binutils-gdb/gdb/probe.h
Pedro Alves 6c5b2ebeac struct symtabs_and_lines -> std::vector<symtab_and_line>
This replaces "struct symtabs_and_lines" with
std::vector<symtab_and_line> in most cases.  This removes a number of
cleanups.

In some cases, the sals objects do not own the sals they point at.
Instead they point at some sal that lives on the stack.  Typically
something like this:

  struct symtab_and_line sal;
  struct symtabs_and_lines sals;

  // fill in sal

  sals.nelts = 1;
  sals.sals = &sal;

  // use sals

Instead of switching those cases to std::vector too, such usages are
replaced by gdb::array_view<symtab_and_line> instead.  This avoids
introducing heap allocations.

gdb/ChangeLog:
2017-09-04  Pedro Alves  <palves@redhat.com>

	* ax-gdb.c (agent_command_1): Use range-for.
	* break-catch-throw.c (re_set_exception_catchpoint): Update.
	* breakpoint.c: Include "common/array-view.h".
	(init_breakpoint_sal, create_breakpoint_sal): Change sals
	parameter from struct symtabs_and_lines to
	array_view<symtab_and_line>.  Adjust.  Use range-for.  Update.
	(breakpoint_sals_to_pc): Change sals parameter from struct
	symtabs_and_lines to std::vector reference.
	(check_fast_tracepoint_sals): Change sals parameter from struct
	symtabs_and_lines to std::array_view.  Use range-for.
	(decode_static_tracepoint_spec): Return a std::vector instead of
	symtabs_and_lines.  Update.
	(create_breakpoint): Update.
	(break_range_command, until_break_command, clear_command): Update.
	(base_breakpoint_decode_location, bkpt_decode_location)
	(bkpt_probe_create_sals_from_location)
	(bkpt_probe_decode_location, tracepoint_decode_location)
	(tracepoint_probe_decode_location)
	(strace_marker_create_sals_from_location): Return a std::vector
	instead of symtabs_and_lines.
	(strace_marker_create_breakpoints_sal): Update.
	(strace_marker_decode_location): Return a std::vector instead of
	symtabs_and_lines.  Update.
	(update_breakpoint_locations): Change struct symtabs_and_lines
	parameters to gdb::array_view.  Adjust.
	(location_to_sals): Return a std::vector instead of
	symtabs_and_lines.  Update.
	(breakpoint_re_set_default): Use std::vector instead of struct
	symtabs_and_lines.
	(decode_location_default): Return a std::vector instead of
	symtabs_and_lines.  Update.
	* breakpoint.h: Include "common/array-view.h".
	(struct breakpoint_ops) <decode_location>: Now returns a
	std::vector instead of returning a symtabs_and_lines via output
	parameter.
	(update_breakpoint_locations): Change sals parameters to use
	gdb::array_view.
	* cli/cli-cmds.c (edit_command, list_command): Update to use
	std::vector and gdb::array_view.
	(ambiguous_line_spec): Adjust to use gdb::array_view and
	range-for.
	(compare_symtabs): Rename to ...
	(cmp_symtabs): ... this.  Change parameters to symtab_and_line
	const reference and adjust.
	(filter_sals): Rewrite using std::vector and standard algorithms.
	* elfread.c (elf_gnu_ifunc_resolver_return_stop): Simplify.
	(jump_command): Update to use std::vector.
	* linespec.c (struct linespec_state) <canonical_names>: Update
	comment.
	(add_sal_to_sals_basic): Delete.
	(add_sal_to_sals, filter_results, convert_results_to_lsals)
	(decode_line_2, create_sals_line_offset)
	(convert_address_location_to_sals, convert_linespec_to_sals)
	(convert_explicit_location_to_sals, parse_linespec)
	(event_location_to_sals, decode_line_full, decode_line_1)
	(decode_line_with_current_source)
	(decode_line_with_last_displayed, decode_objc)
	(decode_digits_list_mode, decode_digits_ordinary, minsym_found)
	(linespec_result::~linespec_result): Adjust to use std::vector
	instead of symtabs_and_lines.
	* linespec.h (linespec_sals::sals): Now a std::vector.
	(struct linespec_result): Use std::vector, bool, and in-class
	initialization.
	(decode_line_1, decode_line_with_current_source)
	(decode_line_with_last_displayed): Return std::vector.
	* macrocmd.c (info_macros_command): Use std::vector.
	* mi/mi-main.c (mi_cmd_trace_find): Use std::vector.
	* probe.c (parse_probes_in_pspace, parse_probes): Adjust to use
	std::vector.
	* probe.h (parse_probes): Return a std::vector.
	* python/python.c (gdbpy_decode_line): Use std::vector and
	gdb::array_view.
	* source.c (select_source_symtab, line_info): Use std::vector.
	* stack.c (func_command): Use std::vector.
	* symtab.h (struct symtabs_and_lines): Delete.
	* tracepoint.c (tfind_line_command, scope_info): Use std::vector.
2017-09-04 17:11:15 +01:00

307 lines
11 KiB
C++

/* Generic SDT probe support for GDB.
Copyright (C) 2012-2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (PROBE_H)
#define PROBE_H 1
struct event_location;
#include "gdb_vecs.h"
/* Definition of a vector of probes. */
typedef struct probe *probe_p;
DEF_VEC_P (probe_p);
struct linespec_result;
/* Structure useful for passing the header names in the method
`gen_ui_out_table_header'. */
struct info_probe_column
{
/* The internal name of the field. This string cannot be capitalized nor
localized, e.g., "extra_field". */
const char *field_name;
/* The field name to be printed in the `info probes' command. This
string can be capitalized and localized, e.g., _("Extra Field"). */
const char *print_name;
};
typedef struct info_probe_column info_probe_column_s;
DEF_VEC_O (info_probe_column_s);
/* Operations associated with a probe. */
struct probe_ops
{
/* Method responsible for verifying if LINESPECP is a valid linespec for
a probe breakpoint. It should return 1 if it is, or zero if it is not.
It also should update LINESPECP in order to discard the breakpoint
option associated with this linespec. For example, if the option is
`-probe', and the LINESPECP is `-probe abc', the function should
return 1 and set LINESPECP to `abc'. */
int (*is_linespec) (const char **linespecp);
/* Function that should fill PROBES with known probes from OBJFILE. */
void (*get_probes) (VEC (probe_p) **probes, struct objfile *objfile);
/* Compute the probe's relocated address. OBJFILE is the objfile
in which the probe originated. */
CORE_ADDR (*get_probe_address) (struct probe *probe,
struct objfile *objfile);
/* Return the number of arguments of PROBE. This function can
throw an exception. */
unsigned (*get_probe_argument_count) (struct probe *probe,
struct frame_info *frame);
/* Return 1 if the probe interface can evaluate the arguments of probe
PROBE, zero otherwise. See the comments on
sym_probe_fns:can_evaluate_probe_arguments for more details. */
int (*can_evaluate_probe_arguments) (struct probe *probe);
/* Evaluate the Nth argument from the PROBE, returning a value
corresponding to it. The argument number is represented N.
This function can throw an exception. */
struct value *(*evaluate_probe_argument) (struct probe *probe,
unsigned n,
struct frame_info *frame);
/* Compile the Nth argument of the PROBE to an agent expression.
The argument number is represented by N. */
void (*compile_to_ax) (struct probe *probe, struct agent_expr *aexpr,
struct axs_value *axs_value, unsigned n);
/* Set the semaphore associated with the PROBE. This function only makes
sense if the probe has a concept of semaphore associated to a
probe, otherwise it can be set to NULL. */
void (*set_semaphore) (struct probe *probe, struct objfile *objfile,
struct gdbarch *gdbarch);
/* Clear the semaphore associated with the PROBE. This function only
makes sense if the probe has a concept of semaphore associated to
a probe, otherwise it can be set to NULL. */
void (*clear_semaphore) (struct probe *probe, struct objfile *objfile,
struct gdbarch *gdbarch);
/* Function called to destroy PROBE's specific data. This function
shall not free PROBE itself. */
void (*destroy) (struct probe *probe);
/* Return a pointer to a name identifying the probe type. This is
the string that will be displayed in the "Type" column of the
`info probes' command. */
const char *(*type_name) (struct probe *probe);
/* Function responsible for providing the extra fields that will be
printed in the `info probes' command. It should fill HEADS
with whatever extra fields it needs. If the backend doesn't need
to print extra fields, it can set this method to NULL. */
void (*gen_info_probes_table_header) (VEC (info_probe_column_s) **heads);
/* Function that will fill VALUES with the values of the extra fields
to be printed for PROBE. If the backend implements the
`gen_ui_out_table_header' method, then it should implement
this method as well. The backend should also guarantee that the
order and the number of values in the vector is exactly the same
as the order of the extra fields provided in the method
`gen_ui_out_table_header'. If a certain field is to be skipped
when printing the information, you can push a NULL value in that
position in the vector. */
void (*gen_info_probes_table_values) (struct probe *probe,
VEC (const_char_ptr) **values);
/* Enable a probe. The semantics of "enabling" a probe depend on
the specific backend and the field can be NULL in case enabling
probes is not supported. This function can throw an
exception. */
void (*enable_probe) (struct probe *probe);
/* Disable a probe. The semantics of "disabling" a probe depend
on the specific backend and the field can be NULL in case
disabling probes is not supported. This function can throw an
exception. */
void (*disable_probe) (struct probe *probe);
};
/* Definition of a vector of probe_ops. */
typedef const struct probe_ops *probe_ops_cp;
DEF_VEC_P (probe_ops_cp);
extern VEC (probe_ops_cp) *all_probe_ops;
/* The probe_ops associated with the generic probe. */
extern const struct probe_ops probe_ops_any;
/* Helper function that, given KEYWORDS, iterate over it trying to match
each keyword with LINESPECP. If it succeeds, it updates the LINESPECP
pointer and returns 1. Otherwise, nothing is done to LINESPECP and zero
is returned. */
extern int probe_is_linespec_by_keyword (const char **linespecp,
const char *const *keywords);
/* Return specific PROBE_OPS * matching *LINESPECP and possibly updating
*LINESPECP to skip its "-probe-type " prefix. Return &probe_ops_any if
*LINESPECP matches "-probe ", that is any unspecific probe. Return NULL if
*LINESPECP is not identified as any known probe type, *LINESPECP is not
modified in such case. */
extern const struct probe_ops *probe_linespec_to_ops (const char **linespecp);
/* The probe itself. The struct contains generic information about the
probe, and then some specific information which should be stored in
the `probe_info' field. */
struct probe
{
/* The operations associated with this probe. */
const struct probe_ops *pops;
/* The probe's architecture. */
struct gdbarch *arch;
/* The name of the probe. */
const char *name;
/* The provider of the probe. It generally defaults to the name of
the objfile which contains the probe. */
const char *provider;
/* The address where the probe is inserted, relative to
SECT_OFF_TEXT. */
CORE_ADDR address;
};
/* A bound probe holds a pointer to a probe and a pointer to the
probe's defining objfile. This is needed because probes are
independent of the program space and thus require relocation at
their point of use. */
struct bound_probe
{
/* The probe. */
struct probe *probe;
/* The objfile in which the probe originated. */
struct objfile *objfile;
};
/* A helper for linespec that decodes a probe specification. It
returns a std::vector<symtab_and_line> object and updates LOC or
throws an error. */
extern std::vector<symtab_and_line> parse_probes
(const struct event_location *loc,
struct program_space *pspace,
struct linespec_result *canon);
/* Helper function to register the proper probe_ops to a newly created probe.
This function is mainly called from `sym_get_probes'. */
extern void register_probe_ops (struct probe *probe);
/* Given a PC, find an associated probe. If a probe is found, return
it. If no probe is found, return a bound probe whose fields are
both NULL. */
extern struct bound_probe find_probe_by_pc (CORE_ADDR pc);
/* Search OBJFILE for a probe with the given PROVIDER, NAME. Return a
VEC of all probes that were found. If no matching probe is found,
return NULL. The caller must free the VEC. */
extern VEC (probe_p) *find_probes_in_objfile (struct objfile *objfile,
const char *provider,
const char *name);
/* Generate a `info probes' command output for probe_ops represented by
POPS. If POPS is NULL it considers any probes types. It is a helper
function that can be used by the probe backends to print their
`info probe TYPE'. */
extern void info_probes_for_ops (const char *arg, int from_tty,
const struct probe_ops *pops);
/* Return the `cmd_list_element' associated with the `info probes' command,
or create a new one if it doesn't exist. Helper function that serves the
purpose of avoiding the case of a backend using the `cmd_list_element'
associated with `info probes', without having it registered yet. */
extern struct cmd_list_element **info_probes_cmdlist_get (void);
/* Compute the probe's relocated address. OBJFILE is the objfile in
which the probe originated. */
extern CORE_ADDR get_probe_address (struct probe *probe,
struct objfile *objfile);
/* Return the argument count of the specified probe.
This function can throw an exception. */
extern unsigned get_probe_argument_count (struct probe *probe,
struct frame_info *frame);
/* Return 1 if the probe interface associated with PROBE can evaluate
arguments, zero otherwise. See the comments on the definition of
sym_probe_fns:can_evaluate_probe_arguments for more details. */
extern int can_evaluate_probe_arguments (struct probe *probe);
/* Evaluate argument N of the specified probe. N must be between 0
inclusive and get_probe_argument_count exclusive.
This function can throw an exception. */
extern struct value *evaluate_probe_argument (struct probe *probe,
unsigned n,
struct frame_info *frame);
/* A convenience function that finds a probe at the PC in FRAME and
evaluates argument N, with 0 <= N < number_of_args. If there is no
probe at that location, or if the probe does not have enough arguments,
this returns NULL. */
extern struct value *probe_safe_evaluate_at_pc (struct frame_info *frame,
unsigned n);
#endif /* !defined (PROBE_H) */