mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
8a60c93096
libctf has long declared deserialized dictionaries (out of files or ELF sections or memory buffers or whatever) to be read-only: back in the furthest prehistory this was not the case, in that you could add a few sorts of type to such dicts, but attempting to do so often caused horrible memory corruption, so I banned the lot. But it turns out real consumers want it (notably DTrace, which synthesises pointers to types that don't have them and adds them to the ctf_open()ed dicts if it needs them). Let's bring it back again, but without the memory corruption and without the massive code duplication required in days of yore to distinguish between static and dynamic types: the representation of both types has been identical for a few years, with the only difference being that types as a whole are stored in a big buffer for types read in via ctf_open and per-type hashtables for newly-added types. So we discard the internally-visible concept of "readonly dictionaries" in favour of declaring the *range of types* that were already present when the dict was read in to be read-only: you can't modify them (say, by adding members to them if they're structs, or calling ctf_set_array on them), but you can add more types and point to them. (The API remains the same, with calls sometimes returning ECTF_RDONLY, but now they do so less often.) This is a fairly invasive change, mostly because code written since the ban was introduced didn't take the possibility of a static/dynamic split into account. Some of these irregularities were hard to define as anything but bugs. Notably: - The symbol handling was assuming that symbols only needed to be looked for in dynamic hashtabs or static linker-laid-out indexed/ nonindexed layouts, but now we want to check both in case people added more symbols to a dict they opened. - The code that handles type additions wasn't checking to see if types with the same name existed *at all* (so you could do ctf_add_typedef (fp, "foo", bar) repeatedly without error). This seems reasonable for types you just added, but we probably *do* want to ban addition of types with names that override names we already used in the ctf_open()ed portion, since that would probably corrupt existing type relationships. (Doing things this way also avoids causing new errors for any existing code that was doing this sort of thing.) - ctf_lookup_variable entirely failed to work for variables just added by ctf_add_variable: you had to write the dict out and read it back in again before they appeared. - The symbol handling remembered what symbols you looked up but didn't remember their types, so you could look up an object symbol and then find it popping up when you asked for function symbols, which seems less than ideal. Since we had to rejig things enough to be able to distinguish function and object symbols internally anyway (in order to give suitable errors if you try to add a symbol with a name that already existed in the ctf_open()ed dict), this bug suddenly became more visible and was easily fixed. We do not (yet) support writing out dicts that have been previously read in via ctf_open() or other deserializer (you can look things up in them, but not write them out a second time). This never worked, so there is no incompatibility; if it is needed at a later date, the serializer is a little bit closer to having it work now (the only table we don't deal with is the types table, and that's because the upcoming CTFv4 changes are likely to make major changes to the way that table is represented internally, so adding more code that depends on its current form seems like a bad idea). There is a new testcase that tests much of this, in particular that modification of existing types is still banned and that you can add new ones and chase them without error. libctf/ * ctf-impl.h (struct ctf_dict.ctf_symhash): Split into... (ctf_dict.ctf_symhash_func): ... this and... (ctf_dict.ctf_symhash_objt): ... this. (ctf_dict.ctf_stypes): New, counts static types. (LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR. (LCTF_RDWR): Deleted. (LCTF_DIRTY): Renumbered. (LCTF_LINKING): Likewise. (ctf_lookup_variable_here): New. (ctf_lookup_by_sym_or_name): Likewise. (ctf_symbol_next_static): Likewise. (ctf_add_variable_forced): Likewise. (ctf_add_funcobjt_sym_forced): Likewise. (ctf_simple_open_internal): Adjust. (ctf_bufopen_internal): Likewise. * ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with. (ctf_create): Migrate a bunch of initializations into bufopen. Force recreation of name tables. Do not forcibly override the model, let ctf_bufopen do it. (ctf_static_type): New. (ctf_update): Drop LCTF_RDWR check. (ctf_dynamic_type): Likewise. (ctf_add_function): Likewise. (ctf_add_type_internal): Likewise. (ctf_rollback): Check ctf_stypes, not LCTF_RDWR. (ctf_set_array): Likewise. (ctf_add_struct_sized): Likewise. (ctf_add_union_sized): Likewise. (ctf_add_enum): Likewise. (ctf_add_enumerator): Likewise (only on the target dict). (ctf_add_member_offset): Likewise. (ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types with colliding names. (ctf_add_forward): Note safety under the new rules. (ctf_add_variable): Split all but the existence check into... (ctf_add_variable_forced): ... this new function. (ctf_add_funcobjt_sym): Likewise... (ctf_add_funcobjt_sym_forced): ... for this new function. * ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts with any stypes. (ctf_link_add_strtab): Likewise. (ctf_link_shuffle_syms): Likewise. (ctf_link_intern_extern_string): Note pre-existing prohibition. * ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check. (ctf_lookup_variable): Split out looking in a dict but not its parent into... (ctf_lookup_variable_here): ... this new function. (ctf_lookup_symbol_idx): Track whether looking up a function or object: cache them separately. (ctf_symbol_next): Split out looking in non-dynamic symtypetab entries to... (ctf_symbol_next_static): ... this new function. Don't get confused by the simultaneous presence of static and dynamic symtypetab entries. (ctf_try_lookup_indexed): Don't waste time looking up symbols by index before there can be any idea how symbols are numbered. (ctf_lookup_by_sym_or_name): Distinguish between function and data object lookups. Drop LCTF_RDWR. (ctf_lookup_by_symbol): Adjust. (ctf_lookup_by_symbol_name): Likewise. * ctf-open.c (init_types): Rename to... (init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes. (ctf_simple_open): Drop writable arg. (ctf_simple_open_internal): Likewise. (ctf_bufopen): Likewise. (ctf_bufopen_internal): Populate fields only used for writable dicts. Drop LCTF_RDWR. (ctf_dict_close): Cater for symhash cache split. * ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR. * ctf-types.c (ctf_variable_next): Drop LCTF_RDWR. * testsuite/libctf-lookup/add-to-opened*: New test.
1695 lines
44 KiB
C
1695 lines
44 KiB
C
/* Type handling functions.
|
|
Copyright (C) 2019-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
/* Determine whether a type is a parent or a child. */
|
|
|
|
int
|
|
ctf_type_isparent (ctf_dict_t *fp, ctf_id_t id)
|
|
{
|
|
return (LCTF_TYPE_ISPARENT (fp, id));
|
|
}
|
|
|
|
int
|
|
ctf_type_ischild (ctf_dict_t * fp, ctf_id_t id)
|
|
{
|
|
return (LCTF_TYPE_ISCHILD (fp, id));
|
|
}
|
|
|
|
/* Expand a structure element into the passed-in ctf_lmember_t. */
|
|
|
|
static int
|
|
ctf_struct_member (ctf_dict_t *fp, ctf_lmember_t *dst, const ctf_type_t *tp,
|
|
unsigned char *vlen, size_t vbytes, size_t n)
|
|
{
|
|
if (!ctf_assert (fp, n < LCTF_INFO_VLEN (fp, tp->ctt_info)))
|
|
return -1; /* errno is set for us. */
|
|
|
|
/* Already large. */
|
|
if (tp->ctt_size == CTF_LSIZE_SENT)
|
|
{
|
|
ctf_lmember_t *lmp = (ctf_lmember_t *) vlen;
|
|
|
|
if (!ctf_assert (fp, (n + 1) * sizeof (ctf_lmember_t) <= vbytes))
|
|
return -1; /* errno is set for us. */
|
|
|
|
memcpy (dst, &lmp[n], sizeof (ctf_lmember_t));
|
|
}
|
|
else
|
|
{
|
|
ctf_member_t *mp = (ctf_member_t *) vlen;
|
|
dst->ctlm_name = mp[n].ctm_name;
|
|
dst->ctlm_type = mp[n].ctm_type;
|
|
dst->ctlm_offsetlo = mp[n].ctm_offset;
|
|
dst->ctlm_offsethi = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over the members of a STRUCT or UNION. We pass the name, member
|
|
type, and offset of each member to the specified callback function. */
|
|
|
|
int
|
|
ctf_member_iter (ctf_dict_t *fp, ctf_id_t type, ctf_member_f *func, void *arg)
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
ssize_t offset;
|
|
const char *name;
|
|
ctf_id_t membtype;
|
|
|
|
while ((offset = ctf_member_next (fp, type, &i, &name, &membtype, 0)) >= 0)
|
|
{
|
|
int rc;
|
|
if ((rc = func (name, membtype, offset, arg)) != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return rc;
|
|
}
|
|
}
|
|
if (ctf_errno (fp) != ECTF_NEXT_END)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over the members of a STRUCT or UNION, returning each member's
|
|
offset and optionally name and member type in turn. On end-of-iteration,
|
|
returns -1. If FLAGS is CTF_MN_RECURSE, recurse into unnamed members. */
|
|
|
|
ssize_t
|
|
ctf_member_next (ctf_dict_t *fp, ctf_id_t type, ctf_next_t **it,
|
|
const char **name, ctf_id_t *membtype, int flags)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
uint32_t kind;
|
|
ssize_t offset;
|
|
uint32_t max_vlen;
|
|
ctf_next_t *i = *it;
|
|
|
|
if (!i)
|
|
{
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
ssize_t size;
|
|
ssize_t increment;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_errno (ofp, ENOMEM);
|
|
i->cu.ctn_fp = ofp;
|
|
i->ctn_tp = tp;
|
|
|
|
ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return (ctf_set_errno (ofp, ECTF_NOTSOU));
|
|
}
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
|
|
{
|
|
i->u.ctn_vlen = dtd->dtd_vlen;
|
|
i->ctn_size = dtd->dtd_vlen_alloc;
|
|
}
|
|
else
|
|
{
|
|
unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
|
|
i->u.ctn_vlen = (unsigned char *) tp + increment;
|
|
i->ctn_size = LCTF_VBYTES (fp, kind, size, vlen);;
|
|
}
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_member_next;
|
|
i->ctn_n = 0;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_member_next != i->ctn_iter_fun)
|
|
return (ctf_set_errno (ofp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (ofp != i->cu.ctn_fp)
|
|
return (ctf_set_errno (ofp, ECTF_NEXT_WRONGFP));
|
|
|
|
/* Resolve to the native dict of this type. */
|
|
if ((fp = ctf_get_dict (ofp, type)) == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_NOPARENT));
|
|
|
|
max_vlen = LCTF_INFO_VLEN (fp, i->ctn_tp->ctt_info);
|
|
|
|
/* When we hit an unnamed struct/union member, we set ctn_type to indicate
|
|
that we are inside one, then return the unnamed member: on the next call,
|
|
we must skip over top-level member iteration in favour of iteration within
|
|
the sub-struct until it later turns out that that iteration has ended. */
|
|
|
|
retry:
|
|
if (!i->ctn_type)
|
|
{
|
|
ctf_lmember_t memb;
|
|
const char *membname;
|
|
|
|
if (i->ctn_n == max_vlen)
|
|
goto end_iter;
|
|
|
|
if (ctf_struct_member (fp, &memb, i->ctn_tp, i->u.ctn_vlen, i->ctn_size,
|
|
i->ctn_n) < 0)
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
|
|
membname = ctf_strptr (fp, memb.ctlm_name);
|
|
|
|
if (name)
|
|
*name = membname;
|
|
if (membtype)
|
|
*membtype = memb.ctlm_type;
|
|
offset = (unsigned long) CTF_LMEM_OFFSET (&memb);
|
|
|
|
if (membname[0] == 0
|
|
&& (ctf_type_kind (fp, memb.ctlm_type) == CTF_K_STRUCT
|
|
|| ctf_type_kind (fp, memb.ctlm_type) == CTF_K_UNION))
|
|
i->ctn_type = memb.ctlm_type;
|
|
i->ctn_n++;
|
|
|
|
/* The callers might want automatic recursive sub-struct traversal. */
|
|
if (!(flags & CTF_MN_RECURSE))
|
|
i->ctn_type = 0;
|
|
|
|
/* Sub-struct traversal starting? Take note of the offset of this member,
|
|
for later boosting of sub-struct members' offsets. */
|
|
if (i->ctn_type)
|
|
i->ctn_increment = offset;
|
|
}
|
|
/* Traversing a sub-struct? Just return it, with the offset adjusted. */
|
|
else
|
|
{
|
|
ssize_t ret = ctf_member_next (fp, i->ctn_type, &i->ctn_next, name,
|
|
membtype, flags);
|
|
|
|
if (ret >= 0)
|
|
return ret + i->ctn_increment;
|
|
|
|
if (ctf_errno (fp) != ECTF_NEXT_END)
|
|
{
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
i->ctn_type = 0;
|
|
ctf_set_errno (ofp, ctf_errno (fp));
|
|
return ret;
|
|
}
|
|
|
|
if (!ctf_assert (fp, (i->ctn_next == NULL)))
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
|
|
i->ctn_type = 0;
|
|
/* This sub-struct has ended: on to the next real member. */
|
|
goto retry;
|
|
}
|
|
|
|
return offset;
|
|
|
|
end_iter:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_errno (ofp, ECTF_NEXT_END);
|
|
}
|
|
|
|
/* Iterate over the members of an ENUM. We pass the string name and associated
|
|
integer value of each enum element to the specified callback function. */
|
|
|
|
int
|
|
ctf_enum_iter (ctf_dict_t *fp, ctf_id_t type, ctf_enum_f *func, void *arg)
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
const char *name;
|
|
int val;
|
|
|
|
while ((name = ctf_enum_next (fp, type, &i, &val)) != NULL)
|
|
{
|
|
int rc;
|
|
if ((rc = func (name, val, arg)) != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return rc;
|
|
}
|
|
}
|
|
if (ctf_errno (fp) != ECTF_NEXT_END)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over the members of an enum TYPE, returning each enumerand's NAME or
|
|
NULL at end of iteration or error, and optionally passing back the
|
|
enumerand's integer VALue. */
|
|
|
|
const char *
|
|
ctf_enum_next (ctf_dict_t *fp, ctf_id_t type, ctf_next_t **it,
|
|
int *val)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
uint32_t kind;
|
|
const char *name;
|
|
ctf_next_t *i = *it;
|
|
|
|
if (!i)
|
|
{
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
|
|
if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
{
|
|
ctf_set_errno (ofp, ENOMEM);
|
|
return NULL;
|
|
}
|
|
i->cu.ctn_fp = ofp;
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL,
|
|
&i->ctn_increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_ENUM)
|
|
{
|
|
ctf_next_destroy (i);
|
|
ctf_set_errno (ofp, ECTF_NOTENUM);
|
|
return NULL;
|
|
}
|
|
|
|
dtd = ctf_dynamic_type (fp, type);
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_enum_next;
|
|
i->ctn_n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
|
|
if (dtd == NULL)
|
|
i->u.ctn_en = (const ctf_enum_t *) ((uintptr_t) tp +
|
|
i->ctn_increment);
|
|
else
|
|
i->u.ctn_en = (const ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_enum_next != i->ctn_iter_fun)
|
|
{
|
|
ctf_set_errno (ofp, ECTF_NEXT_WRONGFUN);
|
|
return NULL;
|
|
}
|
|
|
|
if (ofp != i->cu.ctn_fp)
|
|
{
|
|
ctf_set_errno (ofp, ECTF_NEXT_WRONGFP);
|
|
return NULL;
|
|
}
|
|
|
|
/* Resolve to the native dict of this type. */
|
|
if ((fp = ctf_get_dict (ofp, type)) == NULL)
|
|
{
|
|
ctf_set_errno (ofp, ECTF_NOPARENT);
|
|
return NULL;
|
|
}
|
|
|
|
if (i->ctn_n == 0)
|
|
goto end_iter;
|
|
|
|
name = ctf_strptr (fp, i->u.ctn_en->cte_name);
|
|
if (val)
|
|
*val = i->u.ctn_en->cte_value;
|
|
i->u.ctn_en++;
|
|
i->ctn_n--;
|
|
|
|
return name;
|
|
|
|
end_iter:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
ctf_set_errno (ofp, ECTF_NEXT_END);
|
|
return NULL;
|
|
}
|
|
|
|
/* Iterate over every root (user-visible) type in the given CTF dict.
|
|
We pass the type ID of each type to the specified callback function.
|
|
|
|
Does not traverse parent types: you have to do that explicitly. This is by
|
|
design, to avoid traversing them more than once if traversing many children
|
|
of a single parent. */
|
|
|
|
int
|
|
ctf_type_iter (ctf_dict_t *fp, ctf_type_f *func, void *arg)
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
ctf_id_t type;
|
|
|
|
while ((type = ctf_type_next (fp, &i, NULL, 0)) != CTF_ERR)
|
|
{
|
|
int rc;
|
|
if ((rc = func (type, arg)) != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return rc;
|
|
}
|
|
}
|
|
if (ctf_errno (fp) != ECTF_NEXT_END)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over every type in the given CTF dict, user-visible or not.
|
|
We pass the type ID of each type to the specified callback function.
|
|
|
|
Does not traverse parent types: you have to do that explicitly. This is by
|
|
design, to avoid traversing them more than once if traversing many children
|
|
of a single parent. */
|
|
|
|
int
|
|
ctf_type_iter_all (ctf_dict_t *fp, ctf_type_all_f *func, void *arg)
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
ctf_id_t type;
|
|
int flag;
|
|
|
|
while ((type = ctf_type_next (fp, &i, &flag, 1)) != CTF_ERR)
|
|
{
|
|
int rc;
|
|
if ((rc = func (type, flag, arg)) != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return rc;
|
|
}
|
|
}
|
|
if (ctf_errno (fp) != ECTF_NEXT_END)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over every type in the given CTF dict, optionally including
|
|
non-user-visible types, returning each type ID and hidden flag in turn.
|
|
Returns CTF_ERR on end of iteration or error.
|
|
|
|
Does not traverse parent types: you have to do that explicitly. This is by
|
|
design, to avoid traversing them more than once if traversing many children
|
|
of a single parent. */
|
|
|
|
ctf_id_t
|
|
ctf_type_next (ctf_dict_t *fp, ctf_next_t **it, int *flag, int want_hidden)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_typed_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_type = 1;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_type_next;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_type_next != i->ctn_iter_fun)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
while (i->ctn_type <= fp->ctf_typemax)
|
|
{
|
|
const ctf_type_t *tp = LCTF_INDEX_TO_TYPEPTR (fp, i->ctn_type);
|
|
|
|
if ((!want_hidden) && (!LCTF_INFO_ISROOT (fp, tp->ctt_info)))
|
|
{
|
|
i->ctn_type++;
|
|
continue;
|
|
}
|
|
|
|
if (flag)
|
|
*flag = LCTF_INFO_ISROOT (fp, tp->ctt_info);
|
|
return LCTF_INDEX_TO_TYPE (fp, i->ctn_type++, fp->ctf_flags & LCTF_CHILD);
|
|
}
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_typed_errno (fp, ECTF_NEXT_END);
|
|
}
|
|
|
|
/* Iterate over every variable in the given CTF dict, in arbitrary order.
|
|
We pass the name of each variable to the specified callback function. */
|
|
|
|
int
|
|
ctf_variable_iter (ctf_dict_t *fp, ctf_variable_f *func, void *arg)
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
ctf_id_t type;
|
|
const char *name;
|
|
|
|
while ((type = ctf_variable_next (fp, &i, &name)) != CTF_ERR)
|
|
{
|
|
int rc;
|
|
if ((rc = func (name, type, arg)) != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return rc;
|
|
}
|
|
}
|
|
if (ctf_errno (fp) != ECTF_NEXT_END)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over every variable in the given CTF dict, in arbitrary order,
|
|
returning the name and type of each variable in turn. The name argument is
|
|
not optional. Returns CTF_ERR on end of iteration or error. */
|
|
|
|
ctf_id_t
|
|
ctf_variable_next (ctf_dict_t *fp, ctf_next_t **it, const char **name)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
ctf_id_t id;
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parent == NULL))
|
|
return (ctf_set_typed_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_typed_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_variable_next;
|
|
i->u.ctn_dvd = ctf_list_next (&fp->ctf_dvdefs);
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_variable_next != i->ctn_iter_fun)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
if (i->ctn_n < fp->ctf_nvars)
|
|
{
|
|
*name = ctf_strptr (fp, fp->ctf_vars[i->ctn_n].ctv_name);
|
|
return fp->ctf_vars[i->ctn_n++].ctv_type;
|
|
|
|
}
|
|
|
|
if (i->u.ctn_dvd == NULL)
|
|
goto end_iter;
|
|
|
|
*name = i->u.ctn_dvd->dvd_name;
|
|
id = i->u.ctn_dvd->dvd_type;
|
|
i->u.ctn_dvd = ctf_list_next (i->u.ctn_dvd);
|
|
return id;
|
|
|
|
end_iter:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_typed_errno (fp, ECTF_NEXT_END);
|
|
}
|
|
|
|
/* Follow a given type through the graph for TYPEDEF, VOLATILE, CONST, and
|
|
RESTRICT nodes until we reach a "base" type node. This is useful when
|
|
we want to follow a type ID to a node that has members or a size. To guard
|
|
against infinite loops, we implement simplified cycle detection and check
|
|
each link against itself, the previous node, and the topmost node.
|
|
|
|
Does not drill down through slices to their contained type.
|
|
|
|
Callers of this function must not presume that a type it returns must have a
|
|
valid ctt_size: forwards do not, and must be separately handled. */
|
|
|
|
ctf_id_t
|
|
ctf_type_resolve (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_id_t prev = type, otype = type;
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
|
|
if (type == 0)
|
|
return (ctf_set_typed_errno (ofp, ECTF_NONREPRESENTABLE));
|
|
|
|
while ((tp = ctf_lookup_by_id (&fp, type)) != NULL)
|
|
{
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_TYPEDEF:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
if (tp->ctt_type == type || tp->ctt_type == otype
|
|
|| tp->ctt_type == prev)
|
|
{
|
|
ctf_err_warn (ofp, 0, ECTF_CORRUPT, _("type %lx cycle detected"),
|
|
otype);
|
|
return (ctf_set_typed_errno (ofp, ECTF_CORRUPT));
|
|
}
|
|
prev = type;
|
|
type = tp->ctt_type;
|
|
break;
|
|
case CTF_K_UNKNOWN:
|
|
return (ctf_set_typed_errno (ofp, ECTF_NONREPRESENTABLE));
|
|
default:
|
|
return type;
|
|
}
|
|
if (type == 0)
|
|
return (ctf_set_typed_errno (ofp, ECTF_NONREPRESENTABLE));
|
|
}
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
/* Like ctf_type_resolve(), but traverse down through slices to their contained
|
|
type. */
|
|
|
|
ctf_id_t
|
|
ctf_type_resolve_unsliced (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return CTF_ERR;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((LCTF_INFO_KIND (fp, tp->ctt_info)) == CTF_K_SLICE)
|
|
{
|
|
ctf_id_t ret;
|
|
|
|
if ((ret = ctf_type_reference (fp, type)) == CTF_ERR)
|
|
return (ctf_set_typed_errno (ofp, ctf_errno (fp)));
|
|
return ret;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
/* Return the native dict of a given type: if called on a child and the
|
|
type is in the parent, return the parent. Needed if you plan to access
|
|
the type directly, without using the API. */
|
|
ctf_dict_t *
|
|
ctf_get_dict (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type))
|
|
return fp->ctf_parent;
|
|
|
|
return fp;
|
|
}
|
|
|
|
/* Look up a name in the given name table, in the appropriate hash given the
|
|
kind of the identifier. The name is a raw, undecorated identifier. */
|
|
|
|
ctf_id_t ctf_lookup_by_rawname (ctf_dict_t *fp, int kind, const char *name)
|
|
{
|
|
return (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (ctf_name_table (fp, kind), name);
|
|
}
|
|
|
|
/* Lookup the given type ID and return its name as a new dynamically-allocated
|
|
string. */
|
|
|
|
char *
|
|
ctf_type_aname (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_decl_t cd;
|
|
ctf_decl_node_t *cdp;
|
|
ctf_decl_prec_t prec, lp, rp;
|
|
int ptr, arr;
|
|
uint32_t k;
|
|
char *buf;
|
|
|
|
if (fp == NULL && type == CTF_ERR)
|
|
return NULL; /* Simplify caller code by permitting CTF_ERR. */
|
|
|
|
ctf_decl_init (&cd);
|
|
ctf_decl_push (&cd, fp, type);
|
|
|
|
if (cd.cd_err != 0)
|
|
{
|
|
ctf_decl_fini (&cd);
|
|
ctf_set_errno (fp, cd.cd_err);
|
|
return NULL;
|
|
}
|
|
|
|
/* If the type graph's order conflicts with lexical precedence order
|
|
for pointers or arrays, then we need to surround the declarations at
|
|
the corresponding lexical precedence with parentheses. This can
|
|
result in either a parenthesized pointer (*) as in int (*)() or
|
|
int (*)[], or in a parenthesized pointer and array as in int (*[])(). */
|
|
|
|
ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER;
|
|
arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY;
|
|
|
|
rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1;
|
|
lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1;
|
|
|
|
k = CTF_K_POINTER; /* Avoid leading whitespace (see below). */
|
|
|
|
for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++)
|
|
{
|
|
for (cdp = ctf_list_next (&cd.cd_nodes[prec]);
|
|
cdp != NULL; cdp = ctf_list_next (cdp))
|
|
{
|
|
ctf_dict_t *rfp = fp;
|
|
const ctf_type_t *tp = ctf_lookup_by_id (&rfp, cdp->cd_type);
|
|
const char *name = ctf_strptr (rfp, tp->ctt_name);
|
|
|
|
if (k != CTF_K_POINTER && k != CTF_K_ARRAY)
|
|
ctf_decl_sprintf (&cd, " ");
|
|
|
|
if (lp == prec)
|
|
{
|
|
ctf_decl_sprintf (&cd, "(");
|
|
lp = -1;
|
|
}
|
|
|
|
switch (cdp->cd_kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
case CTF_K_TYPEDEF:
|
|
/* Integers, floats, and typedefs must always be named types. */
|
|
|
|
if (name[0] == '\0')
|
|
{
|
|
ctf_set_errno (fp, ECTF_CORRUPT);
|
|
ctf_decl_fini (&cd);
|
|
return NULL;
|
|
}
|
|
|
|
ctf_decl_sprintf (&cd, "%s", name);
|
|
break;
|
|
case CTF_K_POINTER:
|
|
ctf_decl_sprintf (&cd, "*");
|
|
break;
|
|
case CTF_K_ARRAY:
|
|
ctf_decl_sprintf (&cd, "[%u]", cdp->cd_n);
|
|
break;
|
|
case CTF_K_FUNCTION:
|
|
{
|
|
size_t i;
|
|
ctf_funcinfo_t fi;
|
|
ctf_id_t *argv = NULL;
|
|
|
|
if (ctf_func_type_info (rfp, cdp->cd_type, &fi) < 0)
|
|
goto err; /* errno is set for us. */
|
|
|
|
if ((argv = calloc (fi.ctc_argc, sizeof (ctf_id_t *))) == NULL)
|
|
{
|
|
ctf_set_errno (rfp, errno);
|
|
goto err;
|
|
}
|
|
|
|
if (ctf_func_type_args (rfp, cdp->cd_type,
|
|
fi.ctc_argc, argv) < 0)
|
|
goto err; /* errno is set for us. */
|
|
|
|
ctf_decl_sprintf (&cd, "(*) (");
|
|
for (i = 0; i < fi.ctc_argc; i++)
|
|
{
|
|
char *arg = ctf_type_aname (rfp, argv[i]);
|
|
|
|
if (arg == NULL)
|
|
goto err; /* errno is set for us. */
|
|
ctf_decl_sprintf (&cd, "%s", arg);
|
|
free (arg);
|
|
|
|
if ((i < fi.ctc_argc - 1)
|
|
|| (fi.ctc_flags & CTF_FUNC_VARARG))
|
|
ctf_decl_sprintf (&cd, ", ");
|
|
}
|
|
|
|
if (fi.ctc_flags & CTF_FUNC_VARARG)
|
|
ctf_decl_sprintf (&cd, "...");
|
|
ctf_decl_sprintf (&cd, ")");
|
|
|
|
free (argv);
|
|
break;
|
|
|
|
err:
|
|
ctf_set_errno (fp, ctf_errno (rfp));
|
|
free (argv);
|
|
ctf_decl_fini (&cd);
|
|
return NULL;
|
|
}
|
|
break;
|
|
case CTF_K_STRUCT:
|
|
ctf_decl_sprintf (&cd, "struct %s", name);
|
|
break;
|
|
case CTF_K_UNION:
|
|
ctf_decl_sprintf (&cd, "union %s", name);
|
|
break;
|
|
case CTF_K_ENUM:
|
|
ctf_decl_sprintf (&cd, "enum %s", name);
|
|
break;
|
|
case CTF_K_FORWARD:
|
|
{
|
|
switch (ctf_type_kind_forwarded (fp, cdp->cd_type))
|
|
{
|
|
case CTF_K_STRUCT:
|
|
ctf_decl_sprintf (&cd, "struct %s", name);
|
|
break;
|
|
case CTF_K_UNION:
|
|
ctf_decl_sprintf (&cd, "union %s", name);
|
|
break;
|
|
case CTF_K_ENUM:
|
|
ctf_decl_sprintf (&cd, "enum %s", name);
|
|
break;
|
|
default:
|
|
ctf_set_errno (fp, ECTF_CORRUPT);
|
|
ctf_decl_fini (&cd);
|
|
return NULL;
|
|
}
|
|
break;
|
|
}
|
|
case CTF_K_VOLATILE:
|
|
ctf_decl_sprintf (&cd, "volatile");
|
|
break;
|
|
case CTF_K_CONST:
|
|
ctf_decl_sprintf (&cd, "const");
|
|
break;
|
|
case CTF_K_RESTRICT:
|
|
ctf_decl_sprintf (&cd, "restrict");
|
|
break;
|
|
case CTF_K_UNKNOWN:
|
|
if (name[0] == '\0')
|
|
ctf_decl_sprintf (&cd, _("(nonrepresentable type)"));
|
|
else
|
|
ctf_decl_sprintf (&cd, _("(nonrepresentable type %s)"),
|
|
name);
|
|
break;
|
|
}
|
|
|
|
k = cdp->cd_kind;
|
|
}
|
|
|
|
if (rp == prec)
|
|
ctf_decl_sprintf (&cd, ")");
|
|
}
|
|
|
|
if (cd.cd_enomem)
|
|
(void) ctf_set_errno (fp, ENOMEM);
|
|
|
|
buf = ctf_decl_buf (&cd);
|
|
|
|
ctf_decl_fini (&cd);
|
|
return buf;
|
|
}
|
|
|
|
/* Lookup the given type ID and print a string name for it into buf. Return
|
|
the actual number of bytes (not including \0) needed to format the name. */
|
|
|
|
ssize_t
|
|
ctf_type_lname (ctf_dict_t *fp, ctf_id_t type, char *buf, size_t len)
|
|
{
|
|
char *str = ctf_type_aname (fp, type);
|
|
size_t slen;
|
|
|
|
if (str == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
slen = strlen (str);
|
|
snprintf (buf, len, "%s", str);
|
|
free (str);
|
|
|
|
if (slen >= len)
|
|
(void) ctf_set_errno (fp, ECTF_NAMELEN);
|
|
|
|
return slen;
|
|
}
|
|
|
|
/* Lookup the given type ID and print a string name for it into buf. If buf
|
|
is too small, return NULL: the ECTF_NAMELEN error is set on 'fp' for us. */
|
|
|
|
char *
|
|
ctf_type_name (ctf_dict_t *fp, ctf_id_t type, char *buf, size_t len)
|
|
{
|
|
ssize_t rv = ctf_type_lname (fp, type, buf, len);
|
|
return (rv >= 0 && (size_t) rv < len ? buf : NULL);
|
|
}
|
|
|
|
/* Lookup the given type ID and return its raw, unadorned, undecorated name.
|
|
The name will live as long as its ctf_dict_t does.
|
|
|
|
The only decoration is that a NULL return always means an error: nameless
|
|
types return a null string. */
|
|
|
|
const char *
|
|
ctf_type_name_raw (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const ctf_type_t *tp;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if (tp->ctt_name == 0)
|
|
return "";
|
|
|
|
return ctf_strraw (fp, tp->ctt_name);
|
|
}
|
|
|
|
/* Lookup the given type ID and return its raw, unadorned, undecorated name as a
|
|
new dynamically-allocated string. */
|
|
|
|
char *
|
|
ctf_type_aname_raw (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const char *name = ctf_type_name_raw (fp, type);
|
|
|
|
if (name != NULL)
|
|
return strdup (name);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Resolve the type down to a base type node, and then return the size
|
|
of the type storage in bytes. */
|
|
|
|
ssize_t
|
|
ctf_type_size (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
ssize_t size;
|
|
ctf_arinfo_t ar;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_POINTER:
|
|
return fp->ctf_dmodel->ctd_pointer;
|
|
|
|
case CTF_K_FUNCTION:
|
|
return 0; /* Function size is only known by symtab. */
|
|
|
|
case CTF_K_ENUM:
|
|
return fp->ctf_dmodel->ctd_int;
|
|
|
|
case CTF_K_ARRAY:
|
|
/* ctf_add_array() does not directly encode the element size, but
|
|
requires the user to multiply to determine the element size.
|
|
|
|
If ctf_get_ctt_size() returns nonzero, then use the recorded
|
|
size instead. */
|
|
|
|
if ((size = ctf_get_ctt_size (fp, tp, NULL, NULL)) > 0)
|
|
return size;
|
|
|
|
if (ctf_array_info (ofp, type, &ar) < 0
|
|
|| (size = ctf_type_size (ofp, ar.ctr_contents)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return size * ar.ctr_nelems;
|
|
|
|
case CTF_K_FORWARD:
|
|
/* Forwards do not have a meaningful size. */
|
|
return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
|
|
|
|
default: /* including slices of enums, etc */
|
|
return (ctf_get_ctt_size (fp, tp, NULL, NULL));
|
|
}
|
|
}
|
|
|
|
/* Resolve the type down to a base type node, and then return the alignment
|
|
needed for the type storage in bytes.
|
|
|
|
XXX may need arch-dependent attention. */
|
|
|
|
ssize_t
|
|
ctf_type_align (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const ctf_type_t *tp;
|
|
ctf_dict_t *ofp = fp;
|
|
int kind;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
switch (kind)
|
|
{
|
|
case CTF_K_POINTER:
|
|
case CTF_K_FUNCTION:
|
|
return fp->ctf_dmodel->ctd_pointer;
|
|
|
|
case CTF_K_ARRAY:
|
|
{
|
|
ctf_arinfo_t r;
|
|
if (ctf_array_info (ofp, type, &r) < 0)
|
|
return -1; /* errno is set for us. */
|
|
return (ctf_type_align (ofp, r.ctr_contents));
|
|
}
|
|
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
{
|
|
size_t align = 0;
|
|
ctf_dtdef_t *dtd;
|
|
unsigned char *vlen;
|
|
uint32_t i = 0, n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
ssize_t size, increment, vbytes;
|
|
|
|
ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
|
|
{
|
|
vlen = dtd->dtd_vlen;
|
|
vbytes = dtd->dtd_vlen_alloc;
|
|
}
|
|
else
|
|
{
|
|
vlen = (unsigned char *) tp + increment;
|
|
vbytes = LCTF_VBYTES (fp, kind, size, n);
|
|
}
|
|
|
|
if (kind == CTF_K_STRUCT)
|
|
n = MIN (n, 1); /* Only use first member for structs. */
|
|
|
|
for (; n != 0; n--, i++)
|
|
{
|
|
ctf_lmember_t memb;
|
|
|
|
if (ctf_struct_member (fp, &memb, tp, vlen, vbytes, i) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
ssize_t am = ctf_type_align (ofp, memb.ctlm_type);
|
|
align = MAX (align, (size_t) am);
|
|
}
|
|
return align;
|
|
}
|
|
|
|
case CTF_K_ENUM:
|
|
return fp->ctf_dmodel->ctd_int;
|
|
|
|
case CTF_K_FORWARD:
|
|
/* Forwards do not have a meaningful alignment. */
|
|
return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
|
|
|
|
default: /* including slices of enums, etc */
|
|
return (ctf_get_ctt_size (fp, tp, NULL, NULL));
|
|
}
|
|
}
|
|
|
|
/* Return the kind (CTF_K_* constant) for the specified type ID. */
|
|
|
|
int
|
|
ctf_type_kind_unsliced (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const ctf_type_t *tp;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return (LCTF_INFO_KIND (fp, tp->ctt_info));
|
|
}
|
|
|
|
/* Return the kind (CTF_K_* constant) for the specified type ID.
|
|
Slices are considered to be of the same kind as the type sliced. */
|
|
|
|
int
|
|
ctf_type_kind (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
int kind;
|
|
|
|
if ((kind = ctf_type_kind_unsliced (fp, type)) < 0)
|
|
return -1;
|
|
|
|
if (kind == CTF_K_SLICE)
|
|
{
|
|
if ((type = ctf_type_reference (fp, type)) == CTF_ERR)
|
|
return -1;
|
|
kind = ctf_type_kind_unsliced (fp, type);
|
|
}
|
|
|
|
return kind;
|
|
}
|
|
|
|
/* Return the kind of this type, except, for forwards, return the kind of thing
|
|
this is a forward to. */
|
|
int
|
|
ctf_type_kind_forwarded (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
int kind;
|
|
const ctf_type_t *tp;
|
|
|
|
if ((kind = ctf_type_kind (fp, type)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (kind != CTF_K_FORWARD)
|
|
return kind;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return tp->ctt_type;
|
|
}
|
|
|
|
/* If the type is one that directly references another type (such as POINTER),
|
|
then return the ID of the type to which it refers. */
|
|
|
|
ctf_id_t
|
|
ctf_type_reference (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_POINTER:
|
|
case CTF_K_TYPEDEF:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
return tp->ctt_type;
|
|
/* Slices store their type in an unusual place. */
|
|
case CTF_K_SLICE:
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
const ctf_slice_t *sp;
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
{
|
|
ssize_t increment;
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
sp = (const ctf_slice_t *) ((uintptr_t) tp + increment);
|
|
}
|
|
else
|
|
sp = (const ctf_slice_t *) dtd->dtd_vlen;
|
|
|
|
return sp->cts_type;
|
|
}
|
|
default:
|
|
return (ctf_set_typed_errno (ofp, ECTF_NOTREF));
|
|
}
|
|
}
|
|
|
|
/* Find a pointer to type by looking in fp->ctf_ptrtab. If we can't find a
|
|
pointer to the given type, see if we can compute a pointer to the type
|
|
resulting from resolving the type down to its base type and use that
|
|
instead. This helps with cases where the CTF data includes "struct foo *"
|
|
but not "foo_t *" and the user accesses "foo_t *" in the debugger.
|
|
|
|
XXX what about parent dicts? */
|
|
|
|
ctf_id_t
|
|
ctf_type_pointer (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_id_t ntype;
|
|
|
|
if (ctf_lookup_by_id (&fp, type) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)]) != 0)
|
|
return (LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)));
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return (ctf_set_typed_errno (ofp, ECTF_NOTYPE));
|
|
|
|
if (ctf_lookup_by_id (&fp, type) == NULL)
|
|
return (ctf_set_typed_errno (ofp, ECTF_NOTYPE));
|
|
|
|
if ((ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)]) != 0)
|
|
return (LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)));
|
|
|
|
return (ctf_set_typed_errno (ofp, ECTF_NOTYPE));
|
|
}
|
|
|
|
/* Return the encoding for the specified INTEGER, FLOAT, or ENUM. */
|
|
|
|
int
|
|
ctf_type_encoding (ctf_dict_t *fp, ctf_id_t type, ctf_encoding_t *ep)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_dtdef_t *dtd;
|
|
const ctf_type_t *tp;
|
|
ssize_t increment;
|
|
const unsigned char *vlen;
|
|
uint32_t data;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) != NULL)
|
|
vlen = dtd->dtd_vlen;
|
|
else
|
|
{
|
|
ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
vlen = (const unsigned char *) ((uintptr_t) tp + increment);
|
|
}
|
|
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_INTEGER:
|
|
data = *(const uint32_t *) vlen;
|
|
ep->cte_format = CTF_INT_ENCODING (data);
|
|
ep->cte_offset = CTF_INT_OFFSET (data);
|
|
ep->cte_bits = CTF_INT_BITS (data);
|
|
break;
|
|
case CTF_K_FLOAT:
|
|
data = *(const uint32_t *) vlen;
|
|
ep->cte_format = CTF_FP_ENCODING (data);
|
|
ep->cte_offset = CTF_FP_OFFSET (data);
|
|
ep->cte_bits = CTF_FP_BITS (data);
|
|
break;
|
|
case CTF_K_ENUM:
|
|
/* v3 only: we must guess at the underlying integral format. */
|
|
ep->cte_format = CTF_INT_SIGNED;
|
|
ep->cte_offset = 0;
|
|
ep->cte_bits = 0;
|
|
break;
|
|
case CTF_K_SLICE:
|
|
{
|
|
const ctf_slice_t *slice;
|
|
ctf_encoding_t underlying_en;
|
|
ctf_id_t underlying;
|
|
|
|
slice = (ctf_slice_t *) vlen;
|
|
underlying = ctf_type_resolve (ofp, slice->cts_type);
|
|
if (ctf_type_encoding (ofp, underlying, &underlying_en) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
ep->cte_format = underlying_en.cte_format;
|
|
ep->cte_offset = slice->cts_offset;
|
|
ep->cte_bits = slice->cts_bits;
|
|
break;
|
|
}
|
|
default:
|
|
return (ctf_set_errno (ofp, ECTF_NOTINTFP));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_type_cmp (ctf_dict_t *lfp, ctf_id_t ltype, ctf_dict_t *rfp,
|
|
ctf_id_t rtype)
|
|
{
|
|
int rval;
|
|
|
|
if (ltype < rtype)
|
|
rval = -1;
|
|
else if (ltype > rtype)
|
|
rval = 1;
|
|
else
|
|
rval = 0;
|
|
|
|
if (lfp == rfp)
|
|
return rval;
|
|
|
|
if (LCTF_TYPE_ISPARENT (lfp, ltype) && lfp->ctf_parent != NULL)
|
|
lfp = lfp->ctf_parent;
|
|
|
|
if (LCTF_TYPE_ISPARENT (rfp, rtype) && rfp->ctf_parent != NULL)
|
|
rfp = rfp->ctf_parent;
|
|
|
|
if (lfp < rfp)
|
|
return -1;
|
|
|
|
if (lfp > rfp)
|
|
return 1;
|
|
|
|
return rval;
|
|
}
|
|
|
|
/* Return a boolean value indicating if two types are compatible. This function
|
|
returns true if the two types are the same, or if they (or their ultimate
|
|
base type) have the same encoding properties, or (for structs / unions /
|
|
enums / forward declarations) if they have the same name and (for structs /
|
|
unions) member count. */
|
|
|
|
int
|
|
ctf_type_compat (ctf_dict_t *lfp, ctf_id_t ltype,
|
|
ctf_dict_t *rfp, ctf_id_t rtype)
|
|
{
|
|
const ctf_type_t *ltp, *rtp;
|
|
ctf_encoding_t le, re;
|
|
ctf_arinfo_t la, ra;
|
|
uint32_t lkind, rkind;
|
|
int same_names = 0;
|
|
|
|
if (ctf_type_cmp (lfp, ltype, rfp, rtype) == 0)
|
|
return 1;
|
|
|
|
ltype = ctf_type_resolve (lfp, ltype);
|
|
lkind = ctf_type_kind (lfp, ltype);
|
|
|
|
rtype = ctf_type_resolve (rfp, rtype);
|
|
rkind = ctf_type_kind (rfp, rtype);
|
|
|
|
ltp = ctf_lookup_by_id (&lfp, ltype);
|
|
rtp = ctf_lookup_by_id (&rfp, rtype);
|
|
|
|
if (ltp != NULL && rtp != NULL)
|
|
same_names = (strcmp (ctf_strptr (lfp, ltp->ctt_name),
|
|
ctf_strptr (rfp, rtp->ctt_name)) == 0);
|
|
|
|
if (((lkind == CTF_K_ENUM) && (rkind == CTF_K_INTEGER)) ||
|
|
((rkind == CTF_K_ENUM) && (lkind == CTF_K_INTEGER)))
|
|
return 1;
|
|
|
|
if (lkind != rkind)
|
|
return 0;
|
|
|
|
switch (lkind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
memset (&le, 0, sizeof (le));
|
|
memset (&re, 0, sizeof (re));
|
|
return (ctf_type_encoding (lfp, ltype, &le) == 0
|
|
&& ctf_type_encoding (rfp, rtype, &re) == 0
|
|
&& memcmp (&le, &re, sizeof (ctf_encoding_t)) == 0);
|
|
case CTF_K_POINTER:
|
|
return (ctf_type_compat (lfp, ctf_type_reference (lfp, ltype),
|
|
rfp, ctf_type_reference (rfp, rtype)));
|
|
case CTF_K_ARRAY:
|
|
return (ctf_array_info (lfp, ltype, &la) == 0
|
|
&& ctf_array_info (rfp, rtype, &ra) == 0
|
|
&& la.ctr_nelems == ra.ctr_nelems
|
|
&& ctf_type_compat (lfp, la.ctr_contents, rfp, ra.ctr_contents)
|
|
&& ctf_type_compat (lfp, la.ctr_index, rfp, ra.ctr_index));
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
return (same_names && (ctf_type_size (lfp, ltype)
|
|
== ctf_type_size (rfp, rtype)));
|
|
case CTF_K_ENUM:
|
|
{
|
|
int lencoded, rencoded;
|
|
lencoded = ctf_type_encoding (lfp, ltype, &le);
|
|
rencoded = ctf_type_encoding (rfp, rtype, &re);
|
|
|
|
if ((lencoded != rencoded) ||
|
|
((lencoded == 0) && memcmp (&le, &re, sizeof (ctf_encoding_t)) != 0))
|
|
return 0;
|
|
}
|
|
/* FALLTHRU */
|
|
case CTF_K_FORWARD:
|
|
return same_names; /* No other checks required for these type kinds. */
|
|
default:
|
|
return 0; /* Should not get here since we did a resolve. */
|
|
}
|
|
}
|
|
|
|
/* Return the number of members in a STRUCT or UNION, or the number of
|
|
enumerators in an ENUM. The count does not include unnamed sub-members. */
|
|
|
|
int
|
|
ctf_member_count (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
uint32_t kind;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION && kind != CTF_K_ENUM)
|
|
return (ctf_set_errno (ofp, ECTF_NOTSUE));
|
|
|
|
return LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
}
|
|
|
|
/* Return the type and offset for a given member of a STRUCT or UNION. */
|
|
|
|
int
|
|
ctf_member_info (ctf_dict_t *fp, ctf_id_t type, const char *name,
|
|
ctf_membinfo_t *mip)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
unsigned char *vlen;
|
|
ssize_t size, increment, vbytes;
|
|
uint32_t kind, n, i = 0;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
return (ctf_set_errno (ofp, ECTF_NOTSOU));
|
|
|
|
n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
|
|
{
|
|
vlen = dtd->dtd_vlen;
|
|
vbytes = dtd->dtd_vlen_alloc;
|
|
}
|
|
else
|
|
{
|
|
vlen = (unsigned char *) tp + increment;
|
|
vbytes = LCTF_VBYTES (fp, kind, size, n);
|
|
}
|
|
|
|
for (; n != 0; n--, i++)
|
|
{
|
|
ctf_lmember_t memb;
|
|
const char *membname;
|
|
|
|
if (ctf_struct_member (fp, &memb, tp, vlen, vbytes, i) < 0)
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
|
|
membname = ctf_strptr (fp, memb.ctlm_name);
|
|
|
|
if (membname[0] == 0
|
|
&& (ctf_type_kind (fp, memb.ctlm_type) == CTF_K_STRUCT
|
|
|| ctf_type_kind (fp, memb.ctlm_type) == CTF_K_UNION)
|
|
&& (ctf_member_info (fp, memb.ctlm_type, name, mip) == 0))
|
|
{
|
|
mip->ctm_offset += (unsigned long) CTF_LMEM_OFFSET (&memb);
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp (membname, name) == 0)
|
|
{
|
|
mip->ctm_type = memb.ctlm_type;
|
|
mip->ctm_offset = (unsigned long) CTF_LMEM_OFFSET (&memb);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return (ctf_set_errno (ofp, ECTF_NOMEMBNAM));
|
|
}
|
|
|
|
/* Return the array type, index, and size information for the specified ARRAY. */
|
|
|
|
int
|
|
ctf_array_info (ctf_dict_t *fp, ctf_id_t type, ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
const ctf_array_t *ap;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t increment;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ARRAY)
|
|
return (ctf_set_errno (ofp, ECTF_NOTARRAY));
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) != NULL)
|
|
ap = (const ctf_array_t *) dtd->dtd_vlen;
|
|
else
|
|
{
|
|
ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
ap = (const ctf_array_t *) ((uintptr_t) tp + increment);
|
|
}
|
|
arp->ctr_contents = ap->cta_contents;
|
|
arp->ctr_index = ap->cta_index;
|
|
arp->ctr_nelems = ap->cta_nelems;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Convert the specified value to the corresponding enum tag name, if a
|
|
matching name can be found. Otherwise NULL is returned. */
|
|
|
|
const char *
|
|
ctf_enum_name (ctf_dict_t *fp, ctf_id_t type, int value)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
const ctf_enum_t *ep;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t increment;
|
|
uint32_t n;
|
|
|
|
if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ENUM)
|
|
{
|
|
ctf_set_errno (ofp, ECTF_NOTENUM);
|
|
return NULL;
|
|
}
|
|
|
|
ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
ep = (const ctf_enum_t *) ((uintptr_t) tp + increment);
|
|
else
|
|
ep = (const ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, ep++)
|
|
{
|
|
if (ep->cte_value == value)
|
|
return (ctf_strptr (fp, ep->cte_name));
|
|
}
|
|
|
|
ctf_set_errno (ofp, ECTF_NOENUMNAM);
|
|
return NULL;
|
|
}
|
|
|
|
/* Convert the specified enum tag name to the corresponding value, if a
|
|
matching name can be found. Otherwise CTF_ERR is returned. */
|
|
|
|
int
|
|
ctf_enum_value (ctf_dict_t *fp, ctf_id_t type, const char *name, int *valp)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
const ctf_enum_t *ep;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t increment;
|
|
uint32_t n;
|
|
|
|
if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ENUM)
|
|
return ctf_set_errno (ofp, ECTF_NOTENUM);
|
|
|
|
ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
ep = (const ctf_enum_t *) ((uintptr_t) tp + increment);
|
|
else
|
|
ep = (const ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, ep++)
|
|
{
|
|
if (strcmp (ctf_strptr (fp, ep->cte_name), name) == 0)
|
|
{
|
|
if (valp != NULL)
|
|
*valp = ep->cte_value;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return ctf_set_errno (ofp, ECTF_NOENUMNAM);
|
|
}
|
|
|
|
/* Given a type ID relating to a function type, return info on return types and
|
|
arg counts for that function. */
|
|
|
|
int
|
|
ctf_func_type_info (ctf_dict_t *fp, ctf_id_t type, ctf_funcinfo_t *fip)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
uint32_t kind;
|
|
const uint32_t *args;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t size, increment;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (ofp, ECTF_NOTFUNC));
|
|
|
|
fip->ctc_return = tp->ctt_type;
|
|
fip->ctc_flags = 0;
|
|
fip->ctc_argc = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
|
|
args = (uint32_t *) ((uintptr_t) tp + increment);
|
|
else
|
|
args = (uint32_t *) dtd->dtd_vlen;
|
|
|
|
if (fip->ctc_argc != 0 && args[fip->ctc_argc - 1] == 0)
|
|
{
|
|
fip->ctc_flags |= CTF_FUNC_VARARG;
|
|
fip->ctc_argc--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Given a type ID relating to a function type, return the arguments for the
|
|
function. */
|
|
|
|
int
|
|
ctf_func_type_args (ctf_dict_t *fp, ctf_id_t type, uint32_t argc, ctf_id_t *argv)
|
|
{
|
|
const ctf_type_t *tp;
|
|
const uint32_t *args;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t size, increment;
|
|
ctf_funcinfo_t f;
|
|
|
|
if (ctf_func_type_info (fp, type, &f) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
|
|
args = (uint32_t *) ((uintptr_t) tp + increment);
|
|
else
|
|
args = (uint32_t *) dtd->dtd_vlen;
|
|
|
|
for (argc = MIN (argc, f.ctc_argc); argc != 0; argc--)
|
|
*argv++ = *args++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Recursively visit the members of any type. This function is used as the
|
|
engine for ctf_type_visit, below. We resolve the input type, recursively
|
|
invoke ourself for each type member if the type is a struct or union, and
|
|
then invoke the callback function on the current type. If any callback
|
|
returns non-zero, we abort and percolate the error code back up to the top. */
|
|
|
|
static int
|
|
ctf_type_rvisit (ctf_dict_t *fp, ctf_id_t type, ctf_visit_f *func,
|
|
void *arg, const char *name, unsigned long offset, int depth)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_id_t otype = type;
|
|
const ctf_type_t *tp = NULL;
|
|
const ctf_dtdef_t *dtd;
|
|
unsigned char *vlen;
|
|
ssize_t size, increment, vbytes;
|
|
uint32_t kind, n, i = 0;
|
|
int nonrepresentable = 0;
|
|
int rc;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR) {
|
|
if (ctf_errno (fp) != ECTF_NONREPRESENTABLE)
|
|
return -1; /* errno is set for us. */
|
|
else
|
|
nonrepresentable = 1;
|
|
}
|
|
|
|
if (!nonrepresentable)
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((rc = func (name, otype, offset, depth, arg)) != 0)
|
|
return rc;
|
|
|
|
if (!nonrepresentable)
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (nonrepresentable || (kind != CTF_K_STRUCT && kind != CTF_K_UNION))
|
|
return 0;
|
|
|
|
ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
|
|
n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
|
|
{
|
|
vlen = dtd->dtd_vlen;
|
|
vbytes = dtd->dtd_vlen_alloc;
|
|
}
|
|
else
|
|
{
|
|
vlen = (unsigned char *) tp + increment;
|
|
vbytes = LCTF_VBYTES (fp, kind, size, n);
|
|
}
|
|
|
|
for (; n != 0; n--, i++)
|
|
{
|
|
ctf_lmember_t memb;
|
|
|
|
if (ctf_struct_member (fp, &memb, tp, vlen, vbytes, i) < 0)
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
|
|
if ((rc = ctf_type_rvisit (fp, memb.ctlm_type,
|
|
func, arg, ctf_strptr (fp, memb.ctlm_name),
|
|
offset + (unsigned long) CTF_LMEM_OFFSET (&memb),
|
|
depth + 1)) != 0)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Recursively visit the members of any type. We pass the name, member
|
|
type, and offset of each member to the specified callback function. */
|
|
int
|
|
ctf_type_visit (ctf_dict_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg)
|
|
{
|
|
return (ctf_type_rvisit (fp, type, func, arg, "", 0, 0));
|
|
}
|