binutils-gdb/gdb/testsuite/lib/cp-support.exp
Simon Marchi 6f6d0c269e Fix double space expected in cp_test_ptype_class
I noticed some failures of some buildbot slaves, e.g.:

FAIL: gdb.cp/nested-types.exp: ptype S10 (limit = 1) // wrong nested type enum definition: enum S10::E10 {S10::A10, S10::B10, S10::C10};

The issue is that they have an older gcc (not c++11 by default?) that
doesn't emit the enum underlying type information.  When the
enum type is printed by ptype, it looks like this:

  enum S10::E10 {S10::A10, S10::B10, S10::C10};

instead of this on older gccs:

  enum S10::E10 : unsigned int {S10::A10, S10::B10, S10::C10};

The regex that matches this is in cp_test_ptype_class, and is

  enum $nested_name (: (unsigned )?int)? \{

If the "unsigned int" portion is not present, then it requires the
string to have two spaces between the enum name and opening bracket.
The fix is simply to move the trailing space inside the ? group.

gdb/testsuite/ChangeLog:

	* lib/cp-support.exp (cp_test_ptype_class): Move space inside
	parentheses.
2018-02-25 15:12:37 -05:00

767 lines
24 KiB
Plaintext

# This test code is part of GDB, the GNU debugger.
# Copyright 2003-2018 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
load_lib "data-structures.exp"
# Controls whether detailed logging for cp_test_ptype_class is enabled.
# By default, it is not. Enable it to assist with troubleshooting
# failed cp_test_ptype_class tests. [Users can simply add the statement
# "set debug_cp_ptype_test_class true" after this file is loaded.]
set ::debug_cp_test_ptype_class false
# Auxiliary function to check for known problems.
#
# EXPECTED_STRING is the string expected by the test.
#
# ACTUAL_STRING is the actual string output by gdb.
#
# ERRATA_TABLE is a list of lines of the form:
#
# { expected-string broken-string {eval-block} }
#
# If there is a line for the given EXPECTED_STRING, and if the
# ACTUAL_STRING output by gdb is the same as the BROKEN_STRING in the
# table, then I eval the eval-block.
proc cp_check_errata { expected_string actual_string errata_table } {
foreach erratum $errata_table {
if { "$expected_string" == [lindex $erratum 0]
&& "$actual_string" == [lindex $erratum 1] } then {
eval [lindex $erratum 2]
}
}
}
# A convenience procedure for outputting debug info for cp_test_ptype_class
# to the log. Set the global variable "debug_cp_test_ptype_class"
# to enable logging (to help with debugging failures).
proc cp_ptype_class_verbose {msg} {
global debug_cp_test_ptype_class
if {$debug_cp_test_ptype_class} {
verbose -log $msg
}
}
# A namespace to wrap internal procedures.
namespace eval ::cp_support_internal {
# A convenience procedure to return the next element of the queue.
proc next_line {qid} {
set elem {}
while {$elem == "" && ![queue empty $qid]} {
# We make cp_test_ptype_class trim whitespace
set elem [queue pop $qid]
}
if {$elem == ""} {
cp_ptype_class_verbose "next line element: no more lines"
} else {
cp_ptype_class_verbose "next line element: \"$elem\""
}
return $elem
}
}
# Test ptype of a class. Return `true' if the test passes, false otherwise.
#
# Different C++ compilers produce different output. To accommodate all
# the variations listed below, I read the output of "ptype" and process
# each line, matching it to the class description given in the
# parameters.
#
# IN_EXP is the expression to use; the appropriate "ptype" invocation
# is prepended to it. IN_TESTNAME is the testname for
# gdb_test_multiple. If IN_TESTNAME is the empty string, then it
# defaults to "ptype IN_EXP".
#
# IN_KEY is "class" or "struct". For now, I ignore it, and allow either
# "class" or "struct" in the output, as long as the access specifiers all
# work out okay.
#
# IN_TAG is the class tag or structure tag.
#
# IN_CLASS_TABLE is a list of class information. Each entry contains a
# keyword and some values. The keywords and their values are:
#
# { base "base-declaration" }
#
# the class has a base with the given declaration.
#
# { vbase "name" }
#
# the class has a virtual base pointer with the given name. this
# is for gcc 2.95.3, which emits ptype entries for the virtual base
# pointers. the vbase list includes both indirect and direct
# virtual base classes (indeed, a virtual base is usually
# indirect), so this information cannot be derived from the base
# declarations.
#
# { field "access" "declaration" }
#
# the class has a data field with the given access type and the
# given declaration.
#
# { method "access" "declaration" }
#
# the class has a member function with the given access type
# and the given declaration.
#
# { typedef "access" "declaration" }
#
# the class has a typedef with the given access type and the
# given declaration.
#
# { type "access" "key" "name" children }
#
# The class has a nested type definition with the given ACCESS.
# KEY is the keyword of the nested type ("enum", "union", "struct",
# "class").
# NAME is the (tag) name of the type.
# CHILDREN is a list of the type's children. For struct and union keys,
# this is simply the same type of list that is normally passed to
# this procedure. For enums the list of children should be the
# defined enumerators. For unions it is a list of declarations.
# NOTE: The enum key will add a regexp to handle optional storage
# class specifiers (": unsigned int", e.g.). The caller need not
# specify this.
#
# If you test the same class declaration more than once, you can specify
# IN_CLASS_TABLE as "ibid". "ibid" means: look for a previous class
# table that had the same IN_KEY and IN_TAG, and re-use that table.
#
# IN_TAIL is the expected text after the close brace, specifically the "*"
# in "struct { ... } *". This is an optional parameter. The default
# value is "", for no tail.
#
# IN_ERRATA_TABLE is a list of errata entries. See cp_check_errata for the
# format of the errata table. Note: the errata entries are not subject to
# demangler syntax adjustment, so you have to make a bigger table
# with lines for each output variation.
#
# IN_PTYPE_ARG are arguments to pass to ptype. The default is "/r".
#
# RECURSIVE_QID is used internally to call this procedure recursively
# when, e.g., testing nested type definitions. The "ptype" command will
# not be sent to GDB and the lines in the queue given by this argument will
# be used instead.
#
# gdb can vary the output of ptype in several ways:
#
# . CLASS/STRUCT
#
# The output can start with either "class" or "struct", depending on
# what the symbol table reader in gdb decides. This is usually
# unrelated to the original source code.
#
# dwarf-2 debug info distinguishes class/struct, but gdb ignores it
# stabs+ debug info does not distinguish class/struct
# hp debug info distinguishes class/struct, and gdb honors it
#
# I tried to accommodate this with regular expressions such as
# "((class|struct) A \{ public:|struct A \{)", but that turns into a
# hairy mess because of optional private virtual base pointers and
# optional public synthetic operators. This is the big reason I gave
# up on regular expressions and started parsing the output.
#
# . REDUNDANT ACCESS SPECIFIER
#
# In "class { private: ... }" or "struct { public: ... }", gdb might
# or might not emit a redundant initial access specifier, depending
# on the gcc version.
#
# . VIRTUAL BASE POINTERS
#
# If a class has virtual bases, either direct or indirect, the class
# will have virtual base pointers. With gcc 2.95.3, gdb prints lines
# for these virtual base pointers. This does not happen with gcc
# 3.3.4, gcc 3.4.1, or hp acc A.03.45.
#
# I accept these lines. These lines are optional; but if I see one of
# these lines, then I expect to see all of them.
#
# Note: drow considers printing these lines to be a bug in gdb.
#
# . SYNTHETIC METHODS
#
# A C++ compiler may synthesize some methods: an assignment
# operator, a copy constructor, a constructor, and a destructor. The
# compiler might include debug information for these methods.
#
# dwarf-2 gdb does not show these methods
# stabs+ gdb shows these methods
# hp gdb does not show these methods
#
# I accept these methods. These lines are optional, and any or
# all of them might appear, mixed in anywhere in the regular methods.
#
# With gcc v2, the synthetic copy-ctor and ctor have an additional
# "int" parameter at the beginning, the "in-charge" flag.
#
# . DEMANGLER SYNTAX VARIATIONS
#
# Different demanglers produce "int foo(void)" versus "int foo()",
# "const A&" versus "const A &", and so on.
#
# TESTED WITH
#
# gcc 2.95.3 -gdwarf-2
# gcc 2.95.3 -gstabs+
# gcc 3.3.4 -gdwarf-2
# gcc 3.3.4 -gstabs+
# gcc 3.4.1 -gdwarf-2
# gcc 3.4.1 -gstabs+
# gcc HEAD 20040731 -gdwarf-2
# gcc HEAD 20040731 -gstabs+
#
# TODO
#
# Tagless structs.
#
# "A*" versus "A *" and "A&" versus "A &" in user methods.
#
# -- chastain 2004-08-07
proc cp_test_ptype_class { in_exp in_testname in_key in_tag in_class_table
{ in_tail "" } { in_errata_table { } }
{ in_ptype_arg /r } { recursive_qid 0 } } {
global gdb_prompt
set wsopt "\[\r\n\t \]*"
if {$recursive_qid == 0} {
# The test name defaults to the command, but without the
# arguments, for historical reasons.
if { "$in_testname" == "" } then { set in_testname "ptype $in_exp" }
set in_command "ptype${in_ptype_arg} $in_exp"
}
# Save class tables in a history array for reuse.
global cp_class_table_history
if { $in_class_table == "ibid" } then {
if { ! [info exists cp_class_table_history("$in_key,$in_tag") ] } then {
fail "$in_testname // bad ibid"
return false
}
set in_class_table $cp_class_table_history("$in_key,$in_tag")
} else {
set cp_class_table_history("$in_key,$in_tag") $in_class_table
}
# Split the class table into separate tables.
set list_bases { }
set list_vbases { }
set list_fields { }
set list_methods { }
set list_typedefs { }
set list_types { }
set list_enums { }
set list_unions { }
foreach class_line $in_class_table {
switch [lindex $class_line 0] {
"base" { lappend list_bases [lindex $class_line 1] }
"vbase" { lappend list_vbases [lindex $class_line 1] }
"field" { lappend list_fields [lrange $class_line 1 2] }
"method" { lappend list_methods [lrange $class_line 1 2] }
"typedef" { lappend list_typedefs [lrange $class_line 1 2] }
"type" { lappend list_types [lrange $class_line 1 4] }
default {
fail "$in_testname // bad line in class table: $class_line"
return false
}
}
}
# Construct a list of synthetic operators.
# These are: { count ccess-type regular-expression }.
set list_synth { }
lappend list_synth [list 0 "public" \
"$in_tag & operator=\\($in_tag const ?&\\);"]
lappend list_synth [list 0 "public" \
"$in_tag\\((int,|) ?$in_tag const ?&\\);"]
lappend list_synth [list 0 "public" \
"$in_tag\\((int|void|)\\);"]
# Partial regexp for parsing the struct/class header.
set regexp_header "(struct|class)${wsopt}(\[^ \t\]*)${wsopt}"
append regexp_header "(\\\[with .*\\\]${wsopt})?((:\[^\{\]*)?)${wsopt}\{"
if {$recursive_qid == 0} {
# Actually do the ptype.
# For processing the output of ptype, we must get to the prompt.
set the_regexp "type = ${regexp_header}"
append the_regexp "(.*)\}${wsopt}(\[^\r\n\]*)\[\r\n\]+$gdb_prompt $"
set parse_okay 0
gdb_test_multiple "$in_command" "$in_testname // parse failed" {
-re $the_regexp {
set parse_okay 1
set actual_key $expect_out(1,string)
set actual_tag $expect_out(2,string)
set actual_base_string $expect_out(4,string)
set actual_body $expect_out(6,string)
set actual_tail $expect_out(7,string)
}
}
} else {
# The struct/class header by the first element in the line queue.
# "Parse" that instead of the output of ptype.
set header [cp_support_internal::next_line $recursive_qid]
set parse_okay [regexp $regexp_header $header dummy actual_key \
actual_tag dummy actual_base_string]
if {$parse_okay} {
cp_ptype_class_verbose \
"Parsing nested type definition (parse_okay=$parse_okay):"
cp_ptype_class_verbose \
"\tactual_key=$actual_key, actual_tag=$actual_tag"
cp_ptype_class_verbose "\tactual_base_string=$actual_base_string"
}
# Cannot have a tail with a nested type definition.
set actual_tail ""
}
if { ! $parse_okay } {
cp_ptype_class_verbose "*** parse failed ***"
return false
}
# Check the actual key. It would be nice to require that it match
# the input key, but gdb does not support that. For now, accept any
# $actual_key as long as the access property of each field/method
# matches.
switch "$actual_key" {
"class" { set access "private" }
"struct" { set access "public" }
default {
cp_check_errata "class" "$actual_key" $in_errata_table
cp_check_errata "struct" "$actual_key" $in_errata_table
fail "$in_testname // wrong key: $actual_key"
return false
}
}
# Check the actual tag.
if { "$actual_tag" != "$in_tag" } then {
cp_check_errata "$in_tag" "$actual_tag" $in_errata_table
fail "$in_testname // wrong tag: $actual_tag"
return false
}
# Check the actual bases.
# First parse them into a list.
set list_actual_bases { }
if { "$actual_base_string" != "" } then {
regsub "^:${wsopt}" $actual_base_string "" actual_base_string
set list_actual_bases [split $actual_base_string ","]
}
# Check the base count.
if { [llength $list_actual_bases] < [llength $list_bases] } then {
fail "$in_testname // too few bases"
return false
}
if { [llength $list_actual_bases] > [llength $list_bases] } then {
fail "$in_testname // too many bases"
return false
}
# Check each base.
foreach actual_base $list_actual_bases {
set actual_base [string trim $actual_base]
set base [lindex $list_bases 0]
if { "$actual_base" != "$base" } then {
cp_check_errata "$base" "$actual_base" $in_errata_table
fail "$in_testname // wrong base: $actual_base"
return false
}
set list_bases [lreplace $list_bases 0 0]
}
# Parse each line in the body.
set last_was_access 0
set vbase_match 0
if {$recursive_qid == 0} {
# Use a queue to hold the lines that will be checked.
# This will allow processing below to remove lines from the input
# more easily.
set line_queue [::Queue::new]
foreach l [split $actual_body "\r\n"] {
set l [string trim $l]
if {$l != ""} {
queue push $line_queue $l
}
}
} else {
set line_queue $recursive_qid
}
while {![queue empty $line_queue]} {
# Get the next line.
set actual_line [cp_support_internal::next_line $line_queue]
if { "$actual_line" == "" } then { continue }
# Access specifiers.
if { [regexp "^(public|protected|private)${wsopt}:\$" "$actual_line" s0 s1] } then {
set access "$s1"
if { $last_was_access } then {
fail "$in_testname // redundant access specifier"
queue delete $line_queue
return false
}
set last_was_access 1
continue
} else {
set last_was_access 0
}
# Optional virtual base pointer.
if { [ llength $list_vbases ] > 0 } then {
set vbase [lindex $list_vbases 0]
if { [ regexp "$vbase \\*(_vb.|_vb\\\$|__vb_)\[0-9\]*$vbase;" $actual_line ] } then {
if { "$access" != "private" } then {
cp_check_errata "private" "$access" $in_errata_table
fail "$in_testname // wrong access specifier for virtual base: $access"
queue delete $line_queue
return false
}
set list_vbases [lreplace $list_vbases 0 0]
set vbase_match 1
continue
}
}
# Data field.
if { [llength $list_fields] > 0 } then {
set field_access [lindex [lindex $list_fields 0] 0]
set field_decl [lindex [lindex $list_fields 0] 1]
if {$recursive_qid > 0} {
cp_ptype_class_verbose "\tactual_line=$actual_line"
cp_ptype_class_verbose "\tfield_access=$field_access"
cp_ptype_class_verbose "\tfield_decl=$field_decl"
cp_ptype_class_verbose "\taccess=$access"
}
if { "$actual_line" == "$field_decl" } then {
if { "$access" != "$field_access" } then {
cp_check_errata "$field_access" "$access" $in_errata_table
fail "$in_testname // wrong access specifier for field: $access"
queue delete $line_queue
return false
}
set list_fields [lreplace $list_fields 0 0]
continue
}
# Data fields must appear before synths and methods.
cp_check_errata "$field_decl" "$actual_line" $in_errata_table
fail "$in_testname // unrecognized line type 1: $actual_line"
queue delete $line_queue
return false
}
# Method function.
if { [llength $list_methods] > 0 } then {
set method_access [lindex [lindex $list_methods 0] 0]
set method_decl [lindex [lindex $list_methods 0] 1]
if { "$actual_line" == "$method_decl" } then {
if { "$access" != "$method_access" } then {
cp_check_errata "$method_access" "$access" $in_errata_table
fail "$in_testname // wrong access specifier for method: $access"
queue delete $line_queue
return false
}
set list_methods [lreplace $list_methods 0 0]
continue
}
# gcc 2.95.3 shows "foo()" as "foo(void)".
regsub -all "\\(\\)" $method_decl "(void)" method_decl
if { "$actual_line" == "$method_decl" } then {
if { "$access" != "$method_access" } then {
cp_check_errata "$method_access" "$access" $in_errata_table
fail "$in_testname // wrong access specifier for method: $access"
queue delete $line_queue
return false
}
set list_methods [lreplace $list_methods 0 0]
continue
}
}
# Typedef
if {[llength $list_typedefs] > 0} {
set typedef_access [lindex [lindex $list_typedefs 0] 0]
set typedef_decl [lindex [lindex $list_typedefs 0] 1]
if {[string equal $actual_line $typedef_decl]} {
if {![string equal $access $typedef_access]} {
cp_check_errata $typedef_access $access $in_errata_table
fail "$in_testname // wrong access specifier for typedef: $access"
queue delete $line_queue
return false
}
set list_typedefs [lreplace $list_typedefs 0 0]
continue
}
}
# Nested type definitions
if {[llength $list_types] > 0} {
cp_ptype_class_verbose "Nested type definition: "
lassign [lindex $list_types 0] nested_access nested_key \
nested_name nested_children
set msg "nested_access=$nested_access, nested_key=$nested_key, "
append msg "nested_name=$nested_name, "
append msg "[llength $nested_children] children"
cp_ptype_class_verbose $msg
if {![string equal $access $nested_access]} {
cp_check_errata $nested_access $access $in_errata_table
set txt "$in_testname // wrong access specifier for "
append txt "nested type: $access"
fail $txt
queue delete $line_queue
return false
}
switch $nested_key {
enum {
set expected_result \
"enum $nested_name (: (unsigned )?int )?\{"
foreach c $nested_children {
append expected_result "$c, "
}
set expected_result \
[string trimright $expected_result { ,}]
append expected_result "\};"
cp_ptype_class_verbose \
"Expecting enum result: $expected_result"
if {![regexp -- $expected_result $actual_line]} {
set txt "$in_testname // wrong nested type enum"
append txt " definition: $actual_line"
fail $txt
queue delete $line_queue
return false
}
cp_ptype_class_verbose "passed enum $nested_name"
}
union {
set expected_result "union $nested_name \{"
cp_ptype_class_verbose \
"Expecting union result: $expected_result"
if {![string equal $expected_result $actual_line]} {
set txt "$in_testname // wrong nested type union"
append txt " definition: $actual_line"
fail $txt
queue delete $line_queue
return false
}
# This will be followed by lines for each member of the
# union.
cp_ptype_class_verbose "matched union name"
foreach m $nested_children {
set actual_line \
[cp_support_internal::next_line $line_queue]
cp_ptype_class_verbose "Expecting union member: $m"
if {![string equal $m $actual_line]} {
set txt "$in_testname // unexpected union member: "
append txt $m
fail $txt
queue delete $line_queue
return false
}
cp_ptype_class_verbose "matched union child \"$m\""
}
# Nested union types always end with a trailing curly brace.
set actual_line [cp_support_internal::next_line $line_queue]
if {![string equal $actual_line "\};"]} {
fail "$in_testname // missing closing curly brace"
queue delete $line_queue
return false
}
cp_ptype_class_verbose "passed union $nested_name"
}
struct -
class {
cp_ptype_class_verbose \
"Expecting [llength $nested_children] children"
foreach c $nested_children {
cp_ptype_class_verbose "\t$c"
}
# Start by pushing the current line back into the queue
# so that the recursive call can parse the class/struct
# header.
queue unpush $line_queue $actual_line
cp_ptype_class_verbose \
"Recursing for type $nested_key $nested_name"
if {![cp_test_ptype_class $in_exp $in_testname $nested_key \
$nested_name $nested_children $in_tail \
$in_errata_table $in_ptype_arg $line_queue]} {
# The recursive call has already called `fail' and
# released the line queue.
return false
}
cp_ptype_class_verbose \
"passed nested type $nested_key $nested_name"
}
default {
fail "$in_testname // invalid nested type key: $nested_key"
queue delete $line_queue
return false
}
}
set list_types [lreplace $list_types 0 0]
continue
}
# Synthetic operators. These are optional and can be mixed in
# with the methods in any order, but duplicates are wrong.
#
# This test must come after the user methods, so that a user
# method which matches a synth-method pattern is treated
# properly as a user method.
set synth_match 0
for { set isynth 0 } { $isynth < [llength $list_synth] } { incr isynth } {
set synth [lindex $list_synth $isynth]
set synth_count [lindex $synth 0]
set synth_access [lindex $synth 1]
set synth_re [lindex $synth 2]
if { [ regexp "$synth_re" "$actual_line" ] } then {
if { "$access" != "$synth_access" } then {
cp_check_errata "$synth_access" "$access" $in_errata_table
fail "$in_testname // wrong access specifier for synthetic operator: $access"
queue delete $line_queue
return false
}
if { $synth_count > 0 } then {
cp_check_errata "$actual_line" "$actual_line" $in_errata_table
fail "$in_testname // duplicate synthetic operator: $actual_line"
}
# Update the count in list_synth.
incr synth_count
set synth [list $synth_count $synth_access "$synth_re"]
set list_synth [lreplace $list_synth $isynth $isynth $synth]
# Match found.
set synth_match 1
break
}
}
if { $synth_match } then { continue }
# If checking a nested type/recursively and we see a closing curly
# brace, we're done.
if {$recursive_qid != 0 && [string equal $actual_line "\};"]} {
break
}
# Unrecognized line.
if { [llength $list_methods] > 0 } then {
set method_decl [lindex [lindex $list_methods 0] 1]
cp_check_errata "$method_decl" "$actual_line" $in_errata_table
}
fail "$in_testname // unrecognized line type 2: $actual_line"
queue delete $line_queue
return false
}
# Done with the line queue.
if {$recursive_qid == 0} {
queue delete $line_queue
}
# Check for missing elements.
if { $vbase_match } then {
if { [llength $list_vbases] > 0 } then {
fail "$in_testname // missing virtual base pointers"
return false
}
}
if { [llength $list_fields] > 0 } then {
fail "$in_testname // missing fields"
return false
}
if { [llength $list_methods] > 0 } then {
fail "$in_testname // missing methods"
return false
}
if {[llength $list_typedefs] > 0} {
fail "$in_testname // missing typedefs"
return false
}
# Check the tail.
set actual_tail [string trim $actual_tail]
if { "$actual_tail" != "$in_tail" } then {
cp_check_errata "$in_tail" "$actual_tail" $in_errata_table
fail "$in_testname // wrong tail: $actual_tail"
return false
}
# It all worked, but don't call `pass' if we've been called
# recursively.
if {$recursive_qid == 0} {
pass "$in_testname"
}
return true
}