mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
c34f4fc672
* readelf.c: Remove duplicate declaration of variable do_wide. * dwarf.h: Add export of do_wide. * hist.h: Move declaration of histograms and num_histograms variables from here to... * hist.c: ...here.
751 lines
20 KiB
C
751 lines
20 KiB
C
/* hist.c - Histogram related operations.
|
||
|
||
Copyright 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Binutils.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "gprof.h"
|
||
#include "libiberty.h"
|
||
#include "search_list.h"
|
||
#include "source.h"
|
||
#include "symtab.h"
|
||
#include "corefile.h"
|
||
#include "gmon_io.h"
|
||
#include "gmon_out.h"
|
||
#include "hist.h"
|
||
#include "sym_ids.h"
|
||
#include "utils.h"
|
||
#include "math.h"
|
||
#include "stdio.h"
|
||
#include "stdlib.h"
|
||
|
||
#define UNITS_TO_CODE (offset_to_code / sizeof(UNIT))
|
||
|
||
static void scale_and_align_entries (void);
|
||
static void print_header (int);
|
||
static void print_line (Sym *, double);
|
||
static int cmp_time (const PTR, const PTR);
|
||
|
||
/* Declarations of automatically generated functions to output blurbs. */
|
||
extern void flat_blurb (FILE * fp);
|
||
|
||
static histogram *find_histogram (bfd_vma lowpc, bfd_vma highpc);
|
||
static histogram *find_histogram_for_pc (bfd_vma pc);
|
||
|
||
histogram * histograms;
|
||
unsigned num_histograms;
|
||
double hist_scale;
|
||
static char hist_dimension[16] = "seconds";
|
||
static char hist_dimension_abbrev = 's';
|
||
|
||
static double accum_time; /* Accumulated time so far for print_line(). */
|
||
static double total_time; /* Total time for all routines. */
|
||
|
||
/* Table of SI prefixes for powers of 10 (used to automatically
|
||
scale some of the values in the flat profile). */
|
||
const struct
|
||
{
|
||
char prefix;
|
||
double scale;
|
||
}
|
||
SItab[] =
|
||
{
|
||
{ 'T', 1e-12 }, /* tera */
|
||
{ 'G', 1e-09 }, /* giga */
|
||
{ 'M', 1e-06 }, /* mega */
|
||
{ 'K', 1e-03 }, /* kilo */
|
||
{ ' ', 1e-00 },
|
||
{ 'm', 1e+03 }, /* milli */
|
||
{ 'u', 1e+06 }, /* micro */
|
||
{ 'n', 1e+09 }, /* nano */
|
||
{ 'p', 1e+12 }, /* pico */
|
||
{ 'f', 1e+15 }, /* femto */
|
||
{ 'a', 1e+18 } /* ato */
|
||
};
|
||
|
||
/* Reads just the header part of histogram record into
|
||
*RECORD from IFP. FILENAME is the name of IFP and
|
||
is provided for formatting error messages only.
|
||
|
||
If FIRST is non-zero, sets global variables HZ, HIST_DIMENSION,
|
||
HIST_DIMENSION_ABBREV, HIST_SCALE. If FIRST is zero, checks
|
||
that the new histogram is compatible with already-set values
|
||
of those variables and emits an error if that's not so. */
|
||
static void
|
||
read_histogram_header (histogram *record,
|
||
FILE *ifp, const char *filename,
|
||
int first)
|
||
{
|
||
unsigned int profrate;
|
||
char n_hist_dimension[15];
|
||
char n_hist_dimension_abbrev;
|
||
double n_hist_scale;
|
||
|
||
if (gmon_io_read_vma (ifp, &record->lowpc)
|
||
|| gmon_io_read_vma (ifp, &record->highpc)
|
||
|| gmon_io_read_32 (ifp, &record->num_bins)
|
||
|| gmon_io_read_32 (ifp, &profrate)
|
||
|| gmon_io_read (ifp, n_hist_dimension, 15)
|
||
|| gmon_io_read (ifp, &n_hist_dimension_abbrev, 1))
|
||
{
|
||
fprintf (stderr, _("%s: %s: unexpected end of file\n"),
|
||
whoami, filename);
|
||
|
||
done (1);
|
||
}
|
||
|
||
n_hist_scale = (double)((record->highpc - record->lowpc) / sizeof (UNIT))
|
||
/ record->num_bins;
|
||
|
||
if (first)
|
||
{
|
||
/* We don't try to veryfy profrate is the same for all histogram
|
||
records. If we have two histogram records for the same
|
||
address range and profiling samples is done as often
|
||
as possible as opposed on timer, then the actual profrate will
|
||
be slightly different. Most of the time the difference does not
|
||
matter and insisting that profiling rate is exactly the same
|
||
will only create inconvenient. */
|
||
hz = profrate;
|
||
memcpy (hist_dimension, n_hist_dimension, 15);
|
||
hist_dimension_abbrev = n_hist_dimension_abbrev;
|
||
hist_scale = n_hist_scale;
|
||
}
|
||
else
|
||
{
|
||
if (strncmp (n_hist_dimension, hist_dimension, 15) != 0)
|
||
{
|
||
fprintf (stderr,
|
||
_("%s: dimension unit changed between histogram records\n"
|
||
"%s: from '%s'\n"
|
||
"%s: to '%s'\n"),
|
||
whoami, whoami, hist_dimension, whoami, n_hist_dimension);
|
||
done (1);
|
||
}
|
||
|
||
if (n_hist_dimension_abbrev != hist_dimension_abbrev)
|
||
{
|
||
fprintf (stderr,
|
||
_("%s: dimension abbreviation changed between histogram records\n"
|
||
"%s: from '%c'\n"
|
||
"%s: to '%c'\n"),
|
||
whoami, whoami, hist_dimension_abbrev, whoami, n_hist_dimension_abbrev);
|
||
done (1);
|
||
}
|
||
|
||
/* The only reason we require the same scale for histograms is that
|
||
there's code (notably printing code), that prints units,
|
||
and it would be very confusing to have one unit mean different
|
||
things for different functions. */
|
||
if (fabs (hist_scale - n_hist_scale) > 0.000001)
|
||
{
|
||
fprintf (stderr,
|
||
_("%s: different scales in histogram records"),
|
||
whoami);
|
||
done (1);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read the histogram from file IFP. FILENAME is the name of IFP and
|
||
is provided for formatting error messages only. */
|
||
|
||
void
|
||
hist_read_rec (FILE * ifp, const char *filename)
|
||
{
|
||
bfd_vma lowpc, highpc;
|
||
histogram n_record;
|
||
histogram *record, *existing_record;
|
||
unsigned i;
|
||
|
||
/* 1. Read the header and see if there's existing record for the
|
||
same address range and that there are no overlapping records. */
|
||
read_histogram_header (&n_record, ifp, filename, num_histograms == 0);
|
||
|
||
existing_record = find_histogram (n_record.lowpc, n_record.highpc);
|
||
if (existing_record)
|
||
{
|
||
record = existing_record;
|
||
}
|
||
else
|
||
{
|
||
/* If this record overlaps, but does not completely match an existing
|
||
record, it's an error. */
|
||
lowpc = n_record.lowpc;
|
||
highpc = n_record.highpc;
|
||
hist_clip_symbol_address (&lowpc, &highpc);
|
||
if (lowpc != highpc)
|
||
{
|
||
fprintf (stderr,
|
||
_("%s: overlapping histogram records\n"),
|
||
whoami);
|
||
done (1);
|
||
}
|
||
|
||
/* This is new record. Add it to global array and allocate space for
|
||
the samples. */
|
||
histograms = (struct histogram *)
|
||
xrealloc (histograms, sizeof (histogram) * (num_histograms + 1));
|
||
memcpy (histograms + num_histograms,
|
||
&n_record, sizeof (histogram));
|
||
record = &histograms[num_histograms];
|
||
++num_histograms;
|
||
|
||
record->sample = (int *) xmalloc (record->num_bins
|
||
* sizeof (record->sample[0]));
|
||
memset (record->sample, 0, record->num_bins * sizeof (record->sample[0]));
|
||
}
|
||
|
||
/* 2. We have either a new record (with zeroed histogram data), or an existing
|
||
record with some data in the histogram already. Read new data into the
|
||
record, adding hit counts. */
|
||
|
||
DBG (SAMPLEDEBUG,
|
||
printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %u\n",
|
||
(unsigned long) record->lowpc, (unsigned long) record->highpc,
|
||
record->num_bins));
|
||
|
||
for (i = 0; i < record->num_bins; ++i)
|
||
{
|
||
UNIT count;
|
||
if (fread (&count[0], sizeof (count), 1, ifp) != 1)
|
||
{
|
||
fprintf (stderr,
|
||
_("%s: %s: unexpected EOF after reading %u of %u samples\n"),
|
||
whoami, filename, i, record->num_bins);
|
||
done (1);
|
||
}
|
||
record->sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]);
|
||
DBG (SAMPLEDEBUG,
|
||
printf ("[hist_read_rec] 0x%lx: %u\n",
|
||
(unsigned long) (record->lowpc
|
||
+ i * (record->highpc - record->lowpc)
|
||
/ record->num_bins),
|
||
record->sample[i]));
|
||
}
|
||
}
|
||
|
||
|
||
/* Write all execution histograms file OFP. FILENAME is the name
|
||
of OFP and is provided for formatting error-messages only. */
|
||
|
||
void
|
||
hist_write_hist (FILE * ofp, const char *filename)
|
||
{
|
||
UNIT count;
|
||
unsigned int i, r;
|
||
|
||
for (r = 0; r < num_histograms; ++r)
|
||
{
|
||
histogram *record = &histograms[r];
|
||
|
||
/* Write header. */
|
||
|
||
if (gmon_io_write_8 (ofp, GMON_TAG_TIME_HIST)
|
||
|| gmon_io_write_vma (ofp, record->lowpc)
|
||
|| gmon_io_write_vma (ofp, record->highpc)
|
||
|| gmon_io_write_32 (ofp, record->num_bins)
|
||
|| gmon_io_write_32 (ofp, hz)
|
||
|| gmon_io_write (ofp, hist_dimension, 15)
|
||
|| gmon_io_write (ofp, &hist_dimension_abbrev, 1))
|
||
{
|
||
perror (filename);
|
||
done (1);
|
||
}
|
||
|
||
for (i = 0; i < record->num_bins; ++i)
|
||
{
|
||
bfd_put_16 (core_bfd, (bfd_vma) record->sample[i], (bfd_byte *) &count[0]);
|
||
|
||
if (fwrite (&count[0], sizeof (count), 1, ofp) != 1)
|
||
{
|
||
perror (filename);
|
||
done (1);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Calculate scaled entry point addresses (to save time in
|
||
hist_assign_samples), and, on architectures that have procedure
|
||
entry masks at the start of a function, possibly push the scaled
|
||
entry points over the procedure entry mask, if it turns out that
|
||
the entry point is in one bin and the code for a routine is in the
|
||
next bin. */
|
||
|
||
static void
|
||
scale_and_align_entries ()
|
||
{
|
||
Sym *sym;
|
||
bfd_vma bin_of_entry;
|
||
bfd_vma bin_of_code;
|
||
|
||
for (sym = symtab.base; sym < symtab.limit; sym++)
|
||
{
|
||
histogram *r = find_histogram_for_pc (sym->addr);
|
||
|
||
sym->hist.scaled_addr = sym->addr / sizeof (UNIT);
|
||
|
||
if (r)
|
||
{
|
||
bin_of_entry = (sym->hist.scaled_addr - r->lowpc) / hist_scale;
|
||
bin_of_code = ((sym->hist.scaled_addr + UNITS_TO_CODE - r->lowpc)
|
||
/ hist_scale);
|
||
if (bin_of_entry < bin_of_code)
|
||
{
|
||
DBG (SAMPLEDEBUG,
|
||
printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n",
|
||
(unsigned long) sym->hist.scaled_addr,
|
||
(unsigned long) (sym->hist.scaled_addr
|
||
+ UNITS_TO_CODE)));
|
||
sym->hist.scaled_addr += UNITS_TO_CODE;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Assign samples to the symbol to which they belong.
|
||
|
||
Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC)
|
||
which may overlap one more symbol address ranges. If a symbol
|
||
overlaps with the bin's address range by O percent, then O percent
|
||
of the bin's count is credited to that symbol.
|
||
|
||
There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be
|
||
with respect to the symbol's address range [SYM_LOW_PC,
|
||
SYM_HIGH_PC) as shown in the following diagram. OVERLAP computes
|
||
the distance (in UNITs) between the arrows, the fraction of the
|
||
sample that is to be credited to the symbol which starts at
|
||
SYM_LOW_PC.
|
||
|
||
sym_low_pc sym_high_pc
|
||
| |
|
||
v v
|
||
|
||
+-----------------------------------------------+
|
||
| |
|
||
| ->| |<- ->| |<- ->| |<- |
|
||
| | | | | |
|
||
+---------+ +---------+ +---------+
|
||
|
||
^ ^ ^ ^ ^ ^
|
||
| | | | | |
|
||
bin_low_pc bin_high_pc bin_low_pc bin_high_pc bin_low_pc bin_high_pc
|
||
|
||
For the VAX we assert that samples will never fall in the first two
|
||
bytes of any routine, since that is the entry mask, thus we call
|
||
scale_and_align_entries() to adjust the entry points if the entry
|
||
mask falls in one bin but the code for the routine doesn't start
|
||
until the next bin. In conjunction with the alignment of routine
|
||
addresses, this should allow us to have only one sample for every
|
||
four bytes of text space and never have any overlap (the two end
|
||
cases, above). */
|
||
|
||
static void
|
||
hist_assign_samples_1 (histogram *r)
|
||
{
|
||
bfd_vma bin_low_pc, bin_high_pc;
|
||
bfd_vma sym_low_pc, sym_high_pc;
|
||
bfd_vma overlap, addr;
|
||
unsigned int bin_count;
|
||
unsigned int i, j;
|
||
double time, credit;
|
||
|
||
bfd_vma lowpc = r->lowpc / sizeof (UNIT);
|
||
|
||
/* Iterate over all sample bins. */
|
||
for (i = 0, j = 1; i < r->num_bins; ++i)
|
||
{
|
||
bin_count = r->sample[i];
|
||
if (! bin_count)
|
||
continue;
|
||
|
||
bin_low_pc = lowpc + (bfd_vma) (hist_scale * i);
|
||
bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1));
|
||
time = bin_count;
|
||
|
||
DBG (SAMPLEDEBUG,
|
||
printf (
|
||
"[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%u\n",
|
||
(unsigned long) (sizeof (UNIT) * bin_low_pc),
|
||
(unsigned long) (sizeof (UNIT) * bin_high_pc),
|
||
bin_count));
|
||
total_time += time;
|
||
|
||
/* Credit all symbols that are covered by bin I. */
|
||
for (j = j - 1; j < symtab.len; ++j)
|
||
{
|
||
sym_low_pc = symtab.base[j].hist.scaled_addr;
|
||
sym_high_pc = symtab.base[j + 1].hist.scaled_addr;
|
||
|
||
/* If high end of bin is below entry address,
|
||
go for next bin. */
|
||
if (bin_high_pc < sym_low_pc)
|
||
break;
|
||
|
||
/* If low end of bin is above high end of symbol,
|
||
go for next symbol. */
|
||
if (bin_low_pc >= sym_high_pc)
|
||
continue;
|
||
|
||
overlap =
|
||
MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc);
|
||
if (overlap > 0)
|
||
{
|
||
DBG (SAMPLEDEBUG,
|
||
printf (
|
||
"[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n",
|
||
(unsigned long) symtab.base[j].addr,
|
||
(unsigned long) (sizeof (UNIT) * sym_high_pc),
|
||
symtab.base[j].name, overlap * time / hist_scale,
|
||
(long) overlap));
|
||
|
||
addr = symtab.base[j].addr;
|
||
credit = overlap * time / hist_scale;
|
||
|
||
/* Credit symbol if it appears in INCL_FLAT or that
|
||
table is empty and it does not appear it in
|
||
EXCL_FLAT. */
|
||
if (sym_lookup (&syms[INCL_FLAT], addr)
|
||
|| (syms[INCL_FLAT].len == 0
|
||
&& !sym_lookup (&syms[EXCL_FLAT], addr)))
|
||
{
|
||
symtab.base[j].hist.time += credit;
|
||
}
|
||
else
|
||
{
|
||
total_time -= credit;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n",
|
||
total_time));
|
||
}
|
||
|
||
/* Calls 'hist_assign_sampes_1' for all histogram records read so far. */
|
||
void
|
||
hist_assign_samples ()
|
||
{
|
||
unsigned i;
|
||
|
||
scale_and_align_entries ();
|
||
|
||
for (i = 0; i < num_histograms; ++i)
|
||
hist_assign_samples_1 (&histograms[i]);
|
||
|
||
}
|
||
|
||
/* Print header for flag histogram profile. */
|
||
|
||
static void
|
||
print_header (int prefix)
|
||
{
|
||
char unit[64];
|
||
|
||
sprintf (unit, _("%c%c/call"), prefix, hist_dimension_abbrev);
|
||
|
||
if (bsd_style_output)
|
||
{
|
||
printf (_("\ngranularity: each sample hit covers %ld byte(s)"),
|
||
(long) hist_scale * (long) sizeof (UNIT));
|
||
if (total_time > 0.0)
|
||
{
|
||
printf (_(" for %.2f%% of %.2f %s\n\n"),
|
||
100.0 / total_time, total_time / hz, hist_dimension);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
printf (_("\nEach sample counts as %g %s.\n"), 1.0 / hz, hist_dimension);
|
||
}
|
||
|
||
if (total_time <= 0.0)
|
||
{
|
||
printf (_(" no time accumulated\n\n"));
|
||
|
||
/* This doesn't hurt since all the numerators will be zero. */
|
||
total_time = 1.0;
|
||
}
|
||
|
||
printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
|
||
"% ", _("cumulative"), _("self "), "", _("self "), _("total "),
|
||
"");
|
||
printf ("%5.5s %9.9s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
|
||
_("time"), hist_dimension, hist_dimension, _("calls"), unit, unit,
|
||
_("name"));
|
||
}
|
||
|
||
|
||
static void
|
||
print_line (Sym *sym, double scale)
|
||
{
|
||
if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0)
|
||
return;
|
||
|
||
accum_time += sym->hist.time;
|
||
|
||
if (bsd_style_output)
|
||
printf ("%5.1f %10.2f %8.2f",
|
||
total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
|
||
accum_time / hz, sym->hist.time / hz);
|
||
else
|
||
printf ("%6.2f %9.2f %8.2f",
|
||
total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
|
||
accum_time / hz, sym->hist.time / hz);
|
||
|
||
if (sym->ncalls != 0)
|
||
printf (" %8lu %8.2f %8.2f ",
|
||
sym->ncalls, scale * sym->hist.time / hz / sym->ncalls,
|
||
scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls);
|
||
else
|
||
printf (" %8.8s %8.8s %8.8s ", "", "", "");
|
||
|
||
if (bsd_style_output)
|
||
print_name (sym);
|
||
else
|
||
print_name_only (sym);
|
||
|
||
printf ("\n");
|
||
}
|
||
|
||
|
||
/* Compare LP and RP. The primary comparison key is execution time,
|
||
the secondary is number of invocation, and the tertiary is the
|
||
lexicographic order of the function names. */
|
||
|
||
static int
|
||
cmp_time (const PTR lp, const PTR rp)
|
||
{
|
||
const Sym *left = *(const Sym **) lp;
|
||
const Sym *right = *(const Sym **) rp;
|
||
double time_diff;
|
||
|
||
time_diff = right->hist.time - left->hist.time;
|
||
|
||
if (time_diff > 0.0)
|
||
return 1;
|
||
|
||
if (time_diff < 0.0)
|
||
return -1;
|
||
|
||
if (right->ncalls > left->ncalls)
|
||
return 1;
|
||
|
||
if (right->ncalls < left->ncalls)
|
||
return -1;
|
||
|
||
return strcmp (left->name, right->name);
|
||
}
|
||
|
||
|
||
/* Print the flat histogram profile. */
|
||
|
||
void
|
||
hist_print ()
|
||
{
|
||
Sym **time_sorted_syms, *top_dog, *sym;
|
||
unsigned int index;
|
||
unsigned log_scale;
|
||
double top_time, time;
|
||
bfd_vma addr;
|
||
|
||
if (first_output)
|
||
first_output = FALSE;
|
||
else
|
||
printf ("\f\n");
|
||
|
||
accum_time = 0.0;
|
||
|
||
if (bsd_style_output)
|
||
{
|
||
if (print_descriptions)
|
||
{
|
||
printf (_("\n\n\nflat profile:\n"));
|
||
flat_blurb (stdout);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
printf (_("Flat profile:\n"));
|
||
}
|
||
|
||
/* Sort the symbol table by time (call-count and name as secondary
|
||
and tertiary keys). */
|
||
time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
|
||
|
||
for (index = 0; index < symtab.len; ++index)
|
||
time_sorted_syms[index] = &symtab.base[index];
|
||
|
||
qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time);
|
||
|
||
if (bsd_style_output)
|
||
{
|
||
log_scale = 5; /* Milli-seconds is BSD-default. */
|
||
}
|
||
else
|
||
{
|
||
/* Search for symbol with highest per-call
|
||
execution time and scale accordingly. */
|
||
log_scale = 0;
|
||
top_dog = 0;
|
||
top_time = 0.0;
|
||
|
||
for (index = 0; index < symtab.len; ++index)
|
||
{
|
||
sym = time_sorted_syms[index];
|
||
|
||
if (sym->ncalls != 0)
|
||
{
|
||
time = (sym->hist.time + sym->cg.child_time) / sym->ncalls;
|
||
|
||
if (time > top_time)
|
||
{
|
||
top_dog = sym;
|
||
top_time = time;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (top_dog && top_dog->ncalls != 0 && top_time > 0.0)
|
||
{
|
||
top_time /= hz;
|
||
|
||
for (log_scale = 0; log_scale < ARRAY_SIZE (SItab); log_scale ++)
|
||
{
|
||
double scaled_value = SItab[log_scale].scale * top_time;
|
||
|
||
if (scaled_value >= 1.0 && scaled_value < 1000.0)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For now, the dimension is always seconds. In the future, we
|
||
may also want to support other (pseudo-)dimensions (such as
|
||
I-cache misses etc.). */
|
||
print_header (SItab[log_scale].prefix);
|
||
|
||
for (index = 0; index < symtab.len; ++index)
|
||
{
|
||
addr = time_sorted_syms[index]->addr;
|
||
|
||
/* Print symbol if its in INCL_FLAT table or that table
|
||
is empty and the symbol is not in EXCL_FLAT. */
|
||
if (sym_lookup (&syms[INCL_FLAT], addr)
|
||
|| (syms[INCL_FLAT].len == 0
|
||
&& !sym_lookup (&syms[EXCL_FLAT], addr)))
|
||
print_line (time_sorted_syms[index], SItab[log_scale].scale);
|
||
}
|
||
|
||
free (time_sorted_syms);
|
||
|
||
if (print_descriptions && !bsd_style_output)
|
||
flat_blurb (stdout);
|
||
}
|
||
|
||
int
|
||
hist_check_address (unsigned address)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < num_histograms; ++i)
|
||
if (histograms[i].lowpc <= address && address < histograms[i].highpc)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
#if ! defined(min)
|
||
#define min(a,b) (((a)<(b)) ? (a) : (b))
|
||
#endif
|
||
#if ! defined(max)
|
||
#define max(a,b) (((a)>(b)) ? (a) : (b))
|
||
#endif
|
||
|
||
void
|
||
hist_clip_symbol_address (bfd_vma *p_lowpc, bfd_vma *p_highpc)
|
||
{
|
||
unsigned i;
|
||
int found = 0;
|
||
|
||
if (num_histograms == 0)
|
||
{
|
||
*p_highpc = *p_lowpc;
|
||
return;
|
||
}
|
||
|
||
for (i = 0; i < num_histograms; ++i)
|
||
{
|
||
bfd_vma common_low, common_high;
|
||
common_low = max (histograms[i].lowpc, *p_lowpc);
|
||
common_high = min (histograms[i].highpc, *p_highpc);
|
||
|
||
if (common_low < common_high)
|
||
{
|
||
if (found)
|
||
{
|
||
fprintf (stderr,
|
||
_("%s: found a symbol that covers "
|
||
"several histogram records"),
|
||
whoami);
|
||
done (1);
|
||
}
|
||
|
||
found = 1;
|
||
*p_lowpc = common_low;
|
||
*p_highpc = common_high;
|
||
}
|
||
}
|
||
|
||
if (!found)
|
||
*p_highpc = *p_lowpc;
|
||
}
|
||
|
||
/* Find and return exising histogram record having the same lowpc and
|
||
highpc as passed via the parameters. Return NULL if nothing is found.
|
||
The return value is valid until any new histogram is read. */
|
||
static histogram *
|
||
find_histogram (bfd_vma lowpc, bfd_vma highpc)
|
||
{
|
||
unsigned i;
|
||
for (i = 0; i < num_histograms; ++i)
|
||
{
|
||
if (histograms[i].lowpc == lowpc && histograms[i].highpc == highpc)
|
||
return &histograms[i];
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Given a PC, return histogram record which address range include this PC.
|
||
Return NULL if there's no such record. */
|
||
static histogram *
|
||
find_histogram_for_pc (bfd_vma pc)
|
||
{
|
||
unsigned i;
|
||
for (i = 0; i < num_histograms; ++i)
|
||
{
|
||
if (histograms[i].lowpc <= pc && pc < histograms[i].highpc)
|
||
return &histograms[i];
|
||
}
|
||
return 0;
|
||
}
|