mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
0ab77f5fa2
Convert files gdb.base/s*.exp to use standard_output_file et al. * gdb.base/save-bp.exp, gdb.base/savedregs.exp, gdb.base/scope.exp, gdb.base/sep.exp, gdb.base/sepsymtab.exp, gdb.base/set-lang-auto.exp, gdb.base/setshow.exp, gdb.base/setvar.exp, gdb.base/shlib-call.exp, gdb.base/shreloc.exp, gdb.base/sigall.exp, gdb.base/sigaltstack.exp, gdb.base/sigbpt.exp, gdb.base/sigchld.exp, gdb.base/siginfo-addr.exp, gdb.base/siginfo-infcall.exp, gdb.base/siginfo-obj.exp, gdb.base/siginfo.exp, gdb.base/signals.exp, gdb.base/signest.exp, gdb.base/signull.exp, gdb.base/sigrepeat.exp, gdb.base/sigstep.exp, gdb.base/sizeof.exp, gdb.base/skip-solib.exp, gdb.base/so-impl-ld.exp, gdb.base/solib-display.exp, gdb.base/solib-nodir.exp, gdb.base/solib-overlap.exp, gdb.base/solib-symbol.exp, gdb.base/solib-weak.exp, gdb.base/source.exp, gdb.base/stack-checking.exp, gdb.base/stale-infcall.exp, gdb.base/stap-probe.exp, gdb.base/start.exp, gdb.base/step-break.exp, gdb.base/step-bt.exp, gdb.base/step-line.exp, gdb.base/step-resume-infcall.exp, gdb.base/step-test.exp, gdb.base/structs.exp, gdb.base/structs2.exp, gdb.base/structs3.exp, gdb.base/symbol-without-target_section.exp: Use standard_testfile, standard_output_file, prepare_for_testing, clean_restart.
270 lines
9.3 KiB
Plaintext
270 lines
9.3 KiB
Plaintext
# This testcase is part of GDB, the GNU debugger.
|
|
|
|
# Copyright 2004-2013 Free Software Foundation, Inc.
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
# Check that GDB can and only executes single instructions when
|
|
# stepping through a sequence of breakpoints interleaved by a signal
|
|
# handler.
|
|
|
|
# This test is known to tickle the following problems: kernel letting
|
|
# the inferior execute both the system call, and the instruction
|
|
# following, when single-stepping a system call; kernel failing to
|
|
# propogate the single-step state when single-stepping the sigreturn
|
|
# system call, instead resuming the inferior at full speed; GDB
|
|
# doesn't know how to software single-step across a sigreturn
|
|
# instruction. Since the kernel problems can be "fixed" using
|
|
# software single-step this is KFAILed rather than XFAILed.
|
|
|
|
if [target_info exists gdb,nosignals] {
|
|
verbose "Skipping sigbpt.exp because of nosignals."
|
|
continue
|
|
}
|
|
|
|
|
|
standard_testfile
|
|
|
|
if {[prepare_for_testing $testfile.exp $testfile $srcfile debug]} {
|
|
untested $testfile.exp
|
|
return -1
|
|
}
|
|
|
|
#
|
|
# Run to `main' where we begin our tests.
|
|
#
|
|
|
|
if ![runto_main] then {
|
|
gdb_suppress_tests
|
|
}
|
|
|
|
# If we can examine what's at memory address 0, it is possible that we
|
|
# could also execute it. This could probably make us run away,
|
|
# executing random code, which could have all sorts of ill effects,
|
|
# especially on targets without an MMU. Don't run the tests in that
|
|
# case.
|
|
|
|
gdb_test_multiple "x 0" "memory at address 0" {
|
|
-re "0x0:.*Cannot access memory at address 0x0.*$gdb_prompt $" { }
|
|
-re "0x0:.*Error accessing memory address 0x0.*$gdb_prompt $" { }
|
|
-re ".*$gdb_prompt $" {
|
|
untested "Memory at address 0 is possibly executable"
|
|
return
|
|
}
|
|
}
|
|
|
|
gdb_test "break keeper"
|
|
|
|
# Run to bowler, and then single step until there's a SIGSEGV. Record
|
|
# the address of each single-step instruction (up to and including the
|
|
# instruction that causes the SIGSEGV) in bowler_addrs, and the address
|
|
# of the actual SIGSEGV in segv_addr.
|
|
# Note: this test detects which signal is received. Usually it is SIGSEGV
|
|
# (and we use SIGSEGV in comments) but on Darwin it is SIGBUS.
|
|
|
|
set bowler_addrs bowler
|
|
set segv_addr none
|
|
gdb_test {display/i $pc}
|
|
gdb_test "advance *bowler" "bowler.*" "advance to the bowler"
|
|
set test "stepping to fault"
|
|
set signame "SIGSEGV"
|
|
gdb_test_multiple "stepi" "$test" {
|
|
-re "Program received signal (SIGBUS|SIGSEGV).*pc(\r\n| *) *=> (0x\[0-9a-f\]*).*$gdb_prompt $" {
|
|
set signame $expect_out(1,string)
|
|
set segv_addr $expect_out(3,string)
|
|
pass "$test"
|
|
}
|
|
-re " .*pc(\r\n| *)=> (0x\[0-9a-f\]*).*bowler.*$gdb_prompt $" {
|
|
set bowler_addrs [concat $expect_out(2,string) $bowler_addrs]
|
|
send_gdb "stepi\n"
|
|
exp_continue
|
|
}
|
|
}
|
|
|
|
# Now record the address of the instruction following the faulting
|
|
# instruction in bowler_addrs.
|
|
|
|
set test "get insn after fault"
|
|
gdb_test_multiple {x/2i $pc} "$test" {
|
|
-re "=> (0x\[0-9a-f\]*).*bowler.*(0x\[0-9a-f\]*).*bowler.*$gdb_prompt $" {
|
|
set bowler_addrs [concat $expect_out(2,string) $bowler_addrs]
|
|
pass "$test"
|
|
}
|
|
}
|
|
|
|
# Procedures for returning the address of the instruction before, at
|
|
# and after, the faulting instruction.
|
|
|
|
proc before_segv { } {
|
|
global bowler_addrs
|
|
return [lindex $bowler_addrs 2]
|
|
}
|
|
|
|
proc at_segv { } {
|
|
global bowler_addrs
|
|
return [lindex $bowler_addrs 1]
|
|
}
|
|
|
|
proc after_segv { } {
|
|
global bowler_addrs
|
|
return [lindex $bowler_addrs 0]
|
|
}
|
|
|
|
# Check that the address table and SIGSEGV correspond.
|
|
|
|
set test "Verify that ${signame} occurs at the last STEPI insn"
|
|
if {[string compare $segv_addr [at_segv]] == 0} {
|
|
pass "$test"
|
|
} else {
|
|
fail "$test ($segv_addr [at_segv])"
|
|
}
|
|
|
|
# Check that the inferior is correctly single stepped all the way back
|
|
# to a faulting instruction.
|
|
|
|
proc stepi_out { name args } {
|
|
global gdb_prompt
|
|
global signame
|
|
|
|
# Set SIGSEGV to pass+nostop and then run the inferior all the way
|
|
# through to the signal handler. With the handler is reached,
|
|
# disable SIGSEGV, ensuring that further signals stop the
|
|
# inferior. Stops a SIGSEGV infinite loop when a broke system
|
|
# keeps re-executing the faulting instruction.
|
|
rerun_to_main
|
|
gdb_test "handle ${signame} nostop print pass" ".*" "${name}; pass ${signame}"
|
|
gdb_test "continue" "keeper.*" "${name}; continue to keeper"
|
|
gdb_test "handle ${signame} stop print nopass" ".*" "${name}; nopass ${signame}"
|
|
|
|
# Insert all the breakpoints. To avoid the need to step over
|
|
# these instructions, this is delayed until after the keeper has
|
|
# been reached.
|
|
for {set i 0} {$i < [llength $args]} {incr i} {
|
|
gdb_test "break [lindex $args $i]" "Breakpoint.*" \
|
|
"${name}; set breakpoint $i of [llength $args]"
|
|
}
|
|
|
|
# Single step our way out of the keeper, through the signal
|
|
# trampoline, and back to the instruction that faulted.
|
|
set test "${name}; stepi out of handler"
|
|
gdb_test_multiple "stepi" "$test" {
|
|
-re "Could not insert single-step breakpoint.*$gdb_prompt $" {
|
|
setup_kfail gdb/1736 "sparc*-*-openbsd*"
|
|
fail "$test (could not insert single-step breakpoint)"
|
|
}
|
|
-re "keeper.*$gdb_prompt $" {
|
|
send_gdb "stepi\n"
|
|
exp_continue
|
|
}
|
|
-re "signal handler.*$gdb_prompt $" {
|
|
send_gdb "stepi\n"
|
|
exp_continue
|
|
}
|
|
-re "Program received signal SIGSEGV.*$gdb_prompt $" {
|
|
kfail gdb/1702 "$test (executed fault insn)"
|
|
}
|
|
-re "Breakpoint.*pc(\r\n| *)[at_segv] .*bowler.*$gdb_prompt $" {
|
|
pass "$test (at breakpoint)"
|
|
}
|
|
-re "Breakpoint.*pc(\r\n| *)[after_segv] .*bowler.*$gdb_prompt $" {
|
|
kfail gdb/1702 "$test (executed breakpoint)"
|
|
}
|
|
-re "pc(\r\n| *)[at_segv] .*bowler.*$gdb_prompt $" {
|
|
pass "$test"
|
|
}
|
|
-re "pc(\r\n| *)[after_segv] .*bowler.*$gdb_prompt $" {
|
|
kfail gdb/1702 "$test (skipped fault insn)"
|
|
}
|
|
-re "pc(\r\n| *)=> 0x\[a-z0-9\]* .*bowler.*$gdb_prompt $" {
|
|
kfail gdb/1702 "$test (corrupt pc)"
|
|
}
|
|
}
|
|
|
|
# Clear any breakpoints
|
|
for {set i 0} {$i < [llength $args]} {incr i} {
|
|
gdb_test "clear [lindex $args $i]" "Deleted .*" \
|
|
"${name}; clear breakpoint $i of [llength $args]"
|
|
}
|
|
}
|
|
|
|
# Let a signal handler exit, returning to a breakpoint instruction
|
|
# inserted at the original fault instruction. Check that the
|
|
# breakpoint is hit, and that single stepping off that breakpoint
|
|
# executes the underlying fault instruction causing a SIGSEGV.
|
|
|
|
proc cont_out { name args } {
|
|
global gdb_prompt
|
|
global signame
|
|
|
|
# Set SIGSEGV to pass+nostop and then run the inferior all the way
|
|
# through to the signal handler. With the handler is reached,
|
|
# disable SIGSEGV, ensuring that further signals stop the
|
|
# inferior. Stops a SIGSEGV infinite loop when a broke system
|
|
# keeps re-executing the faulting instruction.
|
|
rerun_to_main
|
|
gdb_test "handle ${signame} nostop print pass" ".*" "${name}; pass ${signame}"
|
|
gdb_test "continue" "keeper.*" "${name}; continue to keeper"
|
|
gdb_test "handle ${signame} stop print nopass" ".*" "${name}; nopass ${signame}"
|
|
|
|
# Insert all the breakpoints. To avoid the need to step over
|
|
# these instructions, this is delayed until after the keeper has
|
|
# been reached. Always set a breakpoint at the signal trampoline
|
|
# instruction.
|
|
set args [concat $args "*[at_segv]"]
|
|
for {set i 0} {$i < [llength $args]} {incr i} {
|
|
gdb_test "break [lindex $args $i]" "Breakpoint.*" \
|
|
"${name}; set breakpoint $i of [llength $args]"
|
|
}
|
|
|
|
# Let the handler return, it should "appear to hit" the breakpoint
|
|
# inserted at the faulting instruction. Note that the breakpoint
|
|
# instruction wasn't executed, rather the inferior was SIGTRAPed
|
|
# with the PC at the breakpoint.
|
|
gdb_test "continue" "Breakpoint.*pc(\r\n| *)=> [at_segv] .*" \
|
|
"${name}; continue to breakpoint at fault"
|
|
|
|
# Now single step the faulted instrction at that breakpoint.
|
|
gdb_test "stepi" \
|
|
"Program received signal ${signame}.*pc(\r\n| *)=> [at_segv] .*" \
|
|
"${name}; stepi fault"
|
|
|
|
# Clear any breakpoints
|
|
for {set i 0} {$i < [llength $args]} {incr i} {
|
|
gdb_test "clear [lindex $args $i]" "Deleted .*" \
|
|
"${name}; clear breakpoint $i of [llength $args]"
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
# Try to confuse DECR_PC_AFTER_BREAK architectures by scattering
|
|
# breakpoints around the faulting address. In all cases the inferior
|
|
# should single-step out of the signal trampoline halting (but not
|
|
# executing) the fault instruction.
|
|
|
|
stepi_out "stepi"
|
|
stepi_out "stepi bp before segv" "*[before_segv]"
|
|
stepi_out "stepi bp at segv" "*[at_segv]"
|
|
stepi_out "stepi bp before and at segv" "*[at_segv]" "*[before_segv]"
|
|
|
|
|
|
# Try to confuse DECR_PC_AFTER_BREAK architectures by scattering
|
|
# breakpoints around the faulting address. In all cases the inferior
|
|
# should exit the signal trampoline halting at the breakpoint that
|
|
# replaced the fault instruction.
|
|
cont_out "cont"
|
|
cont_out "cont bp after segv" "*[before_segv]"
|
|
cont_out "cont bp before and after segv" "*[before_segv]" "*[after_segv]"
|