mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
9e837b37a4
symbols do not live in the shared library transfer table.
842 lines
23 KiB
C
842 lines
23 KiB
C
/* Get info from stack frames;
|
||
convert between frames, blocks, functions and pc values.
|
||
Copyright 1986, 1987, 1988, 1989, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "value.h" /* for read_register */
|
||
#include "target.h" /* for target_has_stack */
|
||
#include "inferior.h" /* for read_pc */
|
||
|
||
/* Is ADDR inside the startup file? Note that if your machine
|
||
has a way to detect the bottom of the stack, there is no need
|
||
to call this function from FRAME_CHAIN_VALID; the reason for
|
||
doing so is that some machines have no way of detecting bottom
|
||
of stack.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_entry_file (addr)
|
||
CORE_ADDR addr;
|
||
{
|
||
if (addr == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
|
||
/* Do not stop backtracing if the pc is in the call dummy
|
||
at the entry point. */
|
||
if (PC_IN_CALL_DUMMY (addr, 0, 0))
|
||
return 0;
|
||
#endif
|
||
return (addr >= symfile_objfile -> ei.entry_file_lowpc &&
|
||
addr < symfile_objfile -> ei.entry_file_highpc);
|
||
}
|
||
|
||
/* Test a specified PC value to see if it is in the range of addresses
|
||
that correspond to the main() function. See comments above for why
|
||
we might want to do this.
|
||
|
||
Typically called from FRAME_CHAIN_VALID.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_main_func (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
if (pc == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
return (symfile_objfile -> ei.main_func_lowpc <= pc &&
|
||
symfile_objfile -> ei.main_func_highpc > pc);
|
||
}
|
||
|
||
/* Test a specified PC value to see if it is in the range of addresses
|
||
that correspond to the process entry point function. See comments
|
||
in objfiles.h for why we might want to do this.
|
||
|
||
Typically called from FRAME_CHAIN_VALID.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_entry_func (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
if (pc == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
|
||
/* Do not stop backtracing if the pc is in the call dummy
|
||
at the entry point. */
|
||
if (PC_IN_CALL_DUMMY (pc, 0, 0))
|
||
return 0;
|
||
#endif
|
||
return (symfile_objfile -> ei.entry_func_lowpc <= pc &&
|
||
symfile_objfile -> ei.entry_func_highpc > pc);
|
||
}
|
||
|
||
/* Address of innermost stack frame (contents of FP register) */
|
||
|
||
static FRAME current_frame;
|
||
|
||
/*
|
||
* Cache for frame addresses already read by gdb. Valid only while
|
||
* inferior is stopped. Control variables for the frame cache should
|
||
* be local to this module.
|
||
*/
|
||
struct obstack frame_cache_obstack;
|
||
|
||
/* Return the innermost (currently executing) stack frame. */
|
||
|
||
FRAME
|
||
get_current_frame ()
|
||
{
|
||
/* We assume its address is kept in a general register;
|
||
param.h says which register. */
|
||
|
||
return current_frame;
|
||
}
|
||
|
||
void
|
||
set_current_frame (frame)
|
||
FRAME frame;
|
||
{
|
||
current_frame = frame;
|
||
}
|
||
|
||
FRAME
|
||
create_new_frame (addr, pc)
|
||
FRAME_ADDR addr;
|
||
CORE_ADDR pc;
|
||
{
|
||
struct frame_info *fci; /* Same type as FRAME */
|
||
char *name;
|
||
|
||
fci = (struct frame_info *)
|
||
obstack_alloc (&frame_cache_obstack,
|
||
sizeof (struct frame_info));
|
||
|
||
/* Arbitrary frame */
|
||
fci->next = (struct frame_info *) 0;
|
||
fci->prev = (struct frame_info *) 0;
|
||
fci->frame = addr;
|
||
fci->pc = pc;
|
||
find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
|
||
fci->signal_handler_caller = IN_SIGTRAMP (fci->pc, name);
|
||
|
||
#ifdef INIT_EXTRA_FRAME_INFO
|
||
INIT_EXTRA_FRAME_INFO (0, fci);
|
||
#endif
|
||
|
||
return fci;
|
||
}
|
||
|
||
/* Return the frame that called FRAME.
|
||
If FRAME is the original frame (it has no caller), return 0. */
|
||
|
||
FRAME
|
||
get_prev_frame (frame)
|
||
FRAME frame;
|
||
{
|
||
/* We're allowed to know that FRAME and "struct frame_info *" are
|
||
the same */
|
||
return get_prev_frame_info (frame);
|
||
}
|
||
|
||
/* Return the frame that FRAME calls (0 if FRAME is the innermost
|
||
frame). */
|
||
|
||
FRAME
|
||
get_next_frame (frame)
|
||
FRAME frame;
|
||
{
|
||
/* We're allowed to know that FRAME and "struct frame_info *" are
|
||
the same */
|
||
return frame->next;
|
||
}
|
||
|
||
/*
|
||
* Flush the entire frame cache.
|
||
*/
|
||
void
|
||
flush_cached_frames ()
|
||
{
|
||
/* Since we can't really be sure what the first object allocated was */
|
||
obstack_free (&frame_cache_obstack, 0);
|
||
obstack_init (&frame_cache_obstack);
|
||
|
||
current_frame = (struct frame_info *) 0; /* Invalidate cache */
|
||
}
|
||
|
||
/* Flush the frame cache, and start a new one if necessary. */
|
||
void
|
||
reinit_frame_cache ()
|
||
{
|
||
flush_cached_frames ();
|
||
if (target_has_stack)
|
||
{
|
||
set_current_frame (create_new_frame (read_fp (), read_pc ()));
|
||
select_frame (get_current_frame (), 0);
|
||
}
|
||
else
|
||
{
|
||
set_current_frame (0);
|
||
select_frame ((FRAME) 0, -1);
|
||
}
|
||
}
|
||
|
||
/* Return a structure containing various interesting information
|
||
about a specified stack frame. */
|
||
/* How do I justify including this function? Well, the FRAME
|
||
identifier format has gone through several changes recently, and
|
||
it's not completely inconceivable that it could happen again. If
|
||
it does, have this routine around will help */
|
||
|
||
struct frame_info *
|
||
get_frame_info (frame)
|
||
FRAME frame;
|
||
{
|
||
return frame;
|
||
}
|
||
|
||
/* If a machine allows frameless functions, it should define a macro
|
||
FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct
|
||
frame_info for the frame, and FRAMELESS should be set to nonzero
|
||
if it represents a frameless function invocation. */
|
||
|
||
/* Return nonzero if the function for this frame lacks a prologue. Many
|
||
machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
|
||
function. */
|
||
|
||
int
|
||
frameless_look_for_prologue (frame)
|
||
FRAME frame;
|
||
{
|
||
CORE_ADDR func_start, after_prologue;
|
||
func_start = (get_pc_function_start (frame->pc) +
|
||
FUNCTION_START_OFFSET);
|
||
if (func_start)
|
||
{
|
||
after_prologue = func_start;
|
||
#ifdef SKIP_PROLOGUE_FRAMELESS_P
|
||
/* This is faster, since only care whether there *is* a prologue,
|
||
not how long it is. */
|
||
SKIP_PROLOGUE_FRAMELESS_P (after_prologue);
|
||
#else
|
||
SKIP_PROLOGUE (after_prologue);
|
||
#endif
|
||
return after_prologue == func_start;
|
||
}
|
||
else
|
||
/* If we can't find the start of the function, we don't really
|
||
know whether the function is frameless, but we should be able
|
||
to get a reasonable (i.e. best we can do under the
|
||
circumstances) backtrace by saying that it isn't. */
|
||
return 0;
|
||
}
|
||
|
||
/* Default a few macros that people seldom redefine. */
|
||
|
||
#if !defined (INIT_FRAME_PC)
|
||
#define INIT_FRAME_PC(fromleaf, prev) \
|
||
prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
|
||
prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
|
||
#endif
|
||
|
||
#ifndef FRAME_CHAIN_COMBINE
|
||
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
||
#endif
|
||
|
||
/* Return a structure containing various interesting information
|
||
about the frame that called NEXT_FRAME. Returns NULL
|
||
if there is no such frame. */
|
||
|
||
struct frame_info *
|
||
get_prev_frame_info (next_frame)
|
||
FRAME next_frame;
|
||
{
|
||
FRAME_ADDR address = 0;
|
||
struct frame_info *prev;
|
||
int fromleaf = 0;
|
||
char *name;
|
||
|
||
/* If the requested entry is in the cache, return it.
|
||
Otherwise, figure out what the address should be for the entry
|
||
we're about to add to the cache. */
|
||
|
||
if (!next_frame)
|
||
{
|
||
#if 0
|
||
/* This screws value_of_variable, which just wants a nice clean
|
||
NULL return from block_innermost_frame if there are no frames.
|
||
I don't think I've ever seen this message happen otherwise.
|
||
And returning NULL here is a perfectly legitimate thing to do. */
|
||
if (!current_frame)
|
||
{
|
||
error ("You haven't set up a process's stack to examine.");
|
||
}
|
||
#endif
|
||
|
||
return current_frame;
|
||
}
|
||
|
||
/* If we have the prev one, return it */
|
||
if (next_frame->prev)
|
||
return next_frame->prev;
|
||
|
||
/* On some machines it is possible to call a function without
|
||
setting up a stack frame for it. On these machines, we
|
||
define this macro to take two args; a frameinfo pointer
|
||
identifying a frame and a variable to set or clear if it is
|
||
or isn't leafless. */
|
||
#ifdef FRAMELESS_FUNCTION_INVOCATION
|
||
/* Still don't want to worry about this except on the innermost
|
||
frame. This macro will set FROMLEAF if NEXT_FRAME is a
|
||
frameless function invocation. */
|
||
if (!(next_frame->next))
|
||
{
|
||
FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf);
|
||
if (fromleaf)
|
||
address = next_frame->frame;
|
||
}
|
||
#endif
|
||
|
||
if (!fromleaf)
|
||
{
|
||
/* Two macros defined in tm.h specify the machine-dependent
|
||
actions to be performed here.
|
||
First, get the frame's chain-pointer.
|
||
If that is zero, the frame is the outermost frame or a leaf
|
||
called by the outermost frame. This means that if start
|
||
calls main without a frame, we'll return 0 (which is fine
|
||
anyway).
|
||
|
||
Nope; there's a problem. This also returns when the current
|
||
routine is a leaf of main. This is unacceptable. We move
|
||
this to after the ffi test; I'd rather have backtraces from
|
||
start go curfluy than have an abort called from main not show
|
||
main. */
|
||
address = FRAME_CHAIN (next_frame);
|
||
if (!FRAME_CHAIN_VALID (address, next_frame))
|
||
return 0;
|
||
address = FRAME_CHAIN_COMBINE (address, next_frame);
|
||
}
|
||
if (address == 0)
|
||
return 0;
|
||
|
||
prev = (struct frame_info *)
|
||
obstack_alloc (&frame_cache_obstack,
|
||
sizeof (struct frame_info));
|
||
|
||
if (next_frame)
|
||
next_frame->prev = prev;
|
||
prev->next = next_frame;
|
||
prev->prev = (struct frame_info *) 0;
|
||
prev->frame = address;
|
||
prev->signal_handler_caller = 0;
|
||
|
||
/* This change should not be needed, FIXME! We should
|
||
determine whether any targets *need* INIT_FRAME_PC to happen
|
||
after INIT_EXTRA_FRAME_INFO and come up with a simple way to
|
||
express what goes on here.
|
||
|
||
INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
|
||
(where the PC is already set up) and here (where it isn't).
|
||
INIT_FRAME_PC is only called from here, always after
|
||
INIT_EXTRA_FRAME_INFO.
|
||
|
||
The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
|
||
value (which hasn't been set yet). Some other machines appear to
|
||
require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
|
||
|
||
We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
|
||
an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
|
||
|
||
To answer the question, yes the sparc needs INIT_FRAME_PC after
|
||
INIT_EXTRA_FRAME_INFO. Suggested scheme:
|
||
|
||
SETUP_INNERMOST_FRAME()
|
||
Default version is just create_new_frame (read_fp ()),
|
||
read_pc ()). Machines with extra frame info would do that (or the
|
||
local equivalent) and then set the extra fields.
|
||
SETUP_ARBITRARY_FRAME(argc, argv)
|
||
Only change here is that create_new_frame would no longer init extra
|
||
frame info; SETUP_ARBITRARY_FRAME would have to do that.
|
||
INIT_PREV_FRAME(fromleaf, prev)
|
||
Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
|
||
also return a flag saying whether to keep the new frame, or
|
||
whether to discard it, because on some machines (e.g. mips) it
|
||
is really awkward to have FRAME_CHAIN_VALID called *before*
|
||
INIT_EXTRA_FRAME_INFO (there is no good way to get information
|
||
deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
|
||
std_frame_pc(fromleaf, prev)
|
||
This is the default setting for INIT_PREV_FRAME. It just does what
|
||
the default INIT_FRAME_PC does. Some machines will call it from
|
||
INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
|
||
Some machines won't use it.
|
||
kingdon@cygnus.com, 13Apr93, 31Jan94. */
|
||
|
||
#ifdef INIT_FRAME_PC_FIRST
|
||
INIT_FRAME_PC_FIRST (fromleaf, prev);
|
||
#endif
|
||
|
||
#ifdef INIT_EXTRA_FRAME_INFO
|
||
INIT_EXTRA_FRAME_INFO(fromleaf, prev);
|
||
#endif
|
||
|
||
/* This entry is in the frame queue now, which is good since
|
||
FRAME_SAVED_PC may use that queue to figure out its value
|
||
(see tm-sparc.h). We want the pc saved in the inferior frame. */
|
||
INIT_FRAME_PC(fromleaf, prev);
|
||
|
||
/* If ->frame and ->pc are unchanged, we are in the process of getting
|
||
ourselves into an infinite backtrace. Some architectures check this
|
||
in FRAME_CHAIN or thereabouts, but it seems like there is no reason
|
||
this can't be an architecture-independent check. */
|
||
if (next_frame != NULL)
|
||
{
|
||
if (prev->frame == next_frame->frame
|
||
&& prev->pc == next_frame->pc)
|
||
{
|
||
next_frame->prev = NULL;
|
||
obstack_free (&frame_cache_obstack, prev);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
find_pc_partial_function (prev->pc, &name,
|
||
(CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
|
||
if (IN_SIGTRAMP (prev->pc, name))
|
||
prev->signal_handler_caller = 1;
|
||
|
||
return prev;
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_frame_pc (frame)
|
||
FRAME frame;
|
||
{
|
||
struct frame_info *fi;
|
||
fi = get_frame_info (frame);
|
||
return fi->pc;
|
||
}
|
||
|
||
#if defined (FRAME_FIND_SAVED_REGS)
|
||
/* Find the addresses in which registers are saved in FRAME. */
|
||
|
||
void
|
||
get_frame_saved_regs (frame_info_addr, saved_regs_addr)
|
||
struct frame_info *frame_info_addr;
|
||
struct frame_saved_regs *saved_regs_addr;
|
||
{
|
||
FRAME_FIND_SAVED_REGS (frame_info_addr, *saved_regs_addr);
|
||
}
|
||
#endif
|
||
|
||
/* Return the innermost lexical block in execution
|
||
in a specified stack frame. The frame address is assumed valid. */
|
||
|
||
struct block *
|
||
get_frame_block (frame)
|
||
FRAME frame;
|
||
{
|
||
struct frame_info *fi;
|
||
CORE_ADDR pc;
|
||
|
||
fi = get_frame_info (frame);
|
||
|
||
pc = fi->pc;
|
||
if (fi->next != 0 && fi->next->signal_handler_caller == 0)
|
||
/* We are not in the innermost frame and we were not interrupted
|
||
by a signal. We need to subtract one to get the correct block,
|
||
in case the call instruction was the last instruction of the block.
|
||
If there are any machines on which the saved pc does not point to
|
||
after the call insn, we probably want to make fi->pc point after
|
||
the call insn anyway. */
|
||
--pc;
|
||
return block_for_pc (pc);
|
||
}
|
||
|
||
struct block *
|
||
get_current_block ()
|
||
{
|
||
return block_for_pc (read_pc ());
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_pc_function_start (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
register struct block *bl;
|
||
register struct symbol *symbol;
|
||
register struct minimal_symbol *msymbol;
|
||
CORE_ADDR fstart;
|
||
|
||
if ((bl = block_for_pc (pc)) != NULL &&
|
||
(symbol = block_function (bl)) != NULL)
|
||
{
|
||
bl = SYMBOL_BLOCK_VALUE (symbol);
|
||
fstart = BLOCK_START (bl);
|
||
}
|
||
else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
|
||
{
|
||
fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
}
|
||
else
|
||
{
|
||
fstart = 0;
|
||
}
|
||
return (fstart);
|
||
}
|
||
|
||
/* Return the symbol for the function executing in frame FRAME. */
|
||
|
||
struct symbol *
|
||
get_frame_function (frame)
|
||
FRAME frame;
|
||
{
|
||
register struct block *bl = get_frame_block (frame);
|
||
if (bl == 0)
|
||
return 0;
|
||
return block_function (bl);
|
||
}
|
||
|
||
/* Return the blockvector immediately containing the innermost lexical block
|
||
containing the specified pc value, or 0 if there is none.
|
||
PINDEX is a pointer to the index value of the block. If PINDEX
|
||
is NULL, we don't pass this information back to the caller. */
|
||
|
||
struct blockvector *
|
||
blockvector_for_pc (pc, pindex)
|
||
register CORE_ADDR pc;
|
||
int *pindex;
|
||
{
|
||
register struct block *b;
|
||
register int bot, top, half;
|
||
register struct symtab *s;
|
||
struct blockvector *bl;
|
||
|
||
/* First search all symtabs for one whose file contains our pc */
|
||
s = find_pc_symtab (pc);
|
||
if (s == 0)
|
||
return 0;
|
||
|
||
bl = BLOCKVECTOR (s);
|
||
b = BLOCKVECTOR_BLOCK (bl, 0);
|
||
|
||
/* Then search that symtab for the smallest block that wins. */
|
||
/* Use binary search to find the last block that starts before PC. */
|
||
|
||
bot = 0;
|
||
top = BLOCKVECTOR_NBLOCKS (bl);
|
||
|
||
while (top - bot > 1)
|
||
{
|
||
half = (top - bot + 1) >> 1;
|
||
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
||
if (BLOCK_START (b) <= pc)
|
||
bot += half;
|
||
else
|
||
top = bot + half;
|
||
}
|
||
|
||
/* Now search backward for a block that ends after PC. */
|
||
|
||
while (bot >= 0)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (bl, bot);
|
||
if (BLOCK_END (b) > pc)
|
||
{
|
||
if (pindex)
|
||
*pindex = bot;
|
||
return bl;
|
||
}
|
||
bot--;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value,
|
||
or 0 if there is none. */
|
||
|
||
struct block *
|
||
block_for_pc (pc)
|
||
register CORE_ADDR pc;
|
||
{
|
||
register struct blockvector *bl;
|
||
int index;
|
||
|
||
bl = blockvector_for_pc (pc, &index);
|
||
if (bl)
|
||
return BLOCKVECTOR_BLOCK (bl, index);
|
||
return 0;
|
||
}
|
||
|
||
/* Return the function containing pc value PC.
|
||
Returns 0 if function is not known. */
|
||
|
||
struct symbol *
|
||
find_pc_function (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
register struct block *b = block_for_pc (pc);
|
||
if (b == 0)
|
||
return 0;
|
||
return block_function (b);
|
||
}
|
||
|
||
/* These variables are used to cache the most recent result
|
||
* of find_pc_partial_function. */
|
||
|
||
static CORE_ADDR cache_pc_function_low = 0;
|
||
static CORE_ADDR cache_pc_function_high = 0;
|
||
static char *cache_pc_function_name = 0;
|
||
|
||
/* Clear cache, e.g. when symbol table is discarded. */
|
||
|
||
void
|
||
clear_pc_function_cache()
|
||
{
|
||
cache_pc_function_low = 0;
|
||
cache_pc_function_high = 0;
|
||
cache_pc_function_name = (char *)0;
|
||
}
|
||
|
||
/* Finds the "function" (text symbol) that is smaller than PC but
|
||
greatest of all of the potential text symbols. Sets *NAME and/or
|
||
*ADDRESS conditionally if that pointer is non-null. If ENDADDR is
|
||
non-null, then set *ENDADDR to be the end of the function
|
||
(exclusive), but passing ENDADDR as non-null means that the
|
||
function might cause symbols to be read. This function either
|
||
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
||
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
||
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero
|
||
and returns 0. */
|
||
|
||
int
|
||
find_pc_partial_function (pc, name, address, endaddr)
|
||
CORE_ADDR pc;
|
||
char **name;
|
||
CORE_ADDR *address;
|
||
CORE_ADDR *endaddr;
|
||
{
|
||
struct partial_symtab *pst;
|
||
struct symbol *f;
|
||
struct minimal_symbol *msymbol;
|
||
struct partial_symbol *psb;
|
||
struct obj_section *sec;
|
||
|
||
if (pc >= cache_pc_function_low && pc < cache_pc_function_high)
|
||
goto return_cached_value;
|
||
|
||
/* If sigtramp is in the u area, it counts as a function (especially
|
||
important for step_1). */
|
||
#if defined SIGTRAMP_START
|
||
if (IN_SIGTRAMP (pc, (char *)NULL))
|
||
{
|
||
cache_pc_function_low = SIGTRAMP_START;
|
||
cache_pc_function_high = SIGTRAMP_END;
|
||
cache_pc_function_name = "<sigtramp>";
|
||
|
||
goto return_cached_value;
|
||
}
|
||
#endif
|
||
|
||
msymbol = lookup_minimal_symbol_by_pc (pc);
|
||
pst = find_pc_psymtab (pc);
|
||
if (pst)
|
||
{
|
||
/* Need to read the symbols to get a good value for the end address. */
|
||
if (endaddr != NULL && !pst->readin)
|
||
{
|
||
/* Need to get the terminal in case symbol-reading produces
|
||
output. */
|
||
target_terminal_ours_for_output ();
|
||
PSYMTAB_TO_SYMTAB (pst);
|
||
}
|
||
|
||
if (pst->readin)
|
||
{
|
||
/* Checking whether the msymbol has a larger value is for the
|
||
"pathological" case mentioned in print_frame_info. */
|
||
f = find_pc_function (pc);
|
||
if (f != NULL
|
||
&& (msymbol == NULL
|
||
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_name = SYMBOL_NAME (f);
|
||
goto return_cached_value;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Now that static symbols go in the minimal symbol table, perhaps
|
||
we could just ignore the partial symbols. But at least for now
|
||
we use the partial or minimal symbol, whichever is larger. */
|
||
psb = find_pc_psymbol (pst, pc);
|
||
|
||
if (psb
|
||
&& (msymbol == NULL ||
|
||
(SYMBOL_VALUE_ADDRESS (psb)
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
/* This case isn't being cached currently. */
|
||
if (address)
|
||
*address = SYMBOL_VALUE_ADDRESS (psb);
|
||
if (name)
|
||
*name = SYMBOL_NAME (psb);
|
||
/* endaddr non-NULL can't happen here. */
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Not in the normal symbol tables, see if the pc is in a known section.
|
||
If it's not, then give up. This ensures that anything beyond the end
|
||
of the text seg doesn't appear to be part of the last function in the
|
||
text segment. */
|
||
|
||
sec = find_pc_section (pc);
|
||
|
||
if (!sec)
|
||
msymbol = NULL;
|
||
|
||
/* Must be in the minimal symbol table. */
|
||
if (msymbol == NULL)
|
||
{
|
||
/* No available symbol. */
|
||
if (name != NULL)
|
||
*name = 0;
|
||
if (address != NULL)
|
||
*address = 0;
|
||
if (endaddr != NULL)
|
||
*endaddr = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* See if we're in a transfer table for Sun shared libs. */
|
||
|
||
if (msymbol -> type == mst_text || msymbol -> type == mst_file_text)
|
||
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
else
|
||
/* It is a transfer table for Sun shared libraries. */
|
||
cache_pc_function_low = pc - FUNCTION_START_OFFSET;
|
||
|
||
cache_pc_function_name = SYMBOL_NAME (msymbol);
|
||
|
||
/* Use the lesser of the next minimal symbol, or the end of the section, as
|
||
the end of the function. */
|
||
|
||
if (SYMBOL_NAME (msymbol + 1) != NULL
|
||
&& SYMBOL_VALUE_ADDRESS (msymbol + 1) < sec->endaddr)
|
||
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + 1);
|
||
else
|
||
/* We got the start address from the last msymbol in the objfile.
|
||
So the end address is the end of the section. */
|
||
cache_pc_function_high = sec->endaddr;
|
||
|
||
return_cached_value:
|
||
if (address)
|
||
*address = cache_pc_function_low;
|
||
if (name)
|
||
*name = cache_pc_function_name;
|
||
if (endaddr)
|
||
*endaddr = cache_pc_function_high;
|
||
return 1;
|
||
}
|
||
|
||
/* Return the innermost stack frame executing inside of BLOCK,
|
||
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
||
|
||
FRAME
|
||
block_innermost_frame (block)
|
||
struct block *block;
|
||
{
|
||
struct frame_info *fi;
|
||
register FRAME frame;
|
||
register CORE_ADDR start;
|
||
register CORE_ADDR end;
|
||
|
||
if (block == NULL)
|
||
return NULL;
|
||
|
||
start = BLOCK_START (block);
|
||
end = BLOCK_END (block);
|
||
|
||
frame = 0;
|
||
while (1)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == 0)
|
||
return 0;
|
||
fi = get_frame_info (frame);
|
||
if (fi->pc >= start && fi->pc < end)
|
||
return frame;
|
||
}
|
||
}
|
||
|
||
#ifdef SIGCONTEXT_PC_OFFSET
|
||
/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
|
||
|
||
CORE_ADDR
|
||
sigtramp_saved_pc (frame)
|
||
FRAME frame;
|
||
{
|
||
CORE_ADDR sigcontext_addr;
|
||
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
||
int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
||
int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
|
||
|
||
/* Get sigcontext address, it is the third parameter on the stack. */
|
||
if (frame->next)
|
||
sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
|
||
+ FRAME_ARGS_SKIP + sigcontext_offs,
|
||
ptrbytes);
|
||
else
|
||
sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
|
||
+ sigcontext_offs,
|
||
ptrbytes);
|
||
|
||
/* Don't cause a memory_error when accessing sigcontext in case the stack
|
||
layout has changed or the stack is corrupt. */
|
||
target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
|
||
return extract_unsigned_integer (buf, ptrbytes);
|
||
}
|
||
#endif /* SIGCONTEXT_PC_OFFSET */
|
||
|
||
void
|
||
_initialize_blockframe ()
|
||
{
|
||
obstack_init (&frame_cache_obstack);
|
||
}
|