mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
f6ac5f3d63
I.e., use C++ virtual methods and inheritance instead of tables of function pointers. Unfortunately, there's no way to do a smooth transition. ALL native targets in the tree must be converted at the same time. I've tested all I could with cross compilers and with help from GCC compile farm, but naturally I haven't been able to test many of the ports. Still, I made a best effort to port everything over, and while I expect some build problems due to typos and such, which should be trivial to fix, I don't expect any design problems. * Implementation notes: - The flattened current_target is gone. References to current_target or current_target.beneath are replaced with references to target_stack (the top of the stack) directly. - To keep "set debug target" working, this adds a new debug_stratum layer that sits on top of the stack, prints the debug, and delegates to the target beneath. In addition, this makes the shortname and longname properties of target_ops be virtual methods instead of data fields, and makes the debug target defer those to the target beneath. This is so that debug code sprinkled around that does "if (debugtarget) ..." can transparently print the name of the target beneath. A patch later in the series actually splits out the shortname/longname methods to a separate structure, but I preferred to keep that chance separate as it is associated with changing a bit the design of how targets are registered and open. - Since you can't check whether a C++ virtual method is overridden, the old method of checking whether a target_ops implements a method by comparing the function pointer must be replaced with something else. Some cases are fixed by adding a parallel "can_do_foo" target_ops methods. E.g.,: + for (t = target_stack; t != NULL; t = t->beneath) { - if (t->to_create_inferior != NULL) + if (t->can_create_inferior ()) break; } Others are fixed by changing void return type to bool or int return type, and have the default implementation return false or -1, to indicate lack of support. - make-target-delegates was adjusted to generate C++ classes and methods. It needed tweaks to grok "virtual" in front of the target method name, and for the fact that methods are no longer function pointers. (In particular, the current code parsing the return type was simple because it could simply parse up until the '(' in '(*to_foo)'. It now generates a couple C++ classes that inherit target_ops: dummy_target and debug_target. Since we need to generate the class declarations as well, i.e., we need to emit methods twice, we now generate the code in two passes. - The core_target global is renamed to avoid conflict with the "core_target" class. - ctf/tfile targets init_tracefile_ops is replaced by a base class that is inherited by both ctf and tfile. - bsd-uthread The bsd_uthread_ops_hack hack is gone. It's not needed because nothing was extending a target created by bsd_uthread_target. - remote/extended-remote targets This is a first pass, just enough to C++ify target_ops. A later pass will convert more free functions to methods, and make remote_state be truly per remote instance, allowing multiple simultaneous instances of remote targets. - inf-child/"native" is converted to an actual base class (inf_child_target), that is inherited by all native targets. - GNU/Linux The old weird double-target linux_ops mechanism in linux-nat.c, is gone, replaced by adding a few virtual methods to linux-nat.h's target_ops, called low_XXX, that the concrete linux-nat implementations override. Sort of like gdbserver's linux_target_ops, but simpler, for requiring only one target_ops-like hierarchy, which spares implementing the same method twice when we need to forward the method to a low implementation. The low target simply reimplements the target_ops method directly in that case. There are a few remaining linux-nat.c hooks that would be better converted to low_ methods like above too. E.g.: linux_nat_set_new_thread (t, x86_linux_new_thread); linux_nat_set_new_fork (t, x86_linux_new_fork); linux_nat_set_forget_process That'll be done in a follow up patch. - We can no longer use functions like x86_use_watchpoints to install custom methods on an arbitrary base target. The patch replaces instances of such a pattern with template mixins. For example memory_breakpoint_target defined in target.h, or x86_nat_target in x86-nat.h. - linux_trad_target, MIPS and Alpha GNU/Linux The code in the new linux-nat-trad.h/c files which was split off of inf-ptrace.h/c recently, is converted to a C++ base class, and used by the MIPS and Alpha GNU/Linux ports. - BSD targets The $architecture x NetBSD/OpenBSD/FreeBSD support matrix complicates things a bit. There's common BSD target code, and there's common architecture-specific code shared between the different BSDs. Currently, all that is stiched together to form a final target, via the i386bsd_target, x86bsd_target, fbsd_nat_add_target functions etc. This introduces new fbsd_nat_target, obsd_nat_target and nbsd_nat_target classes that serve as base/prototype target for the corresponding BSD variant. And introduces generic i386/AMD64 BSD targets, to be used as template mixin to build a final target. Similarly, a generic SPARC target is added, used by both BSD and Linux ports. - bsd_kvm_add_target, BSD libkvm target I considered making bsd_kvm_supply_pcb a virtual method, and then have each port inherit bsd_kvm_target and override that method, but that was resulting in lots of unjustified churn, so I left the function pointer mechanism alone. gdb/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> John Baldwin <jhb@freebsd.org> * target.h (enum strata) <debug_stratum>: New. (struct target_ops) <all delegation methods>: Replace by C++ virtual methods, and drop "to_" prefix. All references updated throughout. <to_shortname, to_longname, to_doc, to_data, to_have_steppable_watchpoint, to_have_continuable_watchpoint, to_has_thread_control, to_attach_no_wait>: Delete, replaced by virtual methods. All references updated throughout. <can_attach, supports_terminal_ours, can_create_inferior, get_thread_control_capabilities, attach_no_wait>: New virtual methods. <insert_breakpoint, remove_breakpoint>: Now TARGET_DEFAULT_NORETURN methods. <info_proc>: Now returns bool. <to_magic>: Delete. (OPS_MAGIC): Delete. (current_target): Delete. All references replaced by references to ... (target_stack): ... this. New. (target_shortname, target_longname): Adjust. (target_can_run): Now a function declaration. (default_child_has_all_memory, default_child_has_memory) (default_child_has_stack, default_child_has_registers) (default_child_has_execution): Remove target_ops parameter. (complete_target_initialization): Delete. (memory_breakpoint_target): New template class. (test_target_ops): Refactor as a C++ class with virtual methods. * make-target-delegates (NAME_PART): Tighten. (POINTER_PART, CP_SYMBOL): New. (SIMPLE_RETURN_PART): Reimplement. (VEC_RETURN_PART): Expect less. (RETURN_PART, VIRTUAL_PART): New. (METHOD): Adjust to C++ virtual methods. (scan_target_h): Remove reference to C99. (dname): Output "target_ops::" prefix. (write_function_header): Adjust to output a C++ class method. (write_declaration): New. (write_delegator): Adjust to output a C++ class method. (tdname): Output "dummy_target::" prefix. (write_tdefault, write_debugmethod): Adjust to output a C++ class method. (tdefault_names, debug_names): Delete. (return_types, tdefaults, styles, argtypes_array): New. (top level): All methods are delegators. (print_class): New. (top level): Print dummy_target and debug_target classes. * target-delegates.c: Regenerate. * target-debug.h (target_debug_print_enum_info_proc_what) (target_debug_print_thread_control_capabilities) (target_debug_print_thread_info_p): New. * target.c (dummy_target): Delete. (the_dummy_target, the_debug_target): New. (target_stack): Now extern. (set_targetdebug): Push/unpush debug target. (default_child_has_all_memory, default_child_has_memory) (default_child_has_stack, default_child_has_registers) (default_child_has_execution): Remove target_ops parameter. (complete_target_initialization): Delete. (add_target_with_completer): No longer call complete_target_initialization. (target_supports_terminal_ours): Use regular delegation. (update_current_target): Delete. (push_target): No longer check magic number. Don't call update_current_target. (unpush_target): Don't call update_current_target. (target_is_pushed): No longer check magic number. (target_require_runnable): Skip for all stratums over process_stratum. (target_ops::info_proc): New. (target_info_proc): Use find_target_at and find_default_run_target. (target_supports_disable_randomization): Use regular delegation. (target_get_osdata): Use find_target_at. (target_ops::open, target_ops::close, target_ops::can_attach) (target_ops::attach, target_ops::can_create_inferior) (target_ops::create_inferior, target_ops::can_run) (target_can_run): New. (default_fileio_target): Use regular delegation. (target_ops::fileio_open, target_ops::fileio_pwrite) (target_ops::fileio_pread, target_ops::fileio_fstat) (target_ops::fileio_close, target_ops::fileio_unlink) (target_ops::fileio_readlink): New. (target_fileio_open_1, target_fileio_unlink) (target_fileio_readlink): Always call the target method. Handle FILEIO_ENOSYS. (return_zero, return_zero_has_execution): Delete. (init_dummy_target): Delete. (dummy_target::dummy_target, dummy_target::shortname) (dummy_target::longname, dummy_target::doc) (debug_target::debug_target, debug_target::shortname) (debug_target::longname, debug_target::doc): New. (target_supports_delete_record): Use regular delegation. (setup_target_debug): Delete. (maintenance_print_target_stack): Skip debug_stratum. (initialize_targets): Instantiate the_dummy_target and the_debug_target. * auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to use target_stack. (target_auxv_search, fprint_target_auxv): Adjust. (info_auxv_command): Adjust to use target_stack. * auxv.h (target_auxv_parse): Remove 'ops' parameter. * exceptions.c (print_flush): Handle a NULL target_stack. * regcache.c (target_ops_no_register): Refactor as class with virtual methods. * exec.c (exec_target): New class. (exec_ops): Now an exec_target. (exec_open, exec_close_1, exec_get_section_table) (exec_xfer_partial, exec_files_info, exec_has_memory) (exec_make_note_section): Refactor as exec_target methods. (exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops): Delete. (exec_target::find_memory_regions): New. (_initialize_exec): Don't call init_exec_ops. * gdbcore.h (exec_file_clear): Delete. * corefile.c (core_target): Delete. (core_file_command): Adjust. * corelow.c (core_target): New class. (the_core_target): New. (core_close): Remove target_ops parameter. (core_close_cleanup): Adjust. (core_target::close): New. (core_open, core_detach, get_core_registers, core_files_info) (core_xfer_partial, core_thread_alive, core_read_description) (core_pid_to_str, core_thread_name, core_has_memory) (core_has_stack, core_has_registers, core_info_proc): Rework as core_target methods. (ignore, core_remove_breakpoint, init_core_ops): Delete. (_initialize_corelow): Initialize the_core_target. * gdbcore.h (core_target): Delete. (the_core_target): New. * ctf.c: (ctf_target): New class. (ctf_ops): Now a ctf_target. (ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers) (ctf_xfer_partial, ctf_get_trace_state_variable_value) (ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target methods. (init_ctf_ops): Delete. (_initialize_ctf): Don't call it. * tracefile-tfile.c (tfile_target): New class. (tfile_ops): Now a tfile_target. (tfile_open, tfile_close, tfile_files_info) (tfile_get_tracepoint_status, tfile_trace_find) (tfile_fetch_registers, tfile_xfer_partial) (tfile_get_trace_state_variable_value, tfile_traceframe_info): Refactor as tfile_target methods. (tfile_xfer_partial_features): Remove target_ops parameter. (init_tfile_ops): Delete. (_initialize_tracefile_tfile): Don't call it. * tracefile.c (tracefile_has_all_memory, tracefile_has_memory) (tracefile_has_stack, tracefile_has_registers) (tracefile_thread_alive, tracefile_get_trace_status): Refactor as tracefile_target methods. (init_tracefile_ops): Delete. (tracefile_target::tracefile_target): New. * tracefile.h: Include "target.h". (tracefile_target): New class. (init_tracefile_ops): Delete. * spu-multiarch.c (spu_multiarch_target): New class. (spu_ops): Now a spu_multiarch_target. (spu_thread_architecture, spu_region_ok_for_hw_watchpoint) (spu_fetch_registers, spu_store_registers, spu_xfer_partial) (spu_search_memory, spu_mourn_inferior): Refactor as spu_multiarch_target methods. (init_spu_ops): Delete. (_initialize_spu_multiarch): Remove references to init_spu_ops, complete_target_initialization. * ravenscar-thread.c (ravenscar_thread_target): New class. (ravenscar_ops): Now a ravenscar_thread_target. (ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list) (ravenscar_thread_alive, ravenscar_pid_to_str) (ravenscar_fetch_registers, ravenscar_store_registers) (ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint) (ravenscar_stopped_by_hw_breakpoint) (ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address) (ravenscar_mourn_inferior, ravenscar_core_of_thread) (ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target methods. (init_ravenscar_thread_ops): Delete. (_initialize_ravenscar): Remove references to init_ravenscar_thread_ops and complete_target_initialization. * bsd-uthread.c (bsd_uthread_ops_hack): Delete. (bsd_uthread_target): New class. (bsd_uthread_ops): Now a bsd_uthread_target. (bsd_uthread_activate): Adjust to refer to bsd_uthread_ops. (bsd_uthread_close, bsd_uthread_mourn_inferior) (bsd_uthread_fetch_registers, bsd_uthread_store_registers) (bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive) (bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info) (bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods. (bsd_uthread_target): Delete function. (_initialize_bsd_uthread): Remove reference to complete_target_initialization. * bfd-target.c (target_bfd_data): Delete. Fields folded into ... (target_bfd): ... this new class. (target_bfd_xfer_partial, target_bfd_get_section_table) (target_bfd_close): Refactor as target_bfd methods. (target_bfd::~target_bfd): New. (target_bfd_reopen): Adjust. (target_bfd::close): New. * record-btrace.c (record_btrace_target): New class. (record_btrace_ops): Now a record_btrace_target. (record_btrace_open, record_btrace_stop_recording) (record_btrace_disconnect, record_btrace_close) (record_btrace_async, record_btrace_info) (record_btrace_insn_history, record_btrace_insn_history_range) (record_btrace_insn_history_from, record_btrace_call_history) (record_btrace_call_history_range) (record_btrace_call_history_from, record_btrace_record_method) (record_btrace_is_replaying, record_btrace_will_replay) (record_btrace_xfer_partial, record_btrace_insert_breakpoint) (record_btrace_remove_breakpoint, record_btrace_fetch_registers) (record_btrace_store_registers, record_btrace_prepare_to_store) (record_btrace_to_get_unwinder) (record_btrace_to_get_tailcall_unwinder, record_btrace_resume) (record_btrace_commit_resume, record_btrace_wait) (record_btrace_stop, record_btrace_can_execute_reverse) (record_btrace_stopped_by_sw_breakpoint) (record_btrace_supports_stopped_by_sw_breakpoint) (record_btrace_stopped_by_hw_breakpoint) (record_btrace_supports_stopped_by_hw_breakpoint) (record_btrace_update_thread_list, record_btrace_thread_alive) (record_btrace_goto_begin, record_btrace_goto_end) (record_btrace_goto, record_btrace_stop_replaying_all) (record_btrace_execution_direction) (record_btrace_prepare_to_generate_core) (record_btrace_done_generating_core): Refactor as record_btrace_target methods. (init_record_btrace_ops): Delete. (_initialize_record_btrace): Remove reference to init_record_btrace_ops. * record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to the execution_direction global. (record_full_base_target, record_full_target) (record_full_core_target): New classes. (record_full_ops): Now a record_full_target. (record_full_core_ops): Now a record_full_core_target. (record_full_target::detach, record_full_target::disconnect) (record_full_core_target::disconnect) (record_full_target::mourn_inferior, record_full_target::kill): New. (record_full_open, record_full_close, record_full_async): Refactor as methods of the record_full_base_target class. (record_full_resume, record_full_commit_resume): Refactor as methods of the record_full_target class. (record_full_wait, record_full_stopped_by_watchpoint) (record_full_stopped_data_address) (record_full_stopped_by_sw_breakpoint) (record_full_supports_stopped_by_sw_breakpoint) (record_full_stopped_by_hw_breakpoint) (record_full_supports_stopped_by_hw_breakpoint): Refactor as methods of the record_full_base_target class. (record_full_store_registers, record_full_xfer_partial) (record_full_insert_breakpoint, record_full_remove_breakpoint): Refactor as methods of the record_full_target class. (record_full_can_execute_reverse, record_full_get_bookmark) (record_full_goto_bookmark, record_full_execution_direction) (record_full_record_method, record_full_info, record_full_delete) (record_full_is_replaying, record_full_will_replay) (record_full_goto_begin, record_full_goto_end, record_full_goto) (record_full_stop_replaying): Refactor as methods of the record_full_base_target class. (record_full_core_resume, record_full_core_kill) (record_full_core_fetch_registers) (record_full_core_prepare_to_store) (record_full_core_store_registers, record_full_core_xfer_partial) (record_full_core_insert_breakpoint) (record_full_core_remove_breakpoint) (record_full_core_has_execution): Refactor as methods of the record_full_core_target class. (record_full_base_target::supports_delete_record): New. (init_record_full_ops): Delete. (init_record_full_core_ops): Delete. (record_full_save): Refactor as method of the record_full_base_target class. (_initialize_record_full): Remove references to init_record_full_ops and init_record_full_core_ops. * remote.c (remote_target, extended_remote_target): New classes. (remote_ops): Now a remote_target. (extended_remote_ops): Now an extended_remote_target. (remote_insert_fork_catchpoint, remote_remove_fork_catchpoint) (remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint) (remote_insert_exec_catchpoint, remote_remove_exec_catchpoint) (remote_pass_signals, remote_set_syscall_catchpoint) (remote_program_signals, ) (remote_thread_always_alive): Remove target_ops parameter. (remote_thread_alive, remote_thread_name) (remote_update_thread_list, remote_threads_extra_info) (remote_static_tracepoint_marker_at) (remote_static_tracepoint_markers_by_strid) (remote_get_ada_task_ptid, remote_close, remote_start_remote) (remote_open): Refactor as methods of remote_target. (extended_remote_open, extended_remote_detach) (extended_remote_attach, extended_remote_post_attach): (extended_remote_supports_disable_randomization) (extended_remote_create_inferior): : Refactor as method of extended_remote_target. (remote_set_permissions, remote_open_1, remote_detach) (remote_follow_fork, remote_follow_exec, remote_disconnect) (remote_resume, remote_commit_resume, remote_stop) (remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior) (remote_terminal_ours, remote_wait, remote_fetch_registers) (remote_prepare_to_store, remote_store_registers) (remote_flash_erase, remote_flash_done, remote_files_info) (remote_kill, remote_mourn, remote_insert_breakpoint) (remote_remove_breakpoint, remote_insert_watchpoint) (remote_watchpoint_addr_within_range) (remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint) (remote_check_watch_resources, remote_stopped_by_sw_breakpoint) (remote_supports_stopped_by_sw_breakpoint) (remote_stopped_by_hw_breakpoint) (remote_supports_stopped_by_hw_breakpoint) (remote_stopped_by_watchpoint, remote_stopped_data_address) (remote_insert_hw_breakpoint, remote_remove_hw_breakpoint) (remote_verify_memory): Refactor as methods of remote_target. (remote_write_qxfer, remote_read_qxfer): Remove target_ops parameter. (remote_xfer_partial, remote_get_memory_xfer_limit) (remote_search_memory, remote_rcmd, remote_memory_map) (remote_pid_to_str, remote_get_thread_local_address) (remote_get_tib_address, remote_read_description): Refactor as methods of remote_target. (remote_target::fileio_open, remote_target::fileio_pwrite) (remote_target::fileio_pread, remote_target::fileio_close): New. (remote_hostio_readlink, remote_hostio_fstat) (remote_filesystem_is_local, remote_can_execute_reverse) (remote_supports_non_stop, remote_supports_disable_randomization) (remote_supports_multi_process, remote_supports_cond_breakpoints) (remote_supports_enable_disable_tracepoint) (remote_supports_string_tracing) (remote_can_run_breakpoint_commands, remote_trace_init) (remote_download_tracepoint, remote_can_download_tracepoint) (remote_download_trace_state_variable, remote_enable_tracepoint) (remote_disable_tracepoint, remote_trace_set_readonly_regions) (remote_trace_start, remote_get_trace_status) (remote_get_tracepoint_status, remote_trace_stop) (remote_trace_find, remote_get_trace_state_variable_value) (remote_save_trace_data, remote_get_raw_trace_data) (remote_set_disconnected_tracing, remote_core_of_thread) (remote_set_circular_trace_buffer, remote_traceframe_info) (remote_get_min_fast_tracepoint_insn_len) (remote_set_trace_buffer_size, remote_set_trace_notes) (remote_use_agent, remote_can_use_agent, remote_enable_btrace) (remote_disable_btrace, remote_teardown_btrace) (remote_read_btrace, remote_btrace_conf) (remote_augmented_libraries_svr4_read, remote_load) (remote_pid_to_exec_file, remote_can_do_single_step) (remote_execution_direction, remote_thread_handle_to_thread_info): Refactor as methods of remote_target. (init_remote_ops, init_extended_remote_ops): Delete. (remote_can_async_p, remote_is_async_p, remote_async) (remote_thread_events, remote_upload_tracepoints) (remote_upload_trace_state_variables): Refactor as methods of remote_target. (_initialize_remote): Remove references to init_remote_ops and init_extended_remote_ops. * remote-sim.c (gdbsim_target): New class. (gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill) (gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close) (gdbsim_detach, gdbsim_resume, gdbsim_interrupt) (gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial) (gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive) (gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory): Refactor as methods of gdbsim_target. (gdbsim_ops): Now a gdbsim_target. (init_gdbsim_ops): Delete. (gdbsim_cntrl_c): Adjust. (_initialize_remote_sim): Remove reference to init_gdbsim_ops. * amd64-linux-nat.c (amd64_linux_nat_target): New class. (the_amd64_linux_nat_target): New. (amd64_linux_fetch_inferior_registers) (amd64_linux_store_inferior_registers): Refactor as methods of amd64_linux_nat_target. (_initialize_amd64_linux_nat): Adjust. Set linux_target. * i386-linux-nat.c: Don't include "linux-nat.h". (i386_linux_nat_target): New class. (the_i386_linux_nat_target): New. (i386_linux_fetch_inferior_registers) (i386_linux_store_inferior_registers, i386_linux_resume): Refactor as methods of i386_linux_nat_target. (_initialize_i386_linux_nat): Adjust. Set linux_target. * inf-child.c (inf_child_ops): Delete. (inf_child_fetch_inferior_registers) (inf_child_store_inferior_registers): Delete. (inf_child_post_attach, inf_child_prepare_to_store): Refactor as methods of inf_child_target. (inf_child_target::supports_terminal_ours) (inf_child_target::terminal_init) (inf_child_target::terminal_inferior) (inf_child_target::terminal_ours_for_output) (inf_child_target::terminal_ours, inf_child_target::interrupt) (inf_child_target::pass_ctrlc, inf_child_target::terminal_info): New. (inf_child_open, inf_child_disconnect, inf_child_close) (inf_child_mourn_inferior, inf_child_maybe_unpush_target) (inf_child_post_startup_inferior, inf_child_can_run) (inf_child_pid_to_exec_file): Refactor as methods of inf_child_target. (inf_child_follow_fork): Delete. (inf_child_target::can_create_inferior) (inf_child_target::can_attach): New. (inf_child_target::has_all_memory, inf_child_target::has_memory) (inf_child_target::has_stack, inf_child_target::has_registers) (inf_child_target::has_execution): New. (inf_child_fileio_open, inf_child_fileio_pwrite) (inf_child_fileio_pread, inf_child_fileio_fstat) (inf_child_fileio_close, inf_child_fileio_unlink) (inf_child_fileio_readlink, inf_child_use_agent) (inf_child_can_use_agent): Refactor as methods of inf_child_target. (return_zero, inf_child_target): Delete. (inf_child_target::inf_child_target): New. * inf-child.h: Include "target.h". (inf_child_target): Delete function prototype. (inf_child_target): New class. (inf_child_open_target, inf_child_mourn_inferior) (inf_child_maybe_unpush_target): Delete. * inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New. (inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint) (inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior) (inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior) (inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach) (inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume) (inf_ptrace_wait, inf_ptrace_xfer_partial) (inf_ptrace_thread_alive, inf_ptrace_files_info) (inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as methods of inf_ptrace_target. (inf_ptrace_target): Delete function. * inf-ptrace.h: Include "inf-child.h". (inf_ptrace_target): Delete function declaration. (inf_ptrace_target): New class. (inf_ptrace_trad_target, inf_ptrace_detach_success): Delete. * linux-nat.c (linux_target): New. (linux_ops, linux_ops_saved, super_xfer_partial): Delete. (linux_nat_target::~linux_nat_target): New. (linux_child_post_attach, linux_child_post_startup_inferior) (linux_child_follow_fork, linux_child_insert_fork_catchpoint) (linux_child_remove_fork_catchpoint) (linux_child_insert_vfork_catchpoint) (linux_child_remove_vfork_catchpoint) (linux_child_insert_exec_catchpoint) (linux_child_remove_exec_catchpoint) (linux_child_set_syscall_catchpoint, linux_nat_pass_signals) (linux_nat_create_inferior, linux_nat_attach, linux_nat_detach) (linux_nat_resume, linux_nat_stopped_by_watchpoint) (linux_nat_stopped_data_address) (linux_nat_stopped_by_sw_breakpoint) (linux_nat_supports_stopped_by_sw_breakpoint) (linux_nat_stopped_by_hw_breakpoint) (linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait) (linux_nat_kill, linux_nat_mourn_inferior) (linux_nat_xfer_partial, linux_nat_thread_alive) (linux_nat_update_thread_list, linux_nat_pid_to_str) (linux_nat_thread_name, linux_child_pid_to_exec_file) (linux_child_static_tracepoint_markers_by_strid) (linux_nat_is_async_p, linux_nat_can_async_p) (linux_nat_supports_non_stop, linux_nat_always_non_stop_p) (linux_nat_supports_multi_process) (linux_nat_supports_disable_randomization, linux_nat_async) (linux_nat_stop, linux_nat_close, linux_nat_thread_address_space) (linux_nat_core_of_thread, linux_nat_filesystem_is_local) (linux_nat_fileio_open, linux_nat_fileio_readlink) (linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as methods of linux_nat_target. (linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial) (linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops parameter. (check_stopped_by_watchpoint): Adjust. (linux_xfer_partial): Delete. (linux_target_install_ops, linux_target, linux_nat_add_target): Delete. (linux_nat_target::linux_nat_target): New. * linux-nat.h: Include "inf-ptrace.h". (linux_nat_target): New. (linux_target, linux_target_install_ops, linux_nat_add_target): Delete function declarations. (linux_target): Declare global. * linux-thread-db.c (thread_db_target): New. (thread_db_target::thread_db_target): New. (thread_db_ops): Delete. (the_thread_db_target): New. (thread_db_detach, thread_db_wait, thread_db_mourn_inferior) (thread_db_update_thread_list, thread_db_pid_to_str) (thread_db_extra_thread_info) (thread_db_thread_handle_to_thread_info) (thread_db_get_thread_local_address, thread_db_get_ada_task_ptid) (thread_db_resume): Refactor as methods of thread_db_target. (init_thread_db_ops): Delete. (_initialize_thread_db): Remove reference to init_thread_db_ops. * x86-linux-nat.c: Don't include "linux-nat.h". (super_post_startup_inferior): Delete. (x86_linux_nat_target::~x86_linux_nat_target): New. (x86_linux_child_post_startup_inferior) (x86_linux_read_description, x86_linux_enable_btrace) (x86_linux_disable_btrace, x86_linux_teardown_btrace) (x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as methods of x86_linux_nat_target. (x86_linux_create_target): Delete. Bits folded ... (x86_linux_add_target): ... here. Now takes a linux_nat_target pointer. * x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h". (x86_linux_nat_target): New class. (x86_linux_create_target): Delete. (x86_linux_add_target): Now takes a linux_nat_target pointer. * x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint) (x86_region_ok_for_watchpoint, x86_stopped_data_address) (x86_stopped_by_watchpoint, x86_insert_hw_breakpoint) (x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint) (x86_stopped_by_hw_breakpoint): Remove target_ops parameter and make extern. (x86_use_watchpoints): Delete. * x86-nat.h: Include "breakpoint.h" and "target.h". (x86_use_watchpoints): Delete. (x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint) (x86_stopped_by_watchpoint, x86_stopped_data_address) (x86_insert_watchpoint, x86_remove_watchpoint) (x86_insert_hw_breakpoint, x86_remove_hw_breakpoint) (x86_stopped_by_hw_breakpoint): New declarations. (x86_nat_target): New template class. * ppc-linux-nat.c (ppc_linux_nat_target): New class. (the_ppc_linux_nat_target): New. (ppc_linux_fetch_inferior_registers) (ppc_linux_can_use_hw_breakpoint) (ppc_linux_region_ok_for_hw_watchpoint) (ppc_linux_ranged_break_num_registers) (ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint) (ppc_linux_insert_mask_watchpoint) (ppc_linux_remove_mask_watchpoint) (ppc_linux_can_accel_watchpoint_condition) (ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint) (ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint) (ppc_linux_watchpoint_addr_within_range) (ppc_linux_masked_watch_num_registers) (ppc_linux_store_inferior_registers, ppc_linux_auxv_parse) (ppc_linux_read_description): Refactor as methods of ppc_linux_nat_target. (_initialize_ppc_linux_nat): Adjust. Set linux_target. * procfs.c (procfs_xfer_partial): Delete forward declaration. (procfs_target): New class. (the_procfs_target): New. (procfs_target): Delete function. (procfs_auxv_parse, procfs_attach, procfs_detach) (procfs_fetch_registers, procfs_store_registers, procfs_wait) (procfs_xfer_partial, procfs_resume, procfs_pass_signals) (procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior) (procfs_create_inferior, procfs_update_thread_list) (procfs_thread_alive, procfs_pid_to_str) (procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint) (procfs_stopped_data_address, procfs_insert_watchpoint) (procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint) (proc_find_memory_regions, procfs_info_proc) (procfs_make_note_section): Refactor as methods of procfs_target. (_initialize_procfs): Adjust. * sol-thread.c (sol_thread_target): New class. (sol_thread_ops): Now a sol_thread_target. (sol_thread_detach, sol_thread_resume, sol_thread_wait) (sol_thread_fetch_registers, sol_thread_store_registers) (sol_thread_xfer_partial, sol_thread_mourn_inferior) (sol_thread_alive, solaris_pid_to_str, sol_update_thread_list) (sol_get_ada_task_ptid): Refactor as methods of sol_thread_target. (init_sol_thread_ops): Delete. (_initialize_sol_thread): Adjust. Remove references to init_sol_thread_ops and complete_target_initialization. * windows-nat.c (windows_nat_target): New class. (windows_fetch_inferior_registers) (windows_store_inferior_registers, windows_resume, windows_wait) (windows_attach, windows_detach, windows_pid_to_exec_file) (windows_files_info, windows_create_inferior) (windows_mourn_inferior, windows_interrupt, windows_kill_inferior) (windows_close, windows_pid_to_str, windows_xfer_partial) (windows_get_tib_address, windows_get_ada_task_ptid) (windows_thread_name, windows_thread_alive): Refactor as windows_nat_target methods. (do_initial_windows_stuff): Adjust. (windows_target): Delete function. (_initialize_windows_nat): Adjust. * darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt) (darwin_mourn_inferior, darwin_kill_inferior) (darwin_create_inferior, darwin_attach, darwin_detach) (darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial) (darwin_pid_to_exec_file, darwin_get_ada_task_ptid) (darwin_supports_multi_process): Refactor as darwin_nat_target methods. (darwin_resume_to, darwin_files_info): Delete. (_initialize_darwin_inferior): Rename to ... (_initialize_darwin_nat): ... this. Adjust to C++ification. * darwin-nat.h: Include "inf-child.h". (darwin_nat_target): New class. (darwin_complete_target): Delete. * i386-darwin-nat.c (i386_darwin_nat_target): New class. (darwin_target): New. (i386_darwin_fetch_inferior_registers) (i386_darwin_store_inferior_registers): Refactor as methods of darwin_nat_target. (darwin_complete_target): Delete, with ... (_initialize_i386_darwin_nat): ... bits factored out here. * alpha-linux-nat.c (alpha_linux_nat_target): New class. (the_alpha_linux_nat_target): New. (alpha_linux_register_u_offset): Refactor as alpha_linux_nat_target method. (_initialize_alpha_linux_nat): Adjust. * linux-nat-trad.c (inf_ptrace_register_u_offset): Delete. (inf_ptrace_fetch_register, inf_ptrace_fetch_registers) (inf_ptrace_store_register, inf_ptrace_store_registers): Refact as methods of linux_nat_trad_target. (linux_trad_target): Delete. * linux-nat-trad.h (linux_trad_target): Delete function. (linux_nat_trad_target): New class. * mips-linux-nat.c (mips_linux_nat_target): New class. (super_fetch_registers, super_store_registers, super_close): Delete. (the_mips_linux_nat_target): New. (mips64_linux_regsets_fetch_registers) (mips64_linux_regsets_store_registers) (mips64_linux_fetch_registers, mips64_linux_store_registers) (mips_linux_register_u_offset, mips_linux_read_description) (mips_linux_can_use_hw_breakpoint) (mips_linux_stopped_by_watchpoint) (mips_linux_stopped_data_address) (mips_linux_region_ok_for_hw_watchpoint) (mips_linux_insert_watchpoint, mips_linux_remove_watchpoint) (mips_linux_close): Refactor as methods of mips_linux_nat. (_initialize_mips_linux_nat): Adjust to C++ification. * aix-thread.c (aix_thread_target): New class. (aix_thread_ops): Now an aix_thread_target. (aix_thread_detach, aix_thread_resume, aix_thread_wait) (aix_thread_fetch_registers, aix_thread_store_registers) (aix_thread_xfer_partial, aix_thread_mourn_inferior) (aix_thread_thread_alive, aix_thread_pid_to_str) (aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid): Refactor as methods of aix_thread_target. (init_aix_thread_ops): Delete. (_initialize_aix_thread): Remove references to init_aix_thread_ops and complete_target_initialization. * rs6000-nat.c (rs6000_xfer_shared_libraries): Delete. (rs6000_nat_target): New class. (the_rs6000_nat_target): New. (rs6000_fetch_inferior_registers, rs6000_store_inferior_registers) (rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior) (rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods. (super_create_inferior): Delete. (_initialize_rs6000_nat): Adjust to C++ification. * arm-linux-nat.c (arm_linux_nat_target): New class. (the_arm_linux_nat_target): New. (arm_linux_fetch_inferior_registers) (arm_linux_store_inferior_registers, arm_linux_read_description) (arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint) (arm_linux_remove_hw_breakpoint) (arm_linux_region_ok_for_hw_watchpoint) (arm_linux_insert_watchpoint, arm_linux_remove_watchpoint) (arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint) (arm_linux_watchpoint_addr_within_range): Refactor as methods of arm_linux_nat_target. (_initialize_arm_linux_nat): Adjust to C++ification. * aarch64-linux-nat.c (aarch64_linux_nat_target): New class. (the_aarch64_linux_nat_target): New. (aarch64_linux_fetch_inferior_registers) (aarch64_linux_store_inferior_registers) (aarch64_linux_child_post_startup_inferior) (aarch64_linux_read_description) (aarch64_linux_can_use_hw_breakpoint) (aarch64_linux_insert_hw_breakpoint) (aarch64_linux_remove_hw_breakpoint) (aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint) (aarch64_linux_region_ok_for_hw_watchpoint) (aarch64_linux_stopped_data_address) (aarch64_linux_stopped_by_watchpoint) (aarch64_linux_watchpoint_addr_within_range) (aarch64_linux_can_do_single_step): Refactor as methods of aarch64_linux_nat_target. (super_post_startup_inferior): Delete. (_initialize_aarch64_linux_nat): Adjust to C++ification. * hppa-linux-nat.c (hppa_linux_nat_target): New class. (the_hppa_linux_nat_target): New. (hppa_linux_fetch_inferior_registers) (hppa_linux_store_inferior_registers): Refactor as methods of hppa_linux_nat_target. (_initialize_hppa_linux_nat): Adjust to C++ification. * ia64-linux-nat.c (ia64_linux_nat_target): New class. (the_ia64_linux_nat_target): New. (ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint) (ia64_linux_stopped_data_address) (ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers) (ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as ia64_linux_nat_target methods. (super_xfer_partial): Delete. (_initialize_ia64_linux_nat): Adjust to C++ification. * m32r-linux-nat.c (m32r_linux_nat_target): New class. (the_m32r_linux_nat_target): New. (m32r_linux_fetch_inferior_registers) (m32r_linux_store_inferior_registers): Refactor as m32r_linux_nat_target methods. (_initialize_m32r_linux_nat): Adjust to C++ification. * m68k-linux-nat.c (m68k_linux_nat_target): New class. (the_m68k_linux_nat_target): New. (m68k_linux_fetch_inferior_registers) (m68k_linux_store_inferior_registers): Refactor as m68k_linux_nat_target methods. (_initialize_m68k_linux_nat): Adjust to C++ification. * s390-linux-nat.c (s390_linux_nat_target): New class. (the_s390_linux_nat_target): New. (s390_linux_fetch_inferior_registers) (s390_linux_store_inferior_registers, s390_stopped_by_watchpoint) (s390_insert_watchpoint, s390_remove_watchpoint) (s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint) (s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint) (s390_auxv_parse, s390_read_description): Refactor as methods of s390_linux_nat_target. (_initialize_s390_nat): Adjust to C++ification. * sparc-linux-nat.c (sparc_linux_nat_target): New class. (the_sparc_linux_nat_target): New. (_initialize_sparc_linux_nat): Adjust to C++ification. * sparc-nat.c (sparc_fetch_inferior_registers) (sparc_store_inferior_registers): Remove target_ops parameter. * sparc-nat.h (sparc_fetch_inferior_registers) (sparc_store_inferior_registers): Remove target_ops parameter. * sparc64-linux-nat.c (sparc64_linux_nat_target): New class. (the_sparc64_linux_nat_target): New. (_initialize_sparc64_linux_nat): Adjust to C++ification. * spu-linux-nat.c (spu_linux_nat_target): New class. (the_spu_linux_nat_target): New. (spu_child_post_startup_inferior, spu_child_post_attach) (spu_child_wait, spu_fetch_inferior_registers) (spu_store_inferior_registers, spu_xfer_partial) (spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target methods. (_initialize_spu_nat): Adjust to C++ification. * tilegx-linux-nat.c (tilegx_linux_nat_target): New class. (the_tilegx_linux_nat_target): New. (fetch_inferior_registers, store_inferior_registers): Refactor as methods. (_initialize_tile_linux_nat): Adjust to C++ification. * xtensa-linux-nat.c (xtensa_linux_nat_target): New class. (the_xtensa_linux_nat_target): New. (xtensa_linux_fetch_inferior_registers) (xtensa_linux_store_inferior_registers): Refactor as xtensa_linux_nat_target methods. (_initialize_xtensa_linux_nat): Adjust to C++ification. * fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete. (fbsd_pid_to_exec_file, fbsd_find_memory_regions) (fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial) (fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name) (fbsd_update_thread_list, fbsd_resume, fbsd_wait) (fbsd_stopped_by_sw_breakpoint) (fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork) (fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint) (fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint) (fbsd_post_startup_inferior, fbsd_post_attach) (fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint) (fbsd_set_syscall_catchpoint) (super_xfer_partial, super_resume, super_wait) (fbsd_supports_stopped_by_hw_breakpoint): Delete. (fbsd_handle_debug_trap): Remove target_ops parameter. (fbsd_nat_add_target): Delete. * fbsd-nat.h: Include "inf-ptrace.h". (fbsd_nat_add_target): Delete. (USE_SIGTRAP_SIGINFO): Define. (fbsd_nat_target): New class. * amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers) (amd64bsd_store_inferior_registers): Remove target_ops parameter. (amd64bsd_target): Delete. * amd64-bsd-nat.h: New file. * amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of "x86-bsd-nat.h". (amd64_fbsd_nat_target): New class. (the_amd64_fbsd_nat_target): New. (amd64fbsd_read_description): Refactor as method of amd64_fbsd_nat_target. (amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New. (_initialize_amd64fbsd_nat): Adjust to C++ification. * amd64-nat.h (amd64bsd_target): Delete function declaration. * i386-bsd-nat.c (i386bsd_fetch_inferior_registers) (i386bsd_store_inferior_registers): Remove target_ops parameter. (i386bsd_target): Delete. * i386-bsd-nat.h (i386bsd_target): Delete function declaration. (i386bsd_fetch_inferior_registers) (i386bsd_store_inferior_registers): Declare. (i386_bsd_nat_target): New class. * i386-fbsd-nat.c (i386_fbsd_nat_target): New class. (the_i386_fbsd_nat_target): New. (i386fbsd_resume, i386fbsd_read_description): Refactor as i386_fbsd_nat_target methods. (i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New. (_initialize_i386fbsd_nat): Adjust to C++ification. * x86-bsd-nat.c (super_mourn_inferior): Delete. (x86bsd_mourn_inferior, x86bsd_target): Delete. (_initialize_x86_bsd_nat): Adjust to C++ification. * x86-bsd-nat.h: Include "x86-nat.h". (x86bsd_target): Delete declaration. (x86bsd_nat_target): New class. * aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class. (the_aarch64_fbsd_nat_target): New. (aarch64_fbsd_fetch_inferior_registers) (aarch64_fbsd_store_inferior_registers): Refactor as methods of aarch64_fbsd_nat_target. (_initialize_aarch64_fbsd_nat): Adjust to C++ification. * alpha-bsd-nat.c (alpha_bsd_nat_target): New class. (the_alpha_bsd_nat_target): New. (alphabsd_fetch_inferior_registers) (alphabsd_store_inferior_registers): Refactor as alpha_bsd_nat_target methods. (_initialize_alphabsd_nat): Refactor as methods of alpha_bsd_nat_target. * amd64-nbsd-nat.c: Include "amd64-bsd-nat.h". (the_amd64_nbsd_nat_target): New. (_initialize_amd64nbsd_nat): Adjust to C++ification. * amd64-obsd-nat.c: Include "amd64-bsd-nat.h". (the_amd64_obsd_nat_target): New. (_initialize_amd64obsd_nat): Adjust to C++ification. * arm-fbsd-nat.c (arm_fbsd_nat_target): New. (the_arm_fbsd_nat_target): New. (arm_fbsd_fetch_inferior_registers) (arm_fbsd_store_inferior_registers, arm_fbsd_read_description): (_initialize_arm_fbsd_nat): Refactor as methods of arm_fbsd_nat_target. (_initialize_arm_fbsd_nat): Adjust to C++ification. * arm-nbsd-nat.c (arm_netbsd_nat_target): New class. (the_arm_netbsd_nat_target): New. (armnbsd_fetch_registers, armnbsd_store_registers): Refactor as arm_netbsd_nat_target. (_initialize_arm_netbsd_nat): Adjust to C++ification. * hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class. (the_hppa_nbsd_nat_target): New. (hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as hppa_nbsd_nat_target methods. (_initialize_hppanbsd_nat): Adjust to C++ification. * hppa-obsd-nat.c (hppa_obsd_nat_target): New class. (the_hppa_obsd_nat_target): New. (hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as methods of hppa_obsd_nat_target. (_initialize_hppaobsd_nat): Adjust to C++ification. Use add_target. * i386-nbsd-nat.c (the_i386_nbsd_nat_target): New. (_initialize_i386nbsd_nat): Adjust to C++ification. Use add_target. * i386-obsd-nat.c (the_i386_obsd_nat_target): New. (_initialize_i386obsd_nat): Use add_target. * m68k-bsd-nat.c (m68k_bsd_nat_target): New class. (the_m68k_bsd_nat_target): New. (m68kbsd_fetch_inferior_registers) (m68kbsd_store_inferior_registers): Refactor as methods of m68k_bsd_nat_target. (_initialize_m68kbsd_nat): Adjust to C++ification. * mips-fbsd-nat.c (mips_fbsd_nat_target): New class. (the_mips_fbsd_nat_target): New. (mips_fbsd_fetch_inferior_registers) (mips_fbsd_store_inferior_registers): Refactor as methods of mips_fbsd_nat_target. (_initialize_mips_fbsd_nat): Adjust to C++ification. Use add_target. * mips-nbsd-nat.c (mips_nbsd_nat_target): New class. (the_mips_nbsd_nat_target): New. (mipsnbsd_fetch_inferior_registers) (mipsnbsd_store_inferior_registers): Refactor as methods of mips_nbsd_nat_target. (_initialize_mipsnbsd_nat): Adjust to C++ification. * mips64-obsd-nat.c (mips64_obsd_nat_target): New class. (the_mips64_obsd_nat_target): New. (mips64obsd_fetch_inferior_registers) (mips64obsd_store_inferior_registers): Refactor as methods of mips64_obsd_nat_target. (_initialize_mips64obsd_nat): Adjust to C++ification. Use add_target. * nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of nbsd_nat_target. * nbsd-nat.h: Include "inf-ptrace.h". (nbsd_nat_target): New class. * obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list) (obsd_wait): Refactor as methods of obsd_nat_target. (obsd_add_target): Delete. * obsd-nat.h: Include "inf-ptrace.h". (obsd_nat_target): New class. * ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class. (the_ppc_fbsd_nat_target): New. (ppcfbsd_fetch_inferior_registers) (ppcfbsd_store_inferior_registers): Refactor as methods of ppc_fbsd_nat_target. (_initialize_ppcfbsd_nat): Adjust to C++ification. Use add_target. * ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class. (the_ppc_nbsd_nat_target): New. (ppcnbsd_fetch_inferior_registers) (ppcnbsd_store_inferior_registers): Refactor as methods of ppc_nbsd_nat_target. (_initialize_ppcnbsd_nat): Adjust to C++ification. * ppc-obsd-nat.c (ppc_obsd_nat_target): New class. (the_ppc_obsd_nat_target): New. (ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as methods of ppc_obsd_nat_target. (_initialize_ppcobsd_nat): Adjust to C++ification. Use add_target. * sh-nbsd-nat.c (sh_nbsd_nat_target): New class. (the_sh_nbsd_nat_target): New. (shnbsd_fetch_inferior_registers) (shnbsd_store_inferior_registers): Refactor as methods of sh_nbsd_nat_target. (_initialize_shnbsd_nat): Adjust to C++ification. * sparc-nat.c (sparc_xfer_wcookie): Make extern. (inf_ptrace_xfer_partial): Delete. (sparc_xfer_partial, sparc_target): Delete. * sparc-nat.h (sparc_fetch_inferior_registers) (sparc_store_inferior_registers, sparc_xfer_wcookie): Declare. (sparc_target): Delete function declaration. (sparc_target): New template class. * sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New. (_initialize_sparcnbsd_nat): Adjust to C++ification. * sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New. (_initialize_sparc64fbsd_nat): Adjust to C++ification. Use add_target. * sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New. (_initialize_sparc64nbsd_nat): Adjust to C++ification. * sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New. (_initialize_sparc64obsd_nat): Adjust to C++ification. Use add_target. * vax-bsd-nat.c (vax_bsd_nat_target): New class. (the_vax_bsd_nat_target): New. (vaxbsd_fetch_inferior_registers) (vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target methods. (_initialize_vaxbsd_nat): Adjust to C++ification. * bsd-kvm.c (bsd_kvm_target): New class. (bsd_kvm_ops): Now a bsd_kvm_target. (bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial) (bsd_kvm_files_info, bsd_kvm_fetch_registers) (bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of bsd_kvm_target. (bsd_kvm_return_one): Delete. (bsd_kvm_add_target): Adjust to C++ification. * nto-procfs.c (nto_procfs_target, nto_procfs_target_native) (nto_procfs_target_procfs): New classes. (procfs_open_1, procfs_thread_alive, procfs_update_thread_list) (procfs_files_info, procfs_pid_to_exec_file, procfs_attach) (procfs_post_attach, procfs_wait, procfs_fetch_registers) (procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint) (procfs_remove_breakpoint, procfs_insert_hw_breakpoint) (procfs_remove_hw_breakpoint, procfs_resume) (procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt) (procfs_kill_inferior, procfs_store_registers) (procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor as methods of nto_procfs_target. (nto_procfs_ops): Now an nto_procfs_target_procfs. (nto_native_ops): Delete. (procfs_open, procfs_native_open): Delete. (nto_native_ops): Now an nto_procfs_target_native. (init_procfs_targets): Adjust to C++ification. (procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint) (procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint): Refactor as methods of nto_procfs_target. * go32-nat.c (go32_nat_target): New class. (the_go32_nat_target): New. (go32_attach, go32_resume, go32_wait, go32_fetch_registers) (go32_store_registers, go32_xfer_partial, go32_files_info) (go32_kill_inferior, go32_create_inferior, go32_mourn_inferior) (go32_terminal_init, go32_terminal_info, go32_terminal_inferior) (go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive) (go32_pid_to_str): Refactor as methods of go32_nat_target. (go32_target): Delete. (_initialize_go32_nat): Adjust to C++ification. * gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior) (gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach) (gnu_stop, gnu_thread_alive, gnu_xfer_partial) (gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of gnu_nat_target. (gnu_target): Delete. * gnu-nat.h (gnu_target): Delete. (gnu_nat_target): New class. * i386-gnu-nat.c (gnu_base_target): New. (i386_gnu_nat_target): New class. (the_i386_gnu_nat_target): New. (_initialize_i386gnu_nat): Adjust to C++ification. gdb/testsuite/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> * gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and to_log_command renames. * gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
3167 lines
91 KiB
C
3167 lines
91 KiB
C
/* Print values for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "language.h"
|
||
#include "annotate.h"
|
||
#include "valprint.h"
|
||
#include "target-float.h"
|
||
#include "extension.h"
|
||
#include "ada-lang.h"
|
||
#include "gdb_obstack.h"
|
||
#include "charset.h"
|
||
#include "typeprint.h"
|
||
#include <ctype.h>
|
||
#include <algorithm>
|
||
#include "common/byte-vector.h"
|
||
|
||
/* Maximum number of wchars returned from wchar_iterate. */
|
||
#define MAX_WCHARS 4
|
||
|
||
/* A convenience macro to compute the size of a wchar_t buffer containing X
|
||
characters. */
|
||
#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
|
||
|
||
/* Character buffer size saved while iterating over wchars. */
|
||
#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
|
||
|
||
/* A structure to encapsulate state information from iterated
|
||
character conversions. */
|
||
struct converted_character
|
||
{
|
||
/* The number of characters converted. */
|
||
int num_chars;
|
||
|
||
/* The result of the conversion. See charset.h for more. */
|
||
enum wchar_iterate_result result;
|
||
|
||
/* The (saved) converted character(s). */
|
||
gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
|
||
|
||
/* The first converted target byte. */
|
||
const gdb_byte *buf;
|
||
|
||
/* The number of bytes converted. */
|
||
size_t buflen;
|
||
|
||
/* How many times this character(s) is repeated. */
|
||
int repeat_count;
|
||
};
|
||
|
||
/* Command lists for set/show print raw. */
|
||
struct cmd_list_element *setprintrawlist;
|
||
struct cmd_list_element *showprintrawlist;
|
||
|
||
/* Prototypes for local functions */
|
||
|
||
static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
|
||
int len, int *errptr);
|
||
|
||
static void set_input_radix_1 (int, unsigned);
|
||
|
||
static void set_output_radix_1 (int, unsigned);
|
||
|
||
static void val_print_type_code_flags (struct type *type,
|
||
const gdb_byte *valaddr,
|
||
struct ui_file *stream);
|
||
|
||
#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
|
||
|
||
struct value_print_options user_print_options =
|
||
{
|
||
Val_prettyformat_default, /* prettyformat */
|
||
0, /* prettyformat_arrays */
|
||
0, /* prettyformat_structs */
|
||
0, /* vtblprint */
|
||
1, /* unionprint */
|
||
1, /* addressprint */
|
||
0, /* objectprint */
|
||
PRINT_MAX_DEFAULT, /* print_max */
|
||
10, /* repeat_count_threshold */
|
||
0, /* output_format */
|
||
0, /* format */
|
||
0, /* stop_print_at_null */
|
||
0, /* print_array_indexes */
|
||
0, /* deref_ref */
|
||
1, /* static_field_print */
|
||
1, /* pascal_static_field_print */
|
||
0, /* raw */
|
||
0, /* summary */
|
||
1 /* symbol_print */
|
||
};
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options. */
|
||
void
|
||
get_user_print_options (struct value_print_options *opts)
|
||
{
|
||
*opts = user_print_options;
|
||
}
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options, but with
|
||
pretty-formatting disabled. */
|
||
void
|
||
get_no_prettyformat_print_options (struct value_print_options *opts)
|
||
{
|
||
*opts = user_print_options;
|
||
opts->prettyformat = Val_no_prettyformat;
|
||
}
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options, but using
|
||
FORMAT as the formatting option. */
|
||
void
|
||
get_formatted_print_options (struct value_print_options *opts,
|
||
char format)
|
||
{
|
||
*opts = user_print_options;
|
||
opts->format = format;
|
||
}
|
||
|
||
static void
|
||
show_print_max (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Limit on string chars or array "
|
||
"elements to print is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
|
||
/* Default input and output radixes, and output format letter. */
|
||
|
||
unsigned input_radix = 10;
|
||
static void
|
||
show_input_radix (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Default input radix for entering numbers is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
unsigned output_radix = 10;
|
||
static void
|
||
show_output_radix (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Default output radix for printing of values is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* By default we print arrays without printing the index of each element in
|
||
the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
|
||
|
||
static void
|
||
show_print_array_indexes (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
|
||
}
|
||
|
||
/* Print repeat counts if there are more than this many repetitions of an
|
||
element in an array. Referenced by the low level language dependent
|
||
print routines. */
|
||
|
||
static void
|
||
show_repeat_count_threshold (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If nonzero, stops printing of char arrays at first null. */
|
||
|
||
static void
|
||
show_stop_print_at_null (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of char arrays to stop "
|
||
"at first null char is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Controls pretty printing of structures. */
|
||
|
||
static void
|
||
show_prettyformat_structs (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
|
||
}
|
||
|
||
/* Controls pretty printing of arrays. */
|
||
|
||
static void
|
||
show_prettyformat_arrays (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
|
||
}
|
||
|
||
/* If nonzero, causes unions inside structures or other unions to be
|
||
printed. */
|
||
|
||
static void
|
||
show_unionprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of unions interior to structures is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If nonzero, causes machine addresses to be printed in certain contexts. */
|
||
|
||
static void
|
||
show_addressprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
|
||
}
|
||
|
||
static void
|
||
show_symbol_print (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of symbols when printing pointers is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
|
||
|
||
/* A helper function for val_print. When printing in "summary" mode,
|
||
we want to print scalar arguments, but not aggregate arguments.
|
||
This function distinguishes between the two. */
|
||
|
||
int
|
||
val_print_scalar_type_p (struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
while (TYPE_IS_REFERENCE (type))
|
||
{
|
||
type = TYPE_TARGET_TYPE (type);
|
||
type = check_typedef (type);
|
||
}
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_SET:
|
||
case TYPE_CODE_STRING:
|
||
return 0;
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* See its definition in value.h. */
|
||
|
||
int
|
||
valprint_check_validity (struct ui_file *stream,
|
||
struct type *type,
|
||
LONGEST embedded_offset,
|
||
const struct value *val)
|
||
{
|
||
type = check_typedef (type);
|
||
|
||
if (type_not_associated (type))
|
||
{
|
||
val_print_not_associated (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (type_not_allocated (type))
|
||
{
|
||
val_print_not_allocated (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_UNION
|
||
&& TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
||
{
|
||
if (value_bits_any_optimized_out (val,
|
||
TARGET_CHAR_BIT * embedded_offset,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
|
||
{
|
||
val_print_optimized_out (val, stream);
|
||
return 0;
|
||
}
|
||
|
||
if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
|
||
{
|
||
const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
|
||
int ref_is_addressable = 0;
|
||
|
||
if (is_ref)
|
||
{
|
||
const struct value *deref_val = coerce_ref_if_computed (val);
|
||
|
||
if (deref_val != NULL)
|
||
ref_is_addressable = value_lval_const (deref_val) == lval_memory;
|
||
}
|
||
|
||
if (!is_ref || !ref_is_addressable)
|
||
fputs_filtered (_("<synthetic pointer>"), stream);
|
||
|
||
/* C++ references should be valid even if they're synthetic. */
|
||
return is_ref;
|
||
}
|
||
|
||
if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
|
||
{
|
||
val_print_unavailable (stream);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
val_print_optimized_out (const struct value *val, struct ui_file *stream)
|
||
{
|
||
if (val != NULL && value_lval_const (val) == lval_register)
|
||
val_print_not_saved (stream);
|
||
else
|
||
fprintf_filtered (stream, _("<optimized out>"));
|
||
}
|
||
|
||
void
|
||
val_print_not_saved (struct ui_file *stream)
|
||
{
|
||
fprintf_filtered (stream, _("<not saved>"));
|
||
}
|
||
|
||
void
|
||
val_print_unavailable (struct ui_file *stream)
|
||
{
|
||
fprintf_filtered (stream, _("<unavailable>"));
|
||
}
|
||
|
||
void
|
||
val_print_invalid_address (struct ui_file *stream)
|
||
{
|
||
fprintf_filtered (stream, _("<invalid address>"));
|
||
}
|
||
|
||
/* Print a pointer based on the type of its target.
|
||
|
||
Arguments to this functions are roughly the same as those in
|
||
generic_val_print. A difference is that ADDRESS is the address to print,
|
||
with embedded_offset already added. ELTTYPE represents
|
||
the pointed type after check_typedef. */
|
||
|
||
static void
|
||
print_unpacked_pointer (struct type *type, struct type *elttype,
|
||
CORE_ADDR address, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
|
||
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
|
||
{
|
||
/* Try to print what function it points to. */
|
||
print_function_pointer_address (options, gdbarch, address, stream);
|
||
return;
|
||
}
|
||
|
||
if (options->symbol_print)
|
||
print_address_demangle (options, gdbarch, address, stream, demangle);
|
||
else if (options->addressprint)
|
||
fputs_filtered (paddress (gdbarch, address), stream);
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_ARRAY. */
|
||
|
||
static void
|
||
generic_val_print_array (struct type *type,
|
||
int embedded_offset, CORE_ADDR address,
|
||
struct ui_file *stream, int recurse,
|
||
struct value *original_value,
|
||
const struct value_print_options *options,
|
||
const struct
|
||
generic_val_print_decorations *decorations)
|
||
{
|
||
struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
|
||
struct type *elttype = check_typedef (unresolved_elttype);
|
||
|
||
if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (!get_array_bounds (type, &low_bound, &high_bound))
|
||
error (_("Could not determine the array high bound"));
|
||
|
||
if (options->prettyformat_arrays)
|
||
{
|
||
print_spaces_filtered (2 + 2 * recurse, stream);
|
||
}
|
||
|
||
fputs_filtered (decorations->array_start, stream);
|
||
val_print_array_elements (type, embedded_offset,
|
||
address, stream,
|
||
recurse, original_value, options, 0);
|
||
fputs_filtered (decorations->array_end, stream);
|
||
}
|
||
else
|
||
{
|
||
/* Array of unspecified length: treat like pointer to first elt. */
|
||
print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
|
||
options);
|
||
}
|
||
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_PTR. */
|
||
|
||
static void
|
||
generic_val_print_ptr (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
|
||
if (options->format && options->format != 's')
|
||
{
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
|
||
struct type *elttype = check_typedef (unresolved_elttype);
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
CORE_ADDR addr = unpack_pointer (type,
|
||
valaddr + embedded_offset * unit_size);
|
||
|
||
print_unpacked_pointer (type, elttype, addr, stream, options);
|
||
}
|
||
}
|
||
|
||
|
||
/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
|
||
|
||
static void
|
||
generic_val_print_memberptr (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
}
|
||
|
||
/* Print '@' followed by the address contained in ADDRESS_BUFFER. */
|
||
|
||
static void
|
||
print_ref_address (struct type *type, const gdb_byte *address_buffer,
|
||
int embedded_offset, struct ui_file *stream)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
|
||
if (address_buffer != NULL)
|
||
{
|
||
CORE_ADDR address
|
||
= extract_typed_address (address_buffer + embedded_offset, type);
|
||
|
||
fprintf_filtered (stream, "@");
|
||
fputs_filtered (paddress (gdbarch, address), stream);
|
||
}
|
||
/* Else: we have a non-addressable value, such as a DW_AT_const_value. */
|
||
}
|
||
|
||
/* If VAL is addressable, return the value contents buffer of a value that
|
||
represents a pointer to VAL. Otherwise return NULL. */
|
||
|
||
static const gdb_byte *
|
||
get_value_addr_contents (struct value *deref_val)
|
||
{
|
||
gdb_assert (deref_val != NULL);
|
||
|
||
if (value_lval_const (deref_val) == lval_memory)
|
||
return value_contents_for_printing_const (value_addr (deref_val));
|
||
else
|
||
{
|
||
/* We have a non-addressable value, such as a DW_AT_const_value. */
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
|
||
|
||
static void
|
||
generic_val_print_ref (struct type *type,
|
||
int embedded_offset, struct ui_file *stream, int recurse,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
struct value *deref_val = NULL;
|
||
const int value_is_synthetic
|
||
= value_bits_synthetic_pointer (original_value,
|
||
TARGET_CHAR_BIT * embedded_offset,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type));
|
||
const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
|
||
|| options->deref_ref);
|
||
const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
if (must_coerce_ref && type_is_defined)
|
||
{
|
||
deref_val = coerce_ref_if_computed (original_value);
|
||
|
||
if (deref_val != NULL)
|
||
{
|
||
/* More complicated computed references are not supported. */
|
||
gdb_assert (embedded_offset == 0);
|
||
}
|
||
else
|
||
deref_val = value_at (TYPE_TARGET_TYPE (type),
|
||
unpack_pointer (type, valaddr + embedded_offset));
|
||
}
|
||
/* Else, original_value isn't a synthetic reference or we don't have to print
|
||
the reference's contents.
|
||
|
||
Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
|
||
cause original_value to be a not_lval instead of an lval_computed,
|
||
which will make value_bits_synthetic_pointer return false.
|
||
This happens because if options->objectprint is true, c_value_print will
|
||
overwrite original_value's contents with the result of coercing
|
||
the reference through value_addr, and then set its type back to
|
||
TYPE_CODE_REF. In that case we don't have to coerce the reference again;
|
||
we can simply treat it as non-synthetic and move on. */
|
||
|
||
if (options->addressprint)
|
||
{
|
||
const gdb_byte *address = (value_is_synthetic && type_is_defined
|
||
? get_value_addr_contents (deref_val)
|
||
: valaddr);
|
||
|
||
print_ref_address (type, address, embedded_offset, stream);
|
||
|
||
if (options->deref_ref)
|
||
fputs_filtered (": ", stream);
|
||
}
|
||
|
||
if (options->deref_ref)
|
||
{
|
||
if (type_is_defined)
|
||
common_val_print (deref_val, stream, recurse, options,
|
||
current_language);
|
||
else
|
||
fputs_filtered ("???", stream);
|
||
}
|
||
}
|
||
|
||
/* Helper function for generic_val_print_enum.
|
||
This is also used to print enums in TYPE_CODE_FLAGS values. */
|
||
|
||
static void
|
||
generic_val_print_enum_1 (struct type *type, LONGEST val,
|
||
struct ui_file *stream)
|
||
{
|
||
unsigned int i;
|
||
unsigned int len;
|
||
|
||
len = TYPE_NFIELDS (type);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
QUIT;
|
||
if (val == TYPE_FIELD_ENUMVAL (type, i))
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if (i < len)
|
||
{
|
||
fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
|
||
}
|
||
else if (TYPE_FLAG_ENUM (type))
|
||
{
|
||
int first = 1;
|
||
|
||
/* We have a "flag" enum, so we try to decompose it into
|
||
pieces as appropriate. A flag enum has disjoint
|
||
constants by definition. */
|
||
fputs_filtered ("(", stream);
|
||
for (i = 0; i < len; ++i)
|
||
{
|
||
QUIT;
|
||
|
||
if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
|
||
{
|
||
if (!first)
|
||
fputs_filtered (" | ", stream);
|
||
first = 0;
|
||
|
||
val &= ~TYPE_FIELD_ENUMVAL (type, i);
|
||
fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
|
||
}
|
||
}
|
||
|
||
if (first || val != 0)
|
||
{
|
||
if (!first)
|
||
fputs_filtered (" | ", stream);
|
||
fputs_filtered ("unknown: ", stream);
|
||
print_longest (stream, 'd', 0, val);
|
||
}
|
||
|
||
fputs_filtered (")", stream);
|
||
}
|
||
else
|
||
print_longest (stream, 'd', 0, val);
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_ENUM. */
|
||
|
||
static void
|
||
generic_val_print_enum (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
LONGEST val;
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
|
||
if (options->format)
|
||
{
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
val = unpack_long (type, valaddr + embedded_offset * unit_size);
|
||
|
||
generic_val_print_enum_1 (type, val, stream);
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_FLAGS. */
|
||
|
||
static void
|
||
generic_val_print_flags (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
|
||
{
|
||
if (options->format)
|
||
val_print_scalar_formatted (type, embedded_offset, original_value,
|
||
options, 0, stream);
|
||
else
|
||
{
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
val_print_type_code_flags (type, valaddr + embedded_offset, stream);
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
|
||
|
||
static void
|
||
generic_val_print_func (struct type *type,
|
||
int embedded_offset, CORE_ADDR address,
|
||
struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
|
||
if (options->format)
|
||
{
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
/* FIXME, we should consider, at least for ANSI C language,
|
||
eliminating the distinction made between FUNCs and POINTERs
|
||
to FUNCs. */
|
||
fprintf_filtered (stream, "{");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, "} ");
|
||
/* Try to print what function it points to, and its address. */
|
||
print_address_demangle (options, gdbarch, address, stream, demangle);
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_BOOL. */
|
||
|
||
static void
|
||
generic_val_print_bool (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options,
|
||
const struct generic_val_print_decorations *decorations)
|
||
{
|
||
LONGEST val;
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, &opts, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
val = unpack_long (type, valaddr + embedded_offset * unit_size);
|
||
if (val == 0)
|
||
fputs_filtered (decorations->false_name, stream);
|
||
else if (val == 1)
|
||
fputs_filtered (decorations->true_name, stream);
|
||
else
|
||
print_longest (stream, 'd', 0, val);
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_INT. */
|
||
|
||
static void
|
||
generic_val_print_int (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, &opts, 0, stream);
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_CHAR. */
|
||
|
||
static void
|
||
generic_val_print_char (struct type *type, struct type *unresolved_type,
|
||
int embedded_offset,
|
||
struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
LONGEST val;
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, &opts, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
val = unpack_long (type, valaddr + embedded_offset * unit_size);
|
||
if (TYPE_UNSIGNED (type))
|
||
fprintf_filtered (stream, "%u", (unsigned int) val);
|
||
else
|
||
fprintf_filtered (stream, "%d", (int) val);
|
||
fputs_filtered (" ", stream);
|
||
LA_PRINT_CHAR (val, unresolved_type, stream);
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
|
||
|
||
static void
|
||
generic_val_print_float (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
|
||
if (options->format)
|
||
{
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
print_floating (valaddr + embedded_offset * unit_size, type, stream);
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_COMPLEX. */
|
||
|
||
static void
|
||
generic_val_print_complex (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options,
|
||
const struct generic_val_print_decorations
|
||
*decorations)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
fprintf_filtered (stream, "%s", decorations->complex_prefix);
|
||
if (options->format)
|
||
val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
|
||
embedded_offset, original_value, options, 0,
|
||
stream);
|
||
else
|
||
print_floating (valaddr + embedded_offset * unit_size,
|
||
TYPE_TARGET_TYPE (type), stream);
|
||
fprintf_filtered (stream, "%s", decorations->complex_infix);
|
||
if (options->format)
|
||
val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
|
||
embedded_offset
|
||
+ type_length_units (TYPE_TARGET_TYPE (type)),
|
||
original_value, options, 0, stream);
|
||
else
|
||
print_floating (valaddr + embedded_offset * unit_size
|
||
+ TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
|
||
TYPE_TARGET_TYPE (type), stream);
|
||
fprintf_filtered (stream, "%s", decorations->complex_suffix);
|
||
}
|
||
|
||
/* A generic val_print that is suitable for use by language
|
||
implementations of the la_val_print method. This function can
|
||
handle most type codes, though not all, notably exception
|
||
TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
|
||
the caller.
|
||
|
||
Most arguments are as to val_print.
|
||
|
||
The additional DECORATIONS argument can be used to customize the
|
||
output in some small, language-specific ways. */
|
||
|
||
void
|
||
generic_val_print (struct type *type,
|
||
int embedded_offset, CORE_ADDR address,
|
||
struct ui_file *stream, int recurse,
|
||
struct value *original_value,
|
||
const struct value_print_options *options,
|
||
const struct generic_val_print_decorations *decorations)
|
||
{
|
||
struct type *unresolved_type = type;
|
||
|
||
type = check_typedef (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
generic_val_print_array (type, embedded_offset, address, stream,
|
||
recurse, original_value, options, decorations);
|
||
break;
|
||
|
||
case TYPE_CODE_MEMBERPTR:
|
||
generic_val_print_memberptr (type, embedded_offset, stream,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
generic_val_print_ptr (type, embedded_offset, stream,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_REF:
|
||
case TYPE_CODE_RVALUE_REF:
|
||
generic_val_print_ref (type, embedded_offset, stream, recurse,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_ENUM:
|
||
generic_val_print_enum (type, embedded_offset, stream,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_FLAGS:
|
||
generic_val_print_flags (type, embedded_offset, stream,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_METHOD:
|
||
generic_val_print_func (type, embedded_offset, address, stream,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_BOOL:
|
||
generic_val_print_bool (type, embedded_offset, stream,
|
||
original_value, options, decorations);
|
||
break;
|
||
|
||
case TYPE_CODE_RANGE:
|
||
/* FIXME: create_static_range_type does not set the unsigned bit in a
|
||
range type (I think it probably should copy it from the
|
||
target type), so we won't print values which are too large to
|
||
fit in a signed integer correctly. */
|
||
/* FIXME: Doesn't handle ranges of enums correctly. (Can't just
|
||
print with the target type, though, because the size of our
|
||
type and the target type might differ). */
|
||
|
||
/* FALLTHROUGH */
|
||
|
||
case TYPE_CODE_INT:
|
||
generic_val_print_int (type, embedded_offset, stream,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_CHAR:
|
||
generic_val_print_char (type, unresolved_type, embedded_offset,
|
||
stream, original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_FLT:
|
||
case TYPE_CODE_DECFLOAT:
|
||
generic_val_print_float (type, embedded_offset, stream,
|
||
original_value, options);
|
||
break;
|
||
|
||
case TYPE_CODE_VOID:
|
||
fputs_filtered (decorations->void_name, stream);
|
||
break;
|
||
|
||
case TYPE_CODE_ERROR:
|
||
fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
|
||
break;
|
||
|
||
case TYPE_CODE_UNDEF:
|
||
/* This happens (without TYPE_STUB set) on systems which don't use
|
||
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
|
||
and no complete type for struct foo in that file. */
|
||
fprintf_filtered (stream, _("<incomplete type>"));
|
||
break;
|
||
|
||
case TYPE_CODE_COMPLEX:
|
||
generic_val_print_complex (type, embedded_offset, stream,
|
||
original_value, options, decorations);
|
||
break;
|
||
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_METHODPTR:
|
||
default:
|
||
error (_("Unhandled type code %d in symbol table."),
|
||
TYPE_CODE (type));
|
||
}
|
||
gdb_flush (stream);
|
||
}
|
||
|
||
/* Print using the given LANGUAGE the data of type TYPE located at
|
||
VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
|
||
from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
|
||
stdio stream STREAM according to OPTIONS. VAL is the whole object
|
||
that came from ADDRESS.
|
||
|
||
The language printers will pass down an adjusted EMBEDDED_OFFSET to
|
||
further helper subroutines as subfields of TYPE are printed. In
|
||
such cases, VAL is passed down unadjusted, so
|
||
that VAL can be queried for metadata about the contents data being
|
||
printed, using EMBEDDED_OFFSET as an offset into VAL's contents
|
||
buffer. For example: "has this field been optimized out", or "I'm
|
||
printing an object while inspecting a traceframe; has this
|
||
particular piece of data been collected?".
|
||
|
||
RECURSE indicates the amount of indentation to supply before
|
||
continuation lines; this amount is roughly twice the value of
|
||
RECURSE. */
|
||
|
||
void
|
||
val_print (struct type *type, LONGEST embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream, int recurse,
|
||
struct value *val,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
int ret = 0;
|
||
struct value_print_options local_opts = *options;
|
||
struct type *real_type = check_typedef (type);
|
||
|
||
if (local_opts.prettyformat == Val_prettyformat_default)
|
||
local_opts.prettyformat = (local_opts.prettyformat_structs
|
||
? Val_prettyformat : Val_no_prettyformat);
|
||
|
||
QUIT;
|
||
|
||
/* Ensure that the type is complete and not just a stub. If the type is
|
||
only a stub and we can't find and substitute its complete type, then
|
||
print appropriate string and return. */
|
||
|
||
if (TYPE_STUB (real_type))
|
||
{
|
||
fprintf_filtered (stream, _("<incomplete type>"));
|
||
gdb_flush (stream);
|
||
return;
|
||
}
|
||
|
||
if (!valprint_check_validity (stream, real_type, embedded_offset, val))
|
||
return;
|
||
|
||
if (!options->raw)
|
||
{
|
||
ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
|
||
address, stream, recurse,
|
||
val, options, language);
|
||
if (ret)
|
||
return;
|
||
}
|
||
|
||
/* Handle summary mode. If the value is a scalar, print it;
|
||
otherwise, print an ellipsis. */
|
||
if (options->summary && !val_print_scalar_type_p (type))
|
||
{
|
||
fprintf_filtered (stream, "...");
|
||
return;
|
||
}
|
||
|
||
TRY
|
||
{
|
||
language->la_val_print (type, embedded_offset, address,
|
||
stream, recurse, val,
|
||
&local_opts);
|
||
}
|
||
CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
fprintf_filtered (stream, _("<error reading variable>"));
|
||
}
|
||
END_CATCH
|
||
}
|
||
|
||
/* Check whether the value VAL is printable. Return 1 if it is;
|
||
return 0 and print an appropriate error message to STREAM according to
|
||
OPTIONS if it is not. */
|
||
|
||
static int
|
||
value_check_printable (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
if (val == 0)
|
||
{
|
||
fprintf_filtered (stream, _("<address of value unknown>"));
|
||
return 0;
|
||
}
|
||
|
||
if (value_entirely_optimized_out (val))
|
||
{
|
||
if (options->summary && !val_print_scalar_type_p (value_type (val)))
|
||
fprintf_filtered (stream, "...");
|
||
else
|
||
val_print_optimized_out (val, stream);
|
||
return 0;
|
||
}
|
||
|
||
if (value_entirely_unavailable (val))
|
||
{
|
||
if (options->summary && !val_print_scalar_type_p (value_type (val)))
|
||
fprintf_filtered (stream, "...");
|
||
else
|
||
val_print_unavailable (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
|
||
{
|
||
fprintf_filtered (stream, _("<internal function %s>"),
|
||
value_internal_function_name (val));
|
||
return 0;
|
||
}
|
||
|
||
if (type_not_associated (value_type (val)))
|
||
{
|
||
val_print_not_associated (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (type_not_allocated (value_type (val)))
|
||
{
|
||
val_print_not_allocated (stream);
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Print using the given LANGUAGE the value VAL onto stream STREAM according
|
||
to OPTIONS.
|
||
|
||
This is a preferable interface to val_print, above, because it uses
|
||
GDB's value mechanism. */
|
||
|
||
void
|
||
common_val_print (struct value *val, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
if (!value_check_printable (val, stream, options))
|
||
return;
|
||
|
||
if (language->la_language == language_ada)
|
||
/* The value might have a dynamic type, which would cause trouble
|
||
below when trying to extract the value contents (since the value
|
||
size is determined from the type size which is unknown). So
|
||
get a fixed representation of our value. */
|
||
val = ada_to_fixed_value (val);
|
||
|
||
if (value_lazy (val))
|
||
value_fetch_lazy (val);
|
||
|
||
val_print (value_type (val),
|
||
value_embedded_offset (val), value_address (val),
|
||
stream, recurse,
|
||
val, options, language);
|
||
}
|
||
|
||
/* Print on stream STREAM the value VAL according to OPTIONS. The value
|
||
is printed using the current_language syntax. */
|
||
|
||
void
|
||
value_print (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
if (!value_check_printable (val, stream, options))
|
||
return;
|
||
|
||
if (!options->raw)
|
||
{
|
||
int r
|
||
= apply_ext_lang_val_pretty_printer (value_type (val),
|
||
value_embedded_offset (val),
|
||
value_address (val),
|
||
stream, 0,
|
||
val, options, current_language);
|
||
|
||
if (r)
|
||
return;
|
||
}
|
||
|
||
LA_VALUE_PRINT (val, stream, options);
|
||
}
|
||
|
||
static void
|
||
val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
|
||
struct ui_file *stream)
|
||
{
|
||
ULONGEST val = unpack_long (type, valaddr);
|
||
int field, nfields = TYPE_NFIELDS (type);
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
|
||
|
||
fputs_filtered ("[", stream);
|
||
for (field = 0; field < nfields; field++)
|
||
{
|
||
if (TYPE_FIELD_NAME (type, field)[0] != '\0')
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type, field);
|
||
|
||
if (field_type == bool_type
|
||
/* We require boolean types here to be one bit wide. This is a
|
||
problematic place to notify the user of an internal error
|
||
though. Instead just fall through and print the field as an
|
||
int. */
|
||
&& TYPE_FIELD_BITSIZE (type, field) == 1)
|
||
{
|
||
if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
|
||
fprintf_filtered (stream, " %s",
|
||
TYPE_FIELD_NAME (type, field));
|
||
}
|
||
else
|
||
{
|
||
unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
|
||
ULONGEST field_val
|
||
= val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
|
||
|
||
if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
|
||
field_val &= ((ULONGEST) 1 << field_len) - 1;
|
||
fprintf_filtered (stream, " %s=",
|
||
TYPE_FIELD_NAME (type, field));
|
||
if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
|
||
generic_val_print_enum_1 (field_type, field_val, stream);
|
||
else
|
||
print_longest (stream, 'd', 0, field_val);
|
||
}
|
||
}
|
||
}
|
||
fputs_filtered (" ]", stream);
|
||
}
|
||
|
||
/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
|
||
according to OPTIONS and SIZE on STREAM. Format i is not supported
|
||
at this level.
|
||
|
||
This is how the elements of an array or structure are printed
|
||
with a format. */
|
||
|
||
void
|
||
val_print_scalar_formatted (struct type *type,
|
||
LONGEST embedded_offset,
|
||
struct value *val,
|
||
const struct value_print_options *options,
|
||
int size,
|
||
struct ui_file *stream)
|
||
{
|
||
struct gdbarch *arch = get_type_arch (type);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (arch);
|
||
|
||
gdb_assert (val != NULL);
|
||
|
||
/* If we get here with a string format, try again without it. Go
|
||
all the way back to the language printers, which may call us
|
||
again. */
|
||
if (options->format == 's')
|
||
{
|
||
struct value_print_options opts = *options;
|
||
opts.format = 0;
|
||
opts.deref_ref = 0;
|
||
val_print (type, embedded_offset, 0, stream, 0, val, &opts,
|
||
current_language);
|
||
return;
|
||
}
|
||
|
||
/* value_contents_for_printing fetches all VAL's contents. They are
|
||
needed to check whether VAL is optimized-out or unavailable
|
||
below. */
|
||
const gdb_byte *valaddr = value_contents_for_printing (val);
|
||
|
||
/* A scalar object that does not have all bits available can't be
|
||
printed, because all bits contribute to its representation. */
|
||
if (value_bits_any_optimized_out (val,
|
||
TARGET_CHAR_BIT * embedded_offset,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
|
||
val_print_optimized_out (val, stream);
|
||
else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
|
||
val_print_unavailable (stream);
|
||
else
|
||
print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
|
||
options, size, stream);
|
||
}
|
||
|
||
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
|
||
The raison d'etre of this function is to consolidate printing of
|
||
LONG_LONG's into this one function. The format chars b,h,w,g are
|
||
from print_scalar_formatted(). Numbers are printed using C
|
||
format.
|
||
|
||
USE_C_FORMAT means to use C format in all cases. Without it,
|
||
'o' and 'x' format do not include the standard C radix prefix
|
||
(leading 0 or 0x).
|
||
|
||
Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
|
||
and was intended to request formating according to the current
|
||
language and would be used for most integers that GDB prints. The
|
||
exceptional cases were things like protocols where the format of
|
||
the integer is a protocol thing, not a user-visible thing). The
|
||
parameter remains to preserve the information of what things might
|
||
be printed with language-specific format, should we ever resurrect
|
||
that capability. */
|
||
|
||
void
|
||
print_longest (struct ui_file *stream, int format, int use_c_format,
|
||
LONGEST val_long)
|
||
{
|
||
const char *val;
|
||
|
||
switch (format)
|
||
{
|
||
case 'd':
|
||
val = int_string (val_long, 10, 1, 0, 1); break;
|
||
case 'u':
|
||
val = int_string (val_long, 10, 0, 0, 1); break;
|
||
case 'x':
|
||
val = int_string (val_long, 16, 0, 0, use_c_format); break;
|
||
case 'b':
|
||
val = int_string (val_long, 16, 0, 2, 1); break;
|
||
case 'h':
|
||
val = int_string (val_long, 16, 0, 4, 1); break;
|
||
case 'w':
|
||
val = int_string (val_long, 16, 0, 8, 1); break;
|
||
case 'g':
|
||
val = int_string (val_long, 16, 0, 16, 1); break;
|
||
break;
|
||
case 'o':
|
||
val = int_string (val_long, 8, 0, 0, use_c_format); break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
fputs_filtered (val, stream);
|
||
}
|
||
|
||
/* This used to be a macro, but I don't think it is called often enough
|
||
to merit such treatment. */
|
||
/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
|
||
arguments to a function, number in a value history, register number, etc.)
|
||
where the value must not be larger than can fit in an int. */
|
||
|
||
int
|
||
longest_to_int (LONGEST arg)
|
||
{
|
||
/* Let the compiler do the work. */
|
||
int rtnval = (int) arg;
|
||
|
||
/* Check for overflows or underflows. */
|
||
if (sizeof (LONGEST) > sizeof (int))
|
||
{
|
||
if (rtnval != arg)
|
||
{
|
||
error (_("Value out of range."));
|
||
}
|
||
}
|
||
return (rtnval);
|
||
}
|
||
|
||
/* Print a floating point value of floating-point type TYPE,
|
||
pointed to in GDB by VALADDR, on STREAM. */
|
||
|
||
void
|
||
print_floating (const gdb_byte *valaddr, struct type *type,
|
||
struct ui_file *stream)
|
||
{
|
||
std::string str = target_float_to_string (valaddr, type);
|
||
fputs_filtered (str.c_str (), stream);
|
||
}
|
||
|
||
void
|
||
print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order, bool zero_pad)
|
||
{
|
||
const gdb_byte *p;
|
||
unsigned int i;
|
||
int b;
|
||
bool seen_a_one = false;
|
||
|
||
/* Declared "int" so it will be signed.
|
||
This ensures that right shift will shift in zeros. */
|
||
|
||
const int mask = 0x080;
|
||
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
/* Every byte has 8 binary characters; peel off
|
||
and print from the MSB end. */
|
||
|
||
for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
|
||
{
|
||
if (*p & (mask >> i))
|
||
b = '1';
|
||
else
|
||
b = '0';
|
||
|
||
if (zero_pad || seen_a_one || b == '1')
|
||
fputc_filtered (b, stream);
|
||
if (b == '1')
|
||
seen_a_one = true;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
|
||
{
|
||
if (*p & (mask >> i))
|
||
b = '1';
|
||
else
|
||
b = '0';
|
||
|
||
if (zero_pad || seen_a_one || b == '1')
|
||
fputc_filtered (b, stream);
|
||
if (b == '1')
|
||
seen_a_one = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* When not zero-padding, ensure that something is printed when the
|
||
input is 0. */
|
||
if (!zero_pad && !seen_a_one)
|
||
fputc_filtered ('0', stream);
|
||
}
|
||
|
||
/* A helper for print_octal_chars that emits a single octal digit,
|
||
optionally suppressing it if is zero and updating SEEN_A_ONE. */
|
||
|
||
static void
|
||
emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
|
||
{
|
||
if (*seen_a_one || digit != 0)
|
||
fprintf_filtered (stream, "%o", digit);
|
||
if (digit != 0)
|
||
*seen_a_one = true;
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes.
|
||
Print it in octal on stream or format it in buf. */
|
||
|
||
void
|
||
print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
const gdb_byte *p;
|
||
unsigned char octa1, octa2, octa3, carry;
|
||
int cycle;
|
||
|
||
/* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
|
||
* the extra bits, which cycle every three bytes:
|
||
*
|
||
* Byte side: 0 1 2 3
|
||
* | | | |
|
||
* bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
|
||
*
|
||
* Octal side: 0 1 carry 3 4 carry ...
|
||
*
|
||
* Cycle number: 0 1 2
|
||
*
|
||
* But of course we are printing from the high side, so we have to
|
||
* figure out where in the cycle we are so that we end up with no
|
||
* left over bits at the end.
|
||
*/
|
||
#define BITS_IN_OCTAL 3
|
||
#define HIGH_ZERO 0340
|
||
#define LOW_ZERO 0034
|
||
#define CARRY_ZERO 0003
|
||
static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
|
||
"cycle zero constants are wrong");
|
||
#define HIGH_ONE 0200
|
||
#define MID_ONE 0160
|
||
#define LOW_ONE 0016
|
||
#define CARRY_ONE 0001
|
||
static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
|
||
"cycle one constants are wrong");
|
||
#define HIGH_TWO 0300
|
||
#define MID_TWO 0070
|
||
#define LOW_TWO 0007
|
||
static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
|
||
"cycle two constants are wrong");
|
||
|
||
/* For 32 we start in cycle 2, with two bits and one bit carry;
|
||
for 64 in cycle in cycle 1, with one bit and a two bit carry. */
|
||
|
||
cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
|
||
carry = 0;
|
||
|
||
fputs_filtered ("0", stream);
|
||
bool seen_a_one = false;
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
switch (cycle)
|
||
{
|
||
case 0:
|
||
/* No carry in, carry out two bits. */
|
||
|
||
octa1 = (HIGH_ZERO & *p) >> 5;
|
||
octa2 = (LOW_ZERO & *p) >> 2;
|
||
carry = (CARRY_ZERO & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
break;
|
||
|
||
case 1:
|
||
/* Carry in two bits, carry out one bit. */
|
||
|
||
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
|
||
octa2 = (MID_ONE & *p) >> 4;
|
||
octa3 = (LOW_ONE & *p) >> 1;
|
||
carry = (CARRY_ONE & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
case 2:
|
||
/* Carry in one bit, no carry out. */
|
||
|
||
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
|
||
octa2 = (MID_TWO & *p) >> 3;
|
||
octa3 = (LOW_TWO & *p);
|
||
carry = 0;
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
default:
|
||
error (_("Internal error in octal conversion;"));
|
||
}
|
||
|
||
cycle++;
|
||
cycle = cycle % BITS_IN_OCTAL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
switch (cycle)
|
||
{
|
||
case 0:
|
||
/* Carry out, no carry in */
|
||
|
||
octa1 = (HIGH_ZERO & *p) >> 5;
|
||
octa2 = (LOW_ZERO & *p) >> 2;
|
||
carry = (CARRY_ZERO & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
break;
|
||
|
||
case 1:
|
||
/* Carry in, carry out */
|
||
|
||
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
|
||
octa2 = (MID_ONE & *p) >> 4;
|
||
octa3 = (LOW_ONE & *p) >> 1;
|
||
carry = (CARRY_ONE & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
case 2:
|
||
/* Carry in, no carry out */
|
||
|
||
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
|
||
octa2 = (MID_TWO & *p) >> 3;
|
||
octa3 = (LOW_TWO & *p);
|
||
carry = 0;
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
default:
|
||
error (_("Internal error in octal conversion;"));
|
||
}
|
||
|
||
cycle++;
|
||
cycle = cycle % BITS_IN_OCTAL;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* Possibly negate the integer represented by BYTES. It contains LEN
|
||
bytes in the specified byte order. If the integer is negative,
|
||
copy it into OUT_VEC, negate it, and return true. Otherwise, do
|
||
nothing and return false. */
|
||
|
||
static bool
|
||
maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
|
||
enum bfd_endian byte_order,
|
||
gdb::byte_vector *out_vec)
|
||
{
|
||
gdb_byte sign_byte;
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
sign_byte = bytes[0];
|
||
else
|
||
sign_byte = bytes[len - 1];
|
||
if ((sign_byte & 0x80) == 0)
|
||
return false;
|
||
|
||
out_vec->resize (len);
|
||
|
||
/* Compute -x == 1 + ~x. */
|
||
if (byte_order == BFD_ENDIAN_LITTLE)
|
||
{
|
||
unsigned carry = 1;
|
||
for (unsigned i = 0; i < len; ++i)
|
||
{
|
||
unsigned tem = (0xff & ~bytes[i]) + carry;
|
||
(*out_vec)[i] = tem & 0xff;
|
||
carry = tem / 256;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
unsigned carry = 1;
|
||
for (unsigned i = len; i > 0; --i)
|
||
{
|
||
unsigned tem = (0xff & ~bytes[i - 1]) + carry;
|
||
(*out_vec)[i - 1] = tem & 0xff;
|
||
carry = tem / 256;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes.
|
||
Print it in decimal on stream or format it in buf. */
|
||
|
||
void
|
||
print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, bool is_signed,
|
||
enum bfd_endian byte_order)
|
||
{
|
||
#define TEN 10
|
||
#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
|
||
#define CARRY_LEFT( x ) ((x) % TEN)
|
||
#define SHIFT( x ) ((x) << 4)
|
||
#define LOW_NIBBLE( x ) ( (x) & 0x00F)
|
||
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
|
||
|
||
const gdb_byte *p;
|
||
int carry;
|
||
int decimal_len;
|
||
int i, j, decimal_digits;
|
||
int dummy;
|
||
int flip;
|
||
|
||
gdb::byte_vector negated_bytes;
|
||
if (is_signed
|
||
&& maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
|
||
{
|
||
fputs_filtered ("-", stream);
|
||
valaddr = negated_bytes.data ();
|
||
}
|
||
|
||
/* Base-ten number is less than twice as many digits
|
||
as the base 16 number, which is 2 digits per byte. */
|
||
|
||
decimal_len = len * 2 * 2;
|
||
std::vector<unsigned char> digits (decimal_len, 0);
|
||
|
||
/* Ok, we have an unknown number of bytes of data to be printed in
|
||
* decimal.
|
||
*
|
||
* Given a hex number (in nibbles) as XYZ, we start by taking X and
|
||
* decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
|
||
* the nibbles by 16, add Y and re-decimalize. Repeat with Z.
|
||
*
|
||
* The trick is that "digits" holds a base-10 number, but sometimes
|
||
* the individual digits are > 10.
|
||
*
|
||
* Outer loop is per nibble (hex digit) of input, from MSD end to
|
||
* LSD end.
|
||
*/
|
||
decimal_digits = 0; /* Number of decimal digits so far */
|
||
p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
|
||
flip = 0;
|
||
while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
|
||
{
|
||
/*
|
||
* Multiply current base-ten number by 16 in place.
|
||
* Each digit was between 0 and 9, now is between
|
||
* 0 and 144.
|
||
*/
|
||
for (j = 0; j < decimal_digits; j++)
|
||
{
|
||
digits[j] = SHIFT (digits[j]);
|
||
}
|
||
|
||
/* Take the next nibble off the input and add it to what
|
||
* we've got in the LSB position. Bottom 'digit' is now
|
||
* between 0 and 159.
|
||
*
|
||
* "flip" is used to run this loop twice for each byte.
|
||
*/
|
||
if (flip == 0)
|
||
{
|
||
/* Take top nibble. */
|
||
|
||
digits[0] += HIGH_NIBBLE (*p);
|
||
flip = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Take low nibble and bump our pointer "p". */
|
||
|
||
digits[0] += LOW_NIBBLE (*p);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
p++;
|
||
else
|
||
p--;
|
||
flip = 0;
|
||
}
|
||
|
||
/* Re-decimalize. We have to do this often enough
|
||
* that we don't overflow, but once per nibble is
|
||
* overkill. Easier this way, though. Note that the
|
||
* carry is often larger than 10 (e.g. max initial
|
||
* carry out of lowest nibble is 15, could bubble all
|
||
* the way up greater than 10). So we have to do
|
||
* the carrying beyond the last current digit.
|
||
*/
|
||
carry = 0;
|
||
for (j = 0; j < decimal_len - 1; j++)
|
||
{
|
||
digits[j] += carry;
|
||
|
||
/* "/" won't handle an unsigned char with
|
||
* a value that if signed would be negative.
|
||
* So extend to longword int via "dummy".
|
||
*/
|
||
dummy = digits[j];
|
||
carry = CARRY_OUT (dummy);
|
||
digits[j] = CARRY_LEFT (dummy);
|
||
|
||
if (j >= decimal_digits && carry == 0)
|
||
{
|
||
/*
|
||
* All higher digits are 0 and we
|
||
* no longer have a carry.
|
||
*
|
||
* Note: "j" is 0-based, "decimal_digits" is
|
||
* 1-based.
|
||
*/
|
||
decimal_digits = j + 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Ok, now "digits" is the decimal representation, with
|
||
the "decimal_digits" actual digits. Print! */
|
||
|
||
for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
|
||
;
|
||
|
||
for (; i >= 0; i--)
|
||
{
|
||
fprintf_filtered (stream, "%1d", digits[i]);
|
||
}
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
|
||
|
||
void
|
||
print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order,
|
||
bool zero_pad)
|
||
{
|
||
const gdb_byte *p;
|
||
|
||
fputs_filtered ("0x", stream);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
p = valaddr;
|
||
|
||
if (!zero_pad)
|
||
{
|
||
/* Strip leading 0 bytes, but be sure to leave at least a
|
||
single byte at the end. */
|
||
for (; p < valaddr + len - 1 && !*p; ++p)
|
||
;
|
||
}
|
||
|
||
const gdb_byte *first = p;
|
||
for (;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
/* When not zero-padding, use a different format for the
|
||
very first byte printed. */
|
||
if (!zero_pad && p == first)
|
||
fprintf_filtered (stream, "%x", *p);
|
||
else
|
||
fprintf_filtered (stream, "%02x", *p);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
p = valaddr + len - 1;
|
||
|
||
if (!zero_pad)
|
||
{
|
||
/* Strip leading 0 bytes, but be sure to leave at least a
|
||
single byte at the end. */
|
||
for (; p >= valaddr + 1 && !*p; --p)
|
||
;
|
||
}
|
||
|
||
const gdb_byte *first = p;
|
||
for (;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
/* When not zero-padding, use a different format for the
|
||
very first byte printed. */
|
||
if (!zero_pad && p == first)
|
||
fprintf_filtered (stream, "%x", *p);
|
||
else
|
||
fprintf_filtered (stream, "%02x", *p);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* VALADDR points to a char integer of LEN bytes.
|
||
Print it out in appropriate language form on stream.
|
||
Omit any leading zero chars. */
|
||
|
||
void
|
||
print_char_chars (struct ui_file *stream, struct type *type,
|
||
const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
const gdb_byte *p;
|
||
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
p = valaddr;
|
||
while (p < valaddr + len - 1 && *p == 0)
|
||
++p;
|
||
|
||
while (p < valaddr + len)
|
||
{
|
||
LA_EMIT_CHAR (*p, type, stream, '\'');
|
||
++p;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
p = valaddr + len - 1;
|
||
while (p > valaddr && *p == 0)
|
||
--p;
|
||
|
||
while (p >= valaddr)
|
||
{
|
||
LA_EMIT_CHAR (*p, type, stream, '\'');
|
||
--p;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Print function pointer with inferior address ADDRESS onto stdio
|
||
stream STREAM. */
|
||
|
||
void
|
||
print_function_pointer_address (const struct value_print_options *options,
|
||
struct gdbarch *gdbarch,
|
||
CORE_ADDR address,
|
||
struct ui_file *stream)
|
||
{
|
||
CORE_ADDR func_addr
|
||
= gdbarch_convert_from_func_ptr_addr (gdbarch, address,
|
||
target_stack);
|
||
|
||
/* If the function pointer is represented by a description, print
|
||
the address of the description. */
|
||
if (options->addressprint && func_addr != address)
|
||
{
|
||
fputs_filtered ("@", stream);
|
||
fputs_filtered (paddress (gdbarch, address), stream);
|
||
fputs_filtered (": ", stream);
|
||
}
|
||
print_address_demangle (options, gdbarch, func_addr, stream, demangle);
|
||
}
|
||
|
||
|
||
/* Print on STREAM using the given OPTIONS the index for the element
|
||
at INDEX of an array whose index type is INDEX_TYPE. */
|
||
|
||
void
|
||
maybe_print_array_index (struct type *index_type, LONGEST index,
|
||
struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct value *index_value;
|
||
|
||
if (!options->print_array_indexes)
|
||
return;
|
||
|
||
index_value = value_from_longest (index_type, index);
|
||
|
||
LA_PRINT_ARRAY_INDEX (index_value, stream, options);
|
||
}
|
||
|
||
/* Called by various <lang>_val_print routines to print elements of an
|
||
array in the form "<elem1>, <elem2>, <elem3>, ...".
|
||
|
||
(FIXME?) Assumes array element separator is a comma, which is correct
|
||
for all languages currently handled.
|
||
(FIXME?) Some languages have a notation for repeated array elements,
|
||
perhaps we should try to use that notation when appropriate. */
|
||
|
||
void
|
||
val_print_array_elements (struct type *type,
|
||
LONGEST embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream,
|
||
int recurse,
|
||
struct value *val,
|
||
const struct value_print_options *options,
|
||
unsigned int i)
|
||
{
|
||
unsigned int things_printed = 0;
|
||
unsigned len;
|
||
struct type *elttype, *index_type, *base_index_type;
|
||
unsigned eltlen;
|
||
/* Position of the array element we are examining to see
|
||
whether it is repeated. */
|
||
unsigned int rep1;
|
||
/* Number of repetitions we have detected so far. */
|
||
unsigned int reps;
|
||
LONGEST low_bound, high_bound;
|
||
LONGEST low_pos, high_pos;
|
||
|
||
elttype = TYPE_TARGET_TYPE (type);
|
||
eltlen = type_length_units (check_typedef (elttype));
|
||
index_type = TYPE_INDEX_TYPE (type);
|
||
|
||
if (get_array_bounds (type, &low_bound, &high_bound))
|
||
{
|
||
if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
|
||
base_index_type = TYPE_TARGET_TYPE (index_type);
|
||
else
|
||
base_index_type = index_type;
|
||
|
||
/* Non-contiguous enumerations types can by used as index types
|
||
in some languages (e.g. Ada). In this case, the array length
|
||
shall be computed from the positions of the first and last
|
||
literal in the enumeration type, and not from the values
|
||
of these literals. */
|
||
if (!discrete_position (base_index_type, low_bound, &low_pos)
|
||
|| !discrete_position (base_index_type, high_bound, &high_pos))
|
||
{
|
||
warning (_("unable to get positions in array, use bounds instead"));
|
||
low_pos = low_bound;
|
||
high_pos = high_bound;
|
||
}
|
||
|
||
/* The array length should normally be HIGH_POS - LOW_POS + 1.
|
||
But we have to be a little extra careful, because some languages
|
||
such as Ada allow LOW_POS to be greater than HIGH_POS for
|
||
empty arrays. In that situation, the array length is just zero,
|
||
not negative! */
|
||
if (low_pos > high_pos)
|
||
len = 0;
|
||
else
|
||
len = high_pos - low_pos + 1;
|
||
}
|
||
else
|
||
{
|
||
warning (_("unable to get bounds of array, assuming null array"));
|
||
low_bound = 0;
|
||
len = 0;
|
||
}
|
||
|
||
annotate_array_section_begin (i, elttype);
|
||
|
||
for (; i < len && things_printed < options->print_max; i++)
|
||
{
|
||
if (i != 0)
|
||
{
|
||
if (options->prettyformat_arrays)
|
||
{
|
||
fprintf_filtered (stream, ",\n");
|
||
print_spaces_filtered (2 + 2 * recurse, stream);
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (stream, ", ");
|
||
}
|
||
}
|
||
wrap_here (n_spaces (2 + 2 * recurse));
|
||
maybe_print_array_index (index_type, i + low_bound,
|
||
stream, options);
|
||
|
||
rep1 = i + 1;
|
||
reps = 1;
|
||
/* Only check for reps if repeat_count_threshold is not set to
|
||
UINT_MAX (unlimited). */
|
||
if (options->repeat_count_threshold < UINT_MAX)
|
||
{
|
||
while (rep1 < len
|
||
&& value_contents_eq (val,
|
||
embedded_offset + i * eltlen,
|
||
val,
|
||
(embedded_offset
|
||
+ rep1 * eltlen),
|
||
eltlen))
|
||
{
|
||
++reps;
|
||
++rep1;
|
||
}
|
||
}
|
||
|
||
if (reps > options->repeat_count_threshold)
|
||
{
|
||
val_print (elttype, embedded_offset + i * eltlen,
|
||
address, stream, recurse + 1, val, options,
|
||
current_language);
|
||
annotate_elt_rep (reps);
|
||
fprintf_filtered (stream, " <repeats %u times>", reps);
|
||
annotate_elt_rep_end ();
|
||
|
||
i = rep1 - 1;
|
||
things_printed += options->repeat_count_threshold;
|
||
}
|
||
else
|
||
{
|
||
val_print (elttype, embedded_offset + i * eltlen,
|
||
address,
|
||
stream, recurse + 1, val, options, current_language);
|
||
annotate_elt ();
|
||
things_printed++;
|
||
}
|
||
}
|
||
annotate_array_section_end ();
|
||
if (i < len)
|
||
{
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
|
||
/* Read LEN bytes of target memory at address MEMADDR, placing the
|
||
results in GDB's memory at MYADDR. Returns a count of the bytes
|
||
actually read, and optionally a target_xfer_status value in the
|
||
location pointed to by ERRPTR if ERRPTR is non-null. */
|
||
|
||
/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
|
||
function be eliminated. */
|
||
|
||
static int
|
||
partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
|
||
int len, int *errptr)
|
||
{
|
||
int nread; /* Number of bytes actually read. */
|
||
int errcode; /* Error from last read. */
|
||
|
||
/* First try a complete read. */
|
||
errcode = target_read_memory (memaddr, myaddr, len);
|
||
if (errcode == 0)
|
||
{
|
||
/* Got it all. */
|
||
nread = len;
|
||
}
|
||
else
|
||
{
|
||
/* Loop, reading one byte at a time until we get as much as we can. */
|
||
for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
|
||
{
|
||
errcode = target_read_memory (memaddr++, myaddr++, 1);
|
||
}
|
||
/* If an error, the last read was unsuccessful, so adjust count. */
|
||
if (errcode != 0)
|
||
{
|
||
nread--;
|
||
}
|
||
}
|
||
if (errptr != NULL)
|
||
{
|
||
*errptr = errcode;
|
||
}
|
||
return (nread);
|
||
}
|
||
|
||
/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
|
||
each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
|
||
allocated buffer containing the string, which the caller is responsible to
|
||
free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
|
||
success, or a target_xfer_status on failure.
|
||
|
||
If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
|
||
(including eventual NULs in the middle or end of the string).
|
||
|
||
If LEN is -1, stops at the first null character (not necessarily
|
||
the first null byte) up to a maximum of FETCHLIMIT characters. Set
|
||
FETCHLIMIT to UINT_MAX to read as many characters as possible from
|
||
the string.
|
||
|
||
Unless an exception is thrown, BUFFER will always be allocated, even on
|
||
failure. In this case, some characters might have been read before the
|
||
failure happened. Check BYTES_READ to recognize this situation.
|
||
|
||
Note: There was a FIXME asking to make this code use target_read_string,
|
||
but this function is more general (can read past null characters, up to
|
||
given LEN). Besides, it is used much more often than target_read_string
|
||
so it is more tested. Perhaps callers of target_read_string should use
|
||
this function instead? */
|
||
|
||
int
|
||
read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
|
||
enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
|
||
{
|
||
int errcode; /* Errno returned from bad reads. */
|
||
unsigned int nfetch; /* Chars to fetch / chars fetched. */
|
||
gdb_byte *bufptr; /* Pointer to next available byte in
|
||
buffer. */
|
||
struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
|
||
|
||
/* Loop until we either have all the characters, or we encounter
|
||
some error, such as bumping into the end of the address space. */
|
||
|
||
*buffer = NULL;
|
||
|
||
old_chain = make_cleanup (free_current_contents, buffer);
|
||
|
||
if (len > 0)
|
||
{
|
||
/* We want fetchlimit chars, so we might as well read them all in
|
||
one operation. */
|
||
unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
|
||
|
||
*buffer = (gdb_byte *) xmalloc (fetchlen * width);
|
||
bufptr = *buffer;
|
||
|
||
nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
|
||
/ width;
|
||
addr += nfetch * width;
|
||
bufptr += nfetch * width;
|
||
}
|
||
else if (len == -1)
|
||
{
|
||
unsigned long bufsize = 0;
|
||
unsigned int chunksize; /* Size of each fetch, in chars. */
|
||
int found_nul; /* Non-zero if we found the nul char. */
|
||
gdb_byte *limit; /* First location past end of fetch buffer. */
|
||
|
||
found_nul = 0;
|
||
/* We are looking for a NUL terminator to end the fetching, so we
|
||
might as well read in blocks that are large enough to be efficient,
|
||
but not so large as to be slow if fetchlimit happens to be large.
|
||
So we choose the minimum of 8 and fetchlimit. We used to use 200
|
||
instead of 8 but 200 is way too big for remote debugging over a
|
||
serial line. */
|
||
chunksize = std::min (8u, fetchlimit);
|
||
|
||
do
|
||
{
|
||
QUIT;
|
||
nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
|
||
|
||
if (*buffer == NULL)
|
||
*buffer = (gdb_byte *) xmalloc (nfetch * width);
|
||
else
|
||
*buffer = (gdb_byte *) xrealloc (*buffer,
|
||
(nfetch + bufsize) * width);
|
||
|
||
bufptr = *buffer + bufsize * width;
|
||
bufsize += nfetch;
|
||
|
||
/* Read as much as we can. */
|
||
nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
|
||
/ width;
|
||
|
||
/* Scan this chunk for the null character that terminates the string
|
||
to print. If found, we don't need to fetch any more. Note
|
||
that bufptr is explicitly left pointing at the next character
|
||
after the null character, or at the next character after the end
|
||
of the buffer. */
|
||
|
||
limit = bufptr + nfetch * width;
|
||
while (bufptr < limit)
|
||
{
|
||
unsigned long c;
|
||
|
||
c = extract_unsigned_integer (bufptr, width, byte_order);
|
||
addr += width;
|
||
bufptr += width;
|
||
if (c == 0)
|
||
{
|
||
/* We don't care about any error which happened after
|
||
the NUL terminator. */
|
||
errcode = 0;
|
||
found_nul = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
while (errcode == 0 /* no error */
|
||
&& bufptr - *buffer < fetchlimit * width /* no overrun */
|
||
&& !found_nul); /* haven't found NUL yet */
|
||
}
|
||
else
|
||
{ /* Length of string is really 0! */
|
||
/* We always allocate *buffer. */
|
||
*buffer = bufptr = (gdb_byte *) xmalloc (1);
|
||
errcode = 0;
|
||
}
|
||
|
||
/* bufptr and addr now point immediately beyond the last byte which we
|
||
consider part of the string (including a '\0' which ends the string). */
|
||
*bytes_read = bufptr - *buffer;
|
||
|
||
QUIT;
|
||
|
||
discard_cleanups (old_chain);
|
||
|
||
return errcode;
|
||
}
|
||
|
||
/* Return true if print_wchar can display W without resorting to a
|
||
numeric escape, false otherwise. */
|
||
|
||
static int
|
||
wchar_printable (gdb_wchar_t w)
|
||
{
|
||
return (gdb_iswprint (w)
|
||
|| w == LCST ('\a') || w == LCST ('\b')
|
||
|| w == LCST ('\f') || w == LCST ('\n')
|
||
|| w == LCST ('\r') || w == LCST ('\t')
|
||
|| w == LCST ('\v'));
|
||
}
|
||
|
||
/* A helper function that converts the contents of STRING to wide
|
||
characters and then appends them to OUTPUT. */
|
||
|
||
static void
|
||
append_string_as_wide (const char *string,
|
||
struct obstack *output)
|
||
{
|
||
for (; *string; ++string)
|
||
{
|
||
gdb_wchar_t w = gdb_btowc (*string);
|
||
obstack_grow (output, &w, sizeof (gdb_wchar_t));
|
||
}
|
||
}
|
||
|
||
/* Print a wide character W to OUTPUT. ORIG is a pointer to the
|
||
original (target) bytes representing the character, ORIG_LEN is the
|
||
number of valid bytes. WIDTH is the number of bytes in a base
|
||
characters of the type. OUTPUT is an obstack to which wide
|
||
characters are emitted. QUOTER is a (narrow) character indicating
|
||
the style of quotes surrounding the character to be printed.
|
||
NEED_ESCAPE is an in/out flag which is used to track numeric
|
||
escapes across calls. */
|
||
|
||
static void
|
||
print_wchar (gdb_wint_t w, const gdb_byte *orig,
|
||
int orig_len, int width,
|
||
enum bfd_endian byte_order,
|
||
struct obstack *output,
|
||
int quoter, int *need_escapep)
|
||
{
|
||
int need_escape = *need_escapep;
|
||
|
||
*need_escapep = 0;
|
||
|
||
/* iswprint implementation on Windows returns 1 for tab character.
|
||
In order to avoid different printout on this host, we explicitly
|
||
use wchar_printable function. */
|
||
switch (w)
|
||
{
|
||
case LCST ('\a'):
|
||
obstack_grow_wstr (output, LCST ("\\a"));
|
||
break;
|
||
case LCST ('\b'):
|
||
obstack_grow_wstr (output, LCST ("\\b"));
|
||
break;
|
||
case LCST ('\f'):
|
||
obstack_grow_wstr (output, LCST ("\\f"));
|
||
break;
|
||
case LCST ('\n'):
|
||
obstack_grow_wstr (output, LCST ("\\n"));
|
||
break;
|
||
case LCST ('\r'):
|
||
obstack_grow_wstr (output, LCST ("\\r"));
|
||
break;
|
||
case LCST ('\t'):
|
||
obstack_grow_wstr (output, LCST ("\\t"));
|
||
break;
|
||
case LCST ('\v'):
|
||
obstack_grow_wstr (output, LCST ("\\v"));
|
||
break;
|
||
default:
|
||
{
|
||
if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
|
||
&& w != LCST ('8')
|
||
&& w != LCST ('9'))))
|
||
{
|
||
gdb_wchar_t wchar = w;
|
||
|
||
if (w == gdb_btowc (quoter) || w == LCST ('\\'))
|
||
obstack_grow_wstr (output, LCST ("\\"));
|
||
obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i + width <= orig_len; i += width)
|
||
{
|
||
char octal[30];
|
||
ULONGEST value;
|
||
|
||
value = extract_unsigned_integer (&orig[i], width,
|
||
byte_order);
|
||
/* If the value fits in 3 octal digits, print it that
|
||
way. Otherwise, print it as a hex escape. */
|
||
if (value <= 0777)
|
||
xsnprintf (octal, sizeof (octal), "\\%.3o",
|
||
(int) (value & 0777));
|
||
else
|
||
xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
|
||
append_string_as_wide (octal, output);
|
||
}
|
||
/* If we somehow have extra bytes, print them now. */
|
||
while (i < orig_len)
|
||
{
|
||
char octal[5];
|
||
|
||
xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
|
||
append_string_as_wide (octal, output);
|
||
++i;
|
||
}
|
||
|
||
*need_escapep = 1;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Print the character C on STREAM as part of the contents of a
|
||
literal string whose delimiter is QUOTER. ENCODING names the
|
||
encoding of C. */
|
||
|
||
void
|
||
generic_emit_char (int c, struct type *type, struct ui_file *stream,
|
||
int quoter, const char *encoding)
|
||
{
|
||
enum bfd_endian byte_order
|
||
= gdbarch_byte_order (get_type_arch (type));
|
||
gdb_byte *buf;
|
||
int need_escape = 0;
|
||
|
||
buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
|
||
pack_long (buf, type, c);
|
||
|
||
wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
|
||
|
||
/* This holds the printable form of the wchar_t data. */
|
||
auto_obstack wchar_buf;
|
||
|
||
while (1)
|
||
{
|
||
int num_chars;
|
||
gdb_wchar_t *chars;
|
||
const gdb_byte *buf;
|
||
size_t buflen;
|
||
int print_escape = 1;
|
||
enum wchar_iterate_result result;
|
||
|
||
num_chars = iter.iterate (&result, &chars, &buf, &buflen);
|
||
if (num_chars < 0)
|
||
break;
|
||
if (num_chars > 0)
|
||
{
|
||
/* If all characters are printable, print them. Otherwise,
|
||
we're going to have to print an escape sequence. We
|
||
check all characters because we want to print the target
|
||
bytes in the escape sequence, and we don't know character
|
||
boundaries there. */
|
||
int i;
|
||
|
||
print_escape = 0;
|
||
for (i = 0; i < num_chars; ++i)
|
||
if (!wchar_printable (chars[i]))
|
||
{
|
||
print_escape = 1;
|
||
break;
|
||
}
|
||
|
||
if (!print_escape)
|
||
{
|
||
for (i = 0; i < num_chars; ++i)
|
||
print_wchar (chars[i], buf, buflen,
|
||
TYPE_LENGTH (type), byte_order,
|
||
&wchar_buf, quoter, &need_escape);
|
||
}
|
||
}
|
||
|
||
/* This handles the NUM_CHARS == 0 case as well. */
|
||
if (print_escape)
|
||
print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
|
||
byte_order, &wchar_buf, quoter, &need_escape);
|
||
}
|
||
|
||
/* The output in the host encoding. */
|
||
auto_obstack output;
|
||
|
||
convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
|
||
(gdb_byte *) obstack_base (&wchar_buf),
|
||
obstack_object_size (&wchar_buf),
|
||
sizeof (gdb_wchar_t), &output, translit_char);
|
||
obstack_1grow (&output, '\0');
|
||
|
||
fputs_filtered ((const char *) obstack_base (&output), stream);
|
||
}
|
||
|
||
/* Return the repeat count of the next character/byte in ITER,
|
||
storing the result in VEC. */
|
||
|
||
static int
|
||
count_next_character (wchar_iterator *iter,
|
||
std::vector<converted_character> *vec)
|
||
{
|
||
struct converted_character *current;
|
||
|
||
if (vec->empty ())
|
||
{
|
||
struct converted_character tmp;
|
||
gdb_wchar_t *chars;
|
||
|
||
tmp.num_chars
|
||
= iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
|
||
if (tmp.num_chars > 0)
|
||
{
|
||
gdb_assert (tmp.num_chars < MAX_WCHARS);
|
||
memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
|
||
}
|
||
vec->push_back (tmp);
|
||
}
|
||
|
||
current = &vec->back ();
|
||
|
||
/* Count repeated characters or bytes. */
|
||
current->repeat_count = 1;
|
||
if (current->num_chars == -1)
|
||
{
|
||
/* EOF */
|
||
return -1;
|
||
}
|
||
else
|
||
{
|
||
gdb_wchar_t *chars;
|
||
struct converted_character d;
|
||
int repeat;
|
||
|
||
d.repeat_count = 0;
|
||
|
||
while (1)
|
||
{
|
||
/* Get the next character. */
|
||
d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
|
||
|
||
/* If a character was successfully converted, save the character
|
||
into the converted character. */
|
||
if (d.num_chars > 0)
|
||
{
|
||
gdb_assert (d.num_chars < MAX_WCHARS);
|
||
memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
|
||
}
|
||
|
||
/* Determine if the current character is the same as this
|
||
new character. */
|
||
if (d.num_chars == current->num_chars && d.result == current->result)
|
||
{
|
||
/* There are two cases to consider:
|
||
|
||
1) Equality of converted character (num_chars > 0)
|
||
2) Equality of non-converted character (num_chars == 0) */
|
||
if ((current->num_chars > 0
|
||
&& memcmp (current->chars, d.chars,
|
||
WCHAR_BUFLEN (current->num_chars)) == 0)
|
||
|| (current->num_chars == 0
|
||
&& current->buflen == d.buflen
|
||
&& memcmp (current->buf, d.buf, current->buflen) == 0))
|
||
++current->repeat_count;
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* Push this next converted character onto the result vector. */
|
||
repeat = current->repeat_count;
|
||
vec->push_back (d);
|
||
return repeat;
|
||
}
|
||
}
|
||
|
||
/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
|
||
character to use with string output. WIDTH is the size of the output
|
||
character type. BYTE_ORDER is the the target byte order. OPTIONS
|
||
is the user's print options. */
|
||
|
||
static void
|
||
print_converted_chars_to_obstack (struct obstack *obstack,
|
||
const std::vector<converted_character> &chars,
|
||
int quote_char, int width,
|
||
enum bfd_endian byte_order,
|
||
const struct value_print_options *options)
|
||
{
|
||
unsigned int idx;
|
||
const converted_character *elem;
|
||
enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
|
||
gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
|
||
int need_escape = 0;
|
||
|
||
/* Set the start state. */
|
||
idx = 0;
|
||
last = state = START;
|
||
elem = NULL;
|
||
|
||
while (1)
|
||
{
|
||
switch (state)
|
||
{
|
||
case START:
|
||
/* Nothing to do. */
|
||
break;
|
||
|
||
case SINGLE:
|
||
{
|
||
int j;
|
||
|
||
/* We are outputting a single character
|
||
(< options->repeat_count_threshold). */
|
||
|
||
if (last != SINGLE)
|
||
{
|
||
/* We were outputting some other type of content, so we
|
||
must output and a comma and a quote. */
|
||
if (last != START)
|
||
obstack_grow_wstr (obstack, LCST (", "));
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
}
|
||
/* Output the character. */
|
||
for (j = 0; j < elem->repeat_count; ++j)
|
||
{
|
||
if (elem->result == wchar_iterate_ok)
|
||
print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
else
|
||
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case REPEAT:
|
||
{
|
||
int j;
|
||
char *s;
|
||
|
||
/* We are outputting a character with a repeat count
|
||
greater than options->repeat_count_threshold. */
|
||
|
||
if (last == SINGLE)
|
||
{
|
||
/* We were outputting a single string. Terminate the
|
||
string. */
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
}
|
||
if (last != START)
|
||
obstack_grow_wstr (obstack, LCST (", "));
|
||
|
||
/* Output the character and repeat string. */
|
||
obstack_grow_wstr (obstack, LCST ("'"));
|
||
if (elem->result == wchar_iterate_ok)
|
||
print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
else
|
||
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
obstack_grow_wstr (obstack, LCST ("'"));
|
||
s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
|
||
for (j = 0; s[j]; ++j)
|
||
{
|
||
gdb_wchar_t w = gdb_btowc (s[j]);
|
||
obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
|
||
}
|
||
xfree (s);
|
||
}
|
||
break;
|
||
|
||
case INCOMPLETE:
|
||
/* We are outputting an incomplete sequence. */
|
||
if (last == SINGLE)
|
||
{
|
||
/* If we were outputting a string of SINGLE characters,
|
||
terminate the quote. */
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
}
|
||
if (last != START)
|
||
obstack_grow_wstr (obstack, LCST (", "));
|
||
|
||
/* Output the incomplete sequence string. */
|
||
obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
|
||
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
|
||
obstack, 0, &need_escape);
|
||
obstack_grow_wstr (obstack, LCST (">"));
|
||
|
||
/* We do not attempt to outupt anything after this. */
|
||
state = FINISH;
|
||
break;
|
||
|
||
case FINISH:
|
||
/* All done. If we were outputting a string of SINGLE
|
||
characters, the string must be terminated. Otherwise,
|
||
REPEAT and INCOMPLETE are always left properly terminated. */
|
||
if (last == SINGLE)
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
|
||
return;
|
||
}
|
||
|
||
/* Get the next element and state. */
|
||
last = state;
|
||
if (state != FINISH)
|
||
{
|
||
elem = &chars[idx++];
|
||
switch (elem->result)
|
||
{
|
||
case wchar_iterate_ok:
|
||
case wchar_iterate_invalid:
|
||
if (elem->repeat_count > options->repeat_count_threshold)
|
||
state = REPEAT;
|
||
else
|
||
state = SINGLE;
|
||
break;
|
||
|
||
case wchar_iterate_incomplete:
|
||
state = INCOMPLETE;
|
||
break;
|
||
|
||
case wchar_iterate_eof:
|
||
state = FINISH;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Print the character string STRING, printing at most LENGTH
|
||
characters. LENGTH is -1 if the string is nul terminated. TYPE is
|
||
the type of each character. OPTIONS holds the printing options;
|
||
printing stops early if the number hits print_max; repeat counts
|
||
are printed as appropriate. Print ellipses at the end if we had to
|
||
stop before printing LENGTH characters, or if FORCE_ELLIPSES.
|
||
QUOTE_CHAR is the character to print at each end of the string. If
|
||
C_STYLE_TERMINATOR is true, and the last character is 0, then it is
|
||
omitted. */
|
||
|
||
void
|
||
generic_printstr (struct ui_file *stream, struct type *type,
|
||
const gdb_byte *string, unsigned int length,
|
||
const char *encoding, int force_ellipses,
|
||
int quote_char, int c_style_terminator,
|
||
const struct value_print_options *options)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
||
unsigned int i;
|
||
int width = TYPE_LENGTH (type);
|
||
int finished = 0;
|
||
struct converted_character *last;
|
||
|
||
if (length == -1)
|
||
{
|
||
unsigned long current_char = 1;
|
||
|
||
for (i = 0; current_char; ++i)
|
||
{
|
||
QUIT;
|
||
current_char = extract_unsigned_integer (string + i * width,
|
||
width, byte_order);
|
||
}
|
||
length = i;
|
||
}
|
||
|
||
/* If the string was not truncated due to `set print elements', and
|
||
the last byte of it is a null, we don't print that, in
|
||
traditional C style. */
|
||
if (c_style_terminator
|
||
&& !force_ellipses
|
||
&& length > 0
|
||
&& (extract_unsigned_integer (string + (length - 1) * width,
|
||
width, byte_order) == 0))
|
||
length--;
|
||
|
||
if (length == 0)
|
||
{
|
||
fputs_filtered ("\"\"", stream);
|
||
return;
|
||
}
|
||
|
||
/* Arrange to iterate over the characters, in wchar_t form. */
|
||
wchar_iterator iter (string, length * width, encoding, width);
|
||
std::vector<converted_character> converted_chars;
|
||
|
||
/* Convert characters until the string is over or the maximum
|
||
number of printed characters has been reached. */
|
||
i = 0;
|
||
while (i < options->print_max)
|
||
{
|
||
int r;
|
||
|
||
QUIT;
|
||
|
||
/* Grab the next character and repeat count. */
|
||
r = count_next_character (&iter, &converted_chars);
|
||
|
||
/* If less than zero, the end of the input string was reached. */
|
||
if (r < 0)
|
||
break;
|
||
|
||
/* Otherwise, add the count to the total print count and get
|
||
the next character. */
|
||
i += r;
|
||
}
|
||
|
||
/* Get the last element and determine if the entire string was
|
||
processed. */
|
||
last = &converted_chars.back ();
|
||
finished = (last->result == wchar_iterate_eof);
|
||
|
||
/* Ensure that CONVERTED_CHARS is terminated. */
|
||
last->result = wchar_iterate_eof;
|
||
|
||
/* WCHAR_BUF is the obstack we use to represent the string in
|
||
wchar_t form. */
|
||
auto_obstack wchar_buf;
|
||
|
||
/* Print the output string to the obstack. */
|
||
print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
|
||
width, byte_order, options);
|
||
|
||
if (force_ellipses || !finished)
|
||
obstack_grow_wstr (&wchar_buf, LCST ("..."));
|
||
|
||
/* OUTPUT is where we collect `char's for printing. */
|
||
auto_obstack output;
|
||
|
||
convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
|
||
(gdb_byte *) obstack_base (&wchar_buf),
|
||
obstack_object_size (&wchar_buf),
|
||
sizeof (gdb_wchar_t), &output, translit_char);
|
||
obstack_1grow (&output, '\0');
|
||
|
||
fputs_filtered ((const char *) obstack_base (&output), stream);
|
||
}
|
||
|
||
/* Print a string from the inferior, starting at ADDR and printing up to LEN
|
||
characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
|
||
stops at the first null byte, otherwise printing proceeds (including null
|
||
bytes) until either print_max or LEN characters have been printed,
|
||
whichever is smaller. ENCODING is the name of the string's
|
||
encoding. It can be NULL, in which case the target encoding is
|
||
assumed. */
|
||
|
||
int
|
||
val_print_string (struct type *elttype, const char *encoding,
|
||
CORE_ADDR addr, int len,
|
||
struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
|
||
int err; /* Non-zero if we got a bad read. */
|
||
int found_nul; /* Non-zero if we found the nul char. */
|
||
unsigned int fetchlimit; /* Maximum number of chars to print. */
|
||
int bytes_read;
|
||
gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
|
||
struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
|
||
struct gdbarch *gdbarch = get_type_arch (elttype);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int width = TYPE_LENGTH (elttype);
|
||
|
||
/* First we need to figure out the limit on the number of characters we are
|
||
going to attempt to fetch and print. This is actually pretty simple. If
|
||
LEN >= zero, then the limit is the minimum of LEN and print_max. If
|
||
LEN is -1, then the limit is print_max. This is true regardless of
|
||
whether print_max is zero, UINT_MAX (unlimited), or something in between,
|
||
because finding the null byte (or available memory) is what actually
|
||
limits the fetch. */
|
||
|
||
fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
|
||
options->print_max));
|
||
|
||
err = read_string (addr, len, width, fetchlimit, byte_order,
|
||
&buffer, &bytes_read);
|
||
old_chain = make_cleanup (xfree, buffer);
|
||
|
||
addr += bytes_read;
|
||
|
||
/* We now have either successfully filled the buffer to fetchlimit,
|
||
or terminated early due to an error or finding a null char when
|
||
LEN is -1. */
|
||
|
||
/* Determine found_nul by looking at the last character read. */
|
||
found_nul = 0;
|
||
if (bytes_read >= width)
|
||
found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
|
||
byte_order) == 0;
|
||
if (len == -1 && !found_nul)
|
||
{
|
||
gdb_byte *peekbuf;
|
||
|
||
/* We didn't find a NUL terminator we were looking for. Attempt
|
||
to peek at the next character. If not successful, or it is not
|
||
a null byte, then force ellipsis to be printed. */
|
||
|
||
peekbuf = (gdb_byte *) alloca (width);
|
||
|
||
if (target_read_memory (addr, peekbuf, width) == 0
|
||
&& extract_unsigned_integer (peekbuf, width, byte_order) != 0)
|
||
force_ellipsis = 1;
|
||
}
|
||
else if ((len >= 0 && err != 0) || (len > bytes_read / width))
|
||
{
|
||
/* Getting an error when we have a requested length, or fetching less
|
||
than the number of characters actually requested, always make us
|
||
print ellipsis. */
|
||
force_ellipsis = 1;
|
||
}
|
||
|
||
/* If we get an error before fetching anything, don't print a string.
|
||
But if we fetch something and then get an error, print the string
|
||
and then the error message. */
|
||
if (err == 0 || bytes_read > 0)
|
||
{
|
||
LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
|
||
encoding, force_ellipsis, options);
|
||
}
|
||
|
||
if (err != 0)
|
||
{
|
||
std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
|
||
|
||
fprintf_filtered (stream, "<error: ");
|
||
fputs_filtered (str.c_str (), stream);
|
||
fprintf_filtered (stream, ">");
|
||
}
|
||
|
||
gdb_flush (stream);
|
||
do_cleanups (old_chain);
|
||
|
||
return (bytes_read / width);
|
||
}
|
||
|
||
|
||
/* The 'set input-radix' command writes to this auxiliary variable.
|
||
If the requested radix is valid, INPUT_RADIX is updated; otherwise,
|
||
it is left unchanged. */
|
||
|
||
static unsigned input_radix_1 = 10;
|
||
|
||
/* Validate an input or output radix setting, and make sure the user
|
||
knows what they really did here. Radix setting is confusing, e.g.
|
||
setting the input radix to "10" never changes it! */
|
||
|
||
static void
|
||
set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
set_input_radix_1 (from_tty, input_radix_1);
|
||
}
|
||
|
||
static void
|
||
set_input_radix_1 (int from_tty, unsigned radix)
|
||
{
|
||
/* We don't currently disallow any input radix except 0 or 1, which don't
|
||
make any mathematical sense. In theory, we can deal with any input
|
||
radix greater than 1, even if we don't have unique digits for every
|
||
value from 0 to radix-1, but in practice we lose on large radix values.
|
||
We should either fix the lossage or restrict the radix range more.
|
||
(FIXME). */
|
||
|
||
if (radix < 2)
|
||
{
|
||
input_radix_1 = input_radix;
|
||
error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
|
||
radix);
|
||
}
|
||
input_radix_1 = input_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Input radix now set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* The 'set output-radix' command writes to this auxiliary variable.
|
||
If the requested radix is valid, OUTPUT_RADIX is updated,
|
||
otherwise, it is left unchanged. */
|
||
|
||
static unsigned output_radix_1 = 10;
|
||
|
||
static void
|
||
set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
set_output_radix_1 (from_tty, output_radix_1);
|
||
}
|
||
|
||
static void
|
||
set_output_radix_1 (int from_tty, unsigned radix)
|
||
{
|
||
/* Validate the radix and disallow ones that we aren't prepared to
|
||
handle correctly, leaving the radix unchanged. */
|
||
switch (radix)
|
||
{
|
||
case 16:
|
||
user_print_options.output_format = 'x'; /* hex */
|
||
break;
|
||
case 10:
|
||
user_print_options.output_format = 0; /* decimal */
|
||
break;
|
||
case 8:
|
||
user_print_options.output_format = 'o'; /* octal */
|
||
break;
|
||
default:
|
||
output_radix_1 = output_radix;
|
||
error (_("Unsupported output radix ``decimal %u''; "
|
||
"output radix unchanged."),
|
||
radix);
|
||
}
|
||
output_radix_1 = output_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Output radix now set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Set both the input and output radix at once. Try to set the output radix
|
||
first, since it has the most restrictive range. An radix that is valid as
|
||
an output radix is also valid as an input radix.
|
||
|
||
It may be useful to have an unusual input radix. If the user wishes to
|
||
set an input radix that is not valid as an output radix, he needs to use
|
||
the 'set input-radix' command. */
|
||
|
||
static void
|
||
set_radix (const char *arg, int from_tty)
|
||
{
|
||
unsigned radix;
|
||
|
||
radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
|
||
set_output_radix_1 (0, radix);
|
||
set_input_radix_1 (0, radix);
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Input and output radices now set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Show both the input and output radices. */
|
||
|
||
static void
|
||
show_radix (const char *arg, int from_tty)
|
||
{
|
||
if (from_tty)
|
||
{
|
||
if (input_radix == output_radix)
|
||
{
|
||
printf_filtered (_("Input and output radices set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
input_radix, input_radix, input_radix);
|
||
}
|
||
else
|
||
{
|
||
printf_filtered (_("Input radix set to decimal "
|
||
"%u, hex %x, octal %o.\n"),
|
||
input_radix, input_radix, input_radix);
|
||
printf_filtered (_("Output radix set to decimal "
|
||
"%u, hex %x, octal %o.\n"),
|
||
output_radix, output_radix, output_radix);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
set_print (const char *arg, int from_tty)
|
||
{
|
||
printf_unfiltered (
|
||
"\"set print\" must be followed by the name of a print subcommand.\n");
|
||
help_list (setprintlist, "set print ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
show_print (const char *args, int from_tty)
|
||
{
|
||
cmd_show_list (showprintlist, from_tty, "");
|
||
}
|
||
|
||
static void
|
||
set_print_raw (const char *arg, int from_tty)
|
||
{
|
||
printf_unfiltered (
|
||
"\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
|
||
help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
show_print_raw (const char *args, int from_tty)
|
||
{
|
||
cmd_show_list (showprintrawlist, from_tty, "");
|
||
}
|
||
|
||
|
||
void
|
||
_initialize_valprint (void)
|
||
{
|
||
add_prefix_cmd ("print", no_class, set_print,
|
||
_("Generic command for setting how things print."),
|
||
&setprintlist, "set print ", 0, &setlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &setlist);
|
||
/* Prefer set print to set prompt. */
|
||
add_alias_cmd ("pr", "print", no_class, 1, &setlist);
|
||
|
||
add_prefix_cmd ("print", no_class, show_print,
|
||
_("Generic command for showing print settings."),
|
||
&showprintlist, "show print ", 0, &showlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &showlist);
|
||
add_alias_cmd ("pr", "print", no_class, 1, &showlist);
|
||
|
||
add_prefix_cmd ("raw", no_class, set_print_raw,
|
||
_("\
|
||
Generic command for setting what things to print in \"raw\" mode."),
|
||
&setprintrawlist, "set print raw ", 0, &setprintlist);
|
||
add_prefix_cmd ("raw", no_class, show_print_raw,
|
||
_("Generic command for showing \"print raw\" settings."),
|
||
&showprintrawlist, "show print raw ", 0, &showprintlist);
|
||
|
||
add_setshow_uinteger_cmd ("elements", no_class,
|
||
&user_print_options.print_max, _("\
|
||
Set limit on string chars or array elements to print."), _("\
|
||
Show limit on string chars or array elements to print."), _("\
|
||
\"set print elements unlimited\" causes there to be no limit."),
|
||
NULL,
|
||
show_print_max,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("null-stop", no_class,
|
||
&user_print_options.stop_print_at_null, _("\
|
||
Set printing of char arrays to stop at first null char."), _("\
|
||
Show printing of char arrays to stop at first null char."), NULL,
|
||
NULL,
|
||
show_stop_print_at_null,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_uinteger_cmd ("repeats", no_class,
|
||
&user_print_options.repeat_count_threshold, _("\
|
||
Set threshold for repeated print elements."), _("\
|
||
Show threshold for repeated print elements."), _("\
|
||
\"set print repeats unlimited\" causes all elements to be individually printed."),
|
||
NULL,
|
||
show_repeat_count_threshold,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("pretty", class_support,
|
||
&user_print_options.prettyformat_structs, _("\
|
||
Set pretty formatting of structures."), _("\
|
||
Show pretty formatting of structures."), NULL,
|
||
NULL,
|
||
show_prettyformat_structs,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("union", class_support,
|
||
&user_print_options.unionprint, _("\
|
||
Set printing of unions interior to structures."), _("\
|
||
Show printing of unions interior to structures."), NULL,
|
||
NULL,
|
||
show_unionprint,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("array", class_support,
|
||
&user_print_options.prettyformat_arrays, _("\
|
||
Set pretty formatting of arrays."), _("\
|
||
Show pretty formatting of arrays."), NULL,
|
||
NULL,
|
||
show_prettyformat_arrays,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("address", class_support,
|
||
&user_print_options.addressprint, _("\
|
||
Set printing of addresses."), _("\
|
||
Show printing of addresses."), NULL,
|
||
NULL,
|
||
show_addressprint,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("symbol", class_support,
|
||
&user_print_options.symbol_print, _("\
|
||
Set printing of symbol names when printing pointers."), _("\
|
||
Show printing of symbol names when printing pointers."),
|
||
NULL, NULL,
|
||
show_symbol_print,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
|
||
_("\
|
||
Set default input radix for entering numbers."), _("\
|
||
Show default input radix for entering numbers."), NULL,
|
||
set_input_radix,
|
||
show_input_radix,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
|
||
_("\
|
||
Set default output radix for printing of values."), _("\
|
||
Show default output radix for printing of values."), NULL,
|
||
set_output_radix,
|
||
show_output_radix,
|
||
&setlist, &showlist);
|
||
|
||
/* The "set radix" and "show radix" commands are special in that
|
||
they are like normal set and show commands but allow two normally
|
||
independent variables to be either set or shown with a single
|
||
command. So the usual deprecated_add_set_cmd() and [deleted]
|
||
add_show_from_set() commands aren't really appropriate. */
|
||
/* FIXME: i18n: With the new add_setshow_integer command, that is no
|
||
longer true - show can display anything. */
|
||
add_cmd ("radix", class_support, set_radix, _("\
|
||
Set default input and output number radices.\n\
|
||
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
|
||
Without an argument, sets both radices back to the default value of 10."),
|
||
&setlist);
|
||
add_cmd ("radix", class_support, show_radix, _("\
|
||
Show the default input and output number radices.\n\
|
||
Use 'show input-radix' or 'show output-radix' to independently show each."),
|
||
&showlist);
|
||
|
||
add_setshow_boolean_cmd ("array-indexes", class_support,
|
||
&user_print_options.print_array_indexes, _("\
|
||
Set printing of array indexes."), _("\
|
||
Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
|
||
&setprintlist, &showprintlist);
|
||
}
|