2
0
mirror of https://sourceware.org/git/binutils-gdb.git synced 2025-01-24 12:35:55 +08:00
binutils-gdb/gdb/eval.c
Jim Blandy 015a42b4cf (Changes from Daniel Berlin, with revisions by Jim Blandy.)
Abstract out operations specific to particular C++ ABI's, and
invoke them through a function table.  This removes the C++ ABI
dependencies scattered throughout the code, and allows us to
cleanly add support for new C++ ABI's.
* cp-abi.h, cp-abi.h, gnu-v2-abi.c, hpacc-abi.c: New files.
* c-typeprint.c, c-valprint.c, dbxread.c, eval.c, gdbtypes.c,
jv-typeprint.c, linespec.c, symtab.c, typeprint.c, valops.c:
#include "cp-abi.h".  These files all use functions now declared
there.
* symtab.h (OPNAME_PREFIX_P, VTBL_PREFIX_P, DESTRUCTOR_PREFIX_P):
Deleted.  These services are now provided by functions declared in
cp-abi.h.
* value.h (value_rtti_type, value_virtual_fn_field): Same.
* values.c (value_virtual_fn_field): Same, for this definition.
* valops.c (value_rtti_type): Same.
* c-typeprint.c (c_type_print_base): Use the functions from
"cp-abi.h", instead of the old macros, or hard-coded ABI-specific
tests.
* dbxread.c (record_minimal_symbol): Same.
* gdbtypes.c (get_destructor_fn_field, virtual_base_index,
virtual_base_index_skip_primaries): Same.
* jv-typeprint.c (java_type_print_base): Same.
* linespec.c (find_methods, decode_line_1): Same.
* symtab.c (gdb_mangle_name): Same.
* Makefile.in (SFILES): Add the new .c files mentioned above.
(cp_abi_h): New variable.
(COMMON_OBS): Add gnu-v2-abi.o, hpacc-abi.o, and cp-abi.o.
(cp-abi.o, gnu-v2-abi.o, hpacc-abi.o): New targets.
(c-typeprint.o, c-valprint.o, dbxread.o, eval.o, gdbtypes.o,
jv-typeprint.o, symtab.o, linespec.o, typeprint.o, valops.o): Add
dependency on $(cp_abi_h).
2001-04-27 00:19:09 +00:00

1977 lines
61 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Evaluate expressions for GDB.
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1996, 1997, 1998, 1999, 2000
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdb_string.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "expression.h"
#include "target.h"
#include "frame.h"
#include "language.h" /* For CAST_IS_CONVERSION */
#include "f-lang.h" /* for array bound stuff */
#include "cp-abi.h"
/* Defined in symtab.c */
extern int hp_som_som_object_present;
/* This is defined in valops.c */
extern int overload_resolution;
/* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
on with successful lookup for member/method of the rtti type. */
extern int objectprint;
/* Prototypes for local functions. */
static value_ptr evaluate_subexp_for_sizeof (struct expression *, int *);
static value_ptr evaluate_subexp_for_address (struct expression *,
int *, enum noside);
static value_ptr evaluate_subexp (struct type *, struct expression *,
int *, enum noside);
static char *get_label (struct expression *, int *);
static value_ptr
evaluate_struct_tuple (value_ptr, struct expression *, int *,
enum noside, int);
static LONGEST
init_array_element (value_ptr, value_ptr, struct expression *,
int *, enum noside, LONGEST, LONGEST);
static value_ptr
evaluate_subexp (struct type *expect_type, register struct expression *exp,
register int *pos, enum noside noside)
{
return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
}
/* Parse the string EXP as a C expression, evaluate it,
and return the result as a number. */
CORE_ADDR
parse_and_eval_address (char *exp)
{
struct expression *expr = parse_expression (exp);
register CORE_ADDR addr;
register struct cleanup *old_chain =
make_cleanup (free_current_contents, &expr);
addr = value_as_pointer (evaluate_expression (expr));
do_cleanups (old_chain);
return addr;
}
/* Like parse_and_eval_address but takes a pointer to a char * variable
and advanced that variable across the characters parsed. */
CORE_ADDR
parse_and_eval_address_1 (char **expptr)
{
struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
register CORE_ADDR addr;
register struct cleanup *old_chain =
make_cleanup (free_current_contents, &expr);
addr = value_as_pointer (evaluate_expression (expr));
do_cleanups (old_chain);
return addr;
}
/* Like parse_and_eval_address, but treats the value of the expression
as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
LONGEST
parse_and_eval_long (char *exp)
{
struct expression *expr = parse_expression (exp);
register LONGEST retval;
register struct cleanup *old_chain =
make_cleanup (free_current_contents, &expr);
retval = value_as_long (evaluate_expression (expr));
do_cleanups (old_chain);
return (retval);
}
value_ptr
parse_and_eval (char *exp)
{
struct expression *expr = parse_expression (exp);
register value_ptr val;
register struct cleanup *old_chain
= make_cleanup (free_current_contents, &expr);
val = evaluate_expression (expr);
do_cleanups (old_chain);
return val;
}
/* Parse up to a comma (or to a closeparen)
in the string EXPP as an expression, evaluate it, and return the value.
EXPP is advanced to point to the comma. */
value_ptr
parse_to_comma_and_eval (char **expp)
{
struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
register value_ptr val;
register struct cleanup *old_chain
= make_cleanup (free_current_contents, &expr);
val = evaluate_expression (expr);
do_cleanups (old_chain);
return val;
}
/* Evaluate an expression in internal prefix form
such as is constructed by parse.y.
See expression.h for info on the format of an expression. */
value_ptr
evaluate_expression (struct expression *exp)
{
int pc = 0;
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
}
/* Evaluate an expression, avoiding all memory references
and getting a value whose type alone is correct. */
value_ptr
evaluate_type (struct expression *exp)
{
int pc = 0;
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
}
/* If the next expression is an OP_LABELED, skips past it,
returning the label. Otherwise, does nothing and returns NULL. */
static char *
get_label (register struct expression *exp, int *pos)
{
if (exp->elts[*pos].opcode == OP_LABELED)
{
int pc = (*pos)++;
char *name = &exp->elts[pc + 2].string;
int tem = longest_to_int (exp->elts[pc + 1].longconst);
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
return name;
}
else
return NULL;
}
/* This function evaluates tuples (in Chill) or brace-initializers
(in C/C++) for structure types. */
static value_ptr
evaluate_struct_tuple (value_ptr struct_val, register struct expression *exp,
register int *pos, enum noside noside, int nargs)
{
struct type *struct_type = check_typedef (VALUE_TYPE (struct_val));
struct type *substruct_type = struct_type;
struct type *field_type;
int fieldno = -1;
int variantno = -1;
int subfieldno = -1;
while (--nargs >= 0)
{
int pc = *pos;
value_ptr val = NULL;
int nlabels = 0;
int bitpos, bitsize;
char *addr;
/* Skip past the labels, and count them. */
while (get_label (exp, pos) != NULL)
nlabels++;
do
{
char *label = get_label (exp, &pc);
if (label)
{
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
fieldno++)
{
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
if (field_name != NULL && STREQ (field_name, label))
{
variantno = -1;
subfieldno = fieldno;
substruct_type = struct_type;
goto found;
}
}
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
fieldno++)
{
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
if ((field_name == 0 || *field_name == '\0')
&& TYPE_CODE (field_type) == TYPE_CODE_UNION)
{
variantno = 0;
for (; variantno < TYPE_NFIELDS (field_type);
variantno++)
{
substruct_type
= TYPE_FIELD_TYPE (field_type, variantno);
if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
{
for (subfieldno = 0;
subfieldno < TYPE_NFIELDS (substruct_type);
subfieldno++)
{
if (STREQ (TYPE_FIELD_NAME (substruct_type,
subfieldno),
label))
{
goto found;
}
}
}
}
}
}
error ("there is no field named %s", label);
found:
;
}
else
{
/* Unlabelled tuple element - go to next field. */
if (variantno >= 0)
{
subfieldno++;
if (subfieldno >= TYPE_NFIELDS (substruct_type))
{
variantno = -1;
substruct_type = struct_type;
}
}
if (variantno < 0)
{
fieldno++;
subfieldno = fieldno;
if (fieldno >= TYPE_NFIELDS (struct_type))
error ("too many initializers");
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
&& TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
error ("don't know which variant you want to set");
}
}
/* Here, struct_type is the type of the inner struct,
while substruct_type is the type of the inner struct.
These are the same for normal structures, but a variant struct
contains anonymous union fields that contain substruct fields.
The value fieldno is the index of the top-level (normal or
anonymous union) field in struct_field, while the value
subfieldno is the index of the actual real (named inner) field
in substruct_type. */
field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
if (val == 0)
val = evaluate_subexp (field_type, exp, pos, noside);
/* Now actually set the field in struct_val. */
/* Assign val to field fieldno. */
if (VALUE_TYPE (val) != field_type)
val = value_cast (field_type, val);
bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
if (variantno >= 0)
bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
addr = VALUE_CONTENTS (struct_val) + bitpos / 8;
if (bitsize)
modify_field (addr, value_as_long (val),
bitpos % 8, bitsize);
else
memcpy (addr, VALUE_CONTENTS (val),
TYPE_LENGTH (VALUE_TYPE (val)));
}
while (--nlabels > 0);
}
return struct_val;
}
/* Recursive helper function for setting elements of array tuples for Chill.
The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND);
the element value is ELEMENT;
EXP, POS and NOSIDE are as usual.
Evaluates index expresions and sets the specified element(s) of
ARRAY to ELEMENT.
Returns last index value. */
static LONGEST
init_array_element (value_ptr array, value_ptr element,
register struct expression *exp, register int *pos,
enum noside noside, LONGEST low_bound, LONGEST high_bound)
{
LONGEST index;
int element_size = TYPE_LENGTH (VALUE_TYPE (element));
if (exp->elts[*pos].opcode == BINOP_COMMA)
{
(*pos)++;
init_array_element (array, element, exp, pos, noside,
low_bound, high_bound);
return init_array_element (array, element,
exp, pos, noside, low_bound, high_bound);
}
else if (exp->elts[*pos].opcode == BINOP_RANGE)
{
LONGEST low, high;
(*pos)++;
low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
if (low < low_bound || high > high_bound)
error ("tuple range index out of range");
for (index = low; index <= high; index++)
{
memcpy (VALUE_CONTENTS_RAW (array)
+ (index - low_bound) * element_size,
VALUE_CONTENTS (element), element_size);
}
}
else
{
index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
if (index < low_bound || index > high_bound)
error ("tuple index out of range");
memcpy (VALUE_CONTENTS_RAW (array) + (index - low_bound) * element_size,
VALUE_CONTENTS (element), element_size);
}
return index;
}
value_ptr
evaluate_subexp_standard (struct type *expect_type,
register struct expression *exp, register int *pos,
enum noside noside)
{
enum exp_opcode op;
int tem, tem2, tem3;
register int pc, pc2 = 0, oldpos;
register value_ptr arg1 = NULL, arg2 = NULL, arg3;
struct type *type;
int nargs;
value_ptr *argvec;
int upper, lower, retcode;
int code;
int ix;
long mem_offset;
struct type **arg_types;
int save_pos1;
pc = (*pos)++;
op = exp->elts[pc].opcode;
switch (op)
{
case OP_SCOPE:
tem = longest_to_int (exp->elts[pc + 2].longconst);
(*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
arg1 = value_struct_elt_for_reference (exp->elts[pc + 1].type,
0,
exp->elts[pc + 1].type,
&exp->elts[pc + 3].string,
NULL_TYPE);
if (arg1 == NULL)
error ("There is no field named %s", &exp->elts[pc + 3].string);
return arg1;
case OP_LONG:
(*pos) += 3;
return value_from_longest (exp->elts[pc + 1].type,
exp->elts[pc + 2].longconst);
case OP_DOUBLE:
(*pos) += 3;
return value_from_double (exp->elts[pc + 1].type,
exp->elts[pc + 2].doubleconst);
case OP_VAR_VALUE:
(*pos) += 3;
if (noside == EVAL_SKIP)
goto nosideret;
/* JYG: We used to just return value_zero of the symbol type
if we're asked to avoid side effects. Otherwise we return
value_of_variable (...). However I'm not sure if
value_of_variable () has any side effect.
We need a full value object returned here for whatis_exp ()
to call evaluate_type () and then pass the full value to
value_rtti_target_type () if we are dealing with a pointer
or reference to a base class and print object is on. */
return value_of_variable (exp->elts[pc + 2].symbol,
exp->elts[pc + 1].block);
case OP_LAST:
(*pos) += 2;
return
access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
case OP_REGISTER:
{
int regno = longest_to_int (exp->elts[pc + 1].longconst);
value_ptr val = value_of_register (regno);
(*pos) += 2;
if (val == NULL)
error ("Value of register %s not available.", REGISTER_NAME (regno));
else
return val;
}
case OP_BOOL:
(*pos) += 2;
return value_from_longest (LA_BOOL_TYPE,
exp->elts[pc + 1].longconst);
case OP_INTERNALVAR:
(*pos) += 2;
return value_of_internalvar (exp->elts[pc + 1].internalvar);
case OP_STRING:
tem = longest_to_int (exp->elts[pc + 1].longconst);
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
if (noside == EVAL_SKIP)
goto nosideret;
return value_string (&exp->elts[pc + 2].string, tem);
case OP_BITSTRING:
tem = longest_to_int (exp->elts[pc + 1].longconst);
(*pos)
+= 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
if (noside == EVAL_SKIP)
goto nosideret;
return value_bitstring (&exp->elts[pc + 2].string, tem);
break;
case OP_ARRAY:
(*pos) += 3;
tem2 = longest_to_int (exp->elts[pc + 1].longconst);
tem3 = longest_to_int (exp->elts[pc + 2].longconst);
nargs = tem3 - tem2 + 1;
type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
&& TYPE_CODE (type) == TYPE_CODE_STRUCT)
{
value_ptr rec = allocate_value (expect_type);
memset (VALUE_CONTENTS_RAW (rec), '\0', TYPE_LENGTH (type));
return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
}
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
{
struct type *range_type = TYPE_FIELD_TYPE (type, 0);
struct type *element_type = TYPE_TARGET_TYPE (type);
value_ptr array = allocate_value (expect_type);
int element_size = TYPE_LENGTH (check_typedef (element_type));
LONGEST low_bound, high_bound, index;
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
{
low_bound = 0;
high_bound = (TYPE_LENGTH (type) / element_size) - 1;
}
index = low_bound;
memset (VALUE_CONTENTS_RAW (array), 0, TYPE_LENGTH (expect_type));
for (tem = nargs; --nargs >= 0;)
{
value_ptr element;
int index_pc = 0;
if (exp->elts[*pos].opcode == BINOP_RANGE)
{
index_pc = ++(*pos);
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
}
element = evaluate_subexp (element_type, exp, pos, noside);
if (VALUE_TYPE (element) != element_type)
element = value_cast (element_type, element);
if (index_pc)
{
int continue_pc = *pos;
*pos = index_pc;
index = init_array_element (array, element, exp, pos, noside,
low_bound, high_bound);
*pos = continue_pc;
}
else
{
if (index > high_bound)
/* to avoid memory corruption */
error ("Too many array elements");
memcpy (VALUE_CONTENTS_RAW (array)
+ (index - low_bound) * element_size,
VALUE_CONTENTS (element),
element_size);
}
index++;
}
return array;
}
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
&& TYPE_CODE (type) == TYPE_CODE_SET)
{
value_ptr set = allocate_value (expect_type);
char *valaddr = VALUE_CONTENTS_RAW (set);
struct type *element_type = TYPE_INDEX_TYPE (type);
struct type *check_type = element_type;
LONGEST low_bound, high_bound;
/* get targettype of elementtype */
while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
check_type = TYPE_TARGET_TYPE (check_type);
if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
error ("(power)set type with unknown size");
memset (valaddr, '\0', TYPE_LENGTH (type));
for (tem = 0; tem < nargs; tem++)
{
LONGEST range_low, range_high;
struct type *range_low_type, *range_high_type;
value_ptr elem_val;
if (exp->elts[*pos].opcode == BINOP_RANGE)
{
(*pos)++;
elem_val = evaluate_subexp (element_type, exp, pos, noside);
range_low_type = VALUE_TYPE (elem_val);
range_low = value_as_long (elem_val);
elem_val = evaluate_subexp (element_type, exp, pos, noside);
range_high_type = VALUE_TYPE (elem_val);
range_high = value_as_long (elem_val);
}
else
{
elem_val = evaluate_subexp (element_type, exp, pos, noside);
range_low_type = range_high_type = VALUE_TYPE (elem_val);
range_low = range_high = value_as_long (elem_val);
}
/* check types of elements to avoid mixture of elements from
different types. Also check if type of element is "compatible"
with element type of powerset */
if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
range_low_type = TYPE_TARGET_TYPE (range_low_type);
if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
range_high_type = TYPE_TARGET_TYPE (range_high_type);
if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
(TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
(range_low_type != range_high_type)))
/* different element modes */
error ("POWERSET tuple elements of different mode");
if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
(TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
range_low_type != check_type))
error ("incompatible POWERSET tuple elements");
if (range_low > range_high)
{
warning ("empty POWERSET tuple range");
continue;
}
if (range_low < low_bound || range_high > high_bound)
error ("POWERSET tuple element out of range");
range_low -= low_bound;
range_high -= low_bound;
for (; range_low <= range_high; range_low++)
{
int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
if (BITS_BIG_ENDIAN)
bit_index = TARGET_CHAR_BIT - 1 - bit_index;
valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
|= 1 << bit_index;
}
}
return set;
}
argvec = (value_ptr *) alloca (sizeof (value_ptr) * nargs);
for (tem = 0; tem < nargs; tem++)
{
/* Ensure that array expressions are coerced into pointer objects. */
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
}
if (noside == EVAL_SKIP)
goto nosideret;
return value_array (tem2, tem3, argvec);
case TERNOP_SLICE:
{
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
int lowbound
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
int upper
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
if (noside == EVAL_SKIP)
goto nosideret;
return value_slice (array, lowbound, upper - lowbound + 1);
}
case TERNOP_SLICE_COUNT:
{
value_ptr array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
int lowbound
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
int length
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
return value_slice (array, lowbound, length);
}
case TERNOP_COND:
/* Skip third and second args to evaluate the first one. */
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (value_logical_not (arg1))
{
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
}
else
{
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
return arg2;
}
case OP_FUNCALL:
(*pos) += 2;
op = exp->elts[*pos].opcode;
nargs = longest_to_int (exp->elts[pc + 1].longconst);
/* Allocate arg vector, including space for the function to be
called in argvec[0] and a terminating NULL */
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 3));
if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
{
LONGEST fnptr;
/* 1997-08-01 Currently we do not support function invocation
via pointers-to-methods with HP aCC. Pointer does not point
to the function, but possibly to some thunk. */
if (hp_som_som_object_present)
{
error ("Not implemented: function invocation through pointer to method with HP aCC");
}
nargs++;
/* First, evaluate the structure into arg2 */
pc2 = (*pos)++;
if (noside == EVAL_SKIP)
goto nosideret;
if (op == STRUCTOP_MEMBER)
{
arg2 = evaluate_subexp_for_address (exp, pos, noside);
}
else
{
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
}
/* If the function is a virtual function, then the
aggregate value (providing the structure) plays
its part by providing the vtable. Otherwise,
it is just along for the ride: call the function
directly. */
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
fnptr = value_as_long (arg1);
if (METHOD_PTR_IS_VIRTUAL (fnptr))
{
int fnoffset = METHOD_PTR_TO_VOFFSET (fnptr);
struct type *basetype;
struct type *domain_type =
TYPE_DOMAIN_TYPE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
int i, j;
basetype = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
if (domain_type != basetype)
arg2 = value_cast (lookup_pointer_type (domain_type), arg2);
basetype = TYPE_VPTR_BASETYPE (domain_type);
for (i = TYPE_NFN_FIELDS (basetype) - 1; i >= 0; i--)
{
struct fn_field *f = TYPE_FN_FIELDLIST1 (basetype, i);
/* If one is virtual, then all are virtual. */
if (TYPE_FN_FIELD_VIRTUAL_P (f, 0))
for (j = TYPE_FN_FIELDLIST_LENGTH (basetype, i) - 1; j >= 0; --j)
if ((int) TYPE_FN_FIELD_VOFFSET (f, j) == fnoffset)
{
value_ptr temp = value_ind (arg2);
arg1 = value_virtual_fn_field (&temp, f, j, domain_type, 0);
arg2 = value_addr (temp);
goto got_it;
}
}
if (i < 0)
error ("virtual function at index %d not found", fnoffset);
}
else
{
VALUE_TYPE (arg1) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)));
}
got_it:
/* Now, say which argument to start evaluating from */
tem = 2;
}
else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
{
/* Hair for method invocations */
int tem2;
nargs++;
/* First, evaluate the structure into arg2 */
pc2 = (*pos)++;
tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
*pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
if (noside == EVAL_SKIP)
goto nosideret;
if (op == STRUCTOP_STRUCT)
{
/* If v is a variable in a register, and the user types
v.method (), this will produce an error, because v has
no address.
A possible way around this would be to allocate a
copy of the variable on the stack, copy in the
contents, call the function, and copy out the
contents. I.e. convert this from call by reference
to call by copy-return (or whatever it's called).
However, this does not work because it is not the
same: the method being called could stash a copy of
the address, and then future uses through that address
(after the method returns) would be expected to
use the variable itself, not some copy of it. */
arg2 = evaluate_subexp_for_address (exp, pos, noside);
}
else
{
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
}
/* Now, say which argument to start evaluating from */
tem = 2;
}
else
{
/* Non-method function call */
save_pos1 = *pos;
argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
tem = 1;
type = VALUE_TYPE (argvec[0]);
if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
type = TYPE_TARGET_TYPE (type);
if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
{
for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
{
/* pai: FIXME This seems to be coercing arguments before
* overload resolution has been done! */
argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
exp, pos, noside);
}
}
}
/* Evaluate arguments */
for (; tem <= nargs; tem++)
{
/* Ensure that array expressions are coerced into pointer objects. */
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
}
/* signal end of arglist */
argvec[tem] = 0;
if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
{
int static_memfuncp;
value_ptr temp = arg2;
char tstr[256];
/* Method invocation : stuff "this" as first parameter */
/* pai: this used to have lookup_pointer_type for some reason,
* but temp is already a pointer to the object */
argvec[1]
= value_from_pointer (VALUE_TYPE (temp),
VALUE_ADDRESS (temp) + VALUE_OFFSET (temp));
/* Name of method from expression */
strcpy (tstr, &exp->elts[pc2 + 2].string);
if (overload_resolution && (exp->language_defn->la_language == language_cplus))
{
/* Language is C++, do some overload resolution before evaluation */
value_ptr valp = NULL;
/* Prepare list of argument types for overload resolution */
arg_types = (struct type **) xmalloc (nargs * (sizeof (struct type *)));
for (ix = 1; ix <= nargs; ix++)
arg_types[ix - 1] = VALUE_TYPE (argvec[ix]);
(void) find_overload_match (arg_types, nargs, tstr,
1 /* method */ , 0 /* strict match */ ,
arg2 /* the object */ , NULL,
&valp, NULL, &static_memfuncp);
argvec[1] = arg2; /* the ``this'' pointer */
argvec[0] = valp; /* use the method found after overload resolution */
}
else
/* Non-C++ case -- or no overload resolution */
{
temp = arg2;
argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
&static_memfuncp,
op == STRUCTOP_STRUCT
? "structure" : "structure pointer");
argvec[1] = arg2; /* the ``this'' pointer */
}
if (static_memfuncp)
{
argvec[1] = argvec[0];
nargs--;
argvec++;
}
}
else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
{
argvec[1] = arg2;
argvec[0] = arg1;
}
else if (op == OP_VAR_VALUE)
{
/* Non-member function being called */
/* fn: This can only be done for C++ functions. A C-style function
in a C++ program, for instance, does not have the fields that
are expected here */
if (overload_resolution && (exp->language_defn->la_language == language_cplus))
{
/* Language is C++, do some overload resolution before evaluation */
struct symbol *symp;
/* Prepare list of argument types for overload resolution */
arg_types = (struct type **) xmalloc (nargs * (sizeof (struct type *)));
for (ix = 1; ix <= nargs; ix++)
arg_types[ix - 1] = VALUE_TYPE (argvec[ix]);
(void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
0 /* not method */ , 0 /* strict match */ ,
NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
NULL, &symp, NULL);
/* Now fix the expression being evaluated */
exp->elts[save_pos1+2].symbol = symp;
argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
}
else
{
/* Not C++, or no overload resolution allowed */
/* nothing to be done; argvec already correctly set up */
}
}
else
{
/* It is probably a C-style function */
/* nothing to be done; argvec already correctly set up */
}
do_call_it:
if (noside == EVAL_SKIP)
goto nosideret;
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
/* If the return type doesn't look like a function type, call an
error. This can happen if somebody tries to turn a variable into
a function call. This is here because people often want to
call, eg, strcmp, which gdb doesn't know is a function. If
gdb isn't asked for it's opinion (ie. through "whatis"),
it won't offer it. */
struct type *ftype =
TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0]));
if (ftype)
return allocate_value (TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0])));
else
error ("Expression of type other than \"Function returning ...\" used as function");
}
if (argvec[0] == NULL)
error ("Cannot evaluate function -- may be inlined");
return call_function_by_hand (argvec[0], nargs, argvec + 1);
/* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
case OP_F77_UNDETERMINED_ARGLIST:
/* Remember that in F77, functions, substring ops and
array subscript operations cannot be disambiguated
at parse time. We have made all array subscript operations,
substring operations as well as function calls come here
and we now have to discover what the heck this thing actually was.
If it is a function, we process just as if we got an OP_FUNCALL. */
nargs = longest_to_int (exp->elts[pc + 1].longconst);
(*pos) += 2;
/* First determine the type code we are dealing with. */
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
type = check_typedef (VALUE_TYPE (arg1));
code = TYPE_CODE (type);
switch (code)
{
case TYPE_CODE_ARRAY:
goto multi_f77_subscript;
case TYPE_CODE_STRING:
goto op_f77_substr;
case TYPE_CODE_PTR:
case TYPE_CODE_FUNC:
/* It's a function call. */
/* Allocate arg vector, including space for the function to be
called in argvec[0] and a terminating NULL */
argvec = (value_ptr *) alloca (sizeof (value_ptr) * (nargs + 2));
argvec[0] = arg1;
tem = 1;
for (; tem <= nargs; tem++)
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
argvec[tem] = 0; /* signal end of arglist */
goto do_call_it;
default:
error ("Cannot perform substring on this type");
}
op_f77_substr:
/* We have a substring operation on our hands here,
let us get the string we will be dealing with */
/* Now evaluate the 'from' and 'to' */
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
if (nargs < 2)
return value_subscript (arg1, arg2);
arg3 = evaluate_subexp_with_coercion (exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
tem2 = value_as_long (arg2);
tem3 = value_as_long (arg3);
return value_slice (arg1, tem2, tem3 - tem2 + 1);
case OP_COMPLEX:
/* We have a complex number, There should be 2 floating
point numbers that compose it */
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
case STRUCTOP_STRUCT:
tem = longest_to_int (exp->elts[pc + 1].longconst);
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (noside == EVAL_AVOID_SIDE_EFFECTS)
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
&exp->elts[pc + 2].string,
0),
lval_memory);
else
{
value_ptr temp = arg1;
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
NULL, "structure");
}
case STRUCTOP_PTR:
tem = longest_to_int (exp->elts[pc + 1].longconst);
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
/* JYG: if print object is on we need to replace the base type
with rtti type in order to continue on with successful
lookup of member / method only available in the rtti type. */
{
struct type *type = VALUE_TYPE (arg1);
struct type *real_type;
int full, top, using_enc;
if (objectprint && TYPE_TARGET_TYPE(type) &&
(TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
{
real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
if (real_type)
{
if (TYPE_CODE (type) == TYPE_CODE_PTR)
real_type = lookup_pointer_type (real_type);
else
real_type = lookup_reference_type (real_type);
arg1 = value_cast (real_type, arg1);
}
}
}
if (noside == EVAL_AVOID_SIDE_EFFECTS)
return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1),
&exp->elts[pc + 2].string,
0),
lval_memory);
else
{
value_ptr temp = arg1;
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
NULL, "structure pointer");
}
case STRUCTOP_MEMBER:
arg1 = evaluate_subexp_for_address (exp, pos, noside);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
/* With HP aCC, pointers to methods do not point to the function code */
if (hp_som_som_object_present &&
(TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) &&
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD))
error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */
mem_offset = value_as_long (arg2);
goto handle_pointer_to_member;
case STRUCTOP_MPTR:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
/* With HP aCC, pointers to methods do not point to the function code */
if (hp_som_som_object_present &&
(TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) &&
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD))
error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */
mem_offset = value_as_long (arg2);
handle_pointer_to_member:
/* HP aCC generates offsets that have bit #29 set; turn it off to get
a real offset to the member. */
if (hp_som_som_object_present)
{
if (!mem_offset) /* no bias -> really null */
error ("Attempted dereference of null pointer-to-member");
mem_offset &= ~0x20000000;
}
if (noside == EVAL_SKIP)
goto nosideret;
type = check_typedef (VALUE_TYPE (arg2));
if (TYPE_CODE (type) != TYPE_CODE_PTR)
goto bad_pointer_to_member;
type = check_typedef (TYPE_TARGET_TYPE (type));
if (TYPE_CODE (type) == TYPE_CODE_METHOD)
error ("not implemented: pointer-to-method in pointer-to-member construct");
if (TYPE_CODE (type) != TYPE_CODE_MEMBER)
goto bad_pointer_to_member;
/* Now, convert these values to an address. */
arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
arg1);
arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
value_as_long (arg1) + mem_offset);
return value_ind (arg3);
bad_pointer_to_member:
error ("non-pointer-to-member value used in pointer-to-member construct");
case BINOP_CONCAT:
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
else
return value_concat (arg1, arg2);
case BINOP_ASSIGN:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
/* Do special stuff for HP aCC pointers to members */
if (hp_som_som_object_present)
{
/* 1997-08-19 Can't assign HP aCC pointers to methods. No details of
the implementation yet; but the pointer appears to point to a code
sequence (thunk) in memory -- in any case it is *not* the address
of the function as it would be in a naive implementation. */
if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) &&
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD))
error ("Assignment to pointers to methods not implemented with HP aCC");
/* HP aCC pointers to data members require a constant bias */
if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) &&
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER))
{
unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (arg2); /* forces evaluation */
*ptr |= 0x20000000; /* set 29th bit */
}
}
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
return arg1;
if (binop_user_defined_p (op, arg1, arg2))
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
else
return value_assign (arg1, arg2);
case BINOP_ASSIGN_MODIFY:
(*pos) += 2;
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
return arg1;
op = exp->elts[pc + 1].opcode;
if (binop_user_defined_p (op, arg1, arg2))
return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
else if (op == BINOP_ADD)
arg2 = value_add (arg1, arg2);
else if (op == BINOP_SUB)
arg2 = value_sub (arg1, arg2);
else
arg2 = value_binop (arg1, arg2, op);
return value_assign (arg1, arg2);
case BINOP_ADD:
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
else
return value_add (arg1, arg2);
case BINOP_SUB:
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
else
return value_sub (arg1, arg2);
case BINOP_MUL:
case BINOP_DIV:
case BINOP_REM:
case BINOP_MOD:
case BINOP_LSH:
case BINOP_RSH:
case BINOP_BITWISE_AND:
case BINOP_BITWISE_IOR:
case BINOP_BITWISE_XOR:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
else if (noside == EVAL_AVOID_SIDE_EFFECTS
&& (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
return value_zero (VALUE_TYPE (arg1), not_lval);
else
return value_binop (arg1, arg2, op);
case BINOP_RANGE:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
error ("':' operator used in invalid context");
case BINOP_SUBSCRIPT:
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
else
{
/* If the user attempts to subscript something that is not an
array or pointer type (like a plain int variable for example),
then report this as an error. */
COERCE_REF (arg1);
type = check_typedef (VALUE_TYPE (arg1));
if (TYPE_CODE (type) != TYPE_CODE_ARRAY
&& TYPE_CODE (type) != TYPE_CODE_PTR)
{
if (TYPE_NAME (type))
error ("cannot subscript something of type `%s'",
TYPE_NAME (type));
else
error ("cannot subscript requested type");
}
if (noside == EVAL_AVOID_SIDE_EFFECTS)
return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
else
return value_subscript (arg1, arg2);
}
case BINOP_IN:
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
return value_in (arg1, arg2);
case MULTI_SUBSCRIPT:
(*pos) += 2;
nargs = longest_to_int (exp->elts[pc + 1].longconst);
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
while (nargs-- > 0)
{
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
/* FIXME: EVAL_SKIP handling may not be correct. */
if (noside == EVAL_SKIP)
{
if (nargs > 0)
{
continue;
}
else
{
goto nosideret;
}
}
/* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
/* If the user attempts to subscript something that has no target
type (like a plain int variable for example), then report this
as an error. */
type = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (arg1)));
if (type != NULL)
{
arg1 = value_zero (type, VALUE_LVAL (arg1));
noside = EVAL_SKIP;
continue;
}
else
{
error ("cannot subscript something of type `%s'",
TYPE_NAME (VALUE_TYPE (arg1)));
}
}
if (binop_user_defined_p (op, arg1, arg2))
{
arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
arg1 = value_subscript (arg1, arg2);
}
}
return (arg1);
multi_f77_subscript:
{
int subscript_array[MAX_FORTRAN_DIMS + 1]; /* 1-based array of
subscripts, max == 7 */
int array_size_array[MAX_FORTRAN_DIMS + 1];
int ndimensions = 1, i;
struct type *tmp_type;
int offset_item; /* The array offset where the item lives */
if (nargs > MAX_FORTRAN_DIMS)
error ("Too many subscripts for F77 (%d Max)", MAX_FORTRAN_DIMS);
tmp_type = check_typedef (VALUE_TYPE (arg1));
ndimensions = calc_f77_array_dims (type);
if (nargs != ndimensions)
error ("Wrong number of subscripts");
/* Now that we know we have a legal array subscript expression
let us actually find out where this element exists in the array. */
offset_item = 0;
for (i = 1; i <= nargs; i++)
{
/* Evaluate each subscript, It must be a legal integer in F77 */
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
/* Fill in the subscript and array size arrays */
subscript_array[i] = value_as_long (arg2);
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
if (retcode == BOUND_FETCH_ERROR)
error ("Cannot obtain dynamic upper bound");
retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
if (retcode == BOUND_FETCH_ERROR)
error ("Cannot obtain dynamic lower bound");
array_size_array[i] = upper - lower + 1;
/* Zero-normalize subscripts so that offsetting will work. */
subscript_array[i] -= lower;
/* If we are at the bottom of a multidimensional
array type then keep a ptr to the last ARRAY
type around for use when calling value_subscript()
below. This is done because we pretend to value_subscript
that we actually have a one-dimensional array
of base element type that we apply a simple
offset to. */
if (i < nargs)
tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
}
/* Now let us calculate the offset for this item */
offset_item = subscript_array[ndimensions];
for (i = ndimensions - 1; i >= 1; i--)
offset_item =
array_size_array[i] * offset_item + subscript_array[i];
/* Construct a value node with the value of the offset */
arg2 = value_from_longest (builtin_type_f_integer, offset_item);
/* Let us now play a dirty trick: we will take arg1
which is a value node pointing to the topmost level
of the multidimensional array-set and pretend
that it is actually a array of the final element
type, this will ensure that value_subscript()
returns the correct type value */
VALUE_TYPE (arg1) = tmp_type;
return value_ind (value_add (value_coerce_array (arg1), arg2));
}
case BINOP_LOGICAL_AND:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
{
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
goto nosideret;
}
oldpos = *pos;
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
*pos = oldpos;
if (binop_user_defined_p (op, arg1, arg2))
{
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_logical_not (arg1);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
(tem ? EVAL_SKIP : noside));
return value_from_longest (LA_BOOL_TYPE,
(LONGEST) (!tem && !value_logical_not (arg2)));
}
case BINOP_LOGICAL_OR:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
{
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
goto nosideret;
}
oldpos = *pos;
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
*pos = oldpos;
if (binop_user_defined_p (op, arg1, arg2))
{
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_logical_not (arg1);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
(!tem ? EVAL_SKIP : noside));
return value_from_longest (LA_BOOL_TYPE,
(LONGEST) (!tem || !value_logical_not (arg2)));
}
case BINOP_EQUAL:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_equal (arg1, arg2);
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
}
case BINOP_NOTEQUAL:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_equal (arg1, arg2);
return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem);
}
case BINOP_LESS:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_less (arg1, arg2);
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
}
case BINOP_GTR:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_less (arg2, arg1);
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
}
case BINOP_GEQ:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
}
case BINOP_LEQ:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
}
case BINOP_REPEAT:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
type = check_typedef (VALUE_TYPE (arg2));
if (TYPE_CODE (type) != TYPE_CODE_INT)
error ("Non-integral right operand for \"@\" operator.");
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
return allocate_repeat_value (VALUE_TYPE (arg1),
longest_to_int (value_as_long (arg2)));
}
else
return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
case BINOP_COMMA:
evaluate_subexp (NULL_TYPE, exp, pos, noside);
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
case UNOP_NEG:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (unop_user_defined_p (op, arg1))
return value_x_unop (arg1, op, noside);
else
return value_neg (arg1);
case UNOP_COMPLEMENT:
/* C++: check for and handle destructor names. */
op = exp->elts[*pos].opcode;
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
else
return value_complement (arg1);
case UNOP_LOGICAL_NOT:
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (unop_user_defined_p (op, arg1))
return value_x_unop (arg1, op, noside);
else
return value_from_longest (LA_BOOL_TYPE,
(LONGEST) value_logical_not (arg1));
case UNOP_IND:
if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
if ((TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) &&
((TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD) ||
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER)))
error ("Attempt to dereference pointer to member without an object");
if (noside == EVAL_SKIP)
goto nosideret;
if (unop_user_defined_p (op, arg1))
return value_x_unop (arg1, op, noside);
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
type = check_typedef (VALUE_TYPE (arg1));
if (TYPE_CODE (type) == TYPE_CODE_PTR
|| TYPE_CODE (type) == TYPE_CODE_REF
/* In C you can dereference an array to get the 1st elt. */
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
)
return value_zero (TYPE_TARGET_TYPE (type),
lval_memory);
else if (TYPE_CODE (type) == TYPE_CODE_INT)
/* GDB allows dereferencing an int. */
return value_zero (builtin_type_int, lval_memory);
else
error ("Attempt to take contents of a non-pointer value.");
}
return value_ind (arg1);
case UNOP_ADDR:
/* C++: check for and handle pointer to members. */
op = exp->elts[*pos].opcode;
if (noside == EVAL_SKIP)
{
if (op == OP_SCOPE)
{
int temm = longest_to_int (exp->elts[pc + 3].longconst);
(*pos) += 3 + BYTES_TO_EXP_ELEM (temm + 1);
}
else
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
goto nosideret;
}
else
{
value_ptr retvalp = evaluate_subexp_for_address (exp, pos, noside);
/* If HP aCC object, use bias for pointers to members */
if (hp_som_som_object_present &&
(TYPE_CODE (VALUE_TYPE (retvalp)) == TYPE_CODE_PTR) &&
(TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (retvalp))) == TYPE_CODE_MEMBER))
{
unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* forces evaluation */
*ptr |= 0x20000000; /* set 29th bit */
}
return retvalp;
}
case UNOP_SIZEOF:
if (noside == EVAL_SKIP)
{
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
goto nosideret;
}
return evaluate_subexp_for_sizeof (exp, pos);
case UNOP_CAST:
(*pos) += 2;
type = exp->elts[pc + 1].type;
arg1 = evaluate_subexp (type, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (type != VALUE_TYPE (arg1))
arg1 = value_cast (type, arg1);
return arg1;
case UNOP_MEMVAL:
(*pos) += 2;
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
if (noside == EVAL_SKIP)
goto nosideret;
if (noside == EVAL_AVOID_SIDE_EFFECTS)
return value_zero (exp->elts[pc + 1].type, lval_memory);
else
return value_at_lazy (exp->elts[pc + 1].type,
value_as_pointer (arg1),
NULL);
case UNOP_PREINCREMENT:
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
return arg1;
else if (unop_user_defined_p (op, arg1))
{
return value_x_unop (arg1, op, noside);
}
else
{
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
(LONGEST) 1));
return value_assign (arg1, arg2);
}
case UNOP_PREDECREMENT:
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
return arg1;
else if (unop_user_defined_p (op, arg1))
{
return value_x_unop (arg1, op, noside);
}
else
{
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
(LONGEST) 1));
return value_assign (arg1, arg2);
}
case UNOP_POSTINCREMENT:
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
return arg1;
else if (unop_user_defined_p (op, arg1))
{
return value_x_unop (arg1, op, noside);
}
else
{
arg2 = value_add (arg1, value_from_longest (builtin_type_char,
(LONGEST) 1));
value_assign (arg1, arg2);
return arg1;
}
case UNOP_POSTDECREMENT:
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
return arg1;
else if (unop_user_defined_p (op, arg1))
{
return value_x_unop (arg1, op, noside);
}
else
{
arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
(LONGEST) 1));
value_assign (arg1, arg2);
return arg1;
}
case OP_THIS:
(*pos) += 1;
return value_of_this (1);
case OP_TYPE:
error ("Attempt to use a type name as an expression");
default:
/* Removing this case and compiling with gcc -Wall reveals that
a lot of cases are hitting this case. Some of these should
probably be removed from expression.h; others are legitimate
expressions which are (apparently) not fully implemented.
If there are any cases landing here which mean a user error,
then they should be separate cases, with more descriptive
error messages. */
error ("\
GDB does not (yet) know how to evaluate that kind of expression");
}
nosideret:
return value_from_longest (builtin_type_long, (LONGEST) 1);
}
/* Evaluate a subexpression of EXP, at index *POS,
and return the address of that subexpression.
Advance *POS over the subexpression.
If the subexpression isn't an lvalue, get an error.
NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
then only the type of the result need be correct. */
static value_ptr
evaluate_subexp_for_address (register struct expression *exp, register int *pos,
enum noside noside)
{
enum exp_opcode op;
register int pc;
struct symbol *var;
pc = (*pos);
op = exp->elts[pc].opcode;
switch (op)
{
case UNOP_IND:
(*pos)++;
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
case UNOP_MEMVAL:
(*pos) += 3;
return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
evaluate_subexp (NULL_TYPE, exp, pos, noside));
case OP_VAR_VALUE:
var = exp->elts[pc + 2].symbol;
/* C++: The "address" of a reference should yield the address
* of the object pointed to. Let value_addr() deal with it. */
if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
goto default_case;
(*pos) += 4;
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
struct type *type =
lookup_pointer_type (SYMBOL_TYPE (var));
enum address_class sym_class = SYMBOL_CLASS (var);
if (sym_class == LOC_CONST
|| sym_class == LOC_CONST_BYTES
|| sym_class == LOC_REGISTER
|| sym_class == LOC_REGPARM)
error ("Attempt to take address of register or constant.");
return
value_zero (type, not_lval);
}
else
return
locate_var_value
(var,
block_innermost_frame (exp->elts[pc + 1].block));
default:
default_case:
if (noside == EVAL_AVOID_SIDE_EFFECTS)
{
value_ptr x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
if (VALUE_LVAL (x) == lval_memory)
return value_zero (lookup_pointer_type (VALUE_TYPE (x)),
not_lval);
else
error ("Attempt to take address of non-lval");
}
return value_addr (evaluate_subexp (NULL_TYPE, exp, pos, noside));
}
}
/* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
When used in contexts where arrays will be coerced anyway, this is
equivalent to `evaluate_subexp' but much faster because it avoids
actually fetching array contents (perhaps obsolete now that we have
VALUE_LAZY).
Note that we currently only do the coercion for C expressions, where
arrays are zero based and the coercion is correct. For other languages,
with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
to decide if coercion is appropriate.
*/
value_ptr
evaluate_subexp_with_coercion (register struct expression *exp,
register int *pos, enum noside noside)
{
register enum exp_opcode op;
register int pc;
register value_ptr val;
struct symbol *var;
pc = (*pos);
op = exp->elts[pc].opcode;
switch (op)
{
case OP_VAR_VALUE:
var = exp->elts[pc + 2].symbol;
if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
&& CAST_IS_CONVERSION)
{
(*pos) += 4;
val =
locate_var_value
(var, block_innermost_frame (exp->elts[pc + 1].block));
return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
val);
}
/* FALLTHROUGH */
default:
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
}
}
/* Evaluate a subexpression of EXP, at index *POS,
and return a value for the size of that subexpression.
Advance *POS over the subexpression. */
static value_ptr
evaluate_subexp_for_sizeof (register struct expression *exp, register int *pos)
{
enum exp_opcode op;
register int pc;
struct type *type;
value_ptr val;
pc = (*pos);
op = exp->elts[pc].opcode;
switch (op)
{
/* This case is handled specially
so that we avoid creating a value for the result type.
If the result type is very big, it's desirable not to
create a value unnecessarily. */
case UNOP_IND:
(*pos)++;
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
type = check_typedef (VALUE_TYPE (val));
if (TYPE_CODE (type) != TYPE_CODE_PTR
&& TYPE_CODE (type) != TYPE_CODE_REF
&& TYPE_CODE (type) != TYPE_CODE_ARRAY)
error ("Attempt to take contents of a non-pointer value.");
type = check_typedef (TYPE_TARGET_TYPE (type));
return value_from_longest (builtin_type_int, (LONGEST)
TYPE_LENGTH (type));
case UNOP_MEMVAL:
(*pos) += 3;
type = check_typedef (exp->elts[pc + 1].type);
return value_from_longest (builtin_type_int,
(LONGEST) TYPE_LENGTH (type));
case OP_VAR_VALUE:
(*pos) += 4;
type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
return
value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type));
default:
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
return value_from_longest (builtin_type_int,
(LONGEST) TYPE_LENGTH (VALUE_TYPE (val)));
}
}
/* Parse a type expression in the string [P..P+LENGTH). */
struct type *
parse_and_eval_type (char *p, int length)
{
char *tmp = (char *) alloca (length + 4);
struct expression *expr;
tmp[0] = '(';
memcpy (tmp + 1, p, length);
tmp[length + 1] = ')';
tmp[length + 2] = '0';
tmp[length + 3] = '\0';
expr = parse_expression (tmp);
if (expr->elts[0].opcode != UNOP_CAST)
error ("Internal error in eval_type.");
return expr->elts[1].type;
}
int
calc_f77_array_dims (struct type *array_type)
{
int ndimen = 1;
struct type *tmp_type;
if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
error ("Can't get dimensions for a non-array type");
tmp_type = array_type;
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
{
if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
++ndimen;
}
return ndimen;
}