mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
f26ae15b47
The address space is useless to readonly regcache, so this patch removes
the parameter to construct readonly regcache.
address_space was added in regcache by 6c95b8d
, but for read-write
regcache. regcache::aspace is used for various breakpoint/watchpoint
checking, and these regcache are not read-only regcache.
gdb:
2017-11-02 Yao Qi <yao.qi@linaro.org>
* frame.c (do_frame_register_read): Remove aspace.
* jit.c (jit_frame_sniffer): Likwise.
* ppc-linux-tdep.c (ppu2spu_sniffer): Likewise.
* regcache.c (regcache::regcache): Pass nullptr.
(regcache_print): Caller updated.
* regcache.h (regcache::regcache): Remove one constructor
parameter aspace.
1727 lines
46 KiB
C
1727 lines
46 KiB
C
/* Cache and manage the values of registers for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1986-2017 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "target.h"
|
|
#include "gdbarch.h"
|
|
#include "gdbcmd.h"
|
|
#include "regcache.h"
|
|
#include "reggroups.h"
|
|
#include "observer.h"
|
|
#include "remote.h"
|
|
#include "valprint.h"
|
|
#include "regset.h"
|
|
#include <forward_list>
|
|
|
|
/*
|
|
* DATA STRUCTURE
|
|
*
|
|
* Here is the actual register cache.
|
|
*/
|
|
|
|
/* Per-architecture object describing the layout of a register cache.
|
|
Computed once when the architecture is created. */
|
|
|
|
struct gdbarch_data *regcache_descr_handle;
|
|
|
|
struct regcache_descr
|
|
{
|
|
/* The architecture this descriptor belongs to. */
|
|
struct gdbarch *gdbarch;
|
|
|
|
/* The raw register cache. Each raw (or hard) register is supplied
|
|
by the target interface. The raw cache should not contain
|
|
redundant information - if the PC is constructed from two
|
|
registers then those registers and not the PC lives in the raw
|
|
cache. */
|
|
long sizeof_raw_registers;
|
|
|
|
/* The cooked register space. Each cooked register in the range
|
|
[0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
|
|
register. The remaining [NR_RAW_REGISTERS
|
|
.. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
|
|
both raw registers and memory by the architecture methods
|
|
gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
|
|
int nr_cooked_registers;
|
|
long sizeof_cooked_registers;
|
|
|
|
/* Offset and size (in 8 bit bytes), of each register in the
|
|
register cache. All registers (including those in the range
|
|
[NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
|
|
offset. */
|
|
long *register_offset;
|
|
long *sizeof_register;
|
|
|
|
/* Cached table containing the type of each register. */
|
|
struct type **register_type;
|
|
};
|
|
|
|
static void *
|
|
init_regcache_descr (struct gdbarch *gdbarch)
|
|
{
|
|
int i;
|
|
struct regcache_descr *descr;
|
|
gdb_assert (gdbarch != NULL);
|
|
|
|
/* Create an initial, zero filled, table. */
|
|
descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
|
|
descr->gdbarch = gdbarch;
|
|
|
|
/* Total size of the register space. The raw registers are mapped
|
|
directly onto the raw register cache while the pseudo's are
|
|
either mapped onto raw-registers or memory. */
|
|
descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
|
|
|
/* Fill in a table of register types. */
|
|
descr->register_type
|
|
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
|
|
struct type *);
|
|
for (i = 0; i < descr->nr_cooked_registers; i++)
|
|
descr->register_type[i] = gdbarch_register_type (gdbarch, i);
|
|
|
|
/* Construct a strictly RAW register cache. Don't allow pseudo's
|
|
into the register cache. */
|
|
|
|
/* Lay out the register cache.
|
|
|
|
NOTE: cagney/2002-05-22: Only register_type() is used when
|
|
constructing the register cache. It is assumed that the
|
|
register's raw size, virtual size and type length are all the
|
|
same. */
|
|
|
|
{
|
|
long offset = 0;
|
|
|
|
descr->sizeof_register
|
|
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
|
|
descr->register_offset
|
|
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
|
|
{
|
|
descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
|
|
descr->register_offset[i] = offset;
|
|
offset += descr->sizeof_register[i];
|
|
gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
|
|
}
|
|
/* Set the real size of the raw register cache buffer. */
|
|
descr->sizeof_raw_registers = offset;
|
|
|
|
for (; i < descr->nr_cooked_registers; i++)
|
|
{
|
|
descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
|
|
descr->register_offset[i] = offset;
|
|
offset += descr->sizeof_register[i];
|
|
gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
|
|
}
|
|
/* Set the real size of the readonly register cache buffer. */
|
|
descr->sizeof_cooked_registers = offset;
|
|
}
|
|
|
|
return descr;
|
|
}
|
|
|
|
static struct regcache_descr *
|
|
regcache_descr (struct gdbarch *gdbarch)
|
|
{
|
|
return (struct regcache_descr *) gdbarch_data (gdbarch,
|
|
regcache_descr_handle);
|
|
}
|
|
|
|
/* Utility functions returning useful register attributes stored in
|
|
the regcache descr. */
|
|
|
|
struct type *
|
|
register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct regcache_descr *descr = regcache_descr (gdbarch);
|
|
|
|
gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
|
|
return descr->register_type[regnum];
|
|
}
|
|
|
|
/* Utility functions returning useful register attributes stored in
|
|
the regcache descr. */
|
|
|
|
int
|
|
register_size (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct regcache_descr *descr = regcache_descr (gdbarch);
|
|
int size;
|
|
|
|
gdb_assert (regnum >= 0
|
|
&& regnum < (gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch)));
|
|
size = descr->sizeof_register[regnum];
|
|
return size;
|
|
}
|
|
|
|
/* See common/common-regcache.h. */
|
|
|
|
int
|
|
regcache_register_size (const struct regcache *regcache, int n)
|
|
{
|
|
return register_size (regcache->arch (), n);
|
|
}
|
|
|
|
regcache::regcache (gdbarch *gdbarch, const address_space *aspace_,
|
|
bool readonly_p_)
|
|
: m_aspace (aspace_), m_readonly_p (readonly_p_)
|
|
{
|
|
gdb_assert (gdbarch != NULL);
|
|
m_descr = regcache_descr (gdbarch);
|
|
|
|
if (m_readonly_p)
|
|
{
|
|
m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
|
|
m_register_status = XCNEWVEC (signed char,
|
|
m_descr->nr_cooked_registers);
|
|
}
|
|
else
|
|
{
|
|
m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
|
|
m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
|
|
}
|
|
m_ptid = minus_one_ptid;
|
|
}
|
|
|
|
static enum register_status
|
|
do_cooked_read (void *src, int regnum, gdb_byte *buf)
|
|
{
|
|
struct regcache *regcache = (struct regcache *) src;
|
|
|
|
return regcache_cooked_read (regcache, regnum, buf);
|
|
}
|
|
|
|
regcache::regcache (readonly_t, const regcache &src)
|
|
: regcache (src.arch (), nullptr, true)
|
|
{
|
|
gdb_assert (!src.m_readonly_p);
|
|
save (do_cooked_read, (void *) &src);
|
|
}
|
|
|
|
gdbarch *
|
|
regcache::arch () const
|
|
{
|
|
return m_descr->gdbarch;
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
ptid_t
|
|
regcache_get_ptid (const struct regcache *regcache)
|
|
{
|
|
gdb_assert (!ptid_equal (regcache->ptid (), minus_one_ptid));
|
|
|
|
return regcache->ptid ();
|
|
}
|
|
|
|
/* Cleanup class for invalidating a register. */
|
|
|
|
class regcache_invalidator
|
|
{
|
|
public:
|
|
|
|
regcache_invalidator (struct regcache *regcache, int regnum)
|
|
: m_regcache (regcache),
|
|
m_regnum (regnum)
|
|
{
|
|
}
|
|
|
|
~regcache_invalidator ()
|
|
{
|
|
if (m_regcache != nullptr)
|
|
regcache_invalidate (m_regcache, m_regnum);
|
|
}
|
|
|
|
DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
|
|
|
|
void release ()
|
|
{
|
|
m_regcache = nullptr;
|
|
}
|
|
|
|
private:
|
|
|
|
struct regcache *m_regcache;
|
|
int m_regnum;
|
|
};
|
|
|
|
/* Return a pointer to register REGNUM's buffer cache. */
|
|
|
|
gdb_byte *
|
|
regcache::register_buffer (int regnum) const
|
|
{
|
|
return m_registers + m_descr->register_offset[regnum];
|
|
}
|
|
|
|
void
|
|
regcache_save (struct regcache *regcache,
|
|
regcache_cooked_read_ftype *cooked_read, void *src)
|
|
{
|
|
regcache->save (cooked_read, src);
|
|
}
|
|
|
|
void
|
|
regcache::save (regcache_cooked_read_ftype *cooked_read,
|
|
void *src)
|
|
{
|
|
struct gdbarch *gdbarch = m_descr->gdbarch;
|
|
int regnum;
|
|
|
|
/* The DST should be `read-only', if it wasn't then the save would
|
|
end up trying to write the register values back out to the
|
|
target. */
|
|
gdb_assert (m_readonly_p);
|
|
/* Clear the dest. */
|
|
memset (m_registers, 0, m_descr->sizeof_cooked_registers);
|
|
memset (m_register_status, 0, m_descr->nr_cooked_registers);
|
|
/* Copy over any registers (identified by their membership in the
|
|
save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
|
|
gdbarch_num_pseudo_regs) range is checked since some architectures need
|
|
to save/restore `cooked' registers that live in memory. */
|
|
for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
|
|
{
|
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
|
|
{
|
|
gdb_byte *dst_buf = register_buffer (regnum);
|
|
enum register_status status = cooked_read (src, regnum, dst_buf);
|
|
|
|
gdb_assert (status != REG_UNKNOWN);
|
|
|
|
if (status != REG_VALID)
|
|
memset (dst_buf, 0, register_size (gdbarch, regnum));
|
|
|
|
m_register_status[regnum] = status;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
regcache::restore (struct regcache *src)
|
|
{
|
|
struct gdbarch *gdbarch = m_descr->gdbarch;
|
|
int regnum;
|
|
|
|
/* The dst had better not be read-only. If it is, the `restore'
|
|
doesn't make much sense. */
|
|
gdb_assert (!m_readonly_p);
|
|
gdb_assert (src->m_readonly_p);
|
|
/* Copy over any registers, being careful to only restore those that
|
|
were both saved and need to be restored. The full [0 .. gdbarch_num_regs
|
|
+ gdbarch_num_pseudo_regs) range is checked since some architectures need
|
|
to save/restore `cooked' registers that live in memory. */
|
|
for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
|
|
{
|
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
|
|
{
|
|
if (src->m_register_status[regnum] == REG_VALID)
|
|
cooked_write (regnum, src->register_buffer (regnum));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
regcache_cpy (struct regcache *dst, struct regcache *src)
|
|
{
|
|
gdb_assert (src != NULL && dst != NULL);
|
|
gdb_assert (src->m_descr->gdbarch == dst->m_descr->gdbarch);
|
|
gdb_assert (src != dst);
|
|
gdb_assert (src->m_readonly_p && !dst->m_readonly_p);
|
|
|
|
dst->restore (src);
|
|
}
|
|
|
|
struct regcache *
|
|
regcache_dup (struct regcache *src)
|
|
{
|
|
return new regcache (regcache::readonly, *src);
|
|
}
|
|
|
|
enum register_status
|
|
regcache_register_status (const struct regcache *regcache, int regnum)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->get_register_status (regnum);
|
|
}
|
|
|
|
enum register_status
|
|
regcache::get_register_status (int regnum) const
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
if (m_readonly_p)
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
else
|
|
gdb_assert (regnum < num_raw_registers ());
|
|
|
|
return (enum register_status) m_register_status[regnum];
|
|
}
|
|
|
|
void
|
|
regcache_invalidate (struct regcache *regcache, int regnum)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->invalidate (regnum);
|
|
}
|
|
|
|
void
|
|
regcache::invalidate (int regnum)
|
|
{
|
|
gdb_assert (!m_readonly_p);
|
|
assert_regnum (regnum);
|
|
m_register_status[regnum] = REG_UNKNOWN;
|
|
}
|
|
|
|
void
|
|
regcache::assert_regnum (int regnum) const
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (arch ()));
|
|
}
|
|
|
|
/* Global structure containing the current regcache. */
|
|
|
|
/* NOTE: this is a write-through cache. There is no "dirty" bit for
|
|
recording if the register values have been changed (eg. by the
|
|
user). Therefore all registers must be written back to the
|
|
target when appropriate. */
|
|
std::forward_list<regcache *> regcache::current_regcache;
|
|
|
|
struct regcache *
|
|
get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
|
|
struct address_space *aspace)
|
|
{
|
|
for (const auto ®cache : regcache::current_regcache)
|
|
if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
|
|
return regcache;
|
|
|
|
regcache *new_regcache = new regcache (gdbarch, aspace, false);
|
|
|
|
regcache::current_regcache.push_front (new_regcache);
|
|
new_regcache->set_ptid (ptid);
|
|
|
|
return new_regcache;
|
|
}
|
|
|
|
struct regcache *
|
|
get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
|
|
{
|
|
address_space *aspace = target_thread_address_space (ptid);
|
|
|
|
return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
|
|
}
|
|
|
|
static ptid_t current_thread_ptid;
|
|
static struct gdbarch *current_thread_arch;
|
|
|
|
struct regcache *
|
|
get_thread_regcache (ptid_t ptid)
|
|
{
|
|
if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
|
|
{
|
|
current_thread_ptid = ptid;
|
|
current_thread_arch = target_thread_architecture (ptid);
|
|
}
|
|
|
|
return get_thread_arch_regcache (ptid, current_thread_arch);
|
|
}
|
|
|
|
struct regcache *
|
|
get_current_regcache (void)
|
|
{
|
|
return get_thread_regcache (inferior_ptid);
|
|
}
|
|
|
|
/* See common/common-regcache.h. */
|
|
|
|
struct regcache *
|
|
get_thread_regcache_for_ptid (ptid_t ptid)
|
|
{
|
|
return get_thread_regcache (ptid);
|
|
}
|
|
|
|
/* Observer for the target_changed event. */
|
|
|
|
static void
|
|
regcache_observer_target_changed (struct target_ops *target)
|
|
{
|
|
registers_changed ();
|
|
}
|
|
|
|
/* Update global variables old ptids to hold NEW_PTID if they were
|
|
holding OLD_PTID. */
|
|
void
|
|
regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
|
|
{
|
|
for (auto ®cache : regcache::current_regcache)
|
|
{
|
|
if (ptid_equal (regcache->ptid (), old_ptid))
|
|
regcache->set_ptid (new_ptid);
|
|
}
|
|
}
|
|
|
|
/* Low level examining and depositing of registers.
|
|
|
|
The caller is responsible for making sure that the inferior is
|
|
stopped before calling the fetching routines, or it will get
|
|
garbage. (a change from GDB version 3, in which the caller got the
|
|
value from the last stop). */
|
|
|
|
/* REGISTERS_CHANGED ()
|
|
|
|
Indicate that registers may have changed, so invalidate the cache. */
|
|
|
|
void
|
|
registers_changed_ptid (ptid_t ptid)
|
|
{
|
|
for (auto oit = regcache::current_regcache.before_begin (),
|
|
it = std::next (oit);
|
|
it != regcache::current_regcache.end ();
|
|
)
|
|
{
|
|
if (ptid_match ((*it)->ptid (), ptid))
|
|
{
|
|
delete *it;
|
|
it = regcache::current_regcache.erase_after (oit);
|
|
}
|
|
else
|
|
oit = it++;
|
|
}
|
|
|
|
if (ptid_match (current_thread_ptid, ptid))
|
|
{
|
|
current_thread_ptid = null_ptid;
|
|
current_thread_arch = NULL;
|
|
}
|
|
|
|
if (ptid_match (inferior_ptid, ptid))
|
|
{
|
|
/* We just deleted the regcache of the current thread. Need to
|
|
forget about any frames we have cached, too. */
|
|
reinit_frame_cache ();
|
|
}
|
|
}
|
|
|
|
void
|
|
registers_changed (void)
|
|
{
|
|
registers_changed_ptid (minus_one_ptid);
|
|
|
|
/* Force cleanup of any alloca areas if using C alloca instead of
|
|
a builtin alloca. This particular call is used to clean up
|
|
areas allocated by low level target code which may build up
|
|
during lengthy interactions between gdb and the target before
|
|
gdb gives control to the user (ie watchpoints). */
|
|
alloca (0);
|
|
}
|
|
|
|
void
|
|
regcache_raw_update (struct regcache *regcache, int regnum)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
|
|
regcache->raw_update (regnum);
|
|
}
|
|
|
|
void
|
|
regcache::raw_update (int regnum)
|
|
{
|
|
assert_regnum (regnum);
|
|
|
|
/* Make certain that the register cache is up-to-date with respect
|
|
to the current thread. This switching shouldn't be necessary
|
|
only there is still only one target side register cache. Sigh!
|
|
On the bright side, at least there is a regcache object. */
|
|
|
|
if (!m_readonly_p && get_register_status (regnum) == REG_UNKNOWN)
|
|
{
|
|
target_fetch_registers (this, regnum);
|
|
|
|
/* A number of targets can't access the whole set of raw
|
|
registers (because the debug API provides no means to get at
|
|
them). */
|
|
if (m_register_status[regnum] == REG_UNKNOWN)
|
|
m_register_status[regnum] = REG_UNAVAILABLE;
|
|
}
|
|
}
|
|
|
|
enum register_status
|
|
regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
|
|
{
|
|
return regcache->raw_read (regnum, buf);
|
|
}
|
|
|
|
enum register_status
|
|
regcache::raw_read (int regnum, gdb_byte *buf)
|
|
{
|
|
gdb_assert (buf != NULL);
|
|
raw_update (regnum);
|
|
|
|
if (m_register_status[regnum] != REG_VALID)
|
|
memset (buf, 0, m_descr->sizeof_register[regnum]);
|
|
else
|
|
memcpy (buf, register_buffer (regnum),
|
|
m_descr->sizeof_register[regnum]);
|
|
|
|
return (enum register_status) m_register_status[regnum];
|
|
}
|
|
|
|
enum register_status
|
|
regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->raw_read (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
enum register_status
|
|
regcache::raw_read (int regnum, T *val)
|
|
{
|
|
gdb_byte *buf;
|
|
enum register_status status;
|
|
|
|
assert_regnum (regnum);
|
|
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
|
|
status = raw_read (regnum, buf);
|
|
if (status == REG_VALID)
|
|
*val = extract_integer<T> (buf,
|
|
m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (m_descr->gdbarch));
|
|
else
|
|
*val = 0;
|
|
return status;
|
|
}
|
|
|
|
enum register_status
|
|
regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->raw_read (regnum, val);
|
|
}
|
|
|
|
void
|
|
regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->raw_write (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
void
|
|
regcache::raw_write (int regnum, T val)
|
|
{
|
|
gdb_byte *buf;
|
|
|
|
assert_regnum (regnum);
|
|
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
|
|
store_integer (buf, m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (m_descr->gdbarch), val);
|
|
raw_write (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->raw_write (regnum, val);
|
|
}
|
|
|
|
LONGEST
|
|
regcache_raw_get_signed (struct regcache *regcache, int regnum)
|
|
{
|
|
LONGEST value;
|
|
enum register_status status;
|
|
|
|
status = regcache_raw_read_signed (regcache, regnum, &value);
|
|
if (status == REG_UNAVAILABLE)
|
|
throw_error (NOT_AVAILABLE_ERROR,
|
|
_("Register %d is not available"), regnum);
|
|
return value;
|
|
}
|
|
|
|
enum register_status
|
|
regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
|
|
{
|
|
return regcache->cooked_read (regnum, buf);
|
|
}
|
|
|
|
enum register_status
|
|
regcache::cooked_read (int regnum, gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
if (regnum < num_raw_registers ())
|
|
return raw_read (regnum, buf);
|
|
else if (m_readonly_p
|
|
&& m_register_status[regnum] != REG_UNKNOWN)
|
|
{
|
|
/* Read-only register cache, perhaps the cooked value was
|
|
cached? */
|
|
if (m_register_status[regnum] == REG_VALID)
|
|
memcpy (buf, register_buffer (regnum),
|
|
m_descr->sizeof_register[regnum]);
|
|
else
|
|
memset (buf, 0, m_descr->sizeof_register[regnum]);
|
|
|
|
return (enum register_status) m_register_status[regnum];
|
|
}
|
|
else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
|
|
{
|
|
struct value *mark, *computed;
|
|
enum register_status result = REG_VALID;
|
|
|
|
mark = value_mark ();
|
|
|
|
computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
|
|
this, regnum);
|
|
if (value_entirely_available (computed))
|
|
memcpy (buf, value_contents_raw (computed),
|
|
m_descr->sizeof_register[regnum]);
|
|
else
|
|
{
|
|
memset (buf, 0, m_descr->sizeof_register[regnum]);
|
|
result = REG_UNAVAILABLE;
|
|
}
|
|
|
|
value_free_to_mark (mark);
|
|
|
|
return result;
|
|
}
|
|
else
|
|
return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
|
|
regnum, buf);
|
|
}
|
|
|
|
struct value *
|
|
regcache_cooked_read_value (struct regcache *regcache, int regnum)
|
|
{
|
|
return regcache->cooked_read_value (regnum);
|
|
}
|
|
|
|
struct value *
|
|
regcache::cooked_read_value (int regnum)
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
|
|
if (regnum < num_raw_registers ()
|
|
|| (m_readonly_p && m_register_status[regnum] != REG_UNKNOWN)
|
|
|| !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
|
|
{
|
|
struct value *result;
|
|
|
|
result = allocate_value (register_type (m_descr->gdbarch, regnum));
|
|
VALUE_LVAL (result) = lval_register;
|
|
VALUE_REGNUM (result) = regnum;
|
|
|
|
/* It is more efficient in general to do this delegation in this
|
|
direction than in the other one, even though the value-based
|
|
API is preferred. */
|
|
if (cooked_read (regnum,
|
|
value_contents_raw (result)) == REG_UNAVAILABLE)
|
|
mark_value_bytes_unavailable (result, 0,
|
|
TYPE_LENGTH (value_type (result)));
|
|
|
|
return result;
|
|
}
|
|
else
|
|
return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
|
|
this, regnum);
|
|
}
|
|
|
|
enum register_status
|
|
regcache_cooked_read_signed (struct regcache *regcache, int regnum,
|
|
LONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->cooked_read (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
enum register_status
|
|
regcache::cooked_read (int regnum, T *val)
|
|
{
|
|
enum register_status status;
|
|
gdb_byte *buf;
|
|
|
|
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
|
|
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
|
|
status = cooked_read (regnum, buf);
|
|
if (status == REG_VALID)
|
|
*val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (m_descr->gdbarch));
|
|
else
|
|
*val = 0;
|
|
return status;
|
|
}
|
|
|
|
enum register_status
|
|
regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->cooked_read (regnum, val);
|
|
}
|
|
|
|
void
|
|
regcache_cooked_write_signed (struct regcache *regcache, int regnum,
|
|
LONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->cooked_write (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
void
|
|
regcache::cooked_write (int regnum, T val)
|
|
{
|
|
gdb_byte *buf;
|
|
|
|
gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
|
|
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
|
|
store_integer (buf, m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (m_descr->gdbarch), val);
|
|
cooked_write (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->cooked_write (regnum, val);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
regcache_raw_set_cached_value (struct regcache *regcache, int regnum,
|
|
const gdb_byte *buf)
|
|
{
|
|
regcache->raw_set_cached_value (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache::raw_set_cached_value (int regnum, const gdb_byte *buf)
|
|
{
|
|
memcpy (register_buffer (regnum), buf,
|
|
m_descr->sizeof_register[regnum]);
|
|
m_register_status[regnum] = REG_VALID;
|
|
}
|
|
|
|
void
|
|
regcache_raw_write (struct regcache *regcache, int regnum,
|
|
const gdb_byte *buf)
|
|
{
|
|
gdb_assert (regcache != NULL && buf != NULL);
|
|
regcache->raw_write (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache::raw_write (int regnum, const gdb_byte *buf)
|
|
{
|
|
|
|
gdb_assert (buf != NULL);
|
|
assert_regnum (regnum);
|
|
gdb_assert (!m_readonly_p);
|
|
|
|
/* On the sparc, writing %g0 is a no-op, so we don't even want to
|
|
change the registers array if something writes to this register. */
|
|
if (gdbarch_cannot_store_register (arch (), regnum))
|
|
return;
|
|
|
|
/* If we have a valid copy of the register, and new value == old
|
|
value, then don't bother doing the actual store. */
|
|
if (get_register_status (regnum) == REG_VALID
|
|
&& (memcmp (register_buffer (regnum), buf,
|
|
m_descr->sizeof_register[regnum]) == 0))
|
|
return;
|
|
|
|
target_prepare_to_store (this);
|
|
raw_set_cached_value (regnum, buf);
|
|
|
|
/* Invalidate the register after it is written, in case of a
|
|
failure. */
|
|
regcache_invalidator invalidator (this, regnum);
|
|
|
|
target_store_registers (this, regnum);
|
|
|
|
/* The target did not throw an error so we can discard invalidating
|
|
the register. */
|
|
invalidator.release ();
|
|
}
|
|
|
|
void
|
|
regcache_cooked_write (struct regcache *regcache, int regnum,
|
|
const gdb_byte *buf)
|
|
{
|
|
regcache->cooked_write (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache::cooked_write (int regnum, const gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
if (regnum < num_raw_registers ())
|
|
raw_write (regnum, buf);
|
|
else
|
|
gdbarch_pseudo_register_write (m_descr->gdbarch, this,
|
|
regnum, buf);
|
|
}
|
|
|
|
/* Perform a partial register transfer using a read, modify, write
|
|
operation. */
|
|
|
|
typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
|
|
void *buf);
|
|
typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
|
|
const void *buf);
|
|
|
|
enum register_status
|
|
regcache::xfer_part (int regnum, int offset, int len, void *in,
|
|
const void *out, bool is_raw)
|
|
{
|
|
struct gdbarch *gdbarch = arch ();
|
|
gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
|
|
|
|
gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
|
|
gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
|
|
/* Something to do? */
|
|
if (offset + len == 0)
|
|
return REG_VALID;
|
|
/* Read (when needed) ... */
|
|
if (in != NULL
|
|
|| offset > 0
|
|
|| offset + len < m_descr->sizeof_register[regnum])
|
|
{
|
|
enum register_status status;
|
|
|
|
if (is_raw)
|
|
status = raw_read (regnum, reg);
|
|
else
|
|
status = cooked_read (regnum, reg);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
}
|
|
/* ... modify ... */
|
|
if (in != NULL)
|
|
memcpy (in, reg + offset, len);
|
|
if (out != NULL)
|
|
memcpy (reg + offset, out, len);
|
|
/* ... write (when needed). */
|
|
if (out != NULL)
|
|
{
|
|
if (is_raw)
|
|
raw_write (regnum, reg);
|
|
else
|
|
cooked_write (regnum, reg);
|
|
}
|
|
|
|
return REG_VALID;
|
|
}
|
|
|
|
enum register_status
|
|
regcache_raw_read_part (struct regcache *regcache, int regnum,
|
|
int offset, int len, gdb_byte *buf)
|
|
{
|
|
return regcache->raw_read_part (regnum, offset, len, buf);
|
|
}
|
|
|
|
enum register_status
|
|
regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
|
|
{
|
|
assert_regnum (regnum);
|
|
return xfer_part (regnum, offset, len, buf, NULL, true);
|
|
}
|
|
|
|
void
|
|
regcache_raw_write_part (struct regcache *regcache, int regnum,
|
|
int offset, int len, const gdb_byte *buf)
|
|
{
|
|
regcache->raw_write_part (regnum, offset, len, buf);
|
|
}
|
|
|
|
void
|
|
regcache::raw_write_part (int regnum, int offset, int len,
|
|
const gdb_byte *buf)
|
|
{
|
|
assert_regnum (regnum);
|
|
xfer_part (regnum, offset, len, NULL, buf, true);
|
|
}
|
|
|
|
enum register_status
|
|
regcache_cooked_read_part (struct regcache *regcache, int regnum,
|
|
int offset, int len, gdb_byte *buf)
|
|
{
|
|
return regcache->cooked_read_part (regnum, offset, len, buf);
|
|
}
|
|
|
|
|
|
enum register_status
|
|
regcache::cooked_read_part (int regnum, int offset, int len, gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
|
|
return xfer_part (regnum, offset, len, buf, NULL, false);
|
|
}
|
|
|
|
void
|
|
regcache_cooked_write_part (struct regcache *regcache, int regnum,
|
|
int offset, int len, const gdb_byte *buf)
|
|
{
|
|
regcache->cooked_write_part (regnum, offset, len, buf);
|
|
}
|
|
|
|
void
|
|
regcache::cooked_write_part (int regnum, int offset, int len,
|
|
const gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
|
|
xfer_part (regnum, offset, len, NULL, buf, false);
|
|
}
|
|
|
|
/* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
|
|
|
|
void
|
|
regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->raw_supply (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache::raw_supply (int regnum, const void *buf)
|
|
{
|
|
void *regbuf;
|
|
size_t size;
|
|
|
|
assert_regnum (regnum);
|
|
gdb_assert (!m_readonly_p);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
size = m_descr->sizeof_register[regnum];
|
|
|
|
if (buf)
|
|
{
|
|
memcpy (regbuf, buf, size);
|
|
m_register_status[regnum] = REG_VALID;
|
|
}
|
|
else
|
|
{
|
|
/* This memset not strictly necessary, but better than garbage
|
|
in case the register value manages to escape somewhere (due
|
|
to a bug, no less). */
|
|
memset (regbuf, 0, size);
|
|
m_register_status[regnum] = REG_UNAVAILABLE;
|
|
}
|
|
}
|
|
|
|
/* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
|
|
address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
|
|
the register size is greater than ADDR_LEN, then the integer will be sign or
|
|
zero extended. If the register size is smaller than the integer, then the
|
|
most significant bytes of the integer will be truncated. */
|
|
|
|
void
|
|
regcache::raw_supply_integer (int regnum, const gdb_byte *addr, int addr_len,
|
|
bool is_signed)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
|
|
gdb_byte *regbuf;
|
|
size_t regsize;
|
|
|
|
assert_regnum (regnum);
|
|
gdb_assert (!m_readonly_p);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
regsize = m_descr->sizeof_register[regnum];
|
|
|
|
copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
|
|
byte_order);
|
|
m_register_status[regnum] = REG_VALID;
|
|
}
|
|
|
|
/* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
|
|
as calling raw_supply with NULL (which will set the state to
|
|
unavailable). */
|
|
|
|
void
|
|
regcache::raw_supply_zeroed (int regnum)
|
|
{
|
|
void *regbuf;
|
|
size_t size;
|
|
|
|
assert_regnum (regnum);
|
|
gdb_assert (!m_readonly_p);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
size = m_descr->sizeof_register[regnum];
|
|
|
|
memset (regbuf, 0, size);
|
|
m_register_status[regnum] = REG_VALID;
|
|
}
|
|
|
|
/* Collect register REGNUM from REGCACHE and store its contents in BUF. */
|
|
|
|
void
|
|
regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
|
|
{
|
|
gdb_assert (regcache != NULL && buf != NULL);
|
|
regcache->raw_collect (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache::raw_collect (int regnum, void *buf) const
|
|
{
|
|
const void *regbuf;
|
|
size_t size;
|
|
|
|
gdb_assert (buf != NULL);
|
|
assert_regnum (regnum);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
size = m_descr->sizeof_register[regnum];
|
|
memcpy (buf, regbuf, size);
|
|
}
|
|
|
|
/* Transfer a single or all registers belonging to a certain register
|
|
set to or from a buffer. This is the main worker function for
|
|
regcache_supply_regset and regcache_collect_regset. */
|
|
|
|
/* Collect register REGNUM from REGCACHE. Store collected value as an integer
|
|
at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
|
|
If ADDR_LEN is greater than the register size, then the integer will be sign
|
|
or zero extended. If ADDR_LEN is smaller than the register size, then the
|
|
most significant bytes of the integer will be truncated. */
|
|
|
|
void
|
|
regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
|
|
bool is_signed) const
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
|
|
const gdb_byte *regbuf;
|
|
size_t regsize;
|
|
|
|
assert_regnum (regnum);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
regsize = m_descr->sizeof_register[regnum];
|
|
|
|
copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
|
|
byte_order);
|
|
}
|
|
|
|
void
|
|
regcache::transfer_regset (const struct regset *regset,
|
|
struct regcache *out_regcache,
|
|
int regnum, const void *in_buf,
|
|
void *out_buf, size_t size) const
|
|
{
|
|
const struct regcache_map_entry *map;
|
|
int offs = 0, count;
|
|
|
|
for (map = (const struct regcache_map_entry *) regset->regmap;
|
|
(count = map->count) != 0;
|
|
map++)
|
|
{
|
|
int regno = map->regno;
|
|
int slot_size = map->size;
|
|
|
|
if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
|
|
slot_size = m_descr->sizeof_register[regno];
|
|
|
|
if (regno == REGCACHE_MAP_SKIP
|
|
|| (regnum != -1
|
|
&& (regnum < regno || regnum >= regno + count)))
|
|
offs += count * slot_size;
|
|
|
|
else if (regnum == -1)
|
|
for (; count--; regno++, offs += slot_size)
|
|
{
|
|
if (offs + slot_size > size)
|
|
break;
|
|
|
|
if (out_buf)
|
|
raw_collect (regno, (gdb_byte *) out_buf + offs);
|
|
else
|
|
out_regcache->raw_supply (regno, in_buf
|
|
? (const gdb_byte *) in_buf + offs
|
|
: NULL);
|
|
}
|
|
else
|
|
{
|
|
/* Transfer a single register and return. */
|
|
offs += (regnum - regno) * slot_size;
|
|
if (offs + slot_size > size)
|
|
return;
|
|
|
|
if (out_buf)
|
|
raw_collect (regnum, (gdb_byte *) out_buf + offs);
|
|
else
|
|
out_regcache->raw_supply (regnum, in_buf
|
|
? (const gdb_byte *) in_buf + offs
|
|
: NULL);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Supply register REGNUM from BUF to REGCACHE, using the register map
|
|
in REGSET. If REGNUM is -1, do this for all registers in REGSET.
|
|
If BUF is NULL, set the register(s) to "unavailable" status. */
|
|
|
|
void
|
|
regcache_supply_regset (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *buf, size_t size)
|
|
{
|
|
regcache->supply_regset (regset, regnum, buf, size);
|
|
}
|
|
|
|
void
|
|
regcache::supply_regset (const struct regset *regset,
|
|
int regnum, const void *buf, size_t size)
|
|
{
|
|
transfer_regset (regset, this, regnum, buf, NULL, size);
|
|
}
|
|
|
|
/* Collect register REGNUM from REGCACHE to BUF, using the register
|
|
map in REGSET. If REGNUM is -1, do this for all registers in
|
|
REGSET. */
|
|
|
|
void
|
|
regcache_collect_regset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *buf, size_t size)
|
|
{
|
|
regcache->collect_regset (regset, regnum, buf, size);
|
|
}
|
|
|
|
void
|
|
regcache::collect_regset (const struct regset *regset,
|
|
int regnum, void *buf, size_t size) const
|
|
{
|
|
transfer_regset (regset, NULL, regnum, NULL, buf, size);
|
|
}
|
|
|
|
|
|
/* Special handling for register PC. */
|
|
|
|
CORE_ADDR
|
|
regcache_read_pc (struct regcache *regcache)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
CORE_ADDR pc_val;
|
|
|
|
if (gdbarch_read_pc_p (gdbarch))
|
|
pc_val = gdbarch_read_pc (gdbarch, regcache);
|
|
/* Else use per-frame method on get_current_frame. */
|
|
else if (gdbarch_pc_regnum (gdbarch) >= 0)
|
|
{
|
|
ULONGEST raw_val;
|
|
|
|
if (regcache_cooked_read_unsigned (regcache,
|
|
gdbarch_pc_regnum (gdbarch),
|
|
&raw_val) == REG_UNAVAILABLE)
|
|
throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
|
|
|
|
pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("regcache_read_pc: Unable to find PC"));
|
|
return pc_val;
|
|
}
|
|
|
|
void
|
|
regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
if (gdbarch_write_pc_p (gdbarch))
|
|
gdbarch_write_pc (gdbarch, regcache, pc);
|
|
else if (gdbarch_pc_regnum (gdbarch) >= 0)
|
|
regcache_cooked_write_unsigned (regcache,
|
|
gdbarch_pc_regnum (gdbarch), pc);
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("regcache_write_pc: Unable to update PC"));
|
|
|
|
/* Writing the PC (for instance, from "load") invalidates the
|
|
current frame. */
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
int
|
|
regcache::num_raw_registers () const
|
|
{
|
|
return gdbarch_num_regs (arch ());
|
|
}
|
|
|
|
void
|
|
regcache::debug_print_register (const char *func, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = arch ();
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "%s ", func);
|
|
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
|
|
&& gdbarch_register_name (gdbarch, regno) != NULL
|
|
&& gdbarch_register_name (gdbarch, regno)[0] != '\0')
|
|
fprintf_unfiltered (gdb_stdlog, "(%s)",
|
|
gdbarch_register_name (gdbarch, regno));
|
|
else
|
|
fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
|
|
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int size = register_size (gdbarch, regno);
|
|
gdb_byte *buf = register_buffer (regno);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, " = ");
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
|
|
}
|
|
if (size <= sizeof (LONGEST))
|
|
{
|
|
ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, " %s %s",
|
|
core_addr_to_string_nz (val), plongest (val));
|
|
}
|
|
}
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
static void
|
|
reg_flush_command (char *command, int from_tty)
|
|
{
|
|
/* Force-flush the register cache. */
|
|
registers_changed ();
|
|
if (from_tty)
|
|
printf_filtered (_("Register cache flushed.\n"));
|
|
}
|
|
|
|
void
|
|
regcache::dump (ui_file *file, enum regcache_dump_what what_to_dump)
|
|
{
|
|
struct gdbarch *gdbarch = m_descr->gdbarch;
|
|
int regnum;
|
|
int footnote_nr = 0;
|
|
int footnote_register_size = 0;
|
|
int footnote_register_offset = 0;
|
|
int footnote_register_type_name_null = 0;
|
|
long register_offset = 0;
|
|
|
|
gdb_assert (m_descr->nr_cooked_registers
|
|
== (gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch)));
|
|
|
|
for (regnum = -1; regnum < m_descr->nr_cooked_registers; regnum++)
|
|
{
|
|
/* Name. */
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, " %-10s", "Name");
|
|
else
|
|
{
|
|
const char *p = gdbarch_register_name (gdbarch, regnum);
|
|
|
|
if (p == NULL)
|
|
p = "";
|
|
else if (p[0] == '\0')
|
|
p = "''";
|
|
fprintf_unfiltered (file, " %-10s", p);
|
|
}
|
|
|
|
/* Number. */
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, " %4s", "Nr");
|
|
else
|
|
fprintf_unfiltered (file, " %4d", regnum);
|
|
|
|
/* Relative number. */
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, " %4s", "Rel");
|
|
else if (regnum < gdbarch_num_regs (gdbarch))
|
|
fprintf_unfiltered (file, " %4d", regnum);
|
|
else
|
|
fprintf_unfiltered (file, " %4d",
|
|
(regnum - gdbarch_num_regs (gdbarch)));
|
|
|
|
/* Offset. */
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, " %6s ", "Offset");
|
|
else
|
|
{
|
|
fprintf_unfiltered (file, " %6ld",
|
|
m_descr->register_offset[regnum]);
|
|
if (register_offset != m_descr->register_offset[regnum]
|
|
|| (regnum > 0
|
|
&& (m_descr->register_offset[regnum]
|
|
!= (m_descr->register_offset[regnum - 1]
|
|
+ m_descr->sizeof_register[regnum - 1])))
|
|
)
|
|
{
|
|
if (!footnote_register_offset)
|
|
footnote_register_offset = ++footnote_nr;
|
|
fprintf_unfiltered (file, "*%d", footnote_register_offset);
|
|
}
|
|
else
|
|
fprintf_unfiltered (file, " ");
|
|
register_offset = (m_descr->register_offset[regnum]
|
|
+ m_descr->sizeof_register[regnum]);
|
|
}
|
|
|
|
/* Size. */
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, " %5s ", "Size");
|
|
else
|
|
fprintf_unfiltered (file, " %5ld", m_descr->sizeof_register[regnum]);
|
|
|
|
/* Type. */
|
|
{
|
|
const char *t;
|
|
std::string name_holder;
|
|
|
|
if (regnum < 0)
|
|
t = "Type";
|
|
else
|
|
{
|
|
static const char blt[] = "builtin_type";
|
|
|
|
t = TYPE_NAME (register_type (arch (), regnum));
|
|
if (t == NULL)
|
|
{
|
|
if (!footnote_register_type_name_null)
|
|
footnote_register_type_name_null = ++footnote_nr;
|
|
name_holder = string_printf ("*%d",
|
|
footnote_register_type_name_null);
|
|
t = name_holder.c_str ();
|
|
}
|
|
/* Chop a leading builtin_type. */
|
|
if (startswith (t, blt))
|
|
t += strlen (blt);
|
|
}
|
|
fprintf_unfiltered (file, " %-15s", t);
|
|
}
|
|
|
|
/* Leading space always present. */
|
|
fprintf_unfiltered (file, " ");
|
|
|
|
/* Value, raw. */
|
|
if (what_to_dump == regcache_dump_raw)
|
|
{
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, "Raw value");
|
|
else if (regnum >= num_raw_registers ())
|
|
fprintf_unfiltered (file, "<cooked>");
|
|
else if (get_register_status (regnum) == REG_UNKNOWN)
|
|
fprintf_unfiltered (file, "<invalid>");
|
|
else if (get_register_status (regnum) == REG_UNAVAILABLE)
|
|
fprintf_unfiltered (file, "<unavailable>");
|
|
else
|
|
{
|
|
raw_update (regnum);
|
|
print_hex_chars (file, register_buffer (regnum),
|
|
m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (gdbarch), true);
|
|
}
|
|
}
|
|
|
|
/* Value, cooked. */
|
|
if (what_to_dump == regcache_dump_cooked)
|
|
{
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, "Cooked value");
|
|
else
|
|
{
|
|
const gdb_byte *buf = NULL;
|
|
enum register_status status;
|
|
struct value *value = NULL;
|
|
|
|
if (regnum < num_raw_registers ())
|
|
{
|
|
raw_update (regnum);
|
|
status = get_register_status (regnum);
|
|
buf = register_buffer (regnum);
|
|
}
|
|
else
|
|
{
|
|
value = cooked_read_value (regnum);
|
|
|
|
if (!value_optimized_out (value)
|
|
&& value_entirely_available (value))
|
|
{
|
|
status = REG_VALID;
|
|
buf = value_contents_all (value);
|
|
}
|
|
else
|
|
status = REG_UNAVAILABLE;
|
|
}
|
|
|
|
if (status == REG_UNKNOWN)
|
|
fprintf_unfiltered (file, "<invalid>");
|
|
else if (status == REG_UNAVAILABLE)
|
|
fprintf_unfiltered (file, "<unavailable>");
|
|
else
|
|
print_hex_chars (file, buf,
|
|
m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (gdbarch), true);
|
|
|
|
if (value != NULL)
|
|
{
|
|
release_value (value);
|
|
value_free (value);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Group members. */
|
|
if (what_to_dump == regcache_dump_groups)
|
|
{
|
|
if (regnum < 0)
|
|
fprintf_unfiltered (file, "Groups");
|
|
else
|
|
{
|
|
const char *sep = "";
|
|
struct reggroup *group;
|
|
|
|
for (group = reggroup_next (gdbarch, NULL);
|
|
group != NULL;
|
|
group = reggroup_next (gdbarch, group))
|
|
{
|
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
|
|
{
|
|
fprintf_unfiltered (file,
|
|
"%s%s", sep, reggroup_name (group));
|
|
sep = ",";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remote packet configuration. */
|
|
if (what_to_dump == regcache_dump_remote)
|
|
{
|
|
if (regnum < 0)
|
|
{
|
|
fprintf_unfiltered (file, "Rmt Nr g/G Offset");
|
|
}
|
|
else if (regnum < num_raw_registers ())
|
|
{
|
|
int pnum, poffset;
|
|
|
|
if (remote_register_number_and_offset (arch (), regnum,
|
|
&pnum, &poffset))
|
|
fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
|
|
}
|
|
}
|
|
|
|
fprintf_unfiltered (file, "\n");
|
|
}
|
|
|
|
if (footnote_register_size)
|
|
fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
|
|
footnote_register_size);
|
|
if (footnote_register_offset)
|
|
fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
|
|
footnote_register_offset);
|
|
if (footnote_register_type_name_null)
|
|
fprintf_unfiltered (file,
|
|
"*%d: Register type's name NULL.\n",
|
|
footnote_register_type_name_null);
|
|
}
|
|
|
|
static void
|
|
regcache_print (const char *args, enum regcache_dump_what what_to_dump)
|
|
{
|
|
/* Where to send output. */
|
|
stdio_file file;
|
|
ui_file *out;
|
|
|
|
if (args == NULL)
|
|
out = gdb_stdout;
|
|
else
|
|
{
|
|
if (!file.open (args, "w"))
|
|
perror_with_name (_("maintenance print architecture"));
|
|
out = &file;
|
|
}
|
|
|
|
if (target_has_registers)
|
|
get_current_regcache ()->dump (out, what_to_dump);
|
|
else
|
|
{
|
|
/* For the benefit of "maint print registers" & co when
|
|
debugging an executable, allow dumping a regcache even when
|
|
there is no thread selected / no registers. */
|
|
regcache dummy_regs (target_gdbarch ());
|
|
dummy_regs.dump (out, what_to_dump);
|
|
}
|
|
}
|
|
|
|
static void
|
|
maintenance_print_registers (const char *args, int from_tty)
|
|
{
|
|
regcache_print (args, regcache_dump_none);
|
|
}
|
|
|
|
static void
|
|
maintenance_print_raw_registers (const char *args, int from_tty)
|
|
{
|
|
regcache_print (args, regcache_dump_raw);
|
|
}
|
|
|
|
static void
|
|
maintenance_print_cooked_registers (const char *args, int from_tty)
|
|
{
|
|
regcache_print (args, regcache_dump_cooked);
|
|
}
|
|
|
|
static void
|
|
maintenance_print_register_groups (const char *args, int from_tty)
|
|
{
|
|
regcache_print (args, regcache_dump_groups);
|
|
}
|
|
|
|
static void
|
|
maintenance_print_remote_registers (const char *args, int from_tty)
|
|
{
|
|
regcache_print (args, regcache_dump_remote);
|
|
}
|
|
|
|
#if GDB_SELF_TEST
|
|
#include "selftest.h"
|
|
|
|
namespace selftests {
|
|
|
|
class regcache_access : public regcache
|
|
{
|
|
public:
|
|
|
|
/* Return the number of elements in current_regcache. */
|
|
|
|
static size_t
|
|
current_regcache_size ()
|
|
{
|
|
return std::distance (regcache::current_regcache.begin (),
|
|
regcache::current_regcache.end ());
|
|
}
|
|
};
|
|
|
|
static void
|
|
current_regcache_test (void)
|
|
{
|
|
/* It is empty at the start. */
|
|
SELF_CHECK (regcache_access::current_regcache_size () == 0);
|
|
|
|
ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
|
|
|
|
/* Get regcache from ptid1, a new regcache is added to
|
|
current_regcache. */
|
|
regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
|
|
target_gdbarch (),
|
|
NULL);
|
|
|
|
SELF_CHECK (regcache != NULL);
|
|
SELF_CHECK (regcache->ptid () == ptid1);
|
|
SELF_CHECK (regcache_access::current_regcache_size () == 1);
|
|
|
|
/* Get regcache from ptid2, a new regcache is added to
|
|
current_regcache. */
|
|
regcache = get_thread_arch_aspace_regcache (ptid2,
|
|
target_gdbarch (),
|
|
NULL);
|
|
SELF_CHECK (regcache != NULL);
|
|
SELF_CHECK (regcache->ptid () == ptid2);
|
|
SELF_CHECK (regcache_access::current_regcache_size () == 2);
|
|
|
|
/* Get regcache from ptid3, a new regcache is added to
|
|
current_regcache. */
|
|
regcache = get_thread_arch_aspace_regcache (ptid3,
|
|
target_gdbarch (),
|
|
NULL);
|
|
SELF_CHECK (regcache != NULL);
|
|
SELF_CHECK (regcache->ptid () == ptid3);
|
|
SELF_CHECK (regcache_access::current_regcache_size () == 3);
|
|
|
|
/* Get regcache from ptid2 again, nothing is added to
|
|
current_regcache. */
|
|
regcache = get_thread_arch_aspace_regcache (ptid2,
|
|
target_gdbarch (),
|
|
NULL);
|
|
SELF_CHECK (regcache != NULL);
|
|
SELF_CHECK (regcache->ptid () == ptid2);
|
|
SELF_CHECK (regcache_access::current_regcache_size () == 3);
|
|
|
|
/* Mark ptid2 is changed, so regcache of ptid2 should be removed from
|
|
current_regcache. */
|
|
registers_changed_ptid (ptid2);
|
|
SELF_CHECK (regcache_access::current_regcache_size () == 2);
|
|
}
|
|
|
|
} // namespace selftests
|
|
#endif /* GDB_SELF_TEST */
|
|
|
|
void
|
|
_initialize_regcache (void)
|
|
{
|
|
regcache_descr_handle
|
|
= gdbarch_data_register_post_init (init_regcache_descr);
|
|
|
|
observer_attach_target_changed (regcache_observer_target_changed);
|
|
observer_attach_thread_ptid_changed (regcache::regcache_thread_ptid_changed);
|
|
|
|
add_com ("flushregs", class_maintenance, reg_flush_command,
|
|
_("Force gdb to flush its register cache (maintainer command)"));
|
|
|
|
add_cmd ("registers", class_maintenance, maintenance_print_registers,
|
|
_("Print the internal register configuration.\n"
|
|
"Takes an optional file parameter."), &maintenanceprintlist);
|
|
add_cmd ("raw-registers", class_maintenance,
|
|
maintenance_print_raw_registers,
|
|
_("Print the internal register configuration "
|
|
"including raw values.\n"
|
|
"Takes an optional file parameter."), &maintenanceprintlist);
|
|
add_cmd ("cooked-registers", class_maintenance,
|
|
maintenance_print_cooked_registers,
|
|
_("Print the internal register configuration "
|
|
"including cooked values.\n"
|
|
"Takes an optional file parameter."), &maintenanceprintlist);
|
|
add_cmd ("register-groups", class_maintenance,
|
|
maintenance_print_register_groups,
|
|
_("Print the internal register configuration "
|
|
"including each register's group.\n"
|
|
"Takes an optional file parameter."),
|
|
&maintenanceprintlist);
|
|
add_cmd ("remote-registers", class_maintenance,
|
|
maintenance_print_remote_registers, _("\
|
|
Print the internal register configuration including each register's\n\
|
|
remote register number and buffer offset in the g/G packets.\n\
|
|
Takes an optional file parameter."),
|
|
&maintenanceprintlist);
|
|
|
|
#if GDB_SELF_TEST
|
|
selftests::register_test ("current_regcache", selftests::current_regcache_test);
|
|
#endif
|
|
}
|