mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
d1cbd70abb
Fix numerous problems with PENDING_* code. In old gencode simulator, don't double tick each cycle. Add BREAK instruction to MIPS16 gencode simulator.
872 lines
27 KiB
C
872 lines
27 KiB
C
/* Copyright (C) 1998, Cygnus Solutions
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
|
|
#ifndef SIM_MAIN_C
|
|
#define SIM_MAIN_C
|
|
|
|
#include "sim-main.h"
|
|
#include "sim-assert.h"
|
|
|
|
#if !(WITH_IGEN)
|
|
#define SIM_MANIFESTS
|
|
#include "oengine.c"
|
|
#undef SIM_MANIFESTS
|
|
#endif
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/*-- simulator engine -------------------------------------------------------*/
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
/* start-sanitize-sky */
|
|
#ifdef TARGET_SKY
|
|
|
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
|
(revision 3.1) */
|
|
|
|
/* Translate a virtual address to a physical address and cache
|
|
coherence algorithm describing the mechanism used to resolve the
|
|
memory reference. Given the virtual address vAddr, and whether the
|
|
reference is to Instructions ot Data (IorD), find the corresponding
|
|
physical address (pAddr) and the cache coherence algorithm (CCA)
|
|
used to resolve the reference. If the virtual address is in one of
|
|
the unmapped address spaces the physical address and the CCA are
|
|
determined directly by the virtual address. If the virtual address
|
|
is in one of the mapped address spaces then the TLB is used to
|
|
determine the physical address and access type; if the required
|
|
translation is not present in the TLB or the desired access is not
|
|
permitted the function fails and an exception is taken.
|
|
|
|
NOTE: Normally (RAW == 0), when address translation fails, this
|
|
function raises an exception and does not return. */
|
|
|
|
/* This implementation is for the MIPS R4000 family. See MIPS RISC
|
|
Architecture, Kane & Heinrich, Chapter 4. It is no good for any
|
|
of the 2000, 3000, or 6000 family.
|
|
|
|
One possible error in the K&H book of note. K&H has the PFN entry
|
|
in the TLB as being 24 bits. The high-order 4 bits would seem to be
|
|
unused, as the PFN is only 20-bits long. The 5900 manual shows
|
|
this as a 20-bit field. At any rate, the high order 4 bits are
|
|
unused.
|
|
*/
|
|
|
|
|
|
|
|
/* A place to remember the last cache hit. */
|
|
static r4000_tlb_entry_t *last_hit = 0;
|
|
|
|
/* Try to match a single TLB entry. Three possibilities.
|
|
1. No match, returns 0
|
|
2. Match w/o exception, pAddr and CCA set, returns 1
|
|
3. Match w/ exception, in which case tlb_try_match does not return.
|
|
*/
|
|
INLINE_SIM_MAIN (int)
|
|
tlb_try_match (SIM_DESC SD, sim_cpu *CPU, address_word cia, r4000_tlb_entry_t * entry, unsigned32 asid, unsigned32 vAddr, address_word * pAddr, int *CCA, int LorS)
|
|
{
|
|
unsigned32 page_mask, vpn2_mask;
|
|
page_mask = (entry->mask & 0x01ffe000);
|
|
vpn2_mask = ~(page_mask | 0x00001fff);
|
|
|
|
if ((vAddr & vpn2_mask) == (entry->hi & vpn2_mask)
|
|
&& ((entry->hi & TLB_HI_ASID_MASK) == asid
|
|
|| (entry->hi & TLB_HI_G_MASK) != 0))
|
|
{
|
|
/* OK. Now, do we match lo0, or lo1? */
|
|
unsigned32 offset_mask, vpn_lo_mask, vpn_mask, lo;
|
|
|
|
offset_mask = (page_mask >> 1) | 0xfff;
|
|
vpn_lo_mask = offset_mask + 1;
|
|
vpn_mask = ~(offset_mask);
|
|
|
|
ASSERT(vpn_lo_mask == (-vpn2_mask) >> 1);
|
|
ASSERT(vpn_mask ^ vpn_lo_mask == vpn2_mask);
|
|
|
|
if ((vAddr & vpn_lo_mask) == 0)
|
|
{
|
|
lo = entry->lo0;
|
|
}
|
|
else
|
|
{
|
|
lo = entry->lo1;
|
|
}
|
|
|
|
/* Warn upon attempted use of scratchpad RAM */
|
|
if(entry->lo0 & TLB_LO_S_MASK)
|
|
{
|
|
sim_io_printf(SD,
|
|
"Warning: no scratchpad RAM: virtual 0x%08x maps to physical 0x%08x.\n",
|
|
vAddr, (vAddr & offset_mask));
|
|
|
|
/* act as if this is a valid, read/write page. */
|
|
lo = TLB_LO_V_MASK | TLB_LO_D_MASK;
|
|
|
|
/* alternately, act as if this TLB entry is not a match */
|
|
/* return 0; */
|
|
}
|
|
|
|
if ((lo & TLB_LO_V_MASK) == 0)
|
|
{
|
|
COP0_BADVADDR = vAddr;
|
|
COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19); /* Top 19 bits */
|
|
COP0_ENTRYHI = (vAddr & 0xffffe) | asid;
|
|
COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED;
|
|
if (LorS == isLOAD)
|
|
SignalExceptionTLBInvalidLoad ();
|
|
else
|
|
SignalExceptionTLBInvalidStore ();
|
|
ASSERT(0); /* Signal should never return. */
|
|
}
|
|
|
|
if ((lo & TLB_LO_D_MASK) == 0 && (LorS == isSTORE))
|
|
{
|
|
COP0_BADVADDR = vAddr;
|
|
COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19); /* Top 19 bits */
|
|
COP0_ENTRYHI = (vAddr & 0xffffe) | asid;
|
|
COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED;
|
|
SignalExceptionTLBModification ();
|
|
ASSERT(0); /* Signal should never return. */
|
|
}
|
|
|
|
/* Ignore lo.C rule for Cache access */
|
|
|
|
*pAddr = (((lo & 0x03ffffc0) << 6) & (~offset_mask)) + (vAddr & offset_mask);
|
|
*CCA = Uncached; /* FOR NOW, no CCA support. */
|
|
|
|
last_hit = entry; /* Remember last hit. */
|
|
|
|
return 1; /* Match */
|
|
}
|
|
|
|
return 0; /* No Match */
|
|
}
|
|
|
|
static void
|
|
dump_tlb(SIM_DESC SD, sim_cpu *CPU, address_word cia) {
|
|
|
|
int i;
|
|
/* Now linear search for a match. */
|
|
|
|
for (i = 0; i < TLB_SIZE; i++)
|
|
{
|
|
sim_io_eprintf(SD, "%2d: %08x %08x %08x %08x\n", i, TLB[i].mask, TLB[i].hi,
|
|
TLB[i].lo0, TLB[i].lo1);
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_MAIN (void)
|
|
tlb_lookup (SIM_DESC SD, sim_cpu * CPU, address_word cia, unsigned32 vAddr, address_word * pAddr, int *CCA, int LorS)
|
|
{
|
|
r4000_tlb_entry_t *p;
|
|
unsigned32 asid;
|
|
int rc;
|
|
|
|
asid = COP0_ENTRYHI & 0x000000ff;
|
|
|
|
/* Test last hit first. More code, but probably faster on average. */
|
|
if (last_hit)
|
|
{
|
|
if (tlb_try_match (SD, CPU, cia, last_hit, asid, vAddr, pAddr, CCA, LorS))
|
|
return;
|
|
}
|
|
|
|
/* Now linear search for a match. */
|
|
for (p = &TLB[0]; p < &TLB[TLB_SIZE]; p++)
|
|
{
|
|
if (tlb_try_match (SD, CPU, cia, p, asid, vAddr, pAddr, CCA, LorS))
|
|
return;
|
|
}
|
|
|
|
/* No match, raise a TLB refill exception. */
|
|
COP0_BADVADDR = vAddr;
|
|
COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19); /* Top 19 bits */
|
|
COP0_ENTRYHI = (vAddr & 0xffffe) | asid;
|
|
COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED;
|
|
|
|
#if 0
|
|
sim_io_eprintf(SD, "TLB Refill exception at address 0x%0x\n", vAddr);
|
|
dump_tlb(SD, CPU, cia);
|
|
#endif
|
|
|
|
if (LorS == isLOAD)
|
|
SignalExceptionTLBRefillLoad ();
|
|
else
|
|
SignalExceptionTLBRefillStore ();
|
|
ASSERT(0); /* Signal should never return. */
|
|
}
|
|
|
|
|
|
INLINE_SIM_MAIN (int)
|
|
address_translation (SIM_DESC SD,
|
|
sim_cpu * CPU,
|
|
address_word cia,
|
|
address_word vAddr,
|
|
int IorD,
|
|
int LorS,
|
|
address_word * pAddr,
|
|
int *CCA,
|
|
int raw)
|
|
{
|
|
unsigned32 operating_mode;
|
|
unsigned32 asid, vpn, offset, offset_bits;
|
|
|
|
#ifdef DEBUG
|
|
sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
|
|
#endif
|
|
|
|
vAddr &= 0xFFFFFFFF;
|
|
|
|
/* Determine operating mode. */
|
|
operating_mode = SR_KSU;
|
|
if (SR & status_ERL || SR & status_EXL)
|
|
operating_mode = ksu_kernel;
|
|
|
|
switch (operating_mode)
|
|
{
|
|
case ksu_unknown:
|
|
sim_io_eprintf (SD, "Invalid operating mode SR.KSU == 0x3. Treated as 0x0.\n");
|
|
operating_mode = ksu_kernel;
|
|
/* Fall-through */
|
|
case ksu_kernel:
|
|
/* Map and return for kseg0 and kseg1. */
|
|
if ((vAddr & 0xc0000000) == 0x80000000)
|
|
{
|
|
ASSERT (0x80000000 <= vAddr && vAddr < 0xc0000000);
|
|
if (vAddr < 0xa0000000)
|
|
{
|
|
/* kseg0: Unmapped, Cached */
|
|
*pAddr = vAddr - 0x80000000;
|
|
*CCA = Uncached; /* For now, until cache model is supported. */
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
/* kseg1: Unmapped, Uncached */
|
|
*pAddr = vAddr - 0xa0000000;
|
|
*CCA = Uncached;
|
|
return -1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ksu_supervisor:
|
|
{
|
|
/* Address error for 0x80000000->0xbfffffff and 0xe00000000->0xffffffff. */
|
|
unsigned32 top_three = vAddr & 0xe0000000;
|
|
if (top_three != 0x00000000 && top_three != 0xc0000000)
|
|
{
|
|
if (LorS == isLOAD)
|
|
SignalExceptionAddressLoad ();
|
|
else
|
|
SignalExceptionAddressStore ();
|
|
ASSERT(0); /* Signal should never return. */
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ksu_user:
|
|
{
|
|
if (vAddr & 0x80000000)
|
|
{
|
|
if (LorS == isLOAD)
|
|
SignalExceptionAddressLoad ();
|
|
else
|
|
SignalExceptionAddressStore ();
|
|
ASSERT(0); /* Signal should never return. */
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
|
|
/* OK. If we got this far, we're ready to use the normal virtual->physical memory mapping. */
|
|
tlb_lookup (SD, CPU, cia, vAddr, pAddr, CCA, LorS);
|
|
|
|
/* If the preceding call returns, a match was found, and CCA and pAddr have been set. */
|
|
return -1;
|
|
}
|
|
|
|
#else /* TARGET_SKY */
|
|
/* end-sanitize-sky */
|
|
|
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
|
(revision 3.1) */
|
|
/* Translate a virtual address to a physical address and cache
|
|
coherence algorithm describing the mechanism used to resolve the
|
|
memory reference. Given the virtual address vAddr, and whether the
|
|
reference is to Instructions ot Data (IorD), find the corresponding
|
|
physical address (pAddr) and the cache coherence algorithm (CCA)
|
|
used to resolve the reference. If the virtual address is in one of
|
|
the unmapped address spaces the physical address and the CCA are
|
|
determined directly by the virtual address. If the virtual address
|
|
is in one of the mapped address spaces then the TLB is used to
|
|
determine the physical address and access type; if the required
|
|
translation is not present in the TLB or the desired access is not
|
|
permitted the function fails and an exception is taken.
|
|
|
|
NOTE: Normally (RAW == 0), when address translation fails, this
|
|
function raises an exception and does not return. */
|
|
|
|
INLINE_SIM_MAIN
|
|
(int)
|
|
address_translation (SIM_DESC sd,
|
|
sim_cpu * cpu,
|
|
address_word cia,
|
|
address_word vAddr,
|
|
int IorD,
|
|
int LorS,
|
|
address_word * pAddr,
|
|
int *CCA,
|
|
int raw)
|
|
{
|
|
int res = -1; /* TRUE : Assume good return */
|
|
|
|
#ifdef DEBUG
|
|
sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
|
|
#endif
|
|
|
|
/* Check that the address is valid for this memory model */
|
|
|
|
/* For a simple (flat) memory model, we simply pass virtual
|
|
addressess through (mostly) unchanged. */
|
|
vAddr &= 0xFFFFFFFF;
|
|
|
|
*pAddr = vAddr; /* default for isTARGET */
|
|
*CCA = Uncached; /* not used for isHOST */
|
|
|
|
return (res);
|
|
}
|
|
|
|
/* start-sanitize-sky */
|
|
#endif /* !TARGET_SKY */
|
|
/* end-sanitize-sky */
|
|
|
|
|
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
|
(revision 3.1) */
|
|
/* Prefetch data from memory. Prefetch is an advisory instruction for
|
|
which an implementation specific action is taken. The action taken
|
|
may increase performance, but must not change the meaning of the
|
|
program, or alter architecturally-visible state. */
|
|
|
|
INLINE_SIM_MAIN (void)
|
|
prefetch (SIM_DESC sd,
|
|
sim_cpu *cpu,
|
|
address_word cia,
|
|
int CCA,
|
|
address_word pAddr,
|
|
address_word vAddr,
|
|
int DATA,
|
|
int hint)
|
|
{
|
|
#ifdef DEBUG
|
|
sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
|
|
#endif /* DEBUG */
|
|
|
|
/* For our simple memory model we do nothing */
|
|
return;
|
|
}
|
|
|
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
|
(revision 3.1) */
|
|
/* Load a value from memory. Use the cache and main memory as
|
|
specified in the Cache Coherence Algorithm (CCA) and the sort of
|
|
access (IorD) to find the contents of AccessLength memory bytes
|
|
starting at physical location pAddr. The data is returned in the
|
|
fixed width naturally-aligned memory element (MemElem). The
|
|
low-order two (or three) bits of the address and the AccessLength
|
|
indicate which of the bytes within MemElem needs to be given to the
|
|
processor. If the memory access type of the reference is uncached
|
|
then only the referenced bytes are read from memory and valid
|
|
within the memory element. If the access type is cached, and the
|
|
data is not present in cache, an implementation specific size and
|
|
alignment block of memory is read and loaded into the cache to
|
|
satisfy a load reference. At a minimum, the block is the entire
|
|
memory element. */
|
|
INLINE_SIM_MAIN (void)
|
|
load_memory (SIM_DESC SD,
|
|
sim_cpu *CPU,
|
|
address_word cia,
|
|
uword64* memvalp,
|
|
uword64* memval1p,
|
|
int CCA,
|
|
unsigned int AccessLength,
|
|
address_word pAddr,
|
|
address_word vAddr,
|
|
int IorD)
|
|
{
|
|
uword64 value = 0;
|
|
uword64 value1 = 0;
|
|
|
|
#ifdef DEBUG
|
|
sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
|
|
#endif /* DEBUG */
|
|
|
|
#if defined(WARN_MEM)
|
|
if (CCA != uncached)
|
|
sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
|
#endif /* WARN_MEM */
|
|
|
|
#if !(WITH_IGEN)
|
|
/* IGEN performs this test in ifetch16() / ifetch32() */
|
|
/* If instruction fetch then we need to check that the two lo-order
|
|
bits are zero, otherwise raise a InstructionFetch exception: */
|
|
if ((IorD == isINSTRUCTION)
|
|
&& ((pAddr & 0x3) != 0)
|
|
&& (((pAddr & 0x1) != 0) || ((vAddr & 0x1) == 0)))
|
|
SignalExceptionInstructionFetch ();
|
|
#endif
|
|
|
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
|
{
|
|
/* In reality this should be a Bus Error */
|
|
sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
|
AccessLength,
|
|
(LOADDRMASK + 1) << 3,
|
|
pr_addr (pAddr));
|
|
}
|
|
|
|
#if defined(TRACE)
|
|
dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
|
|
#endif /* TRACE */
|
|
|
|
/* Read the specified number of bytes from memory. Adjust for
|
|
host/target byte ordering/ Align the least significant byte
|
|
read. */
|
|
|
|
switch (AccessLength)
|
|
{
|
|
case AccessLength_QUADWORD :
|
|
{
|
|
unsigned_16 val = sim_core_read_aligned_16 (CPU, NULL_CIA, read_map, pAddr);
|
|
value1 = VH8_16 (val);
|
|
value = VL8_16 (val);
|
|
break;
|
|
}
|
|
case AccessLength_DOUBLEWORD :
|
|
value = sim_core_read_aligned_8 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
case AccessLength_SEPTIBYTE :
|
|
value = sim_core_read_misaligned_7 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
case AccessLength_SEXTIBYTE :
|
|
value = sim_core_read_misaligned_6 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
case AccessLength_QUINTIBYTE :
|
|
value = sim_core_read_misaligned_5 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
case AccessLength_WORD :
|
|
value = sim_core_read_aligned_4 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
case AccessLength_TRIPLEBYTE :
|
|
value = sim_core_read_misaligned_3 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
case AccessLength_HALFWORD :
|
|
value = sim_core_read_aligned_2 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
case AccessLength_BYTE :
|
|
value = sim_core_read_aligned_1 (CPU, NULL_CIA,
|
|
read_map, pAddr);
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
|
|
(int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
|
|
#endif /* DEBUG */
|
|
|
|
/* See also store_memory. Position data in correct byte lanes. */
|
|
if (AccessLength <= LOADDRMASK)
|
|
{
|
|
if (BigEndianMem)
|
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
|
shifted to the most significant byte position. */
|
|
value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
|
else
|
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
|
is already in the correct postition. */
|
|
value <<= ((pAddr & LOADDRMASK) * 8);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
|
|
pr_uword64(value1),pr_uword64(value));
|
|
#endif /* DEBUG */
|
|
|
|
*memvalp = value;
|
|
if (memval1p) *memval1p = value1;
|
|
}
|
|
|
|
|
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
|
(revision 3.1) */
|
|
/* Store a value to memory. The specified data is stored into the
|
|
physical location pAddr using the memory hierarchy (data caches and
|
|
main memory) as specified by the Cache Coherence Algorithm
|
|
(CCA). The MemElem contains the data for an aligned, fixed-width
|
|
memory element (word for 32-bit processors, doubleword for 64-bit
|
|
processors), though only the bytes that will actually be stored to
|
|
memory need to be valid. The low-order two (or three) bits of pAddr
|
|
and the AccessLength field indicates which of the bytes within the
|
|
MemElem data should actually be stored; only these bytes in memory
|
|
will be changed. */
|
|
|
|
INLINE_SIM_MAIN (void)
|
|
store_memory (SIM_DESC SD,
|
|
sim_cpu *CPU,
|
|
address_word cia,
|
|
int CCA,
|
|
unsigned int AccessLength,
|
|
uword64 MemElem,
|
|
uword64 MemElem1, /* High order 64 bits */
|
|
address_word pAddr,
|
|
address_word vAddr)
|
|
{
|
|
#ifdef DEBUG
|
|
sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
|
|
#endif /* DEBUG */
|
|
|
|
#if defined(WARN_MEM)
|
|
if (CCA != uncached)
|
|
sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
|
#endif /* WARN_MEM */
|
|
|
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
|
sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
|
AccessLength,
|
|
(LOADDRMASK + 1) << 3,
|
|
pr_addr(pAddr));
|
|
|
|
#if defined(TRACE)
|
|
dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
|
|
#endif /* TRACE */
|
|
|
|
#ifdef DEBUG
|
|
printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
|
|
#endif /* DEBUG */
|
|
|
|
/* See also load_memory. Position data in correct byte lanes. */
|
|
if (AccessLength <= LOADDRMASK)
|
|
{
|
|
if (BigEndianMem)
|
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
|
shifted to the most significant byte position. */
|
|
MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
|
else
|
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
|
is already in the correct postition. */
|
|
MemElem >>= ((pAddr & LOADDRMASK) * 8);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
|
|
#endif /* DEBUG */
|
|
|
|
switch (AccessLength)
|
|
{
|
|
case AccessLength_QUADWORD :
|
|
{
|
|
unsigned_16 val = U16_8 (MemElem1, MemElem);
|
|
sim_core_write_aligned_16 (CPU, NULL_CIA, write_map, pAddr, val);
|
|
break;
|
|
}
|
|
case AccessLength_DOUBLEWORD :
|
|
sim_core_write_aligned_8 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
case AccessLength_SEPTIBYTE :
|
|
sim_core_write_misaligned_7 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
case AccessLength_SEXTIBYTE :
|
|
sim_core_write_misaligned_6 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
case AccessLength_QUINTIBYTE :
|
|
sim_core_write_misaligned_5 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
case AccessLength_WORD :
|
|
sim_core_write_aligned_4 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
case AccessLength_TRIPLEBYTE :
|
|
sim_core_write_misaligned_3 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
case AccessLength_HALFWORD :
|
|
sim_core_write_aligned_2 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
case AccessLength_BYTE :
|
|
sim_core_write_aligned_1 (CPU, NULL_CIA,
|
|
write_map, pAddr, MemElem);
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
INLINE_SIM_MAIN (unsigned32)
|
|
ifetch32 (SIM_DESC SD,
|
|
sim_cpu *CPU,
|
|
address_word cia,
|
|
address_word vaddr)
|
|
{
|
|
/* Copy the action of the LW instruction */
|
|
address_word mask = LOADDRMASK;
|
|
address_word access = AccessLength_WORD;
|
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
|
unsigned int byte;
|
|
address_word paddr;
|
|
int uncached;
|
|
unsigned64 memval;
|
|
|
|
if ((vaddr & access) != 0)
|
|
SignalExceptionInstructionFetch ();
|
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
|
return (memval >> (8 * byte));
|
|
}
|
|
|
|
|
|
INLINE_SIM_MAIN (unsigned16)
|
|
ifetch16 (SIM_DESC SD,
|
|
sim_cpu *CPU,
|
|
address_word cia,
|
|
address_word vaddr)
|
|
{
|
|
/* Copy the action of the LH instruction */
|
|
address_word mask = LOADDRMASK;
|
|
address_word access = AccessLength_HALFWORD;
|
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
|
unsigned int byte;
|
|
address_word paddr;
|
|
int uncached;
|
|
unsigned64 memval;
|
|
|
|
if ((vaddr & access) != 0)
|
|
SignalExceptionInstructionFetch ();
|
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
|
return (memval >> (8 * byte));
|
|
}
|
|
|
|
|
|
|
|
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
|
|
/* Order loads and stores to synchronise shared memory. Perform the
|
|
action necessary to make the effects of groups of synchronizable
|
|
loads and stores indicated by stype occur in the same order for all
|
|
processors. */
|
|
INLINE_SIM_MAIN (void)
|
|
sync_operation (SIM_DESC sd,
|
|
sim_cpu *cpu,
|
|
address_word cia,
|
|
int stype)
|
|
{
|
|
#ifdef DEBUG
|
|
sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
|
|
#endif /* DEBUG */
|
|
return;
|
|
}
|
|
|
|
INLINE_SIM_MAIN (void)
|
|
cache_op (SIM_DESC SD,
|
|
sim_cpu *CPU,
|
|
address_word cia,
|
|
int op,
|
|
address_word pAddr,
|
|
address_word vAddr,
|
|
unsigned int instruction)
|
|
{
|
|
#if 1 /* stop warning message being displayed (we should really just remove the code) */
|
|
static int icache_warning = 1;
|
|
static int dcache_warning = 1;
|
|
#else
|
|
static int icache_warning = 0;
|
|
static int dcache_warning = 0;
|
|
#endif
|
|
|
|
/* If CP0 is not useable (User or Supervisor mode) and the CP0
|
|
enable bit in the Status Register is clear - a coprocessor
|
|
unusable exception is taken. */
|
|
#if 0
|
|
sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
|
|
#endif
|
|
|
|
switch (op & 0x3) {
|
|
case 0: /* instruction cache */
|
|
switch (op >> 2) {
|
|
case 0: /* Index Invalidate */
|
|
case 1: /* Index Load Tag */
|
|
case 2: /* Index Store Tag */
|
|
case 4: /* Hit Invalidate */
|
|
case 5: /* Fill */
|
|
case 6: /* Hit Writeback */
|
|
if (!icache_warning)
|
|
{
|
|
sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
|
|
icache_warning = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
SignalException(ReservedInstruction,instruction);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 1: /* data cache */
|
|
switch (op >> 2) {
|
|
case 0: /* Index Writeback Invalidate */
|
|
case 1: /* Index Load Tag */
|
|
case 2: /* Index Store Tag */
|
|
case 3: /* Create Dirty */
|
|
case 4: /* Hit Invalidate */
|
|
case 5: /* Hit Writeback Invalidate */
|
|
case 6: /* Hit Writeback */
|
|
if (!dcache_warning)
|
|
{
|
|
sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
|
|
dcache_warning = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
SignalException(ReservedInstruction,instruction);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default: /* unrecognised cache ID */
|
|
SignalException(ReservedInstruction,instruction);
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
INLINE_SIM_MAIN (void)
|
|
pending_tick (SIM_DESC SD,
|
|
sim_cpu *CPU,
|
|
address_word cia)
|
|
{
|
|
if (PENDING_TRACE)
|
|
sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL);
|
|
if (PENDING_OUT != PENDING_IN)
|
|
{
|
|
int loop;
|
|
int index = PENDING_OUT;
|
|
int total = PENDING_TOTAL;
|
|
if (PENDING_TOTAL == 0)
|
|
sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
|
|
for (loop = 0, index = PENDING_OUT;
|
|
(loop < total);
|
|
loop++, index = (index + 1) % PSLOTS)
|
|
{
|
|
if (PENDING_SLOT_DEST[index] != NULL)
|
|
{
|
|
PENDING_SLOT_DELAY[index] -= 1;
|
|
if (PENDING_SLOT_DELAY[index] == 0)
|
|
{
|
|
if (PENDING_TRACE)
|
|
sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
|
index,
|
|
(unsigned long) PENDING_SLOT_DEST[index],
|
|
PENDING_SLOT_BIT[index],
|
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
|
PENDING_SLOT_SIZE[index]);
|
|
if (PENDING_SLOT_BIT[index] >= 0)
|
|
switch (PENDING_SLOT_SIZE[index])
|
|
{
|
|
case 4:
|
|
if (PENDING_SLOT_VALUE[index])
|
|
*(unsigned32*)PENDING_SLOT_DEST[index] |=
|
|
BIT32 (PENDING_SLOT_BIT[index]);
|
|
else
|
|
*(unsigned32*)PENDING_SLOT_DEST[index] &=
|
|
BIT32 (PENDING_SLOT_BIT[index]);
|
|
break;
|
|
case 8:
|
|
if (PENDING_SLOT_VALUE[index])
|
|
*(unsigned64*)PENDING_SLOT_DEST[index] |=
|
|
BIT64 (PENDING_SLOT_BIT[index]);
|
|
else
|
|
*(unsigned64*)PENDING_SLOT_DEST[index] &=
|
|
BIT64 (PENDING_SLOT_BIT[index]);
|
|
break;
|
|
}
|
|
else
|
|
switch (PENDING_SLOT_SIZE[index])
|
|
{
|
|
case 4:
|
|
*(unsigned32*)PENDING_SLOT_DEST[index] =
|
|
PENDING_SLOT_VALUE[index];
|
|
break;
|
|
case 8:
|
|
*(unsigned64*)PENDING_SLOT_DEST[index] =
|
|
PENDING_SLOT_VALUE[index];
|
|
break;
|
|
}
|
|
if (PENDING_OUT == index)
|
|
{
|
|
PENDING_SLOT_DEST[index] = NULL;
|
|
PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
|
|
PENDING_TOTAL--;
|
|
}
|
|
}
|
|
else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
|
|
sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
|
index, PENDING_SLOT_DELAY[index],
|
|
(unsigned long) PENDING_SLOT_DEST[index],
|
|
PENDING_SLOT_BIT[index],
|
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
|
PENDING_SLOT_SIZE[index]);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|