mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
28e7fd6234
Two modifications: 1. The addition of 2013 to the copyright year range for every file; 2. The use of a single year range, instead of potentially multiple year ranges, as approved by the FSF.
1308 lines
41 KiB
C
1308 lines
41 KiB
C
/* GNU/Linux on ARM target support.
|
|
|
|
Copyright (C) 1999-2013 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "target.h"
|
|
#include "value.h"
|
|
#include "gdbtypes.h"
|
|
#include "floatformat.h"
|
|
#include "gdbcore.h"
|
|
#include "frame.h"
|
|
#include "regcache.h"
|
|
#include "doublest.h"
|
|
#include "solib-svr4.h"
|
|
#include "osabi.h"
|
|
#include "regset.h"
|
|
#include "trad-frame.h"
|
|
#include "tramp-frame.h"
|
|
#include "breakpoint.h"
|
|
#include "auxv.h"
|
|
|
|
#include "arm-tdep.h"
|
|
#include "arm-linux-tdep.h"
|
|
#include "linux-tdep.h"
|
|
#include "glibc-tdep.h"
|
|
#include "arch-utils.h"
|
|
#include "inferior.h"
|
|
#include "gdbthread.h"
|
|
#include "symfile.h"
|
|
|
|
#include "cli/cli-utils.h"
|
|
#include "stap-probe.h"
|
|
#include "parser-defs.h"
|
|
#include "user-regs.h"
|
|
#include <ctype.h>
|
|
|
|
#include "gdb_string.h"
|
|
|
|
/* This is defined in <elf.h> on ARM GNU/Linux systems. */
|
|
#define AT_HWCAP 16
|
|
|
|
extern int arm_apcs_32;
|
|
|
|
/* Under ARM GNU/Linux the traditional way of performing a breakpoint
|
|
is to execute a particular software interrupt, rather than use a
|
|
particular undefined instruction to provoke a trap. Upon exection
|
|
of the software interrupt the kernel stops the inferior with a
|
|
SIGTRAP, and wakes the debugger. */
|
|
|
|
static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
|
|
|
|
static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
|
|
|
|
/* However, the EABI syscall interface (new in Nov. 2005) does not look at
|
|
the operand of the swi if old-ABI compatibility is disabled. Therefore,
|
|
use an undefined instruction instead. This is supported as of kernel
|
|
version 2.5.70 (May 2003), so should be a safe assumption for EABI
|
|
binaries. */
|
|
|
|
static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
|
|
|
|
static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
|
|
|
|
/* All the kernels which support Thumb support using a specific undefined
|
|
instruction for the Thumb breakpoint. */
|
|
|
|
static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
|
|
|
|
static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
|
|
|
|
/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
|
|
we must use a length-appropriate breakpoint for 32-bit Thumb
|
|
instructions. See also thumb_get_next_pc. */
|
|
|
|
static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
|
|
|
|
static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
|
|
|
|
/* Description of the longjmp buffer. The buffer is treated as an array of
|
|
elements of size ARM_LINUX_JB_ELEMENT_SIZE.
|
|
|
|
The location of saved registers in this buffer (in particular the PC
|
|
to use after longjmp is called) varies depending on the ABI (in
|
|
particular the FP model) and also (possibly) the C Library.
|
|
|
|
For glibc, eglibc, and uclibc the following holds: If the FP model is
|
|
SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
|
|
buffer. This is also true for the SoftFPA model. However, for the FPA
|
|
model the PC is at offset 21 in the buffer. */
|
|
#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
|
|
#define ARM_LINUX_JB_PC_FPA 21
|
|
#define ARM_LINUX_JB_PC_EABI 9
|
|
|
|
/*
|
|
Dynamic Linking on ARM GNU/Linux
|
|
--------------------------------
|
|
|
|
Note: PLT = procedure linkage table
|
|
GOT = global offset table
|
|
|
|
As much as possible, ELF dynamic linking defers the resolution of
|
|
jump/call addresses until the last minute. The technique used is
|
|
inspired by the i386 ELF design, and is based on the following
|
|
constraints.
|
|
|
|
1) The calling technique should not force a change in the assembly
|
|
code produced for apps; it MAY cause changes in the way assembly
|
|
code is produced for position independent code (i.e. shared
|
|
libraries).
|
|
|
|
2) The technique must be such that all executable areas must not be
|
|
modified; and any modified areas must not be executed.
|
|
|
|
To do this, there are three steps involved in a typical jump:
|
|
|
|
1) in the code
|
|
2) through the PLT
|
|
3) using a pointer from the GOT
|
|
|
|
When the executable or library is first loaded, each GOT entry is
|
|
initialized to point to the code which implements dynamic name
|
|
resolution and code finding. This is normally a function in the
|
|
program interpreter (on ARM GNU/Linux this is usually
|
|
ld-linux.so.2, but it does not have to be). On the first
|
|
invocation, the function is located and the GOT entry is replaced
|
|
with the real function address. Subsequent calls go through steps
|
|
1, 2 and 3 and end up calling the real code.
|
|
|
|
1) In the code:
|
|
|
|
b function_call
|
|
bl function_call
|
|
|
|
This is typical ARM code using the 26 bit relative branch or branch
|
|
and link instructions. The target of the instruction
|
|
(function_call is usually the address of the function to be called.
|
|
In position independent code, the target of the instruction is
|
|
actually an entry in the PLT when calling functions in a shared
|
|
library. Note that this call is identical to a normal function
|
|
call, only the target differs.
|
|
|
|
2) In the PLT:
|
|
|
|
The PLT is a synthetic area, created by the linker. It exists in
|
|
both executables and libraries. It is an array of stubs, one per
|
|
imported function call. It looks like this:
|
|
|
|
PLT[0]:
|
|
str lr, [sp, #-4]! @push the return address (lr)
|
|
ldr lr, [pc, #16] @load from 6 words ahead
|
|
add lr, pc, lr @form an address for GOT[0]
|
|
ldr pc, [lr, #8]! @jump to the contents of that addr
|
|
|
|
The return address (lr) is pushed on the stack and used for
|
|
calculations. The load on the second line loads the lr with
|
|
&GOT[3] - . - 20. The addition on the third leaves:
|
|
|
|
lr = (&GOT[3] - . - 20) + (. + 8)
|
|
lr = (&GOT[3] - 12)
|
|
lr = &GOT[0]
|
|
|
|
On the fourth line, the pc and lr are both updated, so that:
|
|
|
|
pc = GOT[2]
|
|
lr = &GOT[0] + 8
|
|
= &GOT[2]
|
|
|
|
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
|
|
"tight", but allows us to keep all the PLT entries the same size.
|
|
|
|
PLT[n+1]:
|
|
ldr ip, [pc, #4] @load offset from gotoff
|
|
add ip, pc, ip @add the offset to the pc
|
|
ldr pc, [ip] @jump to that address
|
|
gotoff: .word GOT[n+3] - .
|
|
|
|
The load on the first line, gets an offset from the fourth word of
|
|
the PLT entry. The add on the second line makes ip = &GOT[n+3],
|
|
which contains either a pointer to PLT[0] (the fixup trampoline) or
|
|
a pointer to the actual code.
|
|
|
|
3) In the GOT:
|
|
|
|
The GOT contains helper pointers for both code (PLT) fixups and
|
|
data fixups. The first 3 entries of the GOT are special. The next
|
|
M entries (where M is the number of entries in the PLT) belong to
|
|
the PLT fixups. The next D (all remaining) entries belong to
|
|
various data fixups. The actual size of the GOT is 3 + M + D.
|
|
|
|
The GOT is also a synthetic area, created by the linker. It exists
|
|
in both executables and libraries. When the GOT is first
|
|
initialized , all the GOT entries relating to PLT fixups are
|
|
pointing to code back at PLT[0].
|
|
|
|
The special entries in the GOT are:
|
|
|
|
GOT[0] = linked list pointer used by the dynamic loader
|
|
GOT[1] = pointer to the reloc table for this module
|
|
GOT[2] = pointer to the fixup/resolver code
|
|
|
|
The first invocation of function call comes through and uses the
|
|
fixup/resolver code. On the entry to the fixup/resolver code:
|
|
|
|
ip = &GOT[n+3]
|
|
lr = &GOT[2]
|
|
stack[0] = return address (lr) of the function call
|
|
[r0, r1, r2, r3] are still the arguments to the function call
|
|
|
|
This is enough information for the fixup/resolver code to work
|
|
with. Before the fixup/resolver code returns, it actually calls
|
|
the requested function and repairs &GOT[n+3]. */
|
|
|
|
/* The constants below were determined by examining the following files
|
|
in the linux kernel sources:
|
|
|
|
arch/arm/kernel/signal.c
|
|
- see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
|
|
include/asm-arm/unistd.h
|
|
- see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
|
|
|
|
#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
|
|
#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
|
|
|
|
/* For ARM EABI, the syscall number is not in the SWI instruction
|
|
(instead it is loaded into r7). We recognize the pattern that
|
|
glibc uses... alternatively, we could arrange to do this by
|
|
function name, but they are not always exported. */
|
|
#define ARM_SET_R7_SIGRETURN 0xe3a07077
|
|
#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
|
|
#define ARM_EABI_SYSCALL 0xef000000
|
|
|
|
/* OABI syscall restart trampoline, used for EABI executables too
|
|
whenever OABI support has been enabled in the kernel. */
|
|
#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
|
|
#define ARM_LDR_PC_SP_12 0xe49df00c
|
|
#define ARM_LDR_PC_SP_4 0xe49df004
|
|
|
|
static void
|
|
arm_linux_sigtramp_cache (struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func, int regs_offset)
|
|
{
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
|
CORE_ADDR base = sp + regs_offset;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
trad_frame_set_reg_addr (this_cache, i, base + i * 4);
|
|
|
|
trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
|
|
|
|
/* The VFP or iWMMXt registers may be saved on the stack, but there's
|
|
no reliable way to restore them (yet). */
|
|
|
|
/* Save a frame ID. */
|
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
|
}
|
|
|
|
/* There are a couple of different possible stack layouts that
|
|
we need to support.
|
|
|
|
Before version 2.6.18, the kernel used completely independent
|
|
layouts for non-RT and RT signals. For non-RT signals the stack
|
|
began directly with a struct sigcontext. For RT signals the stack
|
|
began with two redundant pointers (to the siginfo and ucontext),
|
|
and then the siginfo and ucontext.
|
|
|
|
As of version 2.6.18, the non-RT signal frame layout starts with
|
|
a ucontext and the RT signal frame starts with a siginfo and then
|
|
a ucontext. Also, the ucontext now has a designated save area
|
|
for coprocessor registers.
|
|
|
|
For RT signals, it's easy to tell the difference: we look for
|
|
pinfo, the pointer to the siginfo. If it has the expected
|
|
value, we have an old layout. If it doesn't, we have the new
|
|
layout.
|
|
|
|
For non-RT signals, it's a bit harder. We need something in one
|
|
layout or the other with a recognizable offset and value. We can't
|
|
use the return trampoline, because ARM usually uses SA_RESTORER,
|
|
in which case the stack return trampoline is not filled in.
|
|
We can't use the saved stack pointer, because sigaltstack might
|
|
be in use. So for now we guess the new layout... */
|
|
|
|
/* There are three words (trap_no, error_code, oldmask) in
|
|
struct sigcontext before r0. */
|
|
#define ARM_SIGCONTEXT_R0 0xc
|
|
|
|
/* There are five words (uc_flags, uc_link, and three for uc_stack)
|
|
in the ucontext_t before the sigcontext. */
|
|
#define ARM_UCONTEXT_SIGCONTEXT 0x14
|
|
|
|
/* There are three elements in an rt_sigframe before the ucontext:
|
|
pinfo, puc, and info. The first two are pointers and the third
|
|
is a struct siginfo, with size 128 bytes. We could follow puc
|
|
to the ucontext, but it's simpler to skip the whole thing. */
|
|
#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
|
|
#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
|
|
|
|
#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
|
|
|
|
#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
|
|
|
|
static void
|
|
arm_linux_sigreturn_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
|
ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
|
|
|
|
if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
ARM_UCONTEXT_SIGCONTEXT
|
|
+ ARM_SIGCONTEXT_R0);
|
|
else
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
ARM_SIGCONTEXT_R0);
|
|
}
|
|
|
|
static void
|
|
arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
|
ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
|
|
|
|
if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
ARM_OLD_RT_SIGFRAME_UCONTEXT
|
|
+ ARM_UCONTEXT_SIGCONTEXT
|
|
+ ARM_SIGCONTEXT_R0);
|
|
else
|
|
arm_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
ARM_NEW_RT_SIGFRAME_UCONTEXT
|
|
+ ARM_UCONTEXT_SIGCONTEXT
|
|
+ ARM_SIGCONTEXT_R0);
|
|
}
|
|
|
|
static void
|
|
arm_linux_restart_syscall_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
|
|
CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
|
|
CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
|
|
ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
|
|
int sp_offset;
|
|
|
|
/* There are two variants of this trampoline; with older kernels, the
|
|
stub is placed on the stack, while newer kernels use the stub from
|
|
the vector page. They are identical except that the older version
|
|
increments SP by 12 (to skip stored PC and the stub itself), while
|
|
the newer version increments SP only by 4 (just the stored PC). */
|
|
if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
|
|
sp_offset = 4;
|
|
else
|
|
sp_offset = 12;
|
|
|
|
/* Update Thumb bit in CPSR. */
|
|
if (pc & 1)
|
|
cpsr |= t_bit;
|
|
else
|
|
cpsr &= ~t_bit;
|
|
|
|
/* Remove Thumb bit from PC. */
|
|
pc = gdbarch_addr_bits_remove (gdbarch, pc);
|
|
|
|
/* Save previous register values. */
|
|
trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
|
|
trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
|
|
trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
|
|
|
|
/* Save a frame ID. */
|
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
|
}
|
|
|
|
static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ ARM_LINUX_SIGRETURN_INSTR, -1 },
|
|
{ TRAMP_SENTINEL_INSN }
|
|
},
|
|
arm_linux_sigreturn_init
|
|
};
|
|
|
|
static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
|
|
{ TRAMP_SENTINEL_INSN }
|
|
},
|
|
arm_linux_rt_sigreturn_init
|
|
};
|
|
|
|
static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ ARM_SET_R7_SIGRETURN, -1 },
|
|
{ ARM_EABI_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN }
|
|
},
|
|
arm_linux_sigreturn_init
|
|
};
|
|
|
|
static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ ARM_SET_R7_RT_SIGRETURN, -1 },
|
|
{ ARM_EABI_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN }
|
|
},
|
|
arm_linux_rt_sigreturn_init
|
|
};
|
|
|
|
static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
|
|
NORMAL_FRAME,
|
|
4,
|
|
{
|
|
{ ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
|
|
{ ARM_LDR_PC_SP_12, -1 },
|
|
{ TRAMP_SENTINEL_INSN }
|
|
},
|
|
arm_linux_restart_syscall_init
|
|
};
|
|
|
|
static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
|
|
NORMAL_FRAME,
|
|
4,
|
|
{
|
|
{ ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
|
|
{ ARM_LDR_PC_SP_4, -1 },
|
|
{ TRAMP_SENTINEL_INSN }
|
|
},
|
|
arm_linux_restart_syscall_init
|
|
};
|
|
|
|
/* Core file and register set support. */
|
|
|
|
#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
|
|
|
|
void
|
|
arm_linux_supply_gregset (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *gregs_buf, size_t len)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
const gdb_byte *gregs = gregs_buf;
|
|
int regno;
|
|
CORE_ADDR reg_pc;
|
|
gdb_byte pc_buf[INT_REGISTER_SIZE];
|
|
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
|
if (regnum == -1 || regnum == regno)
|
|
regcache_raw_supply (regcache, regno,
|
|
gregs + INT_REGISTER_SIZE * regno);
|
|
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
|
{
|
|
if (arm_apcs_32)
|
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
|
else
|
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
|
}
|
|
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
|
{
|
|
reg_pc = extract_unsigned_integer (gregs
|
|
+ INT_REGISTER_SIZE * ARM_PC_REGNUM,
|
|
INT_REGISTER_SIZE, byte_order);
|
|
reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
|
|
store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
|
|
regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
|
|
}
|
|
}
|
|
|
|
void
|
|
arm_linux_collect_gregset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *gregs_buf, size_t len)
|
|
{
|
|
gdb_byte *gregs = gregs_buf;
|
|
int regno;
|
|
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
|
if (regnum == -1 || regnum == regno)
|
|
regcache_raw_collect (regcache, regno,
|
|
gregs + INT_REGISTER_SIZE * regno);
|
|
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
|
{
|
|
if (arm_apcs_32)
|
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
|
|
else
|
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
|
}
|
|
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
|
regcache_raw_collect (regcache, ARM_PC_REGNUM,
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
|
}
|
|
|
|
/* Support for register format used by the NWFPE FPA emulator. */
|
|
|
|
#define typeNone 0x00
|
|
#define typeSingle 0x01
|
|
#define typeDouble 0x02
|
|
#define typeExtended 0x03
|
|
|
|
void
|
|
supply_nwfpe_register (struct regcache *regcache, int regno,
|
|
const gdb_byte *regs)
|
|
{
|
|
const gdb_byte *reg_data;
|
|
gdb_byte reg_tag;
|
|
gdb_byte buf[FP_REGISTER_SIZE];
|
|
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
|
memset (buf, 0, FP_REGISTER_SIZE);
|
|
|
|
switch (reg_tag)
|
|
{
|
|
case typeSingle:
|
|
memcpy (buf, reg_data, 4);
|
|
break;
|
|
case typeDouble:
|
|
memcpy (buf, reg_data + 4, 4);
|
|
memcpy (buf + 4, reg_data, 4);
|
|
break;
|
|
case typeExtended:
|
|
/* We want sign and exponent, then least significant bits,
|
|
then most significant. NWFPE does sign, most, least. */
|
|
memcpy (buf, reg_data, 4);
|
|
memcpy (buf + 4, reg_data + 8, 4);
|
|
memcpy (buf + 8, reg_data + 4, 4);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
regcache_raw_supply (regcache, regno, buf);
|
|
}
|
|
|
|
void
|
|
collect_nwfpe_register (const struct regcache *regcache, int regno,
|
|
gdb_byte *regs)
|
|
{
|
|
gdb_byte *reg_data;
|
|
gdb_byte reg_tag;
|
|
gdb_byte buf[FP_REGISTER_SIZE];
|
|
|
|
regcache_raw_collect (regcache, regno, buf);
|
|
|
|
/* NOTE drow/2006-06-07: This code uses the tag already in the
|
|
register buffer. I've preserved that when moving the code
|
|
from the native file to the target file. But this doesn't
|
|
always make sense. */
|
|
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
|
|
|
switch (reg_tag)
|
|
{
|
|
case typeSingle:
|
|
memcpy (reg_data, buf, 4);
|
|
break;
|
|
case typeDouble:
|
|
memcpy (reg_data, buf + 4, 4);
|
|
memcpy (reg_data + 4, buf, 4);
|
|
break;
|
|
case typeExtended:
|
|
memcpy (reg_data, buf, 4);
|
|
memcpy (reg_data + 4, buf + 8, 4);
|
|
memcpy (reg_data + 8, buf + 4, 4);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
arm_linux_supply_nwfpe (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *regs_buf, size_t len)
|
|
{
|
|
const gdb_byte *regs = regs_buf;
|
|
int regno;
|
|
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
|
regcache_raw_supply (regcache, ARM_FPS_REGNUM,
|
|
regs + NWFPE_FPSR_OFFSET);
|
|
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
|
if (regnum == -1 || regnum == regno)
|
|
supply_nwfpe_register (regcache, regno, regs);
|
|
}
|
|
|
|
void
|
|
arm_linux_collect_nwfpe (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *regs_buf, size_t len)
|
|
{
|
|
gdb_byte *regs = regs_buf;
|
|
int regno;
|
|
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
|
if (regnum == -1 || regnum == regno)
|
|
collect_nwfpe_register (regcache, regno, regs);
|
|
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
|
regcache_raw_collect (regcache, ARM_FPS_REGNUM,
|
|
regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
|
|
}
|
|
|
|
/* Support VFP register format. */
|
|
|
|
#define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
|
|
|
|
static void
|
|
arm_linux_supply_vfp (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *regs_buf, size_t len)
|
|
{
|
|
const gdb_byte *regs = regs_buf;
|
|
int regno;
|
|
|
|
if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
|
|
regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
|
|
|
|
for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
|
|
if (regnum == -1 || regnum == regno)
|
|
regcache_raw_supply (regcache, regno,
|
|
regs + (regno - ARM_D0_REGNUM) * 8);
|
|
}
|
|
|
|
static void
|
|
arm_linux_collect_vfp (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *regs_buf, size_t len)
|
|
{
|
|
gdb_byte *regs = regs_buf;
|
|
int regno;
|
|
|
|
if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
|
|
regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
|
|
|
|
for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
|
|
if (regnum == -1 || regnum == regno)
|
|
regcache_raw_collect (regcache, regno,
|
|
regs + (regno - ARM_D0_REGNUM) * 8);
|
|
}
|
|
|
|
/* Return the appropriate register set for the core section identified
|
|
by SECT_NAME and SECT_SIZE. */
|
|
|
|
static const struct regset *
|
|
arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
|
|
const char *sect_name, size_t sect_size)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (strcmp (sect_name, ".reg") == 0
|
|
&& sect_size == ARM_LINUX_SIZEOF_GREGSET)
|
|
{
|
|
if (tdep->gregset == NULL)
|
|
tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
|
|
arm_linux_collect_gregset);
|
|
return tdep->gregset;
|
|
}
|
|
|
|
if (strcmp (sect_name, ".reg2") == 0
|
|
&& sect_size == ARM_LINUX_SIZEOF_NWFPE)
|
|
{
|
|
if (tdep->fpregset == NULL)
|
|
tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
|
|
arm_linux_collect_nwfpe);
|
|
return tdep->fpregset;
|
|
}
|
|
|
|
if (strcmp (sect_name, ".reg-arm-vfp") == 0
|
|
&& sect_size == ARM_LINUX_SIZEOF_VFP)
|
|
{
|
|
if (tdep->vfpregset == NULL)
|
|
tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
|
|
arm_linux_collect_vfp);
|
|
return tdep->vfpregset;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Core file register set sections. */
|
|
|
|
static struct core_regset_section arm_linux_fpa_regset_sections[] =
|
|
{
|
|
{ ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
|
|
{ ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section arm_linux_vfp_regset_sections[] =
|
|
{
|
|
{ ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
|
|
{ ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
/* Determine target description from core file. */
|
|
|
|
static const struct target_desc *
|
|
arm_linux_core_read_description (struct gdbarch *gdbarch,
|
|
struct target_ops *target,
|
|
bfd *abfd)
|
|
{
|
|
CORE_ADDR arm_hwcap = 0;
|
|
|
|
if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
|
|
return NULL;
|
|
|
|
if (arm_hwcap & HWCAP_VFP)
|
|
{
|
|
/* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
|
|
Neon with VFPv3-D32. */
|
|
if (arm_hwcap & HWCAP_NEON)
|
|
return tdesc_arm_with_neon;
|
|
else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
|
|
return tdesc_arm_with_vfpv3;
|
|
else
|
|
return tdesc_arm_with_vfpv2;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
|
|
return 1. In addition, set IS_THUMB depending on whether we
|
|
will return to ARM or Thumb code. Return 0 if it is not a
|
|
rt_sigreturn/sigreturn syscall. */
|
|
static int
|
|
arm_linux_sigreturn_return_addr (struct frame_info *frame,
|
|
unsigned long svc_number,
|
|
CORE_ADDR *pc, int *is_thumb)
|
|
{
|
|
/* Is this a sigreturn or rt_sigreturn syscall? */
|
|
if (svc_number == 119 || svc_number == 173)
|
|
{
|
|
if (get_frame_type (frame) == SIGTRAMP_FRAME)
|
|
{
|
|
ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
|
|
CORE_ADDR cpsr
|
|
= frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
|
|
|
|
*is_thumb = (cpsr & t_bit) != 0;
|
|
*pc = frame_unwind_caller_pc (frame);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* When FRAME is at a syscall instruction, return the PC of the next
|
|
instruction to be executed. */
|
|
|
|
static CORE_ADDR
|
|
arm_linux_syscall_next_pc (struct frame_info *frame)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (frame);
|
|
CORE_ADDR return_addr = 0;
|
|
int is_thumb = arm_frame_is_thumb (frame);
|
|
ULONGEST svc_number = 0;
|
|
|
|
if (is_thumb)
|
|
{
|
|
svc_number = get_frame_register_unsigned (frame, 7);
|
|
return_addr = pc + 2;
|
|
}
|
|
else
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order_for_code =
|
|
gdbarch_byte_order_for_code (gdbarch);
|
|
unsigned long this_instr =
|
|
read_memory_unsigned_integer (pc, 4, byte_order_for_code);
|
|
|
|
unsigned long svc_operand = (0x00ffffff & this_instr);
|
|
if (svc_operand) /* OABI. */
|
|
{
|
|
svc_number = svc_operand - 0x900000;
|
|
}
|
|
else /* EABI. */
|
|
{
|
|
svc_number = get_frame_register_unsigned (frame, 7);
|
|
}
|
|
|
|
return_addr = pc + 4;
|
|
}
|
|
|
|
arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
|
|
|
|
/* Addresses for calling Thumb functions have the bit 0 set. */
|
|
if (is_thumb)
|
|
return_addr |= 1;
|
|
|
|
return return_addr;
|
|
}
|
|
|
|
|
|
/* Insert a single step breakpoint at the next executed instruction. */
|
|
|
|
static int
|
|
arm_linux_software_single_step (struct frame_info *frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
|
CORE_ADDR next_pc;
|
|
|
|
if (arm_deal_with_atomic_sequence (frame))
|
|
return 1;
|
|
|
|
next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
|
|
|
|
/* The Linux kernel offers some user-mode helpers in a high page. We can
|
|
not read this page (as of 2.6.23), and even if we could then we couldn't
|
|
set breakpoints in it, and even if we could then the atomic operations
|
|
would fail when interrupted. They are all called as functions and return
|
|
to the address in LR, so step to there instead. */
|
|
if (next_pc > 0xffff0000)
|
|
next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
|
|
|
|
arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Support for displaced stepping of Linux SVC instructions. */
|
|
|
|
static void
|
|
arm_linux_cleanup_svc (struct gdbarch *gdbarch,
|
|
struct regcache *regs,
|
|
struct displaced_step_closure *dsc)
|
|
{
|
|
CORE_ADDR from = dsc->insn_addr;
|
|
ULONGEST apparent_pc;
|
|
int within_scratch;
|
|
|
|
regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
|
|
|
|
within_scratch = (apparent_pc >= dsc->scratch_base
|
|
&& apparent_pc < (dsc->scratch_base
|
|
+ DISPLACED_MODIFIED_INSNS * 4 + 4));
|
|
|
|
if (debug_displaced)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
|
|
"SVC step ", (unsigned long) apparent_pc);
|
|
if (within_scratch)
|
|
fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
|
|
else
|
|
fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
|
|
}
|
|
|
|
if (within_scratch)
|
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
|
|
}
|
|
|
|
static int
|
|
arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
|
|
struct displaced_step_closure *dsc)
|
|
{
|
|
CORE_ADDR return_to = 0;
|
|
|
|
struct frame_info *frame;
|
|
unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
|
|
int is_sigreturn = 0;
|
|
int is_thumb;
|
|
|
|
frame = get_current_frame ();
|
|
|
|
is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
|
|
&return_to, &is_thumb);
|
|
if (is_sigreturn)
|
|
{
|
|
struct symtab_and_line sal;
|
|
|
|
if (debug_displaced)
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: found "
|
|
"sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
|
|
(unsigned long) get_frame_pc (frame));
|
|
|
|
if (debug_displaced)
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
|
|
"Setting momentary breakpoint.\n", (unsigned long) return_to);
|
|
|
|
gdb_assert (inferior_thread ()->control.step_resume_breakpoint
|
|
== NULL);
|
|
|
|
sal = find_pc_line (return_to, 0);
|
|
sal.pc = return_to;
|
|
sal.section = find_pc_overlay (return_to);
|
|
sal.explicit_pc = 1;
|
|
|
|
frame = get_prev_frame (frame);
|
|
|
|
if (frame)
|
|
{
|
|
inferior_thread ()->control.step_resume_breakpoint
|
|
= set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
|
|
bp_step_resume);
|
|
|
|
/* set_momentary_breakpoint invalidates FRAME. */
|
|
frame = NULL;
|
|
|
|
/* We need to make sure we actually insert the momentary
|
|
breakpoint set above. */
|
|
insert_breakpoints ();
|
|
}
|
|
else if (debug_displaced)
|
|
fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
|
|
"frame to set momentary breakpoint for "
|
|
"sigreturn/rt_sigreturn\n");
|
|
}
|
|
else if (debug_displaced)
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
|
|
"SVC call not in signal trampoline frame\n");
|
|
|
|
|
|
/* Preparation: If we detect sigreturn, set momentary breakpoint at resume
|
|
location, else nothing.
|
|
Insn: unmodified svc.
|
|
Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
|
|
else leave pc alone. */
|
|
|
|
|
|
dsc->cleanup = &arm_linux_cleanup_svc;
|
|
/* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
|
|
instruction. */
|
|
dsc->wrote_to_pc = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* The following two functions implement single-stepping over calls to Linux
|
|
kernel helper routines, which perform e.g. atomic operations on architecture
|
|
variants which don't support them natively.
|
|
|
|
When this function is called, the PC will be pointing at the kernel helper
|
|
(at an address inaccessible to GDB), and r14 will point to the return
|
|
address. Displaced stepping always executes code in the copy area:
|
|
so, make the copy-area instruction branch back to the kernel helper (the
|
|
"from" address), and make r14 point to the breakpoint in the copy area. In
|
|
that way, we regain control once the kernel helper returns, and can clean
|
|
up appropriately (as if we had just returned from the kernel helper as it
|
|
would have been called from the non-displaced location). */
|
|
|
|
static void
|
|
cleanup_kernel_helper_return (struct gdbarch *gdbarch,
|
|
struct regcache *regs,
|
|
struct displaced_step_closure *dsc)
|
|
{
|
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
|
|
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
|
|
}
|
|
|
|
static void
|
|
arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
|
|
CORE_ADDR to, struct regcache *regs,
|
|
struct displaced_step_closure *dsc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
dsc->numinsns = 1;
|
|
dsc->insn_addr = from;
|
|
dsc->cleanup = &cleanup_kernel_helper_return;
|
|
/* Say we wrote to the PC, else cleanup will set PC to the next
|
|
instruction in the helper, which isn't helpful. */
|
|
dsc->wrote_to_pc = 1;
|
|
|
|
/* Preparation: tmp[0] <- r14
|
|
r14 <- <scratch space>+4
|
|
*(<scratch space>+8) <- from
|
|
Insn: ldr pc, [r14, #4]
|
|
Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
|
|
|
|
dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
|
|
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
|
|
CANNOT_WRITE_PC);
|
|
write_memory_unsigned_integer (to + 8, 4, byte_order, from);
|
|
|
|
dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
|
|
}
|
|
|
|
/* Linux-specific displaced step instruction copying function. Detects when
|
|
the program has stepped into a Linux kernel helper routine (which must be
|
|
handled as a special case), falling back to arm_displaced_step_copy_insn()
|
|
if it hasn't. */
|
|
|
|
static struct displaced_step_closure *
|
|
arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
|
CORE_ADDR from, CORE_ADDR to,
|
|
struct regcache *regs)
|
|
{
|
|
struct displaced_step_closure *dsc
|
|
= xmalloc (sizeof (struct displaced_step_closure));
|
|
|
|
/* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
|
|
stop at the return location. */
|
|
if (from > 0xffff0000)
|
|
{
|
|
if (debug_displaced)
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
|
|
"at %.8lx\n", (unsigned long) from);
|
|
|
|
arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
|
|
}
|
|
else
|
|
{
|
|
/* Override the default handling of SVC instructions. */
|
|
dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
|
|
|
|
arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
|
|
}
|
|
|
|
arm_displaced_init_closure (gdbarch, from, to, dsc);
|
|
|
|
return dsc;
|
|
}
|
|
|
|
static int
|
|
arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
|
|
{
|
|
return (*s == '#' /* Literal number. */
|
|
|| *s == '[' /* Register indirection or
|
|
displacement. */
|
|
|| isalpha (*s)); /* Register value. */
|
|
}
|
|
|
|
/* This routine is used to parse a special token in ARM's assembly.
|
|
|
|
The special tokens parsed by it are:
|
|
|
|
- Register displacement (e.g, [fp, #-8])
|
|
|
|
It returns one if the special token has been parsed successfully,
|
|
or zero if the current token is not considered special. */
|
|
|
|
static int
|
|
arm_stap_parse_special_token (struct gdbarch *gdbarch,
|
|
struct stap_parse_info *p)
|
|
{
|
|
if (*p->arg == '[')
|
|
{
|
|
/* Temporary holder for lookahead. */
|
|
const char *tmp = p->arg;
|
|
/* Used to save the register name. */
|
|
const char *start;
|
|
char *regname;
|
|
int len, offset;
|
|
int got_minus = 0;
|
|
long displacement;
|
|
struct stoken str;
|
|
|
|
++tmp;
|
|
start = tmp;
|
|
|
|
/* Register name. */
|
|
while (isalnum (*tmp))
|
|
++tmp;
|
|
|
|
if (*tmp != ',')
|
|
return 0;
|
|
|
|
len = tmp - start;
|
|
regname = alloca (len + 2);
|
|
|
|
offset = 0;
|
|
if (isdigit (*start))
|
|
{
|
|
/* If we are dealing with a register whose name begins with a
|
|
digit, it means we should prefix the name with the letter
|
|
`r', because GDB expects this name pattern. Otherwise (e.g.,
|
|
we are dealing with the register `fp'), we don't need to
|
|
add such a prefix. */
|
|
regname[0] = 'r';
|
|
offset = 1;
|
|
}
|
|
|
|
strncpy (regname + offset, start, len);
|
|
len += offset;
|
|
regname[len] = '\0';
|
|
|
|
if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
|
|
error (_("Invalid register name `%s' on expression `%s'."),
|
|
regname, p->saved_arg);
|
|
|
|
++tmp;
|
|
tmp = skip_spaces_const (tmp);
|
|
if (*tmp++ != '#')
|
|
return 0;
|
|
|
|
if (*tmp == '-')
|
|
{
|
|
++tmp;
|
|
got_minus = 1;
|
|
}
|
|
|
|
displacement = strtol (tmp, (char **) &tmp, 10);
|
|
|
|
/* Skipping last `]'. */
|
|
if (*tmp++ != ']')
|
|
return 0;
|
|
|
|
/* The displacement. */
|
|
write_exp_elt_opcode (OP_LONG);
|
|
write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
|
|
write_exp_elt_longcst (displacement);
|
|
write_exp_elt_opcode (OP_LONG);
|
|
if (got_minus)
|
|
write_exp_elt_opcode (UNOP_NEG);
|
|
|
|
/* The register name. */
|
|
write_exp_elt_opcode (OP_REGISTER);
|
|
str.ptr = regname;
|
|
str.length = len;
|
|
write_exp_string (str);
|
|
write_exp_elt_opcode (OP_REGISTER);
|
|
|
|
write_exp_elt_opcode (BINOP_ADD);
|
|
|
|
/* Casting to the expected type. */
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
write_exp_elt_type (lookup_pointer_type (p->arg_type));
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
|
|
write_exp_elt_opcode (UNOP_IND);
|
|
|
|
p->arg = tmp;
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
arm_linux_init_abi (struct gdbarch_info info,
|
|
struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
linux_init_abi (info, gdbarch);
|
|
|
|
tdep->lowest_pc = 0x8000;
|
|
if (info.byte_order == BFD_ENDIAN_BIG)
|
|
{
|
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
|
tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
|
|
else
|
|
tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
|
|
tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
|
|
tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
|
tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
|
|
else
|
|
tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
|
|
tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
|
|
tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
|
|
}
|
|
tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
|
|
tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
|
|
tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
|
|
|
|
if (tdep->fp_model == ARM_FLOAT_AUTO)
|
|
tdep->fp_model = ARM_FLOAT_FPA;
|
|
|
|
switch (tdep->fp_model)
|
|
{
|
|
case ARM_FLOAT_FPA:
|
|
tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
|
|
break;
|
|
case ARM_FLOAT_SOFT_FPA:
|
|
case ARM_FLOAT_SOFT_VFP:
|
|
case ARM_FLOAT_VFP:
|
|
tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
|
|
break;
|
|
default:
|
|
internal_error
|
|
(__FILE__, __LINE__,
|
|
_("arm_linux_init_abi: Floating point model not supported"));
|
|
break;
|
|
}
|
|
tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
|
|
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
|
|
/* Single stepping. */
|
|
set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
|
|
|
|
/* Shared library handling. */
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
|
|
|
/* Enable TLS support. */
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
|
svr4_fetch_objfile_link_map);
|
|
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&arm_linux_sigreturn_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&arm_linux_rt_sigreturn_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&arm_eabi_linux_sigreturn_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&arm_eabi_linux_rt_sigreturn_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&arm_linux_restart_syscall_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&arm_kernel_linux_restart_syscall_tramp_frame);
|
|
|
|
/* Core file support. */
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
|
arm_linux_regset_from_core_section);
|
|
set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
|
|
|
|
if (tdep->have_vfp_registers)
|
|
set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
|
|
else if (tdep->have_fpa_registers)
|
|
set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
|
|
|
|
set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
|
|
|
|
/* Displaced stepping. */
|
|
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
|
arm_linux_displaced_step_copy_insn);
|
|
set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
|
|
set_gdbarch_displaced_step_free_closure (gdbarch,
|
|
simple_displaced_step_free_closure);
|
|
set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
|
|
|
|
/* Reversible debugging, process record. */
|
|
set_gdbarch_process_record (gdbarch, arm_process_record);
|
|
|
|
/* SystemTap functions. */
|
|
set_gdbarch_stap_integer_prefix (gdbarch, "#");
|
|
set_gdbarch_stap_register_prefix (gdbarch, "r");
|
|
set_gdbarch_stap_register_indirection_prefix (gdbarch, "[");
|
|
set_gdbarch_stap_register_indirection_suffix (gdbarch, "]");
|
|
set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
|
|
set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
|
|
set_gdbarch_stap_parse_special_token (gdbarch,
|
|
arm_stap_parse_special_token);
|
|
|
|
tdep->syscall_next_pc = arm_linux_syscall_next_pc;
|
|
|
|
/* Syscall record. */
|
|
tdep->arm_swi_record = NULL;
|
|
}
|
|
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
|
extern initialize_file_ftype _initialize_arm_linux_tdep;
|
|
|
|
void
|
|
_initialize_arm_linux_tdep (void)
|
|
{
|
|
gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
|
|
arm_linux_init_abi);
|
|
}
|