mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
746 lines
22 KiB
C
746 lines
22 KiB
C
/* GAS interface for targets using CGEN: Cpu tools GENerator.
|
|
Copyright 1996, 1997, 1998, 1999, 2000, 2001
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GAS, the GNU Assembler.
|
|
|
|
GAS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GAS is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GAS; see the file COPYING. If not, write to the Free Software
|
|
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
#include <setjmp.h>
|
|
#include "ansidecl.h"
|
|
#include "libiberty.h"
|
|
#include "bfd.h"
|
|
#include "symcat.h"
|
|
#include "cgen-desc.h"
|
|
#include "as.h"
|
|
#include "subsegs.h"
|
|
#include "cgen.h"
|
|
#include "dwarf2dbg.h"
|
|
|
|
static void queue_fixup PARAMS ((int, int, expressionS *));
|
|
|
|
/* Opcode table descriptor, must be set by md_begin. */
|
|
|
|
CGEN_CPU_DESC gas_cgen_cpu_desc;
|
|
|
|
/* Callback to insert a register into the symbol table.
|
|
A target may choose to let GAS parse the registers.
|
|
??? Not currently used. */
|
|
|
|
void
|
|
cgen_asm_record_register (name, number)
|
|
char *name;
|
|
int number;
|
|
{
|
|
/* Use symbol_create here instead of symbol_new so we don't try to
|
|
output registers into the object file's symbol table. */
|
|
symbol_table_insert (symbol_create (name, reg_section,
|
|
number, &zero_address_frag));
|
|
}
|
|
|
|
/* We need to keep a list of fixups. We can't simply generate them as
|
|
we go, because that would require us to first create the frag, and
|
|
that would screw up references to ``.''.
|
|
|
|
This is used by cpu's with simple operands. It keeps knowledge of what
|
|
an `expressionS' is and what a `fixup' is out of CGEN which for the time
|
|
being is preferable.
|
|
|
|
OPINDEX is the index in the operand table.
|
|
OPINFO is something the caller chooses to help in reloc determination. */
|
|
|
|
struct fixup {
|
|
int opindex;
|
|
int opinfo;
|
|
expressionS exp;
|
|
};
|
|
|
|
static struct fixup fixups[GAS_CGEN_MAX_FIXUPS];
|
|
static int num_fixups;
|
|
|
|
/* Prepare to parse an instruction.
|
|
??? May wish to make this static and delete calls in md_assemble. */
|
|
|
|
void
|
|
gas_cgen_init_parse ()
|
|
{
|
|
num_fixups = 0;
|
|
}
|
|
|
|
/* Queue a fixup. */
|
|
|
|
static void
|
|
queue_fixup (opindex, opinfo, expP)
|
|
int opindex;
|
|
int opinfo;
|
|
expressionS * expP;
|
|
{
|
|
/* We need to generate a fixup for this expression. */
|
|
if (num_fixups >= GAS_CGEN_MAX_FIXUPS)
|
|
as_fatal (_("too many fixups"));
|
|
fixups[num_fixups].exp = *expP;
|
|
fixups[num_fixups].opindex = opindex;
|
|
fixups[num_fixups].opinfo = opinfo;
|
|
++ num_fixups;
|
|
}
|
|
|
|
/* The following functions allow fixup chains to be stored, retrieved,
|
|
and swapped. They are a generalization of a pre-existing scheme
|
|
for storing, restoring and swapping fixup chains that was used by
|
|
the m32r port. The functionality is essentially the same, only
|
|
instead of only being able to store a single fixup chain, an entire
|
|
array of fixup chains can be stored. It is the user's responsibility
|
|
to keep track of how many fixup chains have been stored and which
|
|
elements of the array they are in.
|
|
|
|
The algorithms used are the same as in the old scheme. Other than the
|
|
"array-ness" of the whole thing, the functionality is identical to the
|
|
old scheme.
|
|
|
|
gas_cgen_initialize_saved_fixups_array():
|
|
Sets num_fixups_in_chain to 0 for each element. Call this from
|
|
md_begin() if you plan to use these functions and you want the
|
|
fixup count in each element to be set to 0 intially. This is
|
|
not necessary, but it's included just in case. It performs
|
|
the same function for each element in the array of fixup chains
|
|
that gas_init_parse() performs for the current fixups.
|
|
|
|
gas_cgen_save_fixups (element):
|
|
element - element number of the array you wish to store the fixups
|
|
to. No mechanism is built in for tracking what element
|
|
was last stored to.
|
|
|
|
gas_cgen_restore_fixups (element):
|
|
element - element number of the array you wish to restore the fixups
|
|
from.
|
|
|
|
gas_cgen_swap_fixups(int element):
|
|
element - swap the current fixups with those in this element number.
|
|
*/
|
|
|
|
struct saved_fixups {
|
|
struct fixup fixup_chain[GAS_CGEN_MAX_FIXUPS];
|
|
int num_fixups_in_chain;
|
|
};
|
|
|
|
static struct saved_fixups stored_fixups[MAX_SAVED_FIXUP_CHAINS];
|
|
|
|
void
|
|
gas_cgen_initialize_saved_fixups_array ()
|
|
{
|
|
int i = 0;
|
|
|
|
while (i < MAX_SAVED_FIXUP_CHAINS)
|
|
stored_fixups[i++].num_fixups_in_chain = 0;
|
|
}
|
|
|
|
void
|
|
gas_cgen_save_fixups (i)
|
|
int i;
|
|
{
|
|
if (i < 0 || i >= MAX_SAVED_FIXUP_CHAINS)
|
|
{
|
|
as_fatal ("index into stored_fixups[] out of bounds");
|
|
return;
|
|
}
|
|
|
|
stored_fixups[i].num_fixups_in_chain = num_fixups;
|
|
memcpy (stored_fixups[i].fixup_chain, fixups,
|
|
sizeof (fixups[0]) * num_fixups);
|
|
num_fixups = 0;
|
|
}
|
|
|
|
void
|
|
gas_cgen_restore_fixups (i)
|
|
int i;
|
|
{
|
|
if (i < 0 || i >= MAX_SAVED_FIXUP_CHAINS)
|
|
{
|
|
as_fatal ("index into stored_fixups[] out of bounds");
|
|
return;
|
|
}
|
|
|
|
num_fixups = stored_fixups[i].num_fixups_in_chain;
|
|
memcpy (fixups,stored_fixups[i].fixup_chain,
|
|
(sizeof (stored_fixups[i].fixup_chain[0])) * num_fixups);
|
|
stored_fixups[i].num_fixups_in_chain = 0;
|
|
}
|
|
|
|
void
|
|
gas_cgen_swap_fixups (i)
|
|
int i;
|
|
{
|
|
if (i < 0 || i >= MAX_SAVED_FIXUP_CHAINS)
|
|
{
|
|
as_fatal ("index into stored_fixups[] out of bounds");
|
|
return;
|
|
}
|
|
|
|
if (num_fixups == 0)
|
|
gas_cgen_restore_fixups (i);
|
|
|
|
else if (stored_fixups[i].num_fixups_in_chain == 0)
|
|
gas_cgen_save_fixups (i);
|
|
|
|
else
|
|
{
|
|
int tmp;
|
|
struct fixup tmp_fixup;
|
|
|
|
tmp = stored_fixups[i].num_fixups_in_chain;
|
|
stored_fixups[i].num_fixups_in_chain = num_fixups;
|
|
num_fixups = tmp;
|
|
|
|
for (tmp = GAS_CGEN_MAX_FIXUPS; tmp--;)
|
|
{
|
|
tmp_fixup = stored_fixups[i].fixup_chain [tmp];
|
|
stored_fixups[i].fixup_chain[tmp] = fixups [tmp];
|
|
fixups [tmp] = tmp_fixup;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Default routine to record a fixup.
|
|
This is a cover function to fix_new.
|
|
It exists because we record INSN with the fixup.
|
|
|
|
FRAG and WHERE are their respective arguments to fix_new_exp.
|
|
LENGTH is in bits.
|
|
OPINFO is something the caller chooses to help in reloc determination.
|
|
|
|
At this point we do not use a bfd_reloc_code_real_type for
|
|
operands residing in the insn, but instead just use the
|
|
operand index. This lets us easily handle fixups for any
|
|
operand type. We pick a BFD reloc type in md_apply_fix3. */
|
|
|
|
fixS *
|
|
gas_cgen_record_fixup (frag, where, insn, length, operand, opinfo, symbol, offset)
|
|
fragS * frag;
|
|
int where;
|
|
const CGEN_INSN * insn;
|
|
int length;
|
|
const CGEN_OPERAND * operand;
|
|
int opinfo;
|
|
symbolS * symbol;
|
|
offsetT offset;
|
|
{
|
|
fixS *fixP;
|
|
|
|
/* It may seem strange to use operand->attrs and not insn->attrs here,
|
|
but it is the operand that has a pc relative relocation. */
|
|
|
|
fixP = fix_new (frag, where, length / 8, symbol, offset,
|
|
CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_PCREL_ADDR),
|
|
(bfd_reloc_code_real_type)
|
|
((int) BFD_RELOC_UNUSED
|
|
+ (int) operand->type));
|
|
fixP->fx_cgen.insn = insn;
|
|
fixP->fx_cgen.opinfo = opinfo;
|
|
|
|
return fixP;
|
|
}
|
|
|
|
/* Default routine to record a fixup given an expression.
|
|
This is a cover function to fix_new_exp.
|
|
It exists because we record INSN with the fixup.
|
|
|
|
FRAG and WHERE are their respective arguments to fix_new_exp.
|
|
LENGTH is in bits.
|
|
OPINFO is something the caller chooses to help in reloc determination.
|
|
|
|
At this point we do not use a bfd_reloc_code_real_type for
|
|
operands residing in the insn, but instead just use the
|
|
operand index. This lets us easily handle fixups for any
|
|
operand type. We pick a BFD reloc type in md_apply_fix3. */
|
|
|
|
fixS *
|
|
gas_cgen_record_fixup_exp (frag, where, insn, length, operand, opinfo, exp)
|
|
fragS * frag;
|
|
int where;
|
|
const CGEN_INSN * insn;
|
|
int length;
|
|
const CGEN_OPERAND * operand;
|
|
int opinfo;
|
|
expressionS * exp;
|
|
{
|
|
fixS *fixP;
|
|
|
|
/* It may seem strange to use operand->attrs and not insn->attrs here,
|
|
but it is the operand that has a pc relative relocation. */
|
|
|
|
fixP = fix_new_exp (frag, where, length / 8, exp,
|
|
CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_PCREL_ADDR),
|
|
(bfd_reloc_code_real_type)
|
|
((int) BFD_RELOC_UNUSED
|
|
+ (int) operand->type));
|
|
fixP->fx_cgen.insn = insn;
|
|
fixP->fx_cgen.opinfo = opinfo;
|
|
|
|
return fixP;
|
|
}
|
|
|
|
/* Used for communication between the next two procedures. */
|
|
static jmp_buf expr_jmp_buf;
|
|
static int expr_jmp_buf_p;
|
|
|
|
/* Callback for cgen interface. Parse the expression at *STRP.
|
|
The result is an error message or NULL for success (in which case
|
|
*STRP is advanced past the parsed text).
|
|
WANT is an indication of what the caller is looking for.
|
|
If WANT == CGEN_ASM_PARSE_INIT the caller is beginning to try to match
|
|
a table entry with the insn, reset the queued fixups counter.
|
|
An enum cgen_parse_operand_result is stored in RESULTP.
|
|
OPINDEX is the operand's table entry index.
|
|
OPINFO is something the caller chooses to help in reloc determination.
|
|
The resulting value is stored in VALUEP. */
|
|
|
|
const char *
|
|
gas_cgen_parse_operand (cd, want, strP, opindex, opinfo, resultP, valueP)
|
|
CGEN_CPU_DESC cd ATTRIBUTE_UNUSED;
|
|
enum cgen_parse_operand_type want;
|
|
const char **strP;
|
|
int opindex;
|
|
int opinfo;
|
|
enum cgen_parse_operand_result *resultP;
|
|
bfd_vma *valueP;
|
|
{
|
|
#ifdef __STDC__
|
|
/* These are volatile to survive the setjmp. */
|
|
char * volatile hold;
|
|
enum cgen_parse_operand_result * volatile resultP_1;
|
|
#else
|
|
static char *hold;
|
|
static enum cgen_parse_operand_result *resultP_1;
|
|
#endif
|
|
const char *errmsg;
|
|
expressionS exp;
|
|
|
|
if (want == CGEN_PARSE_OPERAND_INIT)
|
|
{
|
|
gas_cgen_init_parse ();
|
|
return NULL;
|
|
}
|
|
|
|
resultP_1 = resultP;
|
|
hold = input_line_pointer;
|
|
input_line_pointer = (char *) *strP;
|
|
|
|
/* We rely on md_operand to longjmp back to us.
|
|
This is done via gas_cgen_md_operand. */
|
|
if (setjmp (expr_jmp_buf) != 0)
|
|
{
|
|
expr_jmp_buf_p = 0;
|
|
input_line_pointer = (char *) hold;
|
|
*resultP_1 = CGEN_PARSE_OPERAND_RESULT_ERROR;
|
|
return _("illegal operand");
|
|
}
|
|
|
|
expr_jmp_buf_p = 1;
|
|
expression (&exp);
|
|
expr_jmp_buf_p = 0;
|
|
errmsg = NULL;
|
|
|
|
*strP = input_line_pointer;
|
|
input_line_pointer = hold;
|
|
|
|
/* FIXME: Need to check `want'. */
|
|
|
|
switch (exp.X_op)
|
|
{
|
|
case O_illegal:
|
|
errmsg = _("illegal operand");
|
|
*resultP = CGEN_PARSE_OPERAND_RESULT_ERROR;
|
|
break;
|
|
case O_absent:
|
|
errmsg = _("missing operand");
|
|
*resultP = CGEN_PARSE_OPERAND_RESULT_ERROR;
|
|
break;
|
|
case O_constant:
|
|
*valueP = exp.X_add_number;
|
|
*resultP = CGEN_PARSE_OPERAND_RESULT_NUMBER;
|
|
break;
|
|
case O_register:
|
|
*valueP = exp.X_add_number;
|
|
*resultP = CGEN_PARSE_OPERAND_RESULT_REGISTER;
|
|
break;
|
|
default:
|
|
queue_fixup (opindex, opinfo, &exp);
|
|
*valueP = 0;
|
|
*resultP = CGEN_PARSE_OPERAND_RESULT_QUEUED;
|
|
break;
|
|
}
|
|
|
|
return errmsg;
|
|
}
|
|
|
|
/* md_operand handler to catch unrecognized expressions and halt the
|
|
parsing process so the next entry can be tried.
|
|
|
|
??? This could be done differently by adding code to `expression'. */
|
|
|
|
void
|
|
gas_cgen_md_operand (expressionP)
|
|
expressionS *expressionP ATTRIBUTE_UNUSED;
|
|
{
|
|
/* Don't longjmp if we're not called from within cgen_parse_operand(). */
|
|
if (expr_jmp_buf_p)
|
|
longjmp (expr_jmp_buf, 1);
|
|
}
|
|
|
|
/* Finish assembling instruction INSN.
|
|
BUF contains what we've built up so far.
|
|
LENGTH is the size of the insn in bits.
|
|
RELAX_P is non-zero if relaxable insns should be emitted as such.
|
|
Otherwise they're emitted in non-relaxable forms.
|
|
The "result" is stored in RESULT if non-NULL. */
|
|
|
|
void
|
|
gas_cgen_finish_insn (insn, buf, length, relax_p, result)
|
|
const CGEN_INSN *insn;
|
|
CGEN_INSN_BYTES_PTR buf;
|
|
unsigned int length;
|
|
int relax_p;
|
|
finished_insnS *result;
|
|
{
|
|
int i;
|
|
int relax_operand;
|
|
char *f;
|
|
unsigned int byte_len = length / 8;
|
|
|
|
/* ??? Target foo issues various warnings here, so one might want to provide
|
|
a hook here. However, our caller is defined in tc-foo.c so there
|
|
shouldn't be a need for a hook. */
|
|
|
|
/* Write out the instruction.
|
|
It is important to fetch enough space in one call to `frag_more'.
|
|
We use (f - frag_now->fr_literal) to compute where we are and we
|
|
don't want frag_now to change between calls.
|
|
|
|
Relaxable instructions: We need to ensure we allocate enough
|
|
space for the largest insn. */
|
|
|
|
if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_RELAX))
|
|
/* These currently shouldn't get here. */
|
|
abort ();
|
|
|
|
/* Is there a relaxable insn with the relaxable operand needing a fixup? */
|
|
|
|
relax_operand = -1;
|
|
if (relax_p && CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_RELAXABLE))
|
|
{
|
|
/* Scan the fixups for the operand affected by relaxing
|
|
(i.e. the branch address). */
|
|
|
|
for (i = 0; i < num_fixups; ++i)
|
|
{
|
|
if (CGEN_OPERAND_ATTR_VALUE (cgen_operand_lookup_by_num (gas_cgen_cpu_desc, fixups[i].opindex),
|
|
CGEN_OPERAND_RELAX))
|
|
{
|
|
relax_operand = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (relax_operand != -1)
|
|
{
|
|
int max_len;
|
|
fragS *old_frag;
|
|
expressionS *exp;
|
|
symbolS *sym;
|
|
offsetT off;
|
|
|
|
#ifdef TC_CGEN_MAX_RELAX
|
|
max_len = TC_CGEN_MAX_RELAX (insn, byte_len);
|
|
#else
|
|
max_len = CGEN_MAX_INSN_SIZE;
|
|
#endif
|
|
/* Ensure variable part and fixed part are in same fragment. */
|
|
/* FIXME: Having to do this seems like a hack. */
|
|
frag_grow (max_len);
|
|
|
|
/* Allocate space for the fixed part. */
|
|
f = frag_more (byte_len);
|
|
|
|
/* Create a relaxable fragment for this instruction. */
|
|
old_frag = frag_now;
|
|
|
|
exp = &fixups[relax_operand].exp;
|
|
sym = exp->X_add_symbol;
|
|
off = exp->X_add_number;
|
|
if (exp->X_op != O_constant && exp->X_op != O_symbol)
|
|
{
|
|
/* Handle complex expressions. */
|
|
sym = make_expr_symbol (exp);
|
|
off = 0;
|
|
}
|
|
|
|
frag_var (rs_machine_dependent,
|
|
max_len - byte_len /* max chars */,
|
|
0 /* variable part already allocated */,
|
|
/* FIXME: When we machine generate the relax table,
|
|
machine generate a macro to compute subtype. */
|
|
1 /* subtype */,
|
|
sym,
|
|
off,
|
|
f);
|
|
|
|
/* Record the operand number with the fragment so md_convert_frag
|
|
can use gas_cgen_md_record_fixup to record the appropriate reloc. */
|
|
old_frag->fr_cgen.insn = insn;
|
|
old_frag->fr_cgen.opindex = fixups[relax_operand].opindex;
|
|
old_frag->fr_cgen.opinfo = fixups[relax_operand].opinfo;
|
|
if (result)
|
|
result->frag = old_frag;
|
|
}
|
|
else
|
|
{
|
|
f = frag_more (byte_len);
|
|
if (result)
|
|
result->frag = frag_now;
|
|
}
|
|
|
|
/* If we're recording insns as numbers (rather than a string of bytes),
|
|
target byte order handling is deferred until now. */
|
|
#if CGEN_INT_INSN_P
|
|
cgen_put_insn_value (gas_cgen_cpu_desc, f, length, *buf);
|
|
#else
|
|
memcpy (f, buf, byte_len);
|
|
#endif
|
|
|
|
/* Emit DWARF2 debugging information. */
|
|
dwarf2_emit_insn (byte_len);
|
|
|
|
/* Create any fixups. */
|
|
for (i = 0; i < num_fixups; ++i)
|
|
{
|
|
fixS *fixP;
|
|
const CGEN_OPERAND *operand =
|
|
cgen_operand_lookup_by_num (gas_cgen_cpu_desc, fixups[i].opindex);
|
|
|
|
/* Don't create fixups for these. That's done during relaxation.
|
|
We don't need to test for CGEN_INSN_RELAX as they can't get here
|
|
(see above). */
|
|
if (relax_p
|
|
&& CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_RELAXABLE)
|
|
&& CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_RELAX))
|
|
continue;
|
|
|
|
#ifndef md_cgen_record_fixup_exp
|
|
#define md_cgen_record_fixup_exp gas_cgen_record_fixup_exp
|
|
#endif
|
|
|
|
fixP = md_cgen_record_fixup_exp (frag_now, f - frag_now->fr_literal,
|
|
insn, length, operand,
|
|
fixups[i].opinfo,
|
|
&fixups[i].exp);
|
|
if (result)
|
|
result->fixups[i] = fixP;
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
result->num_fixups = num_fixups;
|
|
result->addr = f;
|
|
}
|
|
}
|
|
|
|
/* Apply a fixup to the object code. This is called for all the
|
|
fixups we generated by the call to fix_new_exp, above. In the call
|
|
above we used a reloc code which was the largest legal reloc code
|
|
plus the operand index. Here we undo that to recover the operand
|
|
index. At this point all symbol values should be fully resolved,
|
|
and we attempt to completely resolve the reloc. If we can not do
|
|
that, we determine the correct reloc code and put it back in the fixup. */
|
|
|
|
/* FIXME: This function handles some of the fixups and bfd_install_relocation
|
|
handles the rest. bfd_install_relocation (or some other bfd function)
|
|
should handle them all. */
|
|
|
|
void
|
|
gas_cgen_md_apply_fix3 (fixP, valP, seg)
|
|
fixS * fixP;
|
|
valueT * valP;
|
|
segT seg ATTRIBUTE_UNUSED;
|
|
{
|
|
char *where = fixP->fx_frag->fr_literal + fixP->fx_where;
|
|
valueT value = * valP;
|
|
/* Canonical name, since used a lot. */
|
|
CGEN_CPU_DESC cd = gas_cgen_cpu_desc;
|
|
|
|
/* FIXME FIXME FIXME: The value we are passed in *valuep includes
|
|
the symbol values. Since we are using BFD_ASSEMBLER, if we are
|
|
doing this relocation the code in write.c is going to call
|
|
bfd_install_relocation, which is also going to use the symbol
|
|
value. That means that if the reloc is fully resolved we want to
|
|
use *valuep since bfd_install_relocation is not being used.
|
|
However, if the reloc is not fully resolved we do not want to use
|
|
*valuep, and must use fx_offset instead. However, if the reloc
|
|
is PC relative, we do want to use *valuep since it includes the
|
|
result of md_pcrel_from. This is confusing. */
|
|
|
|
if (fixP->fx_addsy == (symbolS *) NULL)
|
|
fixP->fx_done = 1;
|
|
|
|
else if (fixP->fx_pcrel)
|
|
;
|
|
|
|
else
|
|
{
|
|
value = fixP->fx_offset;
|
|
|
|
if (fixP->fx_subsy != (symbolS *) NULL)
|
|
{
|
|
if (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section)
|
|
value -= S_GET_VALUE (fixP->fx_subsy);
|
|
else
|
|
{
|
|
/* We don't actually support subtracting a symbol. */
|
|
as_bad_where (fixP->fx_file, fixP->fx_line,
|
|
_("expression too complex"));
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED)
|
|
{
|
|
int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED;
|
|
const CGEN_OPERAND *operand = cgen_operand_lookup_by_num (cd, opindex);
|
|
const char *errmsg;
|
|
bfd_reloc_code_real_type reloc_type;
|
|
CGEN_FIELDS *fields = alloca (CGEN_CPU_SIZEOF_FIELDS (cd));
|
|
const CGEN_INSN *insn = fixP->fx_cgen.insn;
|
|
|
|
/* If the reloc has been fully resolved finish the operand here. */
|
|
/* FIXME: This duplicates the capabilities of code in BFD. */
|
|
if (fixP->fx_done
|
|
/* FIXME: If partial_inplace isn't set bfd_install_relocation won't
|
|
finish the job. Testing for pcrel is a temporary hack. */
|
|
|| fixP->fx_pcrel)
|
|
{
|
|
CGEN_CPU_SET_FIELDS_BITSIZE (cd) (fields, CGEN_INSN_BITSIZE (insn));
|
|
CGEN_CPU_SET_VMA_OPERAND (cd) (cd, opindex, fields, (bfd_vma) value);
|
|
|
|
#if CGEN_INT_INSN_P
|
|
{
|
|
CGEN_INSN_INT insn_value =
|
|
cgen_get_insn_value (cd, where, CGEN_INSN_BITSIZE (insn));
|
|
|
|
/* ??? 0 is passed for `pc'. */
|
|
errmsg = CGEN_CPU_INSERT_OPERAND (cd) (cd, opindex, fields,
|
|
&insn_value, (bfd_vma) 0);
|
|
cgen_put_insn_value (cd, where, CGEN_INSN_BITSIZE (insn),
|
|
insn_value);
|
|
}
|
|
#else
|
|
/* ??? 0 is passed for `pc'. */
|
|
errmsg = CGEN_CPU_INSERT_OPERAND (cd) (cd, opindex, fields, where,
|
|
(bfd_vma) 0);
|
|
#endif
|
|
if (errmsg)
|
|
as_bad_where (fixP->fx_file, fixP->fx_line, "%s", errmsg);
|
|
}
|
|
|
|
if (fixP->fx_done)
|
|
return;
|
|
|
|
/* The operand isn't fully resolved. Determine a BFD reloc value
|
|
based on the operand information and leave it to
|
|
bfd_install_relocation. Note that this doesn't work when
|
|
partial_inplace == false. */
|
|
|
|
reloc_type = md_cgen_lookup_reloc (insn, operand, fixP);
|
|
|
|
if (reloc_type != BFD_RELOC_NONE)
|
|
fixP->fx_r_type = reloc_type;
|
|
else
|
|
{
|
|
as_bad_where (fixP->fx_file, fixP->fx_line,
|
|
_("unresolved expression that must be resolved"));
|
|
fixP->fx_done = 1;
|
|
return;
|
|
}
|
|
}
|
|
else if (fixP->fx_done)
|
|
{
|
|
/* We're finished with this fixup. Install it because
|
|
bfd_install_relocation won't be called to do it. */
|
|
switch (fixP->fx_r_type)
|
|
{
|
|
case BFD_RELOC_8:
|
|
md_number_to_chars (where, value, 1);
|
|
break;
|
|
case BFD_RELOC_16:
|
|
md_number_to_chars (where, value, 2);
|
|
break;
|
|
case BFD_RELOC_32:
|
|
md_number_to_chars (where, value, 4);
|
|
break;
|
|
case BFD_RELOC_64:
|
|
md_number_to_chars (where, value, 8);
|
|
break;
|
|
default:
|
|
as_bad_where (fixP->fx_file, fixP->fx_line,
|
|
_("internal error: can't install fix for reloc type %d (`%s')"),
|
|
fixP->fx_r_type, bfd_get_reloc_code_name (fixP->fx_r_type));
|
|
break;
|
|
}
|
|
}
|
|
/* else
|
|
bfd_install_relocation will be called to finish things up. */
|
|
|
|
/* Tuck `value' away for use by tc_gen_reloc.
|
|
See the comment describing fx_addnumber in write.h.
|
|
This field is misnamed (or misused :-). */
|
|
fixP->fx_addnumber = value;
|
|
}
|
|
|
|
/* Translate internal representation of relocation info to BFD target format.
|
|
|
|
FIXME: To what extent can we get all relevant targets to use this? */
|
|
|
|
arelent *
|
|
gas_cgen_tc_gen_reloc (section, fixP)
|
|
asection * section ATTRIBUTE_UNUSED;
|
|
fixS * fixP;
|
|
{
|
|
arelent *reloc;
|
|
|
|
reloc = (arelent *) xmalloc (sizeof (arelent));
|
|
|
|
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
|
|
if (reloc->howto == (reloc_howto_type *) NULL)
|
|
{
|
|
as_bad_where (fixP->fx_file, fixP->fx_line,
|
|
_("relocation is not supported"));
|
|
return NULL;
|
|
}
|
|
|
|
assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
|
|
|
|
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
|
|
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
|
|
|
|
/* Use fx_offset for these cases. */
|
|
if (fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|
|
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT)
|
|
reloc->addend = fixP->fx_offset;
|
|
else
|
|
reloc->addend = fixP->fx_addnumber;
|
|
|
|
reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
|
|
return reloc;
|
|
}
|