro.
* For many of the load and store macros if the address is specified as a
* constant expression in the first 64k of memory (ie ld $2,0x4000c) we
* first load register 'at' with zero and use it as the base register. The
* mips assembler simply uses register $zero. Just one tiny optimization
* we're missing.
*/
static void
macro (ip)
struct mips_cl_insn *ip;
{
register int treg, sreg, dreg, breg;
int tempreg;
int mask;
int icnt = 0;
int used_at;
expressionS expr1;
const char *s;
const char *s2;
const char *fmt;
int likely = 0;
int dbl = 0;
int coproc = 0;
offsetT maxnum;
bfd_reloc_code_real_type r;
treg = (ip->insn_opcode >> 16) & 0x1f;
dreg = (ip->insn_opcode >> 11) & 0x1f;
sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
mask = ip->insn_mo->mask;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
switch (mask)
{
case M_DABS:
dbl = 1;
case M_ABS:
/* bgez $a0,.+12
move v0,$a0
sub v0,$zero,$a0
*/
mips_emit_delays ();
++mips_noreorder;
expr1.X_add_number = 8;
macro_build (&icnt, &expr1, "bgez", "s,p", sreg);
if (dreg == sreg)
macro_build (&icnt, NULL, "nop", "", 0);
else
macro_build (&icnt, NULL, "move", "d,s", dreg, sreg, 0);
macro_build (&icnt, NULL,
dbl ? "dsub" : "sub",
"d,v,t", dreg, 0, sreg);
--mips_noreorder;
return;
case M_ADD_I:
s = "addi";
s2 = "add";
goto do_addi;
case M_ADDU_I:
s = "addiu";
s2 = "addu";
goto do_addi;
case M_DADD_I:
dbl = 1;
s = "daddi";
s2 = "dadd";
goto do_addi;
case M_DADDU_I:
dbl = 1;
s = "daddiu";
s2 = "daddu";
do_addi:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build (&icnt, &imm_expr, s, "t,r,j", treg, sreg,
(int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, s2, "d,v,t", treg, sreg, AT);
break;
case M_AND_I:
s = "andi";
s2 = "and";
goto do_bit;
case M_OR_I:
s = "ori";
s2 = "or";
goto do_bit;
case M_NOR_I:
s = "";
s2 = "nor";
goto do_bit;
case M_XOR_I:
s = "xori";
s2 = "xor";
do_bit:
if (imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000)
{
if (mask != M_NOR_I)
macro_build (&icnt, &imm_expr, s, "t,r,i", treg, sreg,
(int) BFD_RELOC_LO16);
else
{
macro_build (&icnt, &imm_expr, "ori", "t,r,i", treg, sreg,
(int) BFD_RELOC_LO16);
macro_build (&icnt, &imm_expr, "nor", "d,v,t", treg, treg, 0);
}
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, s2, "d,v,t", treg, sreg, AT);
break;
case M_BEQ_I:
s = "beq";
goto beq_i;
case M_BEQL_I:
s = "beql";
likely = 1;
goto beq_i;
case M_BNE_I:
s = "bne";
goto beq_i;
case M_BNEL_I:
s = "bnel";
likely = 1;
beq_i:
if (imm_expr.X_add_number == 0)
{
macro_build (&icnt, &offset_expr, s, "s,t,p", sreg, 0);
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, &offset_expr, s, "s,t,p", sreg, AT);
break;
case M_BGEL:
likely = 1;
case M_BGE:
if (treg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bgezl" : "bgez",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "blezl" : "blez",
"s,p", treg);
return;
}
macro_build (&icnt, NULL, "slt", "d,v,t", AT, sreg, treg);
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGTL_I:
likely = 1;
case M_BGT_I:
/* check for > max integer */
maxnum = 0x7fffffff;
if (mips_isa >= 3)
{
maxnum <<= 16;
maxnum |= 0xffff;
maxnum <<= 16;
maxnum |= 0xffff;
}
if (imm_expr.X_add_number >= maxnum)
{
do_false:
/* result is always false */
if (! likely)
{
as_warn ("Branch %s is always false (nop)", ip->insn_mo->name);
macro_build (&icnt, NULL, "nop", "", 0);
}
else
{
as_warn ("Branch likely %s is always false", ip->insn_mo->name);
macro_build (&icnt, &offset_expr, "bnel", "s,t,p", 0, 0);
}
return;
}
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BGE_I:
case M_BGEL_I:
if (mask == M_BGEL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bgezl" : "bgez",
"s,p", sreg);
return;
}
if (imm_expr.X_add_number == 1)
{
macro_build (&icnt, &offset_expr,
likely ? "bgtzl" : "bgtz",
"s,p", sreg);
return;
}
maxnum = 0x7fffffff;
if (mips_isa >= 3)
{
maxnum <<= 16;
maxnum |= 0xffff;
maxnum <<= 16;
maxnum |= 0xffff;
}
maxnum = - maxnum - 1;
if (imm_expr.X_add_number <= maxnum)
{
do_true:
/* result is always true */
as_warn ("Branch %s is always true", ip->insn_mo->name);
macro_build (&icnt, &offset_expr, "b", "p");
return;
}
set_at (&icnt, sreg, 0);
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGEUL:
likely = 1;
case M_BGEU:
if (treg == 0)
goto do_true;
if (sreg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", 0, treg);
return;
}
macro_build (&icnt, NULL, "sltu", "d,v,t", AT, sreg, treg);
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGTUL_I:
likely = 1;
case M_BGTU_I:
if (sreg == 0 || imm_expr.X_add_number == -1)
goto do_false;
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BGEU_I:
case M_BGEUL_I:
if (mask == M_BGEUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_true;
if (imm_expr.X_add_number == 1)
{
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", sreg, 0);
return;
}
set_at (&icnt, sreg, 1);
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGTL:
likely = 1;
case M_BGT:
if (treg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bgtzl" : "bgtz",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bltzl" : "bltz",
"s,p", treg);
return;
}
macro_build (&icnt, NULL, "slt", "d,v,t", AT, treg, sreg);
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BGTUL:
likely = 1;
case M_BGTU:
if (treg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", sreg, 0);
return;
}
if (sreg == 0)
goto do_false;
macro_build (&icnt, NULL, "sltu", "d,v,t", AT, treg, sreg);
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLEL:
likely = 1;
case M_BLE:
if (treg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "blezl" : "blez",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bgezl" : "bgez",
"s,p", treg);
return;
}
macro_build (&icnt, NULL, "slt", "d,v,t", AT, treg, sreg);
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BLEL_I:
likely = 1;
case M_BLE_I:
maxnum = 0x7fffffff;
if (mips_isa >= 3)
{
maxnum <<= 16;
maxnum |= 0xffff;
maxnum <<= 16;
maxnum |= 0xffff;
}
if (imm_expr.X_add_number >= maxnum)
goto do_true;
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BLT_I:
case M_BLTL_I:
if (mask == M_BLTL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bltzl" : "bltz",
"s,p", sreg);
return;
}
if (imm_expr.X_add_number == 1)
{
macro_build (&icnt, &offset_expr,
likely ? "blezl" : "blez",
"s,p", sreg);
return;
}
set_at (&icnt, sreg, 0);
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLEUL:
likely = 1;
case M_BLEU:
if (treg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", sreg, 0);
return;
}
if (sreg == 0)
goto do_true;
macro_build (&icnt, NULL, "sltu", "d,v,t", AT, treg, sreg);
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BLEUL_I:
likely = 1;
case M_BLEU_I:
if (sreg == 0 || imm_expr.X_add_number == -1)
goto do_true;
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BLTU_I:
case M_BLTUL_I:
if (mask == M_BLTUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_false;
if (imm_expr.X_add_number == 1)
{
macro_build (&icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", sreg, 0);
return;
}
set_at (&icnt, sreg, 1);
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLTL:
likely = 1;
case M_BLT:
if (treg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bltzl" : "bltz",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bgtzl" : "bgtz",
"s,p", treg);
return;
}
macro_build (&icnt, NULL, "slt", "d,v,t", AT, sreg, treg);
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLTUL:
likely = 1;
case M_BLTU:
if (treg == 0)
goto do_false;
if (sreg == 0)
{
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", 0, treg);
return;
}
macro_build (&icnt, NULL, "sltu", "d,v,t", AT, sreg, treg);
macro_build (&icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_DDIV_3:
dbl = 1;
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
case M_REM_3:
s = "mfhi";
do_div3:
if (treg == 0)
{
as_warn ("Divide by zero.");
macro_build (&icnt, NULL, "break", "c", 7);
return;
}
mips_emit_delays ();
++mips_noreorder;
macro_build (&icnt, NULL,
dbl ? "ddiv" : "div",
"z,s,t", sreg, treg);
expr1.X_add_number = 8;
macro_build (&icnt, &expr1, "bne", "s,t,p", treg, 0);
macro_build (&icnt, NULL, "nop", "", 0);
macro_build (&icnt, NULL, "break", "c", 7);
expr1.X_add_number = -1;
macro_build (&icnt, &expr1,
dbl ? "daddiu" : "addiu",
"t,r,j", AT, 0, (int) BFD_RELOC_LO16);
expr1.X_add_number = dbl ? 20 : 16;
macro_build (&icnt, &expr1, "bne", "s,t,p", treg, AT);
if (dbl)
{
expr1.X_add_number = 1;
macro_build (&icnt, &expr1, "daddiu", "t,r,j", AT, 0,
(int) BFD_RELOC_LO16);
macro_build (&icnt, NULL, "dsll32", "d,w,<", AT, AT, 31);
}
else
{
expr1.X_add_number = 0x80000000;
macro_build (&icnt, &expr1, "lui", "t,u", AT);
}
expr1.X_add_number = 8;
macro_build (&icnt, &expr1, "bne", "s,t,p", sreg, AT);
macro_build (&icnt, NULL, "nop", "", 0);
macro_build (&icnt, NULL, "break", "c", 6);
--mips_noreorder;
macro_build (&icnt, NULL, s, "d", dreg);
break;
case M_DIV_3I:
s = "div";
s2 = "mflo";
goto do_divi;
case M_DIVU_3I:
s = "divu";
s2 = "mflo";
goto do_divi;
case M_REM_3I:
s = "div";
s2 = "mfhi";
goto do_divi;
case M_REMU_3I:
s = "divu";
s2 = "mfhi";
goto do_divi;
case M_DDIV_3I:
dbl = 1;
s = "ddiv";
s2 = "mflo";
goto do_divi;
case M_DDIVU_3I:
dbl = 1;
s = "ddivu";
s2 = "mflo";
goto do_divi;
case M_DREM_3I:
dbl = 1;
s = "ddiv";
s2 = "mfhi";
goto do_divi;
case M_DREMU_3I:
dbl = 1;
s = "ddivu";
s2 = "mfhi";
do_divi:
if (imm_expr.X_add_number == 0)
{
as_warn ("Divide by zero.");
macro_build (&icnt, NULL, "break", "c", 7);
return;
}
if (imm_expr.X_add_number == 1)
{
if (strcmp (s2, "mflo") == 0)
macro_build (&icnt, NULL, "move", "d,s", dreg, sreg);
else
macro_build (&icnt, NULL, "move", "d,s", dreg, 0);
return;
}
if (imm_expr.X_add_number == -1
&& s[strlen (s) - 1] != 'u')
{
if (strcmp (s2, "mflo") == 0)
{
if (dbl)
macro_build (&icnt, NULL, "dneg", "d,w", dreg, sreg);
else
macro_build (&icnt, NULL, "neg", "d,w", dreg, sreg);
}
else
macro_build (&icnt, NULL, "move", "d,s", dreg, 0);
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, s, "z,s,t", sreg, AT);
macro_build (&icnt, NULL, s2, "d", dreg);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
mips_emit_delays ();
++mips_noreorder;
macro_build (&icnt, NULL, s, "z,s,t", sreg, treg);
expr1.X_add_number = 8;
macro_build (&icnt, &expr1, "bne", "s,t,p", treg, 0);
macro_build (&icnt, NULL, "nop", "", 0);
macro_build (&icnt, NULL, "break", "c", 7);
--mips_noreorder;
macro_build (&icnt, NULL, s2, "d", dreg);
return;
case M_LA:
if (offset_expr.X_op == O_constant)
{
load_register (&icnt, treg, &offset_expr);
return;
}
if (gp_reference (&offset_expr))
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", treg, GP, (int) BFD_RELOC_MIPS_GPREL);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, treg);
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", treg, treg, (int) BFD_RELOC_LO16);
}
return;
case M_LA_AB:
tempreg = (breg == treg) ? AT : treg;
if (offset_expr.X_op == O_constant)
load_register (&icnt, tempreg, &offset_expr);
else if (gp_reference (&offset_expr))
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, GP, (int) BFD_RELOC_MIPS_GPREL);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, tempreg);
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg,
(int) BFD_RELOC_LO16);
}
if (breg != 0)
macro_build (&icnt, NULL, "addu", "d,v,t", treg, tempreg, breg);
if (breg == treg)
break;
return;
/* The jal instructions must be handled as macros because when
generating PIC code they expand to multi-instruction
sequences. Normally they are simple instructions. */
case M_JAL_1:
dreg = RA;
/* Fall through. */
case M_JAL_2:
if (mips_pic == 0)
{
macro_build (&icnt, (expressionS *) NULL, "jalr", "d,s",
dreg, sreg);
return;
}
/* I only know how to handle pic2. */
assert (mips_pic == 2);
if (dreg != PIC_CALL_REG)
as_warn ("MIPS PIC call to register other than $25");
macro_build (&icnt, (expressionS *) NULL, "jalr", "d,s",
dreg, sreg);
expr1.X_add_number = mips_cprestore_offset;
macro_build (&icnt, &expr1,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", GP, (int) BFD_RELOC_LO16, SP);
return;
case M_JAL_A:
if (mips_pic == 0)
{
macro_build (&icnt, &offset_expr, "jal", "a");
return;
}
/* I only know how to handle pic2. */
assert (mips_pic == 2);
/* We turn this into
lw $25,%call16($gp)
jalr $25
lw $gp,cprestore($sp)
The %call16 generates the R_MIPS_CALL16 reloc. See the MIPS
ABI. The cprestore value is set using the .cprestore
pseudo-op. */
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", PIC_CALL_REG, (int) BFD_RELOC_MIPS_CALL16, GP);
macro_build (&icnt, (expressionS *) NULL, "jalr", "s", PIC_CALL_REG);
expr1.X_add_number = mips_cprestore_offset;
macro_build (&icnt, &expr1,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", GP, (int) BFD_RELOC_LO16, SP);
return;
case M_LB_AB:
s = "lb";
goto ld;
case M_LBU_AB:
s = "lbu";
goto ld;
case M_LH_AB:
s = "lh";
goto ld;
case M_LHU_AB:
s = "lhu";
goto ld;
case M_LW_AB:
s = "lw";
goto ld;
case M_LWC0_AB:
s = "lwc0";
coproc = 1;
goto ld;
case M_LWC1_AB:
case M_LI_SS:
s = "lwc1";
coproc = 1;
goto ld;
case M_LWC2_AB:
s = "lwc2";
coproc = 1;
goto ld;
case M_LWC3_AB:
s = "lwc3";
coproc = 1;
goto ld;
case M_LWL_AB:
s = "lwl";
goto ld;
case M_LWR_AB:
s = "lwr";
goto ld;
case M_LDC1_AB:
s = "ldc1";
coproc = 1;
goto ld;
case M_LDC2_AB:
s = "ldc2";
coproc = 1;
goto ld;
case M_LDC3_AB:
s = "ldc3";
coproc = 1;
goto ld;
case M_LDL_AB:
s = "ldl";
goto ld;
case M_LDR_AB:
s = "ldr";
goto ld;
case M_LL_AB:
s = "ll";
goto ld;
case M_LLD_AB:
s = "lld";
goto ld;
case M_LWU_AB:
s = "lwu";
ld:
if (breg == treg || coproc)
{
tempreg = AT;
used_at = 1;
}
else
{
tempreg = treg;
used_at = 0;
}
goto ld_st;
case M_SB_AB:
s = "sb";
goto st;
case M_SH_AB:
s = "sh";
goto st;
case M_SW_AB:
s = "sw";
goto st;
case M_SWC0_AB:
s = "swc0";
coproc = 1;
goto st;
case M_SWC1_AB:
s = "swc1";
coproc = 1;
goto st;
case M_SWC2_AB:
s = "swc2";
coproc = 1;
goto st;
case M_SWC3_AB:
s = "swc3";
coproc = 1;
goto st;
case M_SWL_AB:
s = "swl";
goto st;
case M_SWR_AB:
s = "swr";
goto st;
case M_SC_AB:
s = "sc";
goto st;
case M_SCD_AB:
s = "scd";
goto st;
case M_SDC1_AB:
s = "sdc1";
coproc = 1;
goto st;
case M_SDC2_AB:
s = "sdc2";
coproc = 1;
goto st;
case M_SDC3_AB:
s = "sdc3";
coproc = 1;
goto st;
case M_SDL_AB:
s = "sdl";
goto st;
case M_SDR_AB:
s = "sdr";
st:
tempreg = AT;
used_at = 1;
ld_st:
if (mask == M_LWC1_AB
|| mask == M_SWC1_AB
|| mask == M_LI_SS
|| mask == M_LDC1_AB
|| mask == M_SDC1_AB)
fmt = "T,o(b)";
else if (coproc)
fmt = "E,o(b)";
else
fmt = "t,o(b)";
if (gp_reference (&offset_expr))
{
if (breg == 0)
{
macro_build (&icnt, &offset_expr, s, fmt, treg,
(int) BFD_RELOC_MIPS_GPREL, GP);
return;
}
macro_build (&icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, breg, GP);
r = BFD_RELOC_MIPS_GPREL;
}
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, tempreg);
if (breg != 0)
macro_build (&icnt, NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, breg);
r = BFD_RELOC_LO16;
}
macro_build (&icnt, &offset_expr, s, fmt, treg, (int) r, tempreg);
if (used_at)
break;
return;
case M_LI:
case M_LI_S:
load_register (&icnt, treg, &imm_expr);
return;
case M_LI_D:
/* lui $at,%hi(foo)
lw $v0,%lo(foo)($at)
lw $v1,%lo(foo+4)($at)
.rdata
foo:
.double 3.133435
*/
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, AT);
if (mips_isa >= 3)
macro_build (&icnt, &offset_expr, "ld", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
else
{
macro_build (&icnt, &offset_expr, "lw", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
offset_expr.X_add_number += 4;
macro_build (&icnt, &offset_expr, "lw", "t,o(b)", treg + 1,
(int) BFD_RELOC_LO16, AT);
}
break;
case M_LI_DD:
/* Load a floating point number from the .lit8 section. */
if (mips_isa >= 2)
{
macro_build (&icnt, &offset_expr, "ldc1", "T,o(b)", treg,
(int) BFD_RELOC_MIPS_LITERAL, GP);
return;
}
breg = GP;
r = BFD_RELOC_MIPS_LITERAL;
goto dob;
case M_L_DOB:
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when loading from memory. */
r = BFD_RELOC_LO16;
dob:
assert (mips_isa < 2);
macro_build (&icnt, &offset_expr, "lwc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg : treg + 1,
(int) r, breg);
offset_expr.X_add_number += 4;
macro_build (&icnt, &offset_expr, "lwc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg + 1 : treg,
(int) r, breg);
return;
case M_L_DAB:
/*
* The MIPS assembler seems to check for X_add_number not
* being double aligned and generating:
* lui at,%hi(foo+1)
* addu at,at,v1
* addiu at,at,%lo(foo+1)
* lwc1 f2,0(at)
* lwc1 f3,4(at)
* But, the resulting address is the same after relocation so why
* generate the extra instruction?
*/
if (gp_reference (&offset_expr))
{
if (breg == 0)
tempreg = GP;
else
{
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, GP);
tempreg = AT;
}
r = BFD_RELOC_MIPS_GPREL;
}
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, AT);
if (breg != 0)
macro_build (&icnt, NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, AT, breg);
tempreg = AT;
r = BFD_RELOC_LO16;
}
if (mips_isa >= 2)
macro_build (&icnt, &offset_expr, "ldc1", "T,o(b)", treg,
(int) r, tempreg);
else
{
/* Even on a big endian machine $fn comes before $fn+1. We
have to adjust when loading from memory. */
macro_build (&icnt, &offset_expr, "lwc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg : treg + 1,
(int) r, tempreg);
offset_expr.X_add_number += 4;
macro_build (&icnt, &offset_expr, "lwc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg + 1 : treg,
(int) r, tempreg);
}
if (tempreg == AT)
break;
return;
case M_LD_OB:
s = "lw";
goto sd_ob;
case M_SD_OB:
s = "sw";
sd_ob:
assert (mips_isa < 3);
macro_build (&icnt, &offset_expr, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
offset_expr.X_add_number += 4;
macro_build (&icnt, &offset_expr, s, "t,o(b)", treg + 1,
(int) BFD_RELOC_LO16, breg);
return;
case M_LD_AB:
s = "lw";
s2 = "ld";
if (breg == treg)
{
tempreg = AT;
used_at = 1;
}
else
{
tempreg = treg;
used_at = 0;
}
goto sd_ab;
case M_SD_AB:
s = "sw";
s2 = "sd";
tempreg = AT;
used_at = 1;
sd_ab:
if (gp_reference (&offset_expr))
{
if (breg == 0)
{
tempreg = GP;
used_at = 0;
}
else
macro_build (&icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, breg, GP);
r = BFD_RELOC_MIPS_GPREL;
}
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, tempreg);
if (breg != 0)
macro_build (&icnt, NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, breg);
r = BFD_RELOC_LO16;
}
if (mips_isa >= 3)
macro_build (&icnt, &offset_expr, s2, "t,o(b)", treg,
(int) r, tempreg);
else
{
macro_build (&icnt, &offset_expr, s, "t,o(b)", treg,
(int) r, tempreg);
offset_expr.X_add_number += 4;
macro_build (&icnt, &offset_expr, s, "t,o(b)", treg + 1,
(int) r, tempreg);
}
if (used_at)
break;
return;
case M_DMUL:
dbl = 1;
case M_MUL:
macro_build (&icnt, NULL,
dbl ? "dmultu" : "multu",
"s,t", sreg, treg);
macro_build (&icnt, NULL, "mflo", "d", dreg);
return;
case M_DMUL_I:
dbl = 1;
case M_MUL_I:
/* The MIPS assembler some times generates shifts and adds. I'm
not trying to be that fancy. GCC should do this for us
anyway. */
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL,
dbl ? "dmult" : "mult",
"s,t", sreg, AT);
macro_build (&icnt, NULL, "mflo", "d", dreg);
break;
case M_DMULO:
dbl = 1;
case M_MULO:
mips_emit_delays ();
++mips_noreorder;
macro_build (&icnt, NULL,
dbl ? "dmult" : "mult",
"s,t", sreg, treg);
macro_build (&icnt, NULL, "mflo", "d", dreg);
macro_build (&icnt, NULL,
dbl ? "dsra32" : "sra",
"d,w,<", dreg, dreg, 31);
macro_build (&icnt, NULL, "mfhi", "d", AT);
expr1.X_add_number = 8;
macro_build (&icnt, &expr1, "beq", "s,t,p", dreg, AT);
macro_build (&icnt, NULL, "nop", "", 0);
macro_build (&icnt, NULL, "break", "c", 6);
--mips_noreorder;
macro_build (&icnt, NULL, "mflo", "d", dreg);
break;
case M_DMULOU:
dbl = 1;
case M_MULOU:
mips_emit_delays ();
++mips_noreorder;
macro_build (&icnt, NULL,
dbl ? "dmultu" : "multu",
"s,t", sreg, treg);
macro_build (&icnt, NULL, "mfhi", "d", AT);
macro_build (&icnt, NULL, "mflo", "d", dreg);
expr1.X_add_number = 8;
macro_build (&icnt, &expr1, "beq", "s,t,p", AT, 0);
macro_build (&icnt, NULL, "nop", "", 0);
macro_build (&icnt, NULL, "break", "c", 6);
--mips_noreorder;
break;
case M_ROL:
macro_build (&icnt, NULL, "subu", "d,v,t", AT, 0, treg);
macro_build (&icnt, NULL, "srlv", "d,t,s", AT, sreg, AT);
macro_build (&icnt, NULL, "sllv", "d,t,s", dreg, sreg, treg);
macro_build (&icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_ROL_I:
macro_build (&icnt, NULL, "sll", "d,w,<", AT, sreg,
imm_expr.X_add_number & 0x1f);
macro_build (&icnt, NULL, "srl", "d,w,<", dreg, sreg,
(0 - imm_expr.X_add_number) & 0x1f);
macro_build (&icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_ROR:
macro_build (&icnt, NULL, "subu", "d,v,t", AT, 0, treg);
macro_build (&icnt, NULL, "sllv", "d,t,s", AT, sreg, AT);
macro_build (&icnt, NULL, "srlv", "d,t,s", dreg, sreg, treg);
macro_build (&icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_ROR_I:
macro_build (&icnt, NULL, "srl", "d,w,<", AT, sreg,
imm_expr.X_add_number & 0x1f);
macro_build (&icnt, NULL, "sll", "d,w,<", dreg, sreg,
(0 - imm_expr.X_add_number) & 0x1f);
macro_build (&icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_S_DOB:
assert (mips_isa < 2);
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when storing to memory. */
macro_build (&icnt, &offset_expr, "swc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg : treg + 1,
(int) BFD_RELOC_LO16, breg);
offset_expr.X_add_number += 4;
macro_build (&icnt, &offset_expr, "swc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg + 1 : treg,
(int) BFD_RELOC_LO16, breg);
return;
case M_S_DAB:
if (gp_reference (&offset_expr))
{
if (breg == 0)
tempreg = GP;
else
{
macro_build (&icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, GP);
tempreg = AT;
}
r = BFD_RELOC_MIPS_GPREL;
}
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, AT);
if (breg != 0)
macro_build (&icnt, NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, AT, breg);
tempreg = AT;
r = BFD_RELOC_LO16;
}
if (mips_isa >= 2)
macro_build (&icnt, &offset_expr, "sdc1", "T,o(b)", treg,
(int) r, tempreg);
else
{
/* Even on a big endian machine $fn comes before $fn+1. We
have to adjust when storing to memory. */
macro_build (&icnt, &offset_expr, "swc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg : treg + 1,
(int) r, tempreg);
offset_expr.X_add_number += 4;
macro_build (&icnt, &offset_expr, "swc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg + 1 : treg,
(int) r, tempreg);
}
if (tempreg == AT)
break;
return;
case M_SEQ:
if (sreg == 0)
macro_build (&icnt, &expr1, "sltiu", "t,r,j", dreg, treg,
(int) BFD_RELOC_LO16);
else if (treg == 0)
macro_build (&icnt, &expr1, "sltiu", "t,r,j", dreg, sreg,
(int) BFD_RELOC_LO16);
else
{
macro_build (&icnt, NULL, "xor", "d,v,t", dreg, sreg, treg);
macro_build (&icnt, &expr1, "sltiu", "t,r,j", dreg, dreg,
(int) BFD_RELOC_LO16);
}
return;
case M_SEQ_I:
if (imm_expr.X_add_number == 0)
{
macro_build (&icnt, &expr1, "sltiu", "t,r,j", dreg, sreg,
(int) BFD_RELOC_LO16);
return;
}
if (sreg == 0)
{
as_warn ("Instruction %s: result is always false",
ip->insn_mo->name);
macro_build (&icnt, NULL, "move", "d,s", dreg, 0);
return;
}
if (imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000)
{
macro_build (&icnt, &imm_expr, "xori", "t,r,i", dreg, sreg,
(int) BFD_RELOC_LO16);
used_at = 0;
}
else if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&icnt, &imm_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", dreg, sreg,
(int) BFD_RELOC_LO16);
used_at = 0;
}
else
{
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, "xor", "d,v,t", dreg, sreg, AT);
used_at = 1;
}
macro_build (&icnt, &expr1, "sltiu", "t,r,j", dreg, dreg,
(int) BFD_RELOC_LO16);
if (used_at)
break;
return;
case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
s = "slt";
goto sge;
case M_SGEU:
s = "sltu";
sge:
macro_build (&icnt, NULL, s, "d,v,t", dreg, sreg, treg);
macro_build (&icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
return;
case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
case M_SGEU_I:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build (&icnt, &expr1,
mask == M_SGE_I ? "slti" : "sltiu",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
used_at = 0;
}
else
{
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL,
mask == M_SGE_I ? "slt" : "sltu",
"d,v,t", dreg, sreg, AT);
used_at = 1;
}
macro_build (&icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
if (used_at)
break;
return;
case M_SGT: /* sreg > treg <==> treg < sreg */
s = "slt";
goto sgt;
case M_SGTU:
s = "sltu";
sgt:
macro_build (&icnt, NULL, s, "d,v,t", dreg, treg, sreg);
return;
case M_SGT_I: /* sreg > I <==> I < sreg */
s = "slt";
goto sgti;
case M_SGTU_I:
s = "sltu";
sgti:
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, s, "d,v,t", dreg, AT, sreg);
break;
case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
s = "slt";
goto sle;
case M_SLEU:
s = "sltu";
sle:
macro_build (&icnt, NULL, s, "d,v,t", dreg, treg, sreg);
macro_build (&icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
return;
case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
s = "slt";
goto slei;
case M_SLEU_I:
s = "sltu";
slei:
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, s, "d,v,t", dreg, AT, sreg);
macro_build (&icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
break;
case M_SLT_I:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build (&icnt, &imm_expr, "slti", "t,r,j", dreg, sreg,
(int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, "slt", "d,v,t", dreg, sreg, AT);
break;
case M_SLTU_I:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build (&icnt, &imm_expr, "sltiu", "t,r,j", dreg, sreg,
(int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, "sltu", "d,v,t", dreg, sreg, AT);
break;
case M_SNE:
if (sreg == 0)
macro_build (&icnt, NULL, "sltu", "d,v,t", dreg, 0, treg);
else if (treg == 0)
macro_build (&icnt, NULL, "sltu", "d,v,t", dreg, 0, sreg);
else
{
macro_build (&icnt, NULL, "xor", "d,v,t", dreg, sreg, treg);
macro_build (&icnt, NULL, "sltu", "d,v,t", dreg, 0, dreg);
}
return;
case M_SNE_I:
if (imm_expr.X_add_number == 0)
{
macro_build (&icnt, NULL, "sltu", "d,v,t", dreg, 0, sreg);
return;
}
if (sreg == 0)
{
as_warn ("Instruction %s: result is always true",
ip->insn_mo->name);
macro_build (&icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", dreg, 0, (int) BFD_RELOC_LO16);
return;
}
if (imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000)
{
macro_build (&icnt, &imm_expr, "xori", "t,r,i", dreg, sreg,
(int) BFD_RELOC_LO16);
used_at = 0;
}
else if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&icnt, &imm_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
used_at = 0;
}
else
{
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, "xor", "d,v,t", dreg, sreg, AT);
used_at = 1;
}
macro_build (&icnt, NULL, "sltu", "d,v,t", dreg, 0, dreg);
if (used_at)
break;
return;
case M_DSUB_I:
dbl = 1;
case M_SUB_I:
if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number <= 0x8000)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&icnt, &imm_expr,
dbl ? "daddi" : "addi",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL,
dbl ? "dsub" : "sub",
"d,v,t", dreg, sreg, AT);
break;
case M_DSUBU_I:
dbl = 1;
case M_SUBU_I:
if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number <= 0x8000)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&icnt, &imm_expr,
dbl ? "daddiu" : "addiu",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL,
dbl ? "dsubu" : "subu",
"d,v,t", dreg, sreg, AT);
break;
case M_TEQ_I:
s = "teq";
goto trap;
case M_TGE_I:
s = "tge";
goto trap;
case M_TGEU_I:
s = "tgeu";
goto trap;
case M_TLT_I:
s = "tlt";
goto trap;
case M_TLTU_I:
s = "tltu";
goto trap;
case M_TNE_I:
s = "tne";
trap:
load_register (&icnt, AT, &imm_expr);
macro_build (&icnt, NULL, s, "s,t", sreg, AT);
break;
case M_TRUNCWD:
case M_TRUNCWS:
assert (mips_isa < 2);
sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
/*
* Is the double cfc1 instruction a bug in the mips assembler;
* or is there a reason for it?
*/
mips_emit_delays ();
++mips_noreorder;
macro_build (&icnt, NULL, "cfc1", "t,G", treg, 31);
macro_build (&icnt, NULL, "cfc1", "t,G", treg, 31);
macro_build (&icnt, NULL, "nop", "");
expr1.X_add_number = 3;
macro_build (&icnt, &expr1, "ori", "t,r,i", AT, treg,
(int) BFD_RELOC_LO16);
expr1.X_add_number = 2;
macro_build (&icnt, &expr1, "xori", "t,r,i", AT, AT,
(int) BFD_RELOC_LO16);
macro_build (&icnt, NULL, "ctc1", "t,G", AT, 31);
macro_build (&icnt, NULL, "nop", "");
macro_build (&icnt, NULL,
mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S", dreg, sreg);
macro_build (&icnt, NULL, "ctc1", "t,G", treg, 31);
macro_build (&icnt, NULL, "nop", "");
--mips_noreorder;
break;
case M_ULH:
s = "lb";
goto ulh;
case M_ULHU:
s = "lbu";
ulh:
/* avoid load delay */
offset_expr.X_add_number += 1;
macro_build (&icnt, &offset_expr, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
offset_expr.X_add_number -= 1;
macro_build (&icnt, &offset_expr, "lbu", "t,o(b)", AT,
(int) BFD_RELOC_LO16, breg);
macro_build (&icnt, NULL, "sll", "d,w,<", treg, treg, 8);
macro_build (&icnt, NULL, "or", "d,v,t", treg, treg, AT);
break;
case M_ULW:
/* does this work on a big endian machine? */
offset_expr.X_add_number += 3;
macro_build (&icnt, &offset_expr, "lwl", "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
offset_expr.X_add_number -= 3;
macro_build (&icnt, &offset_expr, "lwr", "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
return;
case M_ULH_A:
case M_ULHU_A:
case M_ULW_A:
if (offset_expr.X_op == O_constant)
load_register (&icnt, AT, &offset_expr);
else if (gp_reference (&offset_expr))
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, GP, (int) BFD_RELOC_MIPS_GPREL);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, AT);
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, AT, (int) BFD_RELOC_LO16);
}
if (mask == M_ULW_A)
{
expr1.X_add_number = 3;
macro_build (&icnt, &expr1, "lwl", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
imm_expr.X_add_number = 0;
macro_build (&icnt, &expr1, "lwr", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
}
else
{
macro_build (&icnt, &expr1,
mask == M_ULH_A ? "lb" : "lbu", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
imm_expr.X_add_number = 0;
macro_build (&icnt, &expr1, "lbu", "t,o(b)", AT,
(int) BFD_RELOC_LO16, AT);
macro_build (&icnt, NULL, "sll", "d,w,<", treg, treg, 8);
macro_build (&icnt, NULL, "or", "d,v,t", treg, treg, AT);
}
break;
case M_USH:
macro_build (&icnt, &offset_expr, "sb", "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
macro_build (&icnt, NULL, "srl", "d,w,<", AT, treg, 8);
offset_expr.X_add_number += 1;
macro_build (&icnt, &offset_expr, "sb", "t,o(b)", AT,
(int) BFD_RELOC_LO16, breg);
break;
case M_USW:
offset_expr.X_add_number += 3;
macro_build (&icnt, &offset_expr, "swl", "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
offset_expr.X_add_number -= 3;
macro_build (&icnt, &offset_expr, "swr", "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
return;
case M_USH_A:
case M_USW_A:
if (offset_expr.X_op == O_constant)
load_register (&icnt, AT, &offset_expr);
else if (gp_reference (&offset_expr))
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, GP, (int) BFD_RELOC_MIPS_GPREL);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&icnt, &offset_expr, AT);
macro_build (&icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, AT, (int) BFD_RELOC_LO16);
}
if (mask == M_USW_A)
{
expr1.X_add_number = 3;
macro_build (&icnt, &expr1, "swl", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
expr1.X_add_number = 0;
macro_build (&icnt, &expr1, "swr", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
}
else
{
expr1.X_add_number = 0;
macro_build (&icnt, &expr1, "sb", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
macro_build (&icnt, NULL, "srl", "d,w,<", treg, treg, 8);
expr1.X_add_number = 1;
macro_build (&icnt, &expr1, "sb", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
expr1.X_add_number = 0;
macro_build (&icnt, &expr1, "lbu", "t,o(b)", AT,
(int) BFD_RELOC_LO16, AT);
macro_build (&icnt, NULL, "sll", "d,w,<", treg, treg, 8);
macro_build (&icnt, NULL, "or", "d,v,t", treg, treg, AT);
}
break;
default:
as_bad ("Macro %s not implemented yet", ip->insn_mo->name);
break;
}
if (mips_noat)
as_warn ("Macro used $at after \".set noat\"");
}
/*
This routine assembles an instruction into its binary format. As a side
effect it sets one of the global variables imm_reloc or offset_reloc to the
type of relocation to do if one of the operands is an address expression.
*/
static void
mips_ip (str, ip)
char *str;
struct mips_cl_insn *ip;
{
char *s;
const char *args;
char c;
struct mips_opcode *insn;
char *argsStart;
unsigned int regno;
unsigned int lastregno = 0;
char *s_reset;
insn_error = NULL;
for (s = str; islower (*s) || (*s >= '0' && *s <= '3') || *s == '.'; ++s)
continue;
switch (*s)
{
case '\0':
break;
case ' ':
*s++ = '\0';
break;
default:
as_warn ("Unknown opcode: `%s'", str);
exit (1);
}
if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
{
as_warn ("`%s' not in hash table.", str);
insn_error = "ERROR: Unrecognized opcode";
return;
}
argsStart = s;
for (;;)
{
int insn_isa;
assert (strcmp (insn->name, str) == 0);
if (insn->pinfo == INSN_MACRO)
insn_isa = insn->match;
else if (insn->pinfo & INSN_ISA2)
insn_isa = 2;
else if (insn->pinfo & INSN_ISA3)
insn_isa = 3;
else
insn_isa = 1;
if (insn_isa > mips_isa)
{
if (insn + 1 < &mips_opcodes[NUMOPCODES]
&& strcmp (insn->name, insn[1].name) == 0)
{
++insn;
continue;
}
insn_error = "ERROR: instruction not supported on this processor";
return;
}
ip->insn_mo = insn;
ip->insn_opcode = insn->match;
for (args = insn->args;; ++args)
{
if (*s == ' ')
++s;
switch (*args)
{
case '\0': /* end of args */
if (*s == '\0')
return;
break;
case ',':
if (*s++ == *args)
continue;
s--;
switch (*++args)
{
case 'r':
case 'v':
ip->insn_opcode |= lastregno << 21;
continue;
case 'w':
case 'W':
ip->insn_opcode |= lastregno << 16;
continue;
case 'V':
ip->insn_opcode |= lastregno << 11;
continue;
}
break;
case '(':
/* handle optional base register.
Either the base register is omitted or
we must have a left paren. */
/* this is dependent on the next operand specifier
is a 'b' for base register */
assert (args[1] == 'b');
if (*s == '\0')
return;
case ')': /* these must match exactly */
if (*s++ == *args)
continue;
break;
case '<': /* must be at least one digit */
/*
* According to the manual, if the shift amount is greater
* than 31 or less than 0 the the shift amount should be
* mod 32. In reality the mips assembler issues an error.
* We issue a warning and mask out all but the low 5 bits.
*/
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number > 31)
{
as_warn ("Improper shift amount (%ld)",
(long) imm_expr.X_add_number);
imm_expr.X_add_number = imm_expr.X_add_number & 0x1f;
}
ip->insn_opcode |= imm_expr.X_add_number << 6;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case '>': /* shift amount minus 32 */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number < 32
|| (unsigned long) imm_expr.X_add_number > 63)
break;
ip->insn_opcode |= (imm_expr.X_add_number - 32) << 6;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'k': /* cache code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number > 31)
{
as_warn ("Invalid cahce opcode (%lu)",
(unsigned long) imm_expr.X_add_number);
imm_expr.X_add_number &= 0x1f;
}
ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CACHE;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'c': /* break code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned) imm_expr.X_add_number > 1023)
as_warn ("Illegal break code (%ld)",
(long) imm_expr.X_add_number);
ip->insn_opcode |= imm_expr.X_add_number << 16;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'B': /* syscall code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned) imm_expr.X_add_number > 0xfffff)
as_warn ("Illegal syscall code (%ld)",
(long) imm_expr.X_add_number);
ip->insn_opcode |= imm_expr.X_add_number << 6;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'C': /* Coprocessor code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number >= (1<<25))
{
as_warn ("Coproccesor code > 25 bits (%ld)",
(long) imm_expr.X_add_number);
imm_expr.X_add_number &= ((1<<25) - 1);
}
ip->insn_opcode |= imm_expr.X_add_number;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'b': /* base register */
case 'd': /* destination register */
case 's': /* source register */
case 't': /* target register */
case 'r': /* both target and source */
case 'v': /* both dest and source */
case 'w': /* both dest and target */
case 'E': /* coprocessor target register */
case 'G': /* coprocessor destination register */
case 'x': /* ignore register name */
case 'z': /* must be zero register */
s_reset = s;
if (s[0] == '$')
{
if (isdigit (s[1]))
{
++s;
regno = 0;
do
{
regno *= 10;
regno += *s - '0';
++s;
}
while (isdigit (*s));
if (regno > 31)
as_bad ("Invalid register number (%d)", regno);
}
else if (*args != 'E' && *args != 'G')
{
if (s[1] == 'f' && s[2] == 'p')
{
s += 3;
regno = FP;
}
else if (s[1] == 's' && s[2] == 'p')
{
s += 3;
regno = SP;
}
else if (s[1] == 'g' && s[2] == 'p')
{
s += 3;
regno = GP;
}
else if (s[1] == 'a' && s[2] == 't')
{
s += 3;
regno = AT;
}
else
goto notreg;
if (regno == AT && ! mips_noat)
as_warn ("Used $at without \".set noat\"");
}
c = *args;
if (*s == ' ')
s++;
if (args[1] != *s)
{
if (c == 'r' || c == 'v' || c == 'w')
{
regno = lastregno;
s = s_reset;
args++;
}
}
/* 'z' only matches $0. */
if (c == 'z' && regno != 0)
break;
switch (c)
{
case 'r':
case 's':
case 'v':
case 'b':
ip->insn_opcode |= regno << 21;
break;
case 'd':
case 'G':
ip->insn_opcode |= regno << 11;
break;
case 'w':
case 't':
case 'E':
ip->insn_opcode |= regno << 16;
break;
case 'x':
/* This case exists because on the r3000 trunc
expands into a macro which requires a gp
register. On the r6000 or r4000 it is
assembled into a single instruction which
ignores the register. Thus the insn version
is MIPS_ISA2 and uses 'x', and the macro
version is MIPS_ISA1 and uses 't'. */
break;
case 'z':
/* This case is for the div instruction, which
acts differently if the destination argument
is $0. This only matches $0, and is checked
outside the switch. */
break;
}
lastregno = regno;
continue;
}
notreg:
switch (*args++)
{
case 'r':
case 'v':
ip->insn_opcode |= lastregno << 21;
continue;
case 'w':
ip->insn_opcode |= lastregno << 16;
continue;
}
break;
case 'D': /* floating point destination register */
case 'S': /* floating point source register */
case 'T': /* floating point target register */
case 'V':
case 'W':
s_reset = s;
if (s[0] == '$' && s[1] == 'f' && isdigit (s[2]))
{
s += 2;
regno = 0;
do
{
regno *= 10;
regno += *s - '0';
++s;
}
while (isdigit (*s));
if (regno > 31)
as_bad ("Invalid float register number (%d)", regno);
if ((regno & 1) != 0
&& mips_isa < 3
&& ! (strcmp (str, "mtc1") == 0 ||
strcmp (str, "mfc1") == 0 ||
strcmp (str, "lwc1") == 0 ||
strcmp (str, "swc1") == 0))
as_warn ("Float register should be even, was %d",
regno);
c = *args;
if (*s == ' ')
s++;
if (args[1] != *s)
{
if (c == 'V' || c == 'W')
{
regno = lastregno;
s = s_reset;
args++;
}
}
switch (c)
{
case 'D':
ip->insn_opcode |= regno << 6;
break;
case 'V':
case 'S':
ip->insn_opcode |= regno << 11;
break;
case 'W':
case 'T':
ip->insn_opcode |= regno << 16;
}
lastregno = regno;
continue;
}
switch (*args++)
{
case 'V':
ip->insn_opcode |= lastregno << 11;
continue;
case 'W':
ip->insn_opcode |= lastregno << 16;
continue;
}
break;
case 'I':
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
s = expr_end;
continue;
case 'A':
my_getExpression (&offset_expr, s);
imm_reloc = BFD_RELOC_32;
s = expr_end;
continue;
case 'F':
case 'L':
case 'f':
case 'l':
{
int f64;
char *save_in;
char *err;
unsigned char temp[8];
int len;
unsigned int length;
segT seg;
subsegT subseg;
char *p;
/* These only appear as the last operand in an
instruction, and every instruction that accepts
them in any variant accepts them in all variants.
This means we don't have to worry about backing out
any changes if the instruction does not match.
The difference between them is the size of the
floating point constant and where it goes. For 'F'
and 'L' the constant is 64 bits; for 'f' and 'l' it
is 32 bits. Where the constant is placed is based
on how the MIPS assembler does things:
F -- .rdata
L -- .lit8
f -- immediate value
l -- .lit4
*/
f64 = *args == 'F' || *args == 'L';
save_in = input_line_pointer;
input_line_pointer = s;
err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
length = len;
s = input_line_pointer;
input_line_pointer = save_in;
if (err != NULL && *err != '\0')
{
as_bad ("Bad floating point constant: %s", err);
memset (temp, '\0', sizeof temp);
length = f64 ? 8 : 4;
}
assert (length == (f64 ? 8 : 4));
if (*args == 'f')
{
imm_expr.X_op = O_constant;
if (byte_order == LITTLE_ENDIAN)
imm_expr.X_add_number =
(((((((int) temp[3] << 8)
| temp[2]) << 8)
| temp[1]) << 8)
| temp[0]);
else
imm_expr.X_add_number =
(((((((int) temp[0] << 8)
| temp[1]) << 8)
| temp[2]) << 8)
| temp[3]);
}
else
{
/* Switch to the right section. */
seg = now_seg;
subseg = now_subseg;
switch (*args)
{
case 'F':
subseg_new (".rdata", (subsegT) 0);
break;
case 'L':
subseg_new (".lit8", (subsegT) 0);
break;
case 'l':
subseg_new (".lit4", (subsegT) 0);
break;
}
if (seg == now_seg)
as_bad ("Can't use floating point insn in this section");
/* Set the argument to the current address in the
section. */
offset_expr.X_op = O_symbol;
offset_expr.X_add_symbol =
symbol_new ("L0\001", now_seg,
(valueT) frag_now_fix (), frag_now);
offset_expr.X_add_number = 0;
/* Put the floating point number into the section. */
p = frag_more ((int) length);
memcpy (p, temp, length);
/* Switch back to the original section. */
subseg_set (seg, subseg);
}
}
continue;
case 'i': /* 16 bit unsigned immediate */
case 'j': /* 16 bit signed immediate */
imm_reloc = BFD_RELOC_LO16;
c = my_getSmallExpression (&imm_expr, s);
if (c)
{
if (c != 'l')
{
if (imm_expr.X_op == O_constant)
imm_expr.X_add_number =
(imm_expr.X_add_number >> 16) & 0xffff;
else if (c == 'h')
imm_reloc = BFD_RELOC_HI16_S;
else
imm_reloc = BFD_RELOC_HI16;
}
}
else
check_absolute_expr (ip, &imm_expr);
if (*args == 'i')
{
if (imm_expr.X_add_number < 0
|| imm_expr.X_add_number >= 0x10000)
{
if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
!strcmp (insn->name, insn[1].name))
break;
as_bad ("16 bit expression not in range 0..65535");
}
}
else
{
if (imm_expr.X_add_number < -0x8000 ||
imm_expr.X_add_number >= 0x8000)
{
if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
!strcmp (insn->name, insn[1].name))
break;
as_bad ("16 bit expression not in range -32768..32767");
}
}
s = expr_end;
continue;
case 'o': /* 16 bit offset */
c = my_getSmallExpression (&offset_expr, s);
/*
* If this value won't fit into a 16 bit offset, then
* go find a macro that will generate the 32 bit offset
* code pattern.
*/
if (offset_expr.X_op != O_constant
|| offset_expr.X_add_number >= 0x8000
|| offset_expr.X_add_number < -0x8000)
break;
offset_reloc = BFD_RELOC_LO16;
if (c == 'h' || c == 'H')
{
assert (offset_expr.X_op == O_constant);
offset_expr.X_add_number =
(offset_expr.X_add_number >> 16) & 0xffff;
}
s = expr_end;
continue;
case 'p': /* pc relative offset */
offset_reloc = BFD_RELOC_16_PCREL_S2;
my_getExpression (&offset_expr, s);
s = expr_end;
continue;
case 'u': /* upper 16 bits */
c = my_getSmallExpression (&imm_expr, s);
if (imm_expr.X_op != O_constant
|| imm_expr.X_add_number < 0
|| imm_expr.X_add_number >= 0x10000)
as_bad ("lui expression not in range 0..65535");
imm_reloc = BFD_RELOC_LO16;
if (c)
{
if (c != 'l')
{
if (imm_expr.X_op == O_constant)
imm_expr.X_add_number =
(imm_expr.X_add_number >> 16) & 0xffff;
else if (c == 'h')
imm_reloc = BFD_RELOC_HI16_S;
else
imm_reloc = BFD_RELOC_HI16;
}
}
s = expr_end;
continue;
case 'a': /* 26 bit address */
my_getExpression (&offset_expr, s);
s = expr_end;
offset_reloc = BFD_RELOC_MIPS_JMP;
continue;
default:
fprintf (stderr, "bad char = '%c'\n", *args);
internalError ();
}
break;
}
/* Args don't match. */
if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
!strcmp (insn->name, insn[1].name))
{
++insn;
s = argsStart;
continue;
}
insn_error = "ERROR: Illegal operands";
return;
}
}
#define LP '('
#define RP ')'
static int
my_getSmallExpression (ep, str)
expressionS *ep;
char *str;
{
char *sp;
int c = 0;
if (*str == ' ')
str++;
if (*str == LP
|| (*str == '%' &&
((str[1] == 'h' && str[2] == 'i')
|| (str[1] == 'H' && str[2] == 'I')
|| (str[1] == 'l' && str[2] == 'o'))
&& str[3] == LP))
{
if (*str == LP)
c = 0;
else
{
c = str[1];
str += 3;
}
/*
* A small expression may be followed by a base register.
* Scan to the end of this operand, and then back over a possible
* base register. Then scan the small expression up to that
* point. (Based on code in sparc.c...)
*/
for (sp = str; *sp && *sp != ','; sp++)
;
if (sp - 4 >= str && sp[-1] == RP)
{
if (isdigit (sp[-2]))
{
for (sp -= 3; sp >= str && isdigit (*sp); sp--)
;
if (*sp == '$' && sp > str && sp[-1] == LP)
{
sp--;
goto do_it;
}
}
else if (sp - 5 >= str
&& sp[-5] == LP
&& sp[-4] == '$'
&& ((sp[-3] == 'f' && sp[-2] == 'p')
|| (sp[-3] == 's' && sp[-2] == 'p')
|| (sp[-3] == 'g' && sp[-2] == 'p')
|| (sp[-3] == 'a' && sp[-2] == 't')))
{
sp -= 5;
do_it:
if (sp == str)
{
/* no expression means zero offset */
if (c)
{
/* %xx(reg) is an error */
ep->X_op = O_absent;
expr_end = str - 3;
}
else
{
ep->X_op = O_constant;
expr_end = sp;
}
ep->X_add_symbol = NULL;
ep->X_op_symbol = NULL;
ep->X_add_number = 0;
}
else
{
*sp = '\0';
my_getExpression (ep, str);
*sp = LP;
}
return c;
}
}
}
my_getExpression (ep, str);
return c; /* => %hi or %lo encountered */
}
static void
my_getExpression (ep, str)
expressionS *ep;
char *str;
{
char *save_in;
save_in = input_line_pointer;
input_line_pointer = str;
expression (ep);
expr_end = input_line_pointer;
input_line_pointer = save_in;
}
/* Turn a string in input_line_pointer into a floating point constant
of type type, and store the appropriate bytes in *litP. The number
of LITTLENUMS emitted is stored in *sizeP . An error message is
returned, or NULL on OK. */
char *
md_atof (type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return "bad call to md_atof";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
if (byte_order == LITTLE_ENDIAN)
{
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
else
{
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
return NULL;
}
void
md_number_to_chars (buf, val, n)
char *buf;
valueT val;
int n;
{
switch (byte_order)
{
case LITTLE_ENDIAN:
switch (n)
{
case 8:
*buf++ = val;
val >>= 8;
*buf++ = val;
val >>= 8;
*buf++ = val;
val >>= 8;
*buf++ = val;
val >>= 8;
/* FALLTHROUGH */
case 4:
*buf++ = val;
val >>= 8;
*buf++ = val;
val >>= 8;
/* FALLTHROUGH */
case 2:
*buf++ = val;
val >>= 8;
/* FALLTHROUGH */
case 1:
*buf = val;
return;
default:
internalError ();
}
case BIG_ENDIAN:
switch (n)
{
case 8:
{
valueT hi;
hi = val;
hi >>= 16;
hi >>= 16;
md_number_to_chars (buf, hi, 4);
buf += 4;
}
/* FALLTHROUGH */
case 4:
*buf++ = val >> 24;
*buf++ = val >> 16;
/* FALLTHROUGH */
case 2:
*buf++ = val >> 8;
/* FALLTHROUGH */
case 1:
*buf = val;
return;
default:
internalError ();
}
default:
internalError ();
}
}
int
md_parse_option (argP, cntP, vecP)
char **argP;
int *cntP;
char ***vecP;
{
/* Accept -nocpp but ignore it. */
if (strcmp (*argP, "nocpp") == 0)
{
*argP += 5;
return 1;
}
if (strcmp (*argP, "EL") == 0
|| strcmp (*argP, "EB") == 0)
{
/* FIXME: This breaks -L -EL. */
flagseen['L'] = 0;
*argP = "";
return 1;
}
if (**argP == 'O')
{
if ((*argP)[1] == '0')
mips_optimize = 1;
else
mips_optimize = 2;
return 1;
}
if (**argP == 'g')
{
if ((*argP)[1] == '\0' || (*argP)[1] == '2')
mips_optimize = 0;
return 1;
}
if (strncmp (*argP, "mips", 4) == 0)
{
mips_isa = atol (*argP + 4);
if (mips_isa == 0)
mips_isa = 1;
else if (mips_isa < 1 || mips_isa > 3)
{
as_bad ("-mips%d not supported", mips_isa);
mips_isa = 1;
}
*argP = "";
return 1;
}
if (strncmp (*argP, "mcpu=", 5) == 0)
{
char *p;
/* Identify the processor type */
p = *argP + 5;
if (strcmp (p, "default") == 0
|| strcmp (p, "DEFAULT") == 0)
mips_isa = -1;
else
{
if (*p == 'r' || *p == 'R')
p++;
mips_isa = -1;
switch (*p)
{
case '2':
if (strcmp (p, "2000") == 0
|| strcmp (p, "2k") == 0
|| strcmp (p, "2K") == 0)
mips_isa = 1;
break;
case '3':
if (strcmp (p, "3000") == 0
|| strcmp (p, "3k") == 0
|| strcmp (p, "3K") == 0)
mips_isa = 1;
break;
case '4':
if (strcmp (p, "4000") == 0
|| strcmp (p, "4k") == 0
|| strcmp (p, "4K") == 0)
mips_isa = 3;
break;
case '6':
if (strcmp (p, "6000") == 0
|| strcmp (p, "6k") == 0
|| strcmp (p, "6K") == 0)
mips_isa = 2;
break;
}
if (mips_isa == -1)
{
as_bad ("bad value (%s) for -mcpu= switch", *argP + 5);
mips_isa = 1;
}
}
*argP = "";
return 1;
}
#ifdef GPOPT
if (**argP == 'G')
{
if ((*argP)[1] != '\0')
g_switch_value = atoi (*argP + 1);
else if (*cntP)
{
**vecP = (char *) NULL;
(*cntP)--;
(*vecP)++;
g_switch_value = atoi (**vecP);
}
else
as_warn ("Number expected after -G");
*argP = "";
return 1;
}
#endif
return 1; /* pretend you parsed the character */
}
long
md_pcrel_from (fixP)
fixS *fixP;
{
/* return the address of the delay slot */
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
/* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
reloc for a cons. We could use the definition there, except that
we want to handle 64 bit relocs specially. */
void
cons_fix_new_mips (frag, where, nbytes, exp)
fragS *frag;
int where;
unsigned int nbytes;
expressionS *exp;
{
/* If we are assembling in 32 bit mode, turn an 8 byte reloc into a
4 byte reloc.
FIXME: There is no way to select anything but 32 bit mode right
now. */
if (nbytes == 8)
{
if (byte_order == BIG_ENDIAN)
where += 4;
nbytes = 4;
}
if (nbytes != 2 && nbytes != 4)
as_bad ("Unsupported reloc size %d", nbytes);
fix_new_exp (frag_now, where, (int) nbytes, exp, 0,
nbytes == 2 ? BFD_RELOC_16 : BFD_RELOC_32);
}
int
md_apply_fix (fixP, valueP)
fixS *fixP;
valueT *valueP;
{
unsigned char *buf;
long insn, value;
assert (fixP->fx_size == 4);
value = *valueP;
fixP->fx_addnumber = value; /* Remember value for tc_gen_reloc */
switch (fixP->fx_r_type)
{
case BFD_RELOC_32:
case BFD_RELOC_MIPS_JMP:
case BFD_RELOC_HI16:
case BFD_RELOC_HI16_S:
case BFD_RELOC_LO16:
case BFD_RELOC_MIPS_GPREL:
case BFD_RELOC_MIPS_LITERAL:
case BFD_RELOC_MIPS_CALL16:
/* Nothing needed to do. The value comes from the reloc entry */
return 1;
case BFD_RELOC_16_PCREL_S2:
/*
* We need to save the bits in the instruction since fixup_segment()
* might be deleting the relocation entry (i.e., a branch within
* the current segment).
*/
if (value & 0x3)
as_warn ("Branch to odd address (%lx)", value);
value >>= 2;
if ((value & ~0xFFFF) && (value & ~0xFFFF) != (-1 & ~0xFFFF))
as_bad ("Relocation overflow");
/* update old instruction data */
buf = (unsigned char *) (fixP->fx_where + fixP->fx_frag->fr_literal);
switch (byte_order)
{
case LITTLE_ENDIAN:
insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
break;
case BIG_ENDIAN:
insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
break;
default:
internalError ();
return 0;
}
insn |= value & 0xFFFF;
md_number_to_chars ((char *) buf, (valueT) insn, 4);
break;
default:
internalError ();
}
return 1;
}
#if 0
void
printInsn (oc)
unsigned long oc;
{
const struct mips_opcode *p;
int treg, sreg, dreg, shamt;
short imm;
const char *args;
int i;
for (i = 0; i < NUMOPCODES; ++i)
{
p = &mips_opcodes[i];
if (((oc & p->mask) == p->match) && (p->pinfo != INSN_MACRO))
{
printf ("%08lx %s\t", oc, p->name);
treg = (oc >> 16) & 0x1f;
sreg = (oc >> 21) & 0x1f;
dreg = (oc >> 11) & 0x1f;
shamt = (oc >> 6) & 0x1f;
imm = oc;
for (args = p->args;; ++args)
{
switch (*args)
{
case '\0':
printf ("\n");
break;
case ',':
case '(':
case ')':
printf ("%c", *args);
continue;
case 'r':
assert (treg == sreg);
printf ("$%d,$%d", treg, sreg);
continue;
case 'd':
case 'G':
printf ("$%d", dreg);
continue;
case 't':
case 'E':
printf ("$%d", treg);
continue;
case 'k':
printf ("0x%x", treg);
continue;
case 'b':
case 's':
printf ("$%d", sreg);
continue;
case 'a':
printf ("0x%08lx", oc & 0x1ffffff);
continue;
case 'i':
case 'j':
case 'o':
case 'u':
printf ("%d", imm);
continue;
case '<':
case '>':
printf ("$%d", shamt);
continue;
default:
internalError ();
}
break;
}
return;
}
}
printf ("%08lx UNDEFINED\n", oc);
}
#endif
static symbolS *
get_symbol ()
{
int c;
char *name;
symbolS *p;
name = input_line_pointer;
c = get_symbol_end ();
p = (symbolS *) symbol_find_or_make (name);
*input_line_pointer = c;
return p;
}
/* Align the current frag to a given power of two. The MIPS assembler
also automatically adjusts any preceding label. */
static void
mips_align (to, fill)
int to;
int fill;
{
mips_emit_delays ();
frag_align (to, fill);
record_alignment (now_seg, to);
if (insn_label != NULL)
{
assert (S_GET_SEGMENT (insn_label) == now_seg);
insn_label->sy_frag = frag_now;
S_SET_VALUE (insn_label, (valueT) frag_now_fix ());
insn_label = NULL;
}
}
/* Align to a given power of two. .align 0 turns off the automatic
alignment used by the data creating pseudo-ops. */
static void
s_align (x)
int x;
{
register int temp;
register long temp_fill;
long max_alignment = 15;
/*
o Note that the assembler pulls down any immediately preceeding label
to the aligned address.
o It's not documented but auto alignment is reinstated by
a .align pseudo instruction.
o Note also that after auto alignment is turned off the mips assembler
issues an error on attempt to assemble an improperly aligned data item.
We don't.
*/
temp = get_absolute_expression ();
if (temp > max_alignment)
as_bad ("Alignment too large: %d. assumed.", temp = max_alignment);
else if (temp < 0)
{
as_warn ("Alignment negative: 0 assumed.");
temp = 0;
}
if (*input_line_pointer == ',')
{
input_line_pointer++;
temp_fill = get_absolute_expression ();
}
else
temp_fill = 0;
if (temp)
{
auto_align = 1;
mips_align (temp, (int) temp_fill);
}
else
{
auto_align = 0;
}
demand_empty_rest_of_line ();
}
/* Handle .ascii and .asciiz. This just calls stringer and forgets
that there was a previous instruction. */
static void
s_stringer (append_zero)
int append_zero;
{
mips_emit_delays ();
insn_label = NULL;
stringer (append_zero);
}
static void
s_change_sec (sec)
int sec;
{
#ifdef GPOPT
segT seg;
#endif
mips_emit_delays ();
switch (sec)
{
case 't':
s_text (0);
break;
case 'd':
s_data (0);
break;
case 'b':
subseg_set (bss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
break;
case 'r':
#ifdef OBJ_ECOFF
subseg_new (".rdata", (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
break;
#else /* ! defined (OBJ_ECOFF) */
#ifdef OBJ_ELF
seg = subseg_new (".rodata", (subsegT) get_absolute_expression ());
bfd_set_section_flags (stdoutput, seg,
(SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_RELOC
| SEC_DATA));
demand_empty_rest_of_line ();
break;
#else /* ! defined (OBJ_ELF) */
s_data (0);
break;
#endif /* ! defined (OBJ_ELF) */
#endif /* ! defined (OBJ_ECOFF) */
case 's':
#ifdef GPOPT
seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
#ifdef OBJ_ELF
bfd_set_section_flags (stdoutput, seg,
SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
#endif
demand_empty_rest_of_line ();
break;
#else /* ! defined (GPOPT) */
as_bad ("Global pointers not supported; recompile -G 0");
demand_empty_rest_of_line ();
return;
#endif /* ! defined (GPOPT) */
}
auto_align = 1;
}
static void
s_cons (log_size)
int log_size;
{
mips_emit_delays ();
if (log_size > 0 && auto_align)
mips_align (log_size, 0);
insn_label = NULL;
cons (1 << log_size);
}
static void
s_err (x)
int x;
{
as_fatal ("Encountered `.err', aborting assembly");
}
static void
s_extern (x)
int x;
{
valueT size;
symbolS *symbolP;
symbolP = get_symbol ();
if (*input_line_pointer == ',')
input_line_pointer++;
size = get_absolute_expression ();
S_SET_VALUE (symbolP, size);
S_SET_EXTERNAL (symbolP);
#ifdef OBJ_ECOFF
/* ECOFF needs to distinguish a .comm symbol from a .extern symbol,
so we use an additional ECOFF specific field. */
symbolP->ecoff_undefined = 1;
#endif
}
static void
s_float_cons (type)
int type;
{
mips_emit_delays ();
if (auto_align)
if (type == 'd')
mips_align (3, 0);
else
mips_align (2, 0);
insn_label = NULL;
float_cons (type);
}
static void
s_option (x)
int x;
{
char *opt;
char c;
opt = input_line_pointer;
c = get_symbol_end ();
/* FIXME: What do these options mean? */
if (*opt == 'O')
{
/* FIXME: What does this mean? */
}
else if (strncmp (opt, "pic", 3) == 0)
{
mips_pic = atoi (opt + 3);
/* FIXME: I don't know what other values mean. */
assert (mips_pic == 0 || mips_pic == 2);
}
else
as_warn ("Unrecognized option \"%s\"", opt);
*input_line_pointer = c;
demand_empty_rest_of_line ();
}
static void
s_mipsset (x)
int x;
{
char *name = input_line_pointer, ch;
while (!is_end_of_line[(unsigned char) *input_line_pointer])
input_line_pointer++;
ch = *input_line_pointer;
*input_line_pointer = '\0';
if (strcmp (name, "reorder") == 0)
{
if (mips_noreorder)
{
prev_insn_unreordered = 1;
prev_prev_insn_unreordered = 1;
}
mips_noreorder = 0;
}
else if (strcmp (name, "noreorder") == 0)
{
mips_emit_delays ();
mips_noreorder = 1;
}
else if (strcmp (name, "at") == 0)
{
mips_noat = 0;
}
else if (strcmp (name, "noat") == 0)
{
mips_noat = 1;
}
else if (strcmp (name, "macro") == 0)
{
mips_warn_about_macros = 0;
}
else if (strcmp (name, "nomacro") == 0)
{
if (mips_noreorder == 0)
as_bad ("`noreorder' must be set before `nomacro'");
mips_warn_about_macros = 1;
}
else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
{
mips_nomove = 0;
}
else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
{
mips_nomove = 1;
}
else if (strcmp (name, "bopt") == 0)
{
mips_nobopt = 0;
}
else if (strcmp (name, "nobopt") == 0)
{
mips_nobopt = 1;
}
else
{
as_warn ("Tried to set unrecognized symbol: %s\n", name);
}
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* The same as the usual .space directive, except that we have to
forget about any previous instruction. */
static void
s_mips_space (param)
int param;
{
mips_emit_delays ();
insn_label = NULL;
s_space (param);
}
/* Handle the .abicalls pseudo-op. I believe this is equivalent to
.option pic2. It means to generate SVR4 PIC calls. */
static void
s_abicalls (ignore)
int ignore;
{
mips_pic = 2;
demand_empty_rest_of_line ();
}
/* Handle the .cpload pseudo-op. This is used when generating SVR4
PIC code. It sets the $gp register for the function based on the
function address, which is in the register named in the argument.
This uses a relocation against _gp_disp, which is handled specially
by the linker. The result is:
lui $gp,%hi(_gp_disp)
addiu $gp,$gp,%lo(_gp_disp)
addu $gp,$gp,.cpload argument
The .cpload argument is normally $25 or $t9. */
static void
s_cpload (ignore)
int ignore;
{
expressionS ex;
int icnt = 0;
ex.X_op = O_symbol;
ex.X_add_symbol = symbol_find_or_make ("_gp_disp");
ex.X_op_symbol = NULL;
ex.X_add_number = 0;
macro_build_lui (&icnt, &ex, GP);
macro_build (&icnt, &ex, "addiu", "t,r,j", GP, GP,
(int) BFD_RELOC_LO16);
macro_build (&icnt, (expressionS *) NULL, "addu", "d,v,t", GP, GP,
tc_get_register ());
demand_empty_rest_of_line ();
}
/* Handle the .cprestore pseudo-op. This stores $gp into a given
offset from $sp. The offset is remembered, and after making a PIC
call $gp is restored from that location. */
static void
s_cprestore (ignore)
int ignore;
{
expressionS ex;
int icnt = 0;
mips_cprestore_offset = get_absolute_expression ();
ex.X_op = O_constant;
ex.X_add_symbol = NULL;
ex.X_op_symbol = NULL;
ex.X_add_number = mips_cprestore_offset;
macro_build (&icnt, &ex,
mips_isa < 3 ? "sw" : "sd",
"t,o(b)", GP, (int) BFD_RELOC_LO16, SP);
demand_empty_rest_of_line ();
}
/* Parse a register string into a number. Called from the ECOFF code
to parse .frame. */
int
tc_get_register ()
{
int reg;
SKIP_WHITESPACE ();
if (*input_line_pointer++ != '$')
{
as_warn ("expected `$'");
return 0;
}
if (isdigit ((unsigned char) *input_line_pointer))
{
reg = get_absolute_expression ();
if (reg < 0 || reg >= 32)
{
as_warn ("Bad register number");
reg = 0;
}
}
else
{
if (strncmp (input_line_pointer, "fp", 2) == 0)
reg = FP;
else if (strncmp (input_line_pointer, "sp", 2) == 0)
reg = SP;
else if (strncmp (input_line_pointer, "gp", 2) == 0)
reg = GP;
else if (strncmp (input_line_pointer, "at", 2) == 0)
reg = AT;
else
{
as_warn ("Unrecognized register name");
return 0;
}
input_line_pointer += 2;
}
return reg;
}
/*
* Translate internal representation of relocation info to BFD target format.
*/
arelent *
tc_gen_reloc (section, fixp)
asection *section;
fixS *fixp;
{
arelent *reloc;
reloc = (arelent *) xmalloc (sizeof (arelent));
assert (reloc != 0);
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (fixp->fx_pcrel == 0)
reloc->addend = fixp->fx_addnumber;
else
#ifdef OBJ_ELF
reloc->addend = 0;
#else
reloc->addend = -reloc->address;
#endif
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"Can not represent relocation in this object file format");
return NULL;
}
return reloc;
}
/* should never be called */
valueT
md_section_align (seg, addr)
asection *seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
int
md_estimate_size_before_relax (fragP, segtype)
fragS *fragP;
asection *segtype;
{
as_fatal ("md_estimate_size_before_relax");
return (1);
} /* md_estimate_size_before_relax() */
/* This function is called whenever a label is defined. It is used
when handling branch delays; if a branch has a label, we assume we
can not move it. */
void
mips_define_label (sym)
symbolS *sym;
{
insn_label = sym;
}
#ifdef OBJ_ELF
/* Write out the .reginfo section for a MIPS ELF file. */
void
mips_elf_final_processing ()
{
Elf32_RegInfo s;
s.ri_gprmask = mips_gprmask;
s.ri_cprmask[0] = mips_cprmask[0];
s.ri_cprmask[1] = mips_cprmask[1];
s.ri_cprmask[2] = mips_cprmask[2];
s.ri_cprmask[3] = mips_cprmask[3];
/* The gp_value field is set by the MIPS ELF backend. */
bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
((Elf32_External_RegInfo *)
mips_regmask_frag));
}
#endif /* OBJ_ELF */
#ifndef OBJ_ECOFF
/* These functions should really be defined by the object file format,
since they are related to debugging information. However, this
code has to work for the a.out format, which does not define them,
so we provide simple versions here. These don't actually generate
any debugging information, but they do simple checking and someday
somebody may make them useful. */
typedef struct loc
{
struct loc *loc_next;
unsigned long loc_fileno;
unsigned long loc_lineno;
unsigned long loc_offset;
unsigned short loc_delta;
unsigned short loc_count;
#if 0
fragS *loc_frag;
#endif
}
locS;
typedef struct proc
{
struct proc *proc_next;
struct symbol *proc_isym;
struct symbol *proc_end;
unsigned long proc_reg_mask;
unsigned long proc_reg_offset;
unsigned long proc_fpreg_mask;
unsigned long proc_fpreg_offset;
unsigned long proc_frameoffset;
unsigned long proc_framereg;
unsigned long proc_pcreg;
locS *proc_iline;
struct file *proc_file;
int proc_index;
}
procS;
typedef struct file
{
struct file *file_next;
unsigned long file_fileno;
struct symbol *file_symbol;
struct symbol *file_end;
struct proc *file_proc;
int file_numprocs;
}
fileS;
static struct obstack proc_frags;
static procS *proc_lastP;
static procS *proc_rootP;
static int numprocs;
static void
md_obj_begin ()
{
obstack_begin (&proc_frags, 0x2000);
}
static void
md_obj_end ()
{
/* check for premature end, nesting errors, etc */
if (proc_lastP && proc_lastP->proc_end == NULL)
as_warn ("missing `.end' at end of assembly");
}
extern char hex_value[];
static long
get_number ()
{
int negative = 0;
long val = 0;
if (*input_line_pointer == '-')
{
++input_line_pointer;
negative = 1;
}
if (!isdigit (*input_line_pointer))
as_bad ("Expected simple number.");
if (input_line_pointer[0] == '0')
{
if (input_line_pointer[1] == 'x')
{
input_line_pointer += 2;
while (isxdigit (*input_line_pointer))
{
val <<= 4;
val |= hex_value[(int) *input_line_pointer++];
}
return negative ? -val : val;
}
else
{
++input_line_pointer;
while (isdigit (*input_line_pointer))
{
val <<= 3;
val |= *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
}
if (!isdigit (*input_line_pointer))
{
printf (" *input_line_pointer == '%c' 0x%02x\n",
*input_line_pointer, *input_line_pointer);
as_warn ("Invalid number");
return -1;
}
while (isdigit (*input_line_pointer))
{
val *= 10;
val += *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
/* The .file directive; just like the usual .file directive, but there
is an initial number which is the ECOFF file index. */
static void
s_file (x)
int x;
{
int line;
line = get_number ();
s_app_file (0);
}
/* The .end directive. */
static void
s_mipsend (x)
int x;
{
symbolS *p;
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
p = get_symbol ();
demand_empty_rest_of_line ();
}
else
p = NULL;
if (now_seg != text_section)
as_warn (".end not in text section");
if (!proc_lastP)
{
as_warn (".end and no .ent seen yet.");
return;
}
if (p != NULL)
{
assert (S_GET_NAME (p));
if (strcmp (S_GET_NAME (p), S_GET_NAME (proc_lastP->proc_isym)))
as_warn (".end symbol does not match .ent symbol.");
}
proc_lastP->proc_end = (symbolS *) 1;
}
/* The .aent and .ent directives. */
static void
s_ent (aent)
int aent;
{
int number = 0;
procS *procP;
symbolS *symbolP;
symbolP = get_symbol ();
if (*input_line_pointer == ',')
input_line_pointer++;
SKIP_WHITESPACE ();
if (isdigit (*input_line_pointer) || *input_line_pointer == '-')
number = get_number ();
if (now_seg != text_section)
as_warn (".ent or .aent not in text section.");
if (!aent && proc_lastP && proc_lastP->proc_end == NULL)
as_warn ("missing `.end'");
if (!aent)
{
procP = (procS *) obstack_alloc (&proc_frags, sizeof (*procP));
procP->proc_isym = symbolP;
procP->proc_reg_mask = 0;
procP->proc_reg_offset = 0;
procP->proc_fpreg_mask = 0;
procP->proc_fpreg_offset = 0;
procP->proc_frameoffset = 0;
procP->proc_framereg = 0;
procP->proc_pcreg = 0;
procP->proc_end = NULL;
procP->proc_next = NULL;
if (proc_lastP)
proc_lastP->proc_next = procP;
else
proc_rootP = procP;
proc_lastP = procP;
numprocs++;
}
demand_empty_rest_of_line ();
}
/* The .frame directive. */
#if 0
static void
s_frame (x)
int x;
{
char str[100];
symbolS *symP;
int frame_reg;
int frame_off;
int pcreg;
frame_reg = tc_get_register ();
if (*input_line_pointer == ',')
input_line_pointer++;
frame_off = get_absolute_expression ();
if (*input_line_pointer == ',')
input_line_pointer++;
pcreg = tc_get_register ();
/* bob third eye */
assert (proc_rootP);
proc_rootP->proc_framereg = frame_reg;
proc_rootP->proc_frameoffset = frame_off;
proc_rootP->proc_pcreg = pcreg;
/* bob macho .frame */
/* We don't have to write out a frame stab for unoptimized code. */
if (!(frame_reg == FP && frame_off == 0))
{
if (!proc_lastP)
as_warn ("No .ent for .frame to use.");
(void) sprintf (str, "R%d;%d", frame_reg, frame_off);
symP = symbol_new (str, N_VFP, 0, frag_now);
S_SET_TYPE (symP, N_RMASK);
S_SET_OTHER (symP, 0);
S_SET_DESC (symP, 0);
symP->sy_forward = proc_lastP->proc_isym;
/* bob perhaps I should have used pseudo set */
}
demand_empty_rest_of_line ();
}
#endif
/* The .fmask and .mask directives. */
#if 0
static void
s_mask (reg_type)
char reg_type;
{
char str[100], *strP;
symbolS *symP;
int i;
unsigned int mask;
int off;
mask = get_number ();
if (*input_line_pointer == ',')
input_line_pointer++;
off = get_absolute_expression ();
/* bob only for coff */
assert (proc_rootP);
if (reg_type == 'F')
{
proc_rootP->proc_fpreg_mask = mask;
proc_rootP->proc_fpreg_offset = off;
}
else
{
proc_rootP->proc_reg_mask = mask;
proc_rootP->proc_reg_offset = off;
}
/* bob macho .mask + .fmask */
/* We don't have to write out a mask stab if no saved regs. */
if (!(mask == 0))
{
if (!proc_lastP)
as_warn ("No .ent for .mask to use.");
strP = str;
for (i = 0; i < 32; i++)
{
if (mask % 2)
{
sprintf (strP, "%c%d,", reg_type, i);
strP += strlen (strP);
}
mask /= 2;
}
sprintf (strP, ";%d,", off);
symP = symbol_new (str, N_RMASK, 0, frag_now);
S_SET_TYPE (symP, N_RMASK);
S_SET_OTHER (symP, 0);
S_SET_DESC (symP, 0);
symP->sy_forward = proc_lastP->proc_isym;
/* bob perhaps I should have used pseudo set */
}
}
#endif
/* The .loc directive. */
#if 0
static void
s_loc (x)
int x;
{
symbolS *symbolP;
int lineno;
int addroff;
assert (now_seg == text_section);
lineno = get_number ();
addroff = obstack_next_free (&frags) - frag_now->fr_literal;
symbolP = symbol_new ("", N_SLINE, addroff, frag_now);
S_SET_TYPE (symbolP, N_SLINE);
S_SET_OTHER (symbolP, 0);
S_SET_DESC (symbolP, lineno);
symbolP->sy_segment = now_seg;
}
#endif
#endif /* ! defined (OBJ_ECOFF) */