mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
63978407cb
sim: * Makefile.in (interp.o): Depends on ppi.c . (ppi.c): New rule. * gencode.c (printonmatch, think, genopc): Deleted. (MAX_NR_STUFF): Now 42. (tab): Add SH-DSP CPU instructions. Amalgamate ldc / stc / lds / sts instructions with similar bit patterns. Fix opcodes of stc Rm_BANK,@-<REG_N>. Fix semantics of lds.l @<REG_N>+,MACH (no sign extend). (movsxy_tab): New array. For movs, change MMMM field to GGGG, and mmmm field to MMMM. Added entries for movx, movy and parallel processing insns. (ppi_tab): New array. (qfunc): Stabilize sort. (expand_opcode): Handle [01][01]NN, [01][01]xx and [01][01]yy. Handle 'M', 'G' 's' 'X', 'a', 'Y' and 'A'. (dumptable): Now takes three arguments. Changed all callers. Emit just one contigous jump table. (filltable): Now takes an argument. Changed all callers. Make index static. (ppi_moves, expand_ppi_code, ppi_filltable, ppi_gensim): New functions. (gensim_caselist): New function, broken out of gensim. Handle opcode fields 'x', 'y', 's', 'M', 'G', 'X', 'a', and 'Y'. Handle ref '9'. (gensim): Handle 'N' in code field and '8' in refs field. Call gensim_caselist - twice. (ppi_index): New static variable. (main): Unsupport default action. Add dsp support for -x / -s option. Add -p option. * interp.c (sh_jump_table, sh_dsp_table, ppi_table): Declare. (saved_state_type): Rearrange to allow amalgamated ldc / stc / lds / sts to work efficiently. (target_dsp): New static variable. (GBR, VBR, SSR, SPC, MACH, MACL): Reflect saved_state_type change. (FPUL, Rn_BANK, SET_Rn_BANK, M, Q, S, T, SR_BL, SR_RB): Likewise. (SR_MD, SR_RC, SET_SR_BIT, GET_SR, SET_RC, GET_FPSCR): Likewise. (RS, RE, MOD, MOD_ME, DSP_R): Likewise. (set_fpscr1): Likewise. Use target_dsp to check for dsp. (MOD_MSi, SIG_BUS_FETCH): Deleted. (CREG, SREG, PR, SR_MASK_DMY, SR_MASK_DMX, SR_DMY): New macros. (SR_DMX, DSR, MOD_DELTA, GET_DSP_GRD): Likewise. (SET_MOD): Reflect saved_state_type change. Set MOD_DELTA instead of MOD_MS, and encode SR_DMY / SR_DMX into high word of MOD_ME. (set_sr): Reflect saved_state_type change. Fix SR_RB handling. Use SET_MOD. (MA, L, TL, TB): Now controlled by ACE_FAST. (SEXT32): Just cast to int. (SIGN32): Fixed to only shift by 31. (CHECK_INSN_PTR): SIGBUS at insn fetch now represented by insn_end 0. (ppi_insn): Declare. (ppi.c): Include. (init_dsp): Set target_dsp. When it changes, switch end of sh_jump_table with sh_dsp_table. (sim_resume) Don't declare sh_jump_table0. Use sh_jump_table instead. Don't Declare PR if it's #defined. Fix single-stepping (Was broken in Mar 6 16:59:10 patch). (sim_store_register, sim_read_register): Translate accesses to reflect saved_state_type change. * interp.c (set_sr): Set sr. (SET_RC, MOD, MOD_MS, MOD_ME, SET_MOD, MOD_MS, MOD_ME): New macros. (set_fpscr1): Don't bank-switch fpu registers when simulating sh-dsp. (DSP_R): Fix definition. (sim_resume): Remove outdated SET_SR use. * interp.c (saved_state): New members for struct member asregs: rs, re, insn_end, xram_start, yram_start. (struct loop_bounds): New struct. (SKIP_INSN): New macro. (get_loop_bounds): New function. (endianw): Renamed to global_endianw. (maskw): negated bits. (PC): Now insn_ptr. (SR_MASK_RC, SR_RC_INCREMENT, SR_RC, RAISE_EXCEPTION): New macros. (RS, RE, DSP_R, DSP_GRD, A1, A0, X0, X1, Y0, Y1, M0, A1G): Likewise. (M1, A0G, RIAT, PT2H, PH2T, SET_NIP, CHECK_INSN_PTR): Likewise. (SIG_BUS_FETCH): Likewise (raise_exception, riat_fast): New functions. (raise_buserror, sim_stop): Use raise_exception. (PROCESS_SPECIAL_ADDRESS): Use xram_start / yram_start. (BUSERROR, WRITE_BUSERROR, READ_BUSERROR): Reverse sense of mask argument. (FP_OP, set_dr): Use RAISE_EXCEPTION. (wlat_fast, wwat_fast, wbat_fast, rlat_fast, rwat_fast, rbat_fast): Declare. Remove redundant masking. (wwat_fast, rwat_fast): Add argument endianw. Changed callers. (MA): Updated for change pc -> PC. (Delay_Slot): Use RIAT. (empty): Deleted. (trap): Remove argument little_endian. Add argument endianw. Changed all callers. Use raise_exception. (macw): Add argument endainw. Changed all callers. (init_dsp): New function, extended after broken out of init_pointers. (sim_resume): Replace pc with insn_ptr. Replace little_endian with endianw. Replace nia with nip. Reverse sense of maskb / maskw / maskl. Implement logic for zero-overhead loops. Don't try to interpret garbage when getting a SIGBUS at insn fetch. (sim_open): Call init_dsp. * gencode.c (tab): Use SET_NIP instead of nia = . Use PH2T / PT2H / RAISE_EXCEPTION where appropriate. Add extra cycles for brai, braf , bsr, bsrf, jmp, jsr. * interp.c (sim_store_register, sim_fetch_register): Do proper endianness switch. * interp.c (saved_state_type): New members for struct member asregs: xymem_select, xmem, ymem, xmem_offset, ymem_offset. (special_address): Delete. (BUSERROR): Now a two-argument predicate. (PROCESS_SPECIAL_ADDRESS, WRITE_BUSERROR, READ_BUSERROR): New macros. (wlat_little, wwat_little, wbat_any, wlat_big, wwat_big): Delete. (process_wlat_addr, process_wwat_addr): New functions. (process_wbat_addr, process_rlat_addr, process_rwat_addr): Likewise. (process_rbat_addr): Likewise. (wlat_fast, wwat_fast, wbat_fast): Use WRITE_BUSERROR. (rlat_little, rwat_little, rbat_any, rlat_big, rwat_big): Delete. (rlat_fast, rwat_fast, rbat_fast): Use READ_BUSERROR. (RWAT, RLAT, RBAT, WWAT, WLAT, WBAT): Delete SLOW versions. (do_rdat, trap): Delete SLOW code. (SEXT32, SIGN32): New macros. (swap, swap16): Now integer in - integer out. Changed all callers. (strswaplen, strnswap): Delete SLOW versions. (init_pointers): Initialize dsp memory selection (preliminary). (sim_store_register, sim_fetch_register): Use swap instead of big / little endian read / write functions. * interp.c (maskl): Deleted. (endianw, endianb): New variables. (special_address): Now inline. (bp_holder): Put raising of buserror there, rename to: (raise_buserror). (BUSERROR): Now yields a value. Changed all users. (wbat_big): Delete. (wlat_fast, wwat_fast, wbat_fast): New functions. (rlat_fast, rwat_fast, rbat_fast): Likewise. (RWAT, RLAT, RBAT, WWAT, WLAT, WBAT): Use new functions. (do_rdat, do_wdat): Likewise. Take maskl argument instead of little_endian one. Changed caller macros. (swap, swap16): Use w[rw]lat_big / w[rw]lat_little directly. (strswaplen, strnswap): New functions. (trap): Use them to fix up endian mismatches; disable SYS_execve and SYS_execv; fix double address translation for SYS_pipe and SYS_stat. (sym_write, sym_read): Add endianness translation. (sym_store_register, sym_fetch_register): Add maskl local variable. (sim_open): Set endianw and endianb. gdb: * sh-tdep.c (sh_dsp_reg_names, sh3_dsp_reg_names): New arrays. (sh_processor_type_table): Add entries for bfd_mach_sh_dsp and bfd_mach_sh3_dsp. (sh_show_regs): Floating point registers are called fr0-fr15. For sh4, display fpul, fpscr and fr0-fr15 / dr0-dr14 as appropriate. Handle sh-dsp and sh3-dsp. config/sh/tm-sh.h (REGISTER_VIRTUAL_TYPE): sh-dsp / sh3-dsp don't have floating point registers. (DSR_REGNUM, A0G_REGNUM, A0_REGNUM, A1G_REGNUM, A1_REGNUM): Define. (M0_REGNUM, M1_REGNUM, X0_REGNUM, X1_REGNUM, Y0_REGNUM): Likewise. (Y1_REGNUM, MOD_REGNUM, RS_REGNUM, RE_REGNUM, R0B_REGNUM): Likewise.
796 lines
23 KiB
C
796 lines
23 KiB
C
/* Target-dependent code for Hitachi Super-H, for GDB.
|
|
Copyright 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "value.h"
|
|
#include "dis-asm.h"
|
|
#include "inferior.h" /* for BEFORE_TEXT_END etc. */
|
|
#include "gdb_string.h"
|
|
|
|
/* A set of original names, to be used when restoring back to generic
|
|
registers from a specific set. */
|
|
/* *INDENT-OFF* */
|
|
static char *sh_generic_reg_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"fpul", "fpscr",
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
};
|
|
|
|
static char *sh_reg_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
|
|
static char *sh3_reg_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
|
|
};
|
|
|
|
static char *sh3e_reg_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"fpul", "fpscr",
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
};
|
|
|
|
static char *sh_dsp_reg_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "dsr",
|
|
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
|
"y0", "y1", "", "", "", "", "", "mod",
|
|
"", "",
|
|
"rs", "re", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
|
|
static char *sh3_dsp_reg_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "dsr",
|
|
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
|
"y0", "y1", "", "", "", "", "", "mod",
|
|
"ssr", "spc",
|
|
"rs", "re", "", "", "", "", "", "",
|
|
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
|
|
};
|
|
/* *INDENT-ON* */
|
|
|
|
#ifdef _WIN32_WCE
|
|
char **sh_register_names = sh3_reg_names;
|
|
#else
|
|
char **sh_register_names = sh_generic_reg_names;
|
|
#endif
|
|
|
|
struct
|
|
{
|
|
char **regnames;
|
|
int mach;
|
|
}
|
|
sh_processor_type_table[] =
|
|
{
|
|
{
|
|
sh_reg_names, bfd_mach_sh
|
|
}
|
|
,
|
|
{
|
|
sh_reg_names, bfd_mach_sh2
|
|
}
|
|
,
|
|
{
|
|
sh_dsp_reg_names, bfd_mach_sh_dsp
|
|
}
|
|
,
|
|
{
|
|
sh3_reg_names, bfd_mach_sh3
|
|
}
|
|
,
|
|
{
|
|
sh3_dsp_reg_names, bfd_mach_sh3_dsp
|
|
}
|
|
,
|
|
{
|
|
sh3e_reg_names, bfd_mach_sh3e
|
|
}
|
|
,
|
|
{
|
|
NULL, 0
|
|
}
|
|
};
|
|
|
|
/* Prologue looks like
|
|
[mov.l <regs>,@-r15]...
|
|
[sts.l pr,@-r15]
|
|
[mov.l r14,@-r15]
|
|
[mov r15,r14]
|
|
*/
|
|
|
|
#define IS_STS(x) ((x) == 0x4f22)
|
|
#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
|
|
#define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
|
|
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
|
|
#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
|
|
#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
|
|
#define IS_SHLL_R3(x) ((x) == 0x4300)
|
|
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
|
|
#define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
|
|
#define FPSCR_SZ (1 << 20)
|
|
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
int
|
|
sh_use_struct_convention (gcc_p, type)
|
|
int gcc_p;
|
|
struct type *type;
|
|
{
|
|
return (TYPE_LENGTH (type) > 1);
|
|
}
|
|
|
|
|
|
/* Skip any prologue before the guts of a function */
|
|
|
|
CORE_ADDR
|
|
sh_skip_prologue (start_pc)
|
|
CORE_ADDR start_pc;
|
|
{
|
|
int w;
|
|
|
|
w = read_memory_integer (start_pc, 2);
|
|
while (IS_STS (w)
|
|
|| IS_FMOV (w)
|
|
|| IS_PUSH (w)
|
|
|| IS_MOV_SP_FP (w)
|
|
|| IS_MOV_R3 (w)
|
|
|| IS_ADD_R3SP (w)
|
|
|| IS_ADD_SP (w)
|
|
|| IS_SHLL_R3 (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_integer (start_pc, 2);
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
/* Disassemble an instruction. */
|
|
|
|
int
|
|
gdb_print_insn_sh (memaddr, info)
|
|
bfd_vma memaddr;
|
|
disassemble_info *info;
|
|
{
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
return print_insn_sh (memaddr, info);
|
|
else
|
|
return print_insn_shl (memaddr, info);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
|
|
For us, the frame address is its stack pointer value, so we look up
|
|
the function prologue to determine the caller's sp value, and return it. */
|
|
|
|
CORE_ADDR
|
|
sh_frame_chain (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
return frame->frame; /* dummy frame same as caller's frame */
|
|
if (!inside_entry_file (frame->pc))
|
|
return read_memory_integer (FRAME_FP (frame) + frame->f_offset, 4);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
|
|
we might want to do here is to check REGNUM against the clobber mask, and
|
|
somehow flag it as invalid if it isn't saved on the stack somewhere. This
|
|
would provide a graceful failure mode when trying to get the value of
|
|
caller-saves registers for an inner frame. */
|
|
|
|
CORE_ADDR
|
|
sh_find_callers_reg (fi, regnum)
|
|
struct frame_info *fi;
|
|
int regnum;
|
|
{
|
|
struct frame_saved_regs fsr;
|
|
|
|
for (; fi; fi = fi->next)
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
|
/* When the caller requests PR from the dummy frame, we return PC because
|
|
that's where the previous routine appears to have done a call from. */
|
|
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
|
else
|
|
{
|
|
FRAME_FIND_SAVED_REGS (fi, fsr);
|
|
if (fsr.regs[regnum] != 0)
|
|
return read_memory_integer (fsr.regs[regnum],
|
|
REGISTER_RAW_SIZE (regnum));
|
|
}
|
|
return read_register (regnum);
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs, the
|
|
addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special: the address we
|
|
return for it IS the sp for the next frame. */
|
|
|
|
void
|
|
sh_frame_find_saved_regs (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
int where[NUM_REGS];
|
|
int rn;
|
|
int have_fp = 0;
|
|
int depth;
|
|
int pc;
|
|
int opc;
|
|
int insn;
|
|
int r3_val = 0;
|
|
char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
|
|
|
|
if (dummy_regs)
|
|
{
|
|
/* DANGER! This is ONLY going to work if the char buffer format of
|
|
the saved registers is byte-for-byte identical to the
|
|
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
|
memcpy (&fsr->regs, dummy_regs, sizeof (fsr));
|
|
return;
|
|
}
|
|
|
|
opc = pc = get_pc_function_start (fi->pc);
|
|
|
|
insn = read_memory_integer (pc, 2);
|
|
|
|
fi->leaf_function = 1;
|
|
fi->f_offset = 0;
|
|
|
|
for (rn = 0; rn < NUM_REGS; rn++)
|
|
where[rn] = -1;
|
|
|
|
depth = 0;
|
|
|
|
/* Loop around examining the prologue insns until we find something
|
|
that does not appear to be part of the prologue. But give up
|
|
after 20 of them, since we're getting silly then. */
|
|
|
|
while (pc < opc + 20 * 2)
|
|
{
|
|
/* See where the registers will be saved to */
|
|
if (IS_PUSH (insn))
|
|
{
|
|
pc += 2;
|
|
rn = GET_PUSHED_REG (insn);
|
|
where[rn] = depth;
|
|
insn = read_memory_integer (pc, 2);
|
|
depth += 4;
|
|
}
|
|
else if (IS_STS (insn))
|
|
{
|
|
pc += 2;
|
|
where[PR_REGNUM] = depth;
|
|
insn = read_memory_integer (pc, 2);
|
|
/* If we're storing the pr then this isn't a leaf */
|
|
fi->leaf_function = 0;
|
|
depth += 4;
|
|
}
|
|
else if (IS_MOV_R3 (insn))
|
|
{
|
|
r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
|
pc += 2;
|
|
insn = read_memory_integer (pc, 2);
|
|
}
|
|
else if (IS_SHLL_R3 (insn))
|
|
{
|
|
r3_val <<= 1;
|
|
pc += 2;
|
|
insn = read_memory_integer (pc, 2);
|
|
}
|
|
else if (IS_ADD_R3SP (insn))
|
|
{
|
|
depth += -r3_val;
|
|
pc += 2;
|
|
insn = read_memory_integer (pc, 2);
|
|
}
|
|
else if (IS_ADD_SP (insn))
|
|
{
|
|
pc += 2;
|
|
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
|
insn = read_memory_integer (pc, 2);
|
|
}
|
|
else if (IS_FMOV (insn))
|
|
{
|
|
pc += 2;
|
|
insn = read_memory_integer (pc, 2);
|
|
if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
|
|
{
|
|
depth += 8;
|
|
}
|
|
else
|
|
{
|
|
depth += 4;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* Now we know how deep things are, we can work out their addresses */
|
|
|
|
for (rn = 0; rn < NUM_REGS; rn++)
|
|
{
|
|
if (where[rn] >= 0)
|
|
{
|
|
if (rn == FP_REGNUM)
|
|
have_fp = 1;
|
|
|
|
fsr->regs[rn] = fi->frame - where[rn] + depth - 4;
|
|
}
|
|
else
|
|
{
|
|
fsr->regs[rn] = 0;
|
|
}
|
|
}
|
|
|
|
if (have_fp)
|
|
{
|
|
fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[FP_REGNUM], 4);
|
|
}
|
|
else
|
|
{
|
|
fsr->regs[SP_REGNUM] = fi->frame - 4;
|
|
}
|
|
|
|
fi->f_offset = depth - where[FP_REGNUM] - 4;
|
|
/* Work out the return pc - either from the saved pr or the pr
|
|
value */
|
|
}
|
|
|
|
/* initialize the extra info saved in a FRAME */
|
|
|
|
void
|
|
sh_init_extra_frame_info (fromleaf, fi)
|
|
int fromleaf;
|
|
struct frame_info *fi;
|
|
{
|
|
struct frame_saved_regs fsr;
|
|
|
|
if (fi->next)
|
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
|
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
|
{
|
|
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
|
by assuming it's always FP. */
|
|
fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
|
|
SP_REGNUM);
|
|
fi->return_pc = generic_read_register_dummy (fi->pc, fi->frame,
|
|
PC_REGNUM);
|
|
fi->f_offset = -(CALL_DUMMY_LENGTH + 4);
|
|
fi->leaf_function = 0;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
FRAME_FIND_SAVED_REGS (fi, fsr);
|
|
fi->return_pc = sh_find_callers_reg (fi, PR_REGNUM);
|
|
}
|
|
}
|
|
|
|
/* Discard from the stack the innermost frame,
|
|
restoring all saved registers. */
|
|
|
|
void
|
|
sh_pop_frame ()
|
|
{
|
|
register struct frame_info *frame = get_current_frame ();
|
|
register CORE_ADDR fp;
|
|
register int regnum;
|
|
struct frame_saved_regs fsr;
|
|
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
generic_pop_dummy_frame ();
|
|
else
|
|
{
|
|
fp = FRAME_FP (frame);
|
|
get_frame_saved_regs (frame, &fsr);
|
|
|
|
/* Copy regs from where they were saved in the frame */
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
if (fsr.regs[regnum])
|
|
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
|
|
|
|
write_register (PC_REGNUM, frame->return_pc);
|
|
write_register (SP_REGNUM, fp + 4);
|
|
}
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
/* Function: push_arguments
|
|
Setup the function arguments for calling a function in the inferior.
|
|
|
|
On the Hitachi SH architecture, there are four registers (R4 to R7)
|
|
which are dedicated for passing function arguments. Up to the first
|
|
four arguments (depending on size) may go into these registers.
|
|
The rest go on the stack.
|
|
|
|
Arguments that are smaller than 4 bytes will still take up a whole
|
|
register or a whole 32-bit word on the stack, and will be
|
|
right-justified in the register or the stack word. This includes
|
|
chars, shorts, and small aggregate types.
|
|
|
|
Arguments that are larger than 4 bytes may be split between two or
|
|
more registers. If there are not enough registers free, an argument
|
|
may be passed partly in a register (or registers), and partly on the
|
|
stack. This includes doubles, long longs, and larger aggregates.
|
|
As far as I know, there is no upper limit to the size of aggregates
|
|
that will be passed in this way; in other words, the convention of
|
|
passing a pointer to a large aggregate instead of a copy is not used.
|
|
|
|
An exceptional case exists for struct arguments (and possibly other
|
|
aggregates such as arrays) if the size is larger than 4 bytes but
|
|
not a multiple of 4 bytes. In this case the argument is never split
|
|
between the registers and the stack, but instead is copied in its
|
|
entirety onto the stack, AND also copied into as many registers as
|
|
there is room for. In other words, space in registers permitting,
|
|
two copies of the same argument are passed in. As far as I can tell,
|
|
only the one on the stack is used, although that may be a function
|
|
of the level of compiler optimization. I suspect this is a compiler
|
|
bug. Arguments of these odd sizes are left-justified within the
|
|
word (as opposed to arguments smaller than 4 bytes, which are
|
|
right-justified).
|
|
|
|
|
|
If the function is to return an aggregate type such as a struct, it
|
|
is either returned in the normal return value register R0 (if its
|
|
size is no greater than one byte), or else the caller must allocate
|
|
space into which the callee will copy the return value (if the size
|
|
is greater than one byte). In this case, a pointer to the return
|
|
value location is passed into the callee in register R2, which does
|
|
not displace any of the other arguments passed in via registers R4
|
|
to R7. */
|
|
|
|
CORE_ADDR
|
|
sh_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
|
int nargs;
|
|
value_ptr *args;
|
|
CORE_ADDR sp;
|
|
unsigned char struct_return;
|
|
CORE_ADDR struct_addr;
|
|
{
|
|
int stack_offset, stack_alloc;
|
|
int argreg;
|
|
int argnum;
|
|
struct type *type;
|
|
CORE_ADDR regval;
|
|
char *val;
|
|
char valbuf[4];
|
|
int len;
|
|
int odd_sized_struct;
|
|
|
|
/* first force sp to a 4-byte alignment */
|
|
sp = sp & ~3;
|
|
|
|
/* The "struct return pointer" pseudo-argument has its own dedicated
|
|
register */
|
|
if (struct_return)
|
|
write_register (STRUCT_RETURN_REGNUM, struct_addr);
|
|
|
|
/* Now make sure there's space on the stack */
|
|
for (argnum = 0, stack_alloc = 0;
|
|
argnum < nargs; argnum++)
|
|
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
|
|
sp -= stack_alloc; /* make room on stack for args */
|
|
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. There are 16 bytes
|
|
in four registers available. Loop thru args from first to last. */
|
|
|
|
argreg = ARG0_REGNUM;
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
|
{
|
|
type = VALUE_TYPE (args[argnum]);
|
|
len = TYPE_LENGTH (type);
|
|
memset (valbuf, 0, sizeof (valbuf));
|
|
if (len < 4)
|
|
{ /* value gets right-justified in the register or stack word */
|
|
memcpy (valbuf + (4 - len),
|
|
(char *) VALUE_CONTENTS (args[argnum]), len);
|
|
val = valbuf;
|
|
}
|
|
else
|
|
val = (char *) VALUE_CONTENTS (args[argnum]);
|
|
|
|
if (len > 4 && (len & 3) != 0)
|
|
odd_sized_struct = 1; /* such structs go entirely on stack */
|
|
else
|
|
odd_sized_struct = 0;
|
|
while (len > 0)
|
|
{
|
|
if (argreg > ARGLAST_REGNUM || odd_sized_struct)
|
|
{ /* must go on the stack */
|
|
write_memory (sp + stack_offset, val, 4);
|
|
stack_offset += 4;
|
|
}
|
|
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
|
That's because some *&^%$ things get passed on the stack
|
|
AND in the registers! */
|
|
if (argreg <= ARGLAST_REGNUM)
|
|
{ /* there's room in a register */
|
|
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
|
write_register (argreg++, regval);
|
|
}
|
|
/* Store the value 4 bytes at a time. This means that things
|
|
larger than 4 bytes may go partly in registers and partly
|
|
on the stack. */
|
|
len -= REGISTER_RAW_SIZE (argreg);
|
|
val += REGISTER_RAW_SIZE (argreg);
|
|
}
|
|
}
|
|
return sp;
|
|
}
|
|
|
|
/* Function: push_return_address (pc)
|
|
Set up the return address for the inferior function call.
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
|
|
|
CORE_ADDR
|
|
sh_push_return_address (pc, sp)
|
|
CORE_ADDR pc;
|
|
CORE_ADDR sp;
|
|
{
|
|
write_register (PR_REGNUM, CALL_DUMMY_ADDRESS ());
|
|
return sp;
|
|
}
|
|
|
|
/* Function: fix_call_dummy
|
|
Poke the callee function's address into the destination part of
|
|
the CALL_DUMMY. The address is actually stored in a data word
|
|
following the actualy CALL_DUMMY instructions, which will load
|
|
it into a register using PC-relative addressing. This function
|
|
expects the CALL_DUMMY to look like this:
|
|
|
|
mov.w @(2,PC), R8
|
|
jsr @R8
|
|
nop
|
|
trap
|
|
<destination>
|
|
*/
|
|
|
|
#if 0
|
|
void
|
|
sh_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
|
|
char *dummy;
|
|
CORE_ADDR pc;
|
|
CORE_ADDR fun;
|
|
int nargs;
|
|
value_ptr *args;
|
|
struct type *type;
|
|
int gcc_p;
|
|
{
|
|
*(unsigned long *) (dummy + 8) = fun;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Modify the actual processor type. */
|
|
|
|
int
|
|
sh_target_architecture_hook (ap)
|
|
const bfd_arch_info_type *ap;
|
|
{
|
|
int i, j;
|
|
|
|
if (ap->arch != bfd_arch_sh)
|
|
return 0;
|
|
|
|
for (i = 0; sh_processor_type_table[i].regnames != NULL; i++)
|
|
{
|
|
if (sh_processor_type_table[i].mach == ap->mach)
|
|
{
|
|
sh_register_names = sh_processor_type_table[i].regnames;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
internal_error ("Architecture `%s' unreconized", ap->printable_name);
|
|
}
|
|
|
|
/* Print the registers in a form similar to the E7000 */
|
|
|
|
static void
|
|
sh_show_regs (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
int cpu;
|
|
if (TARGET_ARCHITECTURE->arch == bfd_arch_sh)
|
|
cpu = TARGET_ARCHITECTURE->mach;
|
|
else
|
|
cpu = 0;
|
|
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
if (cpu == bfd_mach_sh3 || cpu == bfd_mach_sh3e || cpu == bfd_mach_sh3_dsp
|
|
|| cpu == bfd_mach_sh4)
|
|
{
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (SSR_REGNUM),
|
|
(long) read_register (SPC_REGNUM));
|
|
if (cpu == bfd_mach_sh3e || cpu == bfd_mach_sh4)
|
|
{
|
|
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
|
(long) read_register (FPUL_REGNUM),
|
|
(long) read_register (FPSCR_REGNUM));
|
|
}
|
|
}
|
|
if (cpu == bfd_mach_sh_dsp || cpu == bfd_mach_sh3_dsp)
|
|
printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
|
|
|
|
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
if (cpu == bfd_mach_sh3e || cpu == bfd_mach_sh4)
|
|
{
|
|
int pr = cpu == bfd_mach_sh4 && (read_register (FPSCR_REGNUM) & 0x80000);
|
|
|
|
printf_filtered ((pr
|
|
? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
|
: "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 0),
|
|
(long) read_register (FP0_REGNUM + 1),
|
|
(long) read_register (FP0_REGNUM + 2),
|
|
(long) read_register (FP0_REGNUM + 3),
|
|
(long) read_register (FP0_REGNUM + 4),
|
|
(long) read_register (FP0_REGNUM + 5),
|
|
(long) read_register (FP0_REGNUM + 6),
|
|
(long) read_register (FP0_REGNUM + 7));
|
|
printf_filtered ((pr
|
|
? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
|
: "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 8),
|
|
(long) read_register (FP0_REGNUM + 9),
|
|
(long) read_register (FP0_REGNUM + 10),
|
|
(long) read_register (FP0_REGNUM + 11),
|
|
(long) read_register (FP0_REGNUM + 12),
|
|
(long) read_register (FP0_REGNUM + 13),
|
|
(long) read_register (FP0_REGNUM + 14),
|
|
(long) read_register (FP0_REGNUM + 15));
|
|
}
|
|
/* FIXME: sh4 has more registers */
|
|
if (cpu == bfd_mach_sh_dsp || cpu == bfd_mach_sh3_dsp)
|
|
{
|
|
printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
|
(long) read_register (A0G_REGNUM) & 0xff,
|
|
(long) read_register (A0_REGNUM),
|
|
(long) read_register (M0_REGNUM),
|
|
(long) read_register (X0_REGNUM),
|
|
(long) read_register (Y0_REGNUM),
|
|
(long) read_register (RS_REGNUM),
|
|
(long) read_register (MOD_REGNUM));
|
|
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
|
(long) read_register (A1G_REGNUM) & 0xff,
|
|
(long) read_register (A1_REGNUM),
|
|
(long) read_register (M1_REGNUM),
|
|
(long) read_register (X1_REGNUM),
|
|
(long) read_register (Y1_REGNUM),
|
|
(long) read_register (RE_REGNUM));
|
|
}
|
|
}
|
|
|
|
/* Function: extract_return_value
|
|
Find a function's return value in the appropriate registers (in regbuf),
|
|
and copy it into valbuf. */
|
|
|
|
void
|
|
sh_extract_return_value (type, regbuf, valbuf)
|
|
struct type *type;
|
|
void *regbuf;
|
|
void *valbuf;
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (len <= 4)
|
|
memcpy (valbuf, ((char *) regbuf) + 4 - len, len);
|
|
else if (len <= 8)
|
|
memcpy (valbuf, ((char *) regbuf) + 8 - len, len);
|
|
else
|
|
error ("bad size for return value");
|
|
}
|
|
|
|
void
|
|
_initialize_sh_tdep ()
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
tm_print_insn = gdb_print_insn_sh;
|
|
|
|
target_architecture_hook = sh_target_architecture_hook;
|
|
|
|
add_com ("regs", class_vars, sh_show_regs, "Print all registers");
|
|
}
|