binutils-gdb/gdb/m2-exp.y
Fred Fish 2e4964adfc * defs.h (STRCMP, STREQ, STREQN): New macros.
* defs.h (demangle_and_match):  Remove prototype.
	* dwarfread.c (STREQ, STREQN):  Remove macros, replaced with STREQ
	  and STREQN defined in defs.h.
	* dwarfread.c (set_cu_language):  For completely unknown languages,
	  try to deduce the language from the filename.  Retain behavior
	  that for known languages we don't know how to handle, we use
	  language_unknown.
	* dwarfread.c (enum_type, symthesize_typedef):  Initialize language
	  and demangled name fields in symbol.
	* dwarfread.c, mipsread.c, partial-stab.h:  For all usages of
	  ADD_PSYMBOL_TO_LIST, add language and objfile parameters.
	* dwarfread.c (new_symbol):  Attempt to demangle C++ symbol names
	  and cache the results in SYMBOL_DEMANGLED_NAME for the symbol.
	* elfread.c (STREQ):  Remove macro, use STREQ defined in defs.h.
	  Replace usages throughout.
	* elfread.c (demangle.h):  Include.
	* elfread.c (record_minimal_symbol):  Remove prototype and function.
	* gdbtypes.h, symtab.h (B_SET, B_CLR, B_TST, B_TYPE, B_BYTES,
	  B_CLRALL):  Moved from symtab.h to gdbtypes.h.
	* infcmd.c (jump_command):  Remove code to demangle name and add
	  it to a cleanup list.  Now just use SYMBOL_DEMANGLED_NAME.
	* minsyms.c (demangle.h):  Include.
	* minsyms.c (lookup_minimal_symbol):  Indent comment to match code.
	* minsyms.c (install_minimal_symbols):  Attempt to demangle symbol
	  names as C++ names, and cache them in SYMBOL_DEMANGLED_NAME.
	* mipsread.c (psymtab_language):  Add static variable.
	* stabsread.c (demangle.h):  Include.
	* stabsread.c (define_symbol):  Attempt to demangle C++ symbol
	  names and cache them in the SYMBOL_DEMANGLED_NAME field.
	* stack.c (return_command):  Remove explicit demangling of name
	  and use of cleanups.  Just use SYMBOL_DEMANGLED_NAME.
	* symfile.c (demangle.h):  Include.
	* symfile.c (add_psymbol_to_list, add_psymbol_addr_to_list):  Fix
	  to match macros in symfile.h and allow them to be compiled
	  if INLINE_ADD_PSYMBOL is not true.
	* symfile.h (INLINE_ADD_PSYMBOL):  Default to true if not set.
	* symfile.h (ADD_PSYMBOL_*):  Add language and objfile parameters.
	  Add code to demangle and cache C++ symbol names.  Use macro form
	  if INLINE_ADD_PSYMBOL is true, otherwise use C function form.
	* symmisc.c (add_psymbol_to_list, add_psymbol_addr_to_list):
	  Remove, also defined in symfile.c, which we already fixed.
	* symtab.c (expensive_mangler):  Remove prototype and function.
	* symtab.c (find_methods):  Remove physnames parameter and fix
	  prototype to match.
	* symtab.c (completion_list_add_symbol):  Name changed to
	  completion_list_add_name.
	* symtab.c (COMPLETION_LIST_ADD_SYMBOL):  New macro, adds both
	  the normal symbol name and the cached C++ demangled name.
	* symtab.c (lookup_demangled_partial_symbol,
	  lookup_demangled_block_symbol):  Remove prototypes and functions.
	* symtab.c (lookup_symbol):  Remove use of expensive_mangler,
	  use lookup_block_symbol instead of lookup_demangled_block_symbol.
	  Remove code to try demangling names and matching them.
	* symtab.c (lookup_partial_symbol, lookup_block_symbol):
	  Fix to try matching the cached demangled name if no match is
	  found using the regular symbol name.
	* symtab.c (find_methods):  Remove unused physnames array.
	* symtab.c (name_match, NAME_MATCH):  Remove function and macro,
	  replaced with SYMBOL_MATCHES_REGEXP from symtab.h.
	* symtab.c (completion_list_add_symbol):  Rewrite to use cached
	  C++ demangled symbol names.
	* symtab.h:  Much reformatting of structures and such to add
	  whitespace to make them more readable, and make them more
	  consistent with other gdb structure definitions.
	* symtab.h (general_symbol_info): New struct containing fields
	  common to all symbols.
	* symtab.h (SYMBOL_LANGUAGE, SYMBOL_DEMANGLED_NAME,
	  SYMBOL_SOURCE_NAME, SYMBOL_LINKAGE_NAME, SYMBOL_MATCHES_NAME,
	  SYMBOL_MATCHES_REGEXP, MSYMBOL_INFO, MSYMBOL_TYPE):  New macros.
	* symtab. (struct minimal_symbol, struct partial_symbol, struct
	  symbol): Use general_symbol_info struct.
	* utils.c (demangle_and_match):  Remove, no longer used.
	* valops.c (demangle.h):  Include.
	* xcoffexec.c (eq):  Remove macro, replace usages with STREQ.
	* blockframe.c, breakpoint.c, c-exp.y, c-valprint.c, dbxread.c,
	  infcmd.c, m2-exp.y, minsyms.c, objfiles.h, solib.c, stack.c,
	  symmisc.c, symtab.c, valops.c:  Replace references to minimal
	  symbol fields with appropriate macros.
	* breakpoint.c, buildsym.c, c-exp.y, c-typeprint.c, c-valprint.c,
	  coffread.c, command.c, convex-tdep.c, cp-valprint.c, dbxread.c,
	  demangle.c, elfread.c, energize.c, environ.c, exec.c,
	  gdbtypes.c, i960-tdep.c, infrun.c, infrun-hacked.c, language.c,
	  main.c, minsyms.c, mipsread.c, partial-stab.h, remote-es1800.c,
	  remote-nindy.c, remote-udi.c, rs6000-tdep.c, solib.c, source.c,
	  sparc-pinsn.c, stabsread.c, standalone.c, state.c, stuff.c,
	  symfile.c, symmisc.c, symtab.c, symtab.h, tm-sysv4.h,
	  tm-ultra3.h, values.c, xcoffexec.c, xcoffread.c:  Replace strcmp
	  and strncmp usages with STREQ, STREQN, or STRCMP as appropriate.
	* breakpoint.c, buildsym.c, c-typeprint.c, expprint.c, findvar.c,
	  mipsread.c, printcmd.c, source.c, stabsread.c, stack.c,
	  symmisc.c, tm-29k.h, valops.c, values.c:  Replace SYMBOL_NAME
	  references with SYMBOL_SOURCE_NAME or SYMBOL_LINKAGE_NAME as
	  appropriate.
	* buildsym.c (start_subfile, patch_subfile_names):  Default the
	  source language to what can be deduced from the filename.
	* buildsym.c (end_symtab):  Update the source language in the
	  allocated symtab to match what we have been using.
	* buildsym.h (struct subfile):  Add a language field.
	* c-typeprint.c (c_print_type):  Remove code to do explicit
	  demangling.
	* dbxread.c (psymtab_language):  Add static variable.
	* dbxread.c (start_psymtab):  Initialize psymtab_language using
	  deduce_language_from_filename.
1992-12-23 06:34:57 +00:00

1171 lines
27 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* YACC grammar for Modula-2 expressions, for GDB.
Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
Generated from expread.y (now c-exp.y) and contributed by the Department
of Computer Science at the State University of New York at Buffalo, 1991.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Parse a Modula-2 expression from text in a string,
and return the result as a struct expression pointer.
That structure contains arithmetic operations in reverse polish,
with constants represented by operations that are followed by special data.
See expression.h for the details of the format.
What is important here is that it can be built up sequentially
during the process of parsing; the lower levels of the tree always
come first in the result.
Note that malloc's and realloc's in this file are transformed to
xmalloc and xrealloc respectively by the same sed command in the
makefile that remaps any other malloc/realloc inserted by the parser
generator. Doing this with #defines and trying to control the interaction
with include files (<malloc.h> and <stdlib.h> for example) just became
too messy, particularly when such includes can be inserted at random
times by the parser generator. */
%{
#include "defs.h"
#include "expression.h"
#include "language.h"
#include "value.h"
#include "parser-defs.h"
#include "m2-lang.h"
/* These MUST be included in any grammar file!!!! Please choose unique names!
Note that this are a combined list of variables that can be produced
by any one of bison, byacc, or yacc. */
#define yymaxdepth m2_maxdepth
#define yyparse m2_parse
#define yylex m2_lex
#define yyerror m2_error
#define yylval m2_lval
#define yychar m2_char
#define yydebug m2_debug
#define yypact m2_pact
#define yyr1 m2_r1
#define yyr2 m2_r2
#define yydef m2_def
#define yychk m2_chk
#define yypgo m2_pgo
#define yyact m2_act
#define yyexca m2_exca
#define yyerrflag m2_errflag
#define yynerrs m2_nerrs
#define yyps m2_ps
#define yypv m2_pv
#define yys m2_s
#define yy_yys m2_yys
#define yystate m2_state
#define yytmp m2_tmp
#define yyv m2_v
#define yy_yyv m2_yyv
#define yyval m2_val
#define yylloc m2_lloc
#define yyss m2_yyss /* byacc */
#define yyssp m2_yysp /* byacc */
#define yyvs m2_yyvs /* byacc */
#define yyvsp m2_yyvsp /* byacc */
#if 0
static char *
make_qualname PARAMS ((char *, char *));
#endif
static int
parse_number PARAMS ((int));
static int
yylex PARAMS ((void));
void
yyerror PARAMS ((char *));
int
yyparse PARAMS ((void));
/* The sign of the number being parsed. */
static int number_sign = 1;
/* The block that the module specified by the qualifer on an identifer is
contained in, */
#if 0
static struct block *modblock=0;
#endif
/* #define YYDEBUG 1 */
%}
/* Although the yacc "value" of an expression is not used,
since the result is stored in the structure being created,
other node types do have values. */
%union
{
LONGEST lval;
unsigned LONGEST ulval;
double dval;
struct symbol *sym;
struct type *tval;
struct stoken sval;
int voidval;
struct block *bval;
enum exp_opcode opcode;
struct internalvar *ivar;
struct type **tvec;
int *ivec;
}
%type <voidval> exp type_exp start set
%type <voidval> variable
%type <tval> type
%type <bval> block
%type <sym> fblock
%token <lval> INT HEX ERROR
%token <ulval> UINT M2_TRUE M2_FALSE CHAR
%token <dval> FLOAT
/* Both NAME and TYPENAME tokens represent symbols in the input,
and both convey their data as strings.
But a TYPENAME is a string that happens to be defined as a typedef
or builtin type name (such as int or char)
and a NAME is any other symbol.
Contexts where this distinction is not important can use the
nonterminal "name", which matches either NAME or TYPENAME. */
%token <sval> STRING
%token <sval> NAME BLOCKNAME IDENT VARNAME
%token <sval> TYPENAME
%token SIZE CAP ORD HIGH ABS MIN_FUNC MAX_FUNC FLOAT_FUNC VAL CHR ODD TRUNC
%token INC DEC INCL EXCL
/* The GDB scope operator */
%token COLONCOLON
%token <lval> LAST REGNAME
%token <ivar> INTERNAL_VAR
/* M2 tokens */
%left ','
%left ABOVE_COMMA
%nonassoc ASSIGN
%left '<' '>' LEQ GEQ '=' NOTEQUAL '#' IN
%left OROR
%left LOGICAL_AND '&'
%left '@'
%left '+' '-'
%left '*' '/' DIV MOD
%right UNARY
%right '^' DOT '[' '('
%right NOT '~'
%left COLONCOLON QID
/* This is not an actual token ; it is used for precedence.
%right QID
*/
%%
start : exp
| type_exp
;
type_exp: type
{ write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type($1);
write_exp_elt_opcode(OP_TYPE);
}
;
/* Expressions */
exp : exp '^' %prec UNARY
{ write_exp_elt_opcode (UNOP_IND); }
exp : '-'
{ number_sign = -1; }
exp %prec UNARY
{ number_sign = 1;
write_exp_elt_opcode (UNOP_NEG); }
;
exp : '+' exp %prec UNARY
{ write_exp_elt_opcode(UNOP_PLUS); }
;
exp : not_exp exp %prec UNARY
{ write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
;
not_exp : NOT
| '~'
;
exp : CAP '(' exp ')'
{ write_exp_elt_opcode (UNOP_CAP); }
;
exp : ORD '(' exp ')'
{ write_exp_elt_opcode (UNOP_ORD); }
;
exp : ABS '(' exp ')'
{ write_exp_elt_opcode (UNOP_ABS); }
;
exp : HIGH '(' exp ')'
{ write_exp_elt_opcode (UNOP_HIGH); }
;
exp : MIN_FUNC '(' type ')'
{ write_exp_elt_opcode (UNOP_MIN);
write_exp_elt_type ($3);
write_exp_elt_opcode (UNOP_MIN); }
;
exp : MAX_FUNC '(' type ')'
{ write_exp_elt_opcode (UNOP_MAX);
write_exp_elt_type ($3);
write_exp_elt_opcode (UNOP_MIN); }
;
exp : FLOAT_FUNC '(' exp ')'
{ write_exp_elt_opcode (UNOP_FLOAT); }
;
exp : VAL '(' type ',' exp ')'
{ write_exp_elt_opcode (BINOP_VAL);
write_exp_elt_type ($3);
write_exp_elt_opcode (BINOP_VAL); }
;
exp : CHR '(' exp ')'
{ write_exp_elt_opcode (UNOP_CHR); }
;
exp : ODD '(' exp ')'
{ write_exp_elt_opcode (UNOP_ODD); }
;
exp : TRUNC '(' exp ')'
{ write_exp_elt_opcode (UNOP_TRUNC); }
;
exp : SIZE exp %prec UNARY
{ write_exp_elt_opcode (UNOP_SIZEOF); }
;
exp : INC '(' exp ')'
{ write_exp_elt_opcode(UNOP_PREINCREMENT); }
;
exp : INC '(' exp ',' exp ')'
{ write_exp_elt_opcode(BINOP_ASSIGN_MODIFY);
write_exp_elt_opcode(BINOP_ADD);
write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); }
;
exp : DEC '(' exp ')'
{ write_exp_elt_opcode(UNOP_PREDECREMENT);}
;
exp : DEC '(' exp ',' exp ')'
{ write_exp_elt_opcode(BINOP_ASSIGN_MODIFY);
write_exp_elt_opcode(BINOP_SUB);
write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); }
;
exp : exp DOT NAME
{ write_exp_elt_opcode (STRUCTOP_STRUCT);
write_exp_string ($3);
write_exp_elt_opcode (STRUCTOP_STRUCT); }
;
exp : set
;
exp : exp IN set
{ error("Sets are not implemented.");}
;
exp : INCL '(' exp ',' exp ')'
{ error("Sets are not implemented.");}
;
exp : EXCL '(' exp ',' exp ')'
{ error("Sets are not implemented.");}
set : '{' arglist '}'
{ error("Sets are not implemented.");}
| type '{' arglist '}'
{ error("Sets are not implemented.");}
;
/* Modula-2 array subscript notation [a,b,c...] */
exp : exp '['
/* This function just saves the number of arguments
that follow in the list. It is *not* specific to
function types */
{ start_arglist(); }
non_empty_arglist ']' %prec DOT
{ write_exp_elt_opcode (BINOP_MULTI_SUBSCRIPT);
write_exp_elt_longcst ((LONGEST) end_arglist());
write_exp_elt_opcode (BINOP_MULTI_SUBSCRIPT); }
;
exp : exp '('
/* This is to save the value of arglist_len
being accumulated by an outer function call. */
{ start_arglist (); }
arglist ')' %prec DOT
{ write_exp_elt_opcode (OP_FUNCALL);
write_exp_elt_longcst ((LONGEST) end_arglist ());
write_exp_elt_opcode (OP_FUNCALL); }
;
arglist :
;
arglist : exp
{ arglist_len = 1; }
;
arglist : arglist ',' exp %prec ABOVE_COMMA
{ arglist_len++; }
;
non_empty_arglist
: exp
{ arglist_len = 1; }
;
non_empty_arglist
: non_empty_arglist ',' exp %prec ABOVE_COMMA
{ arglist_len++; }
;
/* GDB construct */
exp : '{' type '}' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_MEMVAL);
write_exp_elt_type ($2);
write_exp_elt_opcode (UNOP_MEMVAL); }
;
exp : type '(' exp ')' %prec UNARY
{ write_exp_elt_opcode (UNOP_CAST);
write_exp_elt_type ($1);
write_exp_elt_opcode (UNOP_CAST); }
;
exp : '(' exp ')'
{ }
;
/* Binary operators in order of decreasing precedence. Note that some
of these operators are overloaded! (ie. sets) */
/* GDB construct */
exp : exp '@' exp
{ write_exp_elt_opcode (BINOP_REPEAT); }
;
exp : exp '*' exp
{ write_exp_elt_opcode (BINOP_MUL); }
;
exp : exp '/' exp
{ write_exp_elt_opcode (BINOP_DIV); }
;
exp : exp DIV exp
{ write_exp_elt_opcode (BINOP_INTDIV); }
;
exp : exp MOD exp
{ write_exp_elt_opcode (BINOP_REM); }
;
exp : exp '+' exp
{ write_exp_elt_opcode (BINOP_ADD); }
;
exp : exp '-' exp
{ write_exp_elt_opcode (BINOP_SUB); }
;
exp : exp '=' exp
{ write_exp_elt_opcode (BINOP_EQUAL); }
;
exp : exp NOTEQUAL exp
{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
| exp '#' exp
{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
;
exp : exp LEQ exp
{ write_exp_elt_opcode (BINOP_LEQ); }
;
exp : exp GEQ exp
{ write_exp_elt_opcode (BINOP_GEQ); }
;
exp : exp '<' exp
{ write_exp_elt_opcode (BINOP_LESS); }
;
exp : exp '>' exp
{ write_exp_elt_opcode (BINOP_GTR); }
;
exp : exp LOGICAL_AND exp
{ write_exp_elt_opcode (BINOP_LOGICAL_AND); }
;
exp : exp OROR exp
{ write_exp_elt_opcode (BINOP_LOGICAL_OR); }
;
exp : exp ASSIGN exp
{ write_exp_elt_opcode (BINOP_ASSIGN); }
;
/* Constants */
exp : M2_TRUE
{ write_exp_elt_opcode (OP_BOOL);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_BOOL); }
;
exp : M2_FALSE
{ write_exp_elt_opcode (OP_BOOL);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_BOOL); }
;
exp : INT
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_m2_int);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LONG); }
;
exp : UINT
{
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_m2_card);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LONG);
}
;
exp : CHAR
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_m2_char);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LONG); }
;
exp : FLOAT
{ write_exp_elt_opcode (OP_DOUBLE);
write_exp_elt_type (builtin_type_m2_real);
write_exp_elt_dblcst ($1);
write_exp_elt_opcode (OP_DOUBLE); }
;
exp : variable
;
/* The GDB internal variable $$, et al. */
exp : LAST
{ write_exp_elt_opcode (OP_LAST);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LAST); }
;
exp : REGNAME
{ write_exp_elt_opcode (OP_REGISTER);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_REGISTER); }
;
exp : SIZE '(' type ')' %prec UNARY
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
write_exp_elt_opcode (OP_LONG); }
;
exp : STRING
{ write_exp_elt_opcode (OP_M2_STRING);
write_exp_string ($1);
write_exp_elt_opcode (OP_M2_STRING); }
;
/* This will be used for extensions later. Like adding modules. */
block : fblock
{ $$ = SYMBOL_BLOCK_VALUE($1); }
;
fblock : BLOCKNAME
{ struct symbol *sym
= lookup_symbol (copy_name ($1), expression_context_block,
VAR_NAMESPACE, 0, NULL);
$$ = sym;}
;
/* GDB scope operator */
fblock : block COLONCOLON BLOCKNAME
{ struct symbol *tem
= lookup_symbol (copy_name ($3), $1,
VAR_NAMESPACE, 0, NULL);
if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
error ("No function \"%s\" in specified context.",
copy_name ($3));
$$ = tem;
}
;
/* Useful for assigning to PROCEDURE variables */
variable: fblock
{ write_exp_elt_opcode(OP_VAR_VALUE);
write_exp_elt_sym ($1);
write_exp_elt_opcode (OP_VAR_VALUE); }
;
/* GDB internal ($foo) variable */
variable: INTERNAL_VAR
{ write_exp_elt_opcode (OP_INTERNALVAR);
write_exp_elt_intern ($1);
write_exp_elt_opcode (OP_INTERNALVAR); }
;
/* GDB scope operator */
variable: block COLONCOLON NAME
{ struct symbol *sym;
sym = lookup_symbol (copy_name ($3), $1,
VAR_NAMESPACE, 0, NULL);
if (sym == 0)
error ("No symbol \"%s\" in specified context.",
copy_name ($3));
write_exp_elt_opcode (OP_VAR_VALUE);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE); }
;
/* Base case for variables. */
variable: NAME
{ struct symbol *sym;
int is_a_field_of_this;
sym = lookup_symbol (copy_name ($1),
expression_context_block,
VAR_NAMESPACE,
&is_a_field_of_this,
NULL);
if (sym)
{
switch (sym->class)
{
case LOC_REGISTER:
case LOC_ARG:
case LOC_LOCAL:
case LOC_REF_ARG:
case LOC_REGPARM:
case LOC_LOCAL_ARG:
if (innermost_block == 0 ||
contained_in (block_found,
innermost_block))
innermost_block = block_found;
break;
case LOC_UNDEF:
case LOC_CONST:
case LOC_STATIC:
case LOC_TYPEDEF:
case LOC_LABEL: /* maybe should go above? */
case LOC_BLOCK:
case LOC_CONST_BYTES:
/* These are listed so gcc -Wall will reveal
un-handled cases. */
break;
}
write_exp_elt_opcode (OP_VAR_VALUE);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE);
}
else
{
struct minimal_symbol *msymbol;
register char *arg = copy_name ($1);
msymbol = lookup_minimal_symbol (arg,
(struct objfile *) NULL);
if (msymbol != NULL)
{
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
write_exp_elt_opcode (OP_LONG);
write_exp_elt_opcode (UNOP_MEMVAL);
if (msymbol -> type == mst_data ||
msymbol -> type == mst_bss)
write_exp_elt_type (builtin_type_int);
else if (msymbol -> type == mst_text)
write_exp_elt_type (lookup_function_type (builtin_type_int));
else
write_exp_elt_type (builtin_type_char);
write_exp_elt_opcode (UNOP_MEMVAL);
}
else if (!have_full_symbols () && !have_partial_symbols ())
error ("No symbol table is loaded. Use the \"symbol-file\" command.");
else
error ("No symbol \"%s\" in current context.",
copy_name ($1));
}
}
;
type
: TYPENAME
{ $$ = lookup_typename (copy_name ($1),
expression_context_block, 0); }
;
%%
#if 0 /* FIXME! */
int
overflow(a,b)
long a,b;
{
return (MAX_OF_TYPE(builtin_type_m2_int) - b) < a;
}
int
uoverflow(a,b)
unsigned long a,b;
{
return (MAX_OF_TYPE(builtin_type_m2_card) - b) < a;
}
#endif /* FIXME */
/* Take care of parsing a number (anything that starts with a digit).
Set yylval and return the token type; update lexptr.
LEN is the number of characters in it. */
/*** Needs some error checking for the float case ***/
static int
parse_number (olen)
int olen;
{
register char *p = lexptr;
register LONGEST n = 0;
register LONGEST prevn = 0;
register int c,i,ischar=0;
register int base = input_radix;
register int len = olen;
int unsigned_p = number_sign == 1 ? 1 : 0;
if(p[len-1] == 'H')
{
base = 16;
len--;
}
else if(p[len-1] == 'C' || p[len-1] == 'B')
{
base = 8;
ischar = p[len-1] == 'C';
len--;
}
/* Scan the number */
for (c = 0; c < len; c++)
{
if (p[c] == '.' && base == 10)
{
/* It's a float since it contains a point. */
yylval.dval = atof (p);
lexptr += len;
return FLOAT;
}
if (p[c] == '.' && base != 10)
error("Floating point numbers must be base 10.");
if (base == 10 && (p[c] < '0' || p[c] > '9'))
error("Invalid digit \'%c\' in number.",p[c]);
}
while (len-- > 0)
{
c = *p++;
n *= base;
if( base == 8 && (c == '8' || c == '9'))
error("Invalid digit \'%c\' in octal number.",c);
if (c >= '0' && c <= '9')
i = c - '0';
else
{
if (base == 16 && c >= 'A' && c <= 'F')
i = c - 'A' + 10;
else
return ERROR;
}
n+=i;
if(i >= base)
return ERROR;
if(!unsigned_p && number_sign == 1 && (prevn >= n))
unsigned_p=1; /* Try something unsigned */
/* Don't do the range check if n==i and i==0, since that special
case will give an overflow error. */
if(RANGE_CHECK && n!=i && i)
{
if((unsigned_p && (unsigned)prevn >= (unsigned)n) ||
((!unsigned_p && number_sign==-1) && -prevn <= -n))
range_error("Overflow on numeric constant.");
}
prevn=n;
}
lexptr = p;
if(*p == 'B' || *p == 'C' || *p == 'H')
lexptr++; /* Advance past B,C or H */
if (ischar)
{
yylval.ulval = n;
return CHAR;
}
else if ( unsigned_p && number_sign == 1)
{
yylval.ulval = n;
return UINT;
}
else if((unsigned_p && (n<0))) {
range_error("Overflow on numeric constant -- number too large.");
/* But, this can return if range_check == range_warn. */
}
yylval.lval = n;
return INT;
}
/* Some tokens */
static struct
{
char name[2];
int token;
} tokentab2[] =
{
{ {'<', '>'}, NOTEQUAL },
{ {':', '='}, ASSIGN },
{ {'<', '='}, LEQ },
{ {'>', '='}, GEQ },
{ {':', ':'}, COLONCOLON },
};
/* Some specific keywords */
struct keyword {
char keyw[10];
int token;
};
static struct keyword keytab[] =
{
{"OR" , OROR },
{"IN", IN },/* Note space after IN */
{"AND", LOGICAL_AND},
{"ABS", ABS },
{"CHR", CHR },
{"DEC", DEC },
{"NOT", NOT },
{"DIV", DIV },
{"INC", INC },
{"MAX", MAX_FUNC },
{"MIN", MIN_FUNC },
{"MOD", MOD },
{"ODD", ODD },
{"CAP", CAP },
{"ORD", ORD },
{"VAL", VAL },
{"EXCL", EXCL },
{"HIGH", HIGH },
{"INCL", INCL },
{"SIZE", SIZE },
{"FLOAT", FLOAT_FUNC },
{"TRUNC", TRUNC },
};
/* Read one token, getting characters through lexptr. */
/* This is where we will check to make sure that the language and the operators used are
compatible */
static int
yylex ()
{
register int c;
register int namelen;
register int i;
register char *tokstart;
register char quote;
retry:
tokstart = lexptr;
/* See if it is a special token of length 2 */
for( i = 0 ; i < sizeof tokentab2 / sizeof tokentab2[0] ; i++)
if(!strncmp(tokentab2[i].name, tokstart, 2))
{
lexptr += 2;
return tokentab2[i].token;
}
switch (c = *tokstart)
{
case 0:
return 0;
case ' ':
case '\t':
case '\n':
lexptr++;
goto retry;
case '(':
paren_depth++;
lexptr++;
return c;
case ')':
if (paren_depth == 0)
return 0;
paren_depth--;
lexptr++;
return c;
case ',':
if (comma_terminates && paren_depth == 0)
return 0;
lexptr++;
return c;
case '.':
/* Might be a floating point number. */
if (lexptr[1] >= '0' && lexptr[1] <= '9')
break; /* Falls into number code. */
else
{
lexptr++;
return DOT;
}
/* These are character tokens that appear as-is in the YACC grammar */
case '+':
case '-':
case '*':
case '/':
case '^':
case '<':
case '>':
case '[':
case ']':
case '=':
case '{':
case '}':
case '#':
case '@':
case '~':
case '&':
lexptr++;
return c;
case '\'' :
case '"':
quote = c;
for (namelen = 1; (c = tokstart[namelen]) != quote && c != '\0'; namelen++)
if (c == '\\')
{
c = tokstart[++namelen];
if (c >= '0' && c <= '9')
{
c = tokstart[++namelen];
if (c >= '0' && c <= '9')
c = tokstart[++namelen];
}
}
if(c != quote)
error("Unterminated string or character constant.");
yylval.sval.ptr = tokstart + 1;
yylval.sval.length = namelen - 1;
lexptr += namelen + 1;
if(namelen == 2) /* Single character */
{
yylval.ulval = tokstart[1];
return CHAR;
}
else
return STRING;
}
/* Is it a number? */
/* Note: We have already dealt with the case of the token '.'.
See case '.' above. */
if ((c >= '0' && c <= '9'))
{
/* It's a number. */
int got_dot = 0, got_e = 0;
register char *p = tokstart;
int toktype;
for (++p ;; ++p)
{
if (!got_e && (*p == 'e' || *p == 'E'))
got_dot = got_e = 1;
else if (!got_dot && *p == '.')
got_dot = 1;
else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
&& (*p == '-' || *p == '+'))
/* This is the sign of the exponent, not the end of the
number. */
continue;
else if ((*p < '0' || *p > '9') &&
(*p < 'A' || *p > 'F') &&
(*p != 'H')) /* Modula-2 hexadecimal number */
break;
}
toktype = parse_number (p - tokstart);
if (toktype == ERROR)
{
char *err_copy = (char *) alloca (p - tokstart + 1);
memcpy (err_copy, tokstart, p - tokstart);
err_copy[p - tokstart] = 0;
error ("Invalid number \"%s\".", err_copy);
}
lexptr = p;
return toktype;
}
if (!(c == '_' || c == '$'
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
/* We must have come across a bad character (e.g. ';'). */
error ("Invalid character '%c' in expression.", c);
/* It's a name. See how long it is. */
namelen = 0;
for (c = tokstart[namelen];
(c == '_' || c == '$' || (c >= '0' && c <= '9')
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
c = tokstart[++namelen])
;
/* The token "if" terminates the expression and is NOT
removed from the input stream. */
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
{
return 0;
}
lexptr += namelen;
/* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
and $$digits (equivalent to $<-digits> if you could type that).
Make token type LAST, and put the number (the digits) in yylval. */
if (*tokstart == '$')
{
register int negate = 0;
c = 1;
/* Double dollar means negate the number and add -1 as well.
Thus $$ alone means -1. */
if (namelen >= 2 && tokstart[1] == '$')
{
negate = 1;
c = 2;
}
if (c == namelen)
{
/* Just dollars (one or two) */
yylval.lval = - negate;
return LAST;
}
/* Is the rest of the token digits? */
for (; c < namelen; c++)
if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
break;
if (c == namelen)
{
yylval.lval = atoi (tokstart + 1 + negate);
if (negate)
yylval.lval = - yylval.lval;
return LAST;
}
}
/* Handle tokens that refer to machine registers:
$ followed by a register name. */
if (*tokstart == '$') {
for (c = 0; c < NUM_REGS; c++)
if (namelen - 1 == strlen (reg_names[c])
&& !strncmp (tokstart + 1, reg_names[c], namelen - 1))
{
yylval.lval = c;
return REGNAME;
}
for (c = 0; c < num_std_regs; c++)
if (namelen - 1 == strlen (std_regs[c].name)
&& !strncmp (tokstart + 1, std_regs[c].name, namelen - 1))
{
yylval.lval = std_regs[c].regnum;
return REGNAME;
}
}
/* Lookup special keywords */
for(i = 0 ; i < sizeof(keytab) / sizeof(keytab[0]) ; i++)
if(namelen == strlen(keytab[i].keyw) && !strncmp(tokstart,keytab[i].keyw,namelen))
return keytab[i].token;
yylval.sval.ptr = tokstart;
yylval.sval.length = namelen;
/* Any other names starting in $ are debugger internal variables. */
if (*tokstart == '$')
{
yylval.ivar = (struct internalvar *) lookup_internalvar (copy_name (yylval.sval) + 1);
return INTERNAL_VAR;
}
/* Use token-type BLOCKNAME for symbols that happen to be defined as
functions. If this is not so, then ...
Use token-type TYPENAME for symbols that happen to be defined
currently as names of types; NAME for other symbols.
The caller is not constrained to care about the distinction. */
{
char *tmp = copy_name (yylval.sval);
struct symbol *sym;
if (lookup_partial_symtab (tmp))
return BLOCKNAME;
sym = lookup_symbol (tmp, expression_context_block,
VAR_NAMESPACE, 0, NULL);
if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
return BLOCKNAME;
if (lookup_typename (copy_name (yylval.sval), expression_context_block, 1))
return TYPENAME;
if(sym)
{
switch(sym->class)
{
case LOC_STATIC:
case LOC_REGISTER:
case LOC_ARG:
case LOC_REF_ARG:
case LOC_REGPARM:
case LOC_LOCAL:
case LOC_LOCAL_ARG:
case LOC_CONST:
case LOC_CONST_BYTES:
return NAME;
case LOC_TYPEDEF:
return TYPENAME;
case LOC_BLOCK:
return BLOCKNAME;
case LOC_UNDEF:
error("internal: Undefined class in m2lex()");
case LOC_LABEL:
error("internal: Unforseen case in m2lex()");
}
}
else
{
/* Built-in BOOLEAN type. This is sort of a hack. */
if(!strncmp(tokstart,"TRUE",4))
{
yylval.ulval = 1;
return M2_TRUE;
}
else if(!strncmp(tokstart,"FALSE",5))
{
yylval.ulval = 0;
return M2_FALSE;
}
}
/* Must be another type of name... */
return NAME;
}
}
#if 0 /* Unused */
static char *
make_qualname(mod,ident)
char *mod, *ident;
{
char *new = malloc(strlen(mod)+strlen(ident)+2);
strcpy(new,mod);
strcat(new,".");
strcat(new,ident);
return new;
}
#endif /* 0 */
void
yyerror(msg)
char *msg; /* unused */
{
printf("Parsing: %s\n",lexptr);
if (yychar < 256)
error("Invalid syntax in expression near character '%c'.",yychar);
else
error("Invalid syntax in expression");
}