mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
096c35a790
section names by inserting a new substring after .gnu.linkonce, except for .gnu.linkonce.t.* where the "t." is replaced.
5863 lines
166 KiB
C
5863 lines
166 KiB
C
/* Xtensa-specific support for 32-bit ELF.
|
||
Copyright 2003, 2004 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU General Public License as
|
||
published by the Free Software Foundation; either version 2 of the
|
||
License, or (at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
|
||
#ifdef ANSI_PROTOTYPES
|
||
#include <stdarg.h>
|
||
#else
|
||
#include <varargs.h>
|
||
#endif
|
||
#include <strings.h>
|
||
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/xtensa.h"
|
||
#include "xtensa-isa.h"
|
||
#include "xtensa-config.h"
|
||
|
||
/* Main interface functions. */
|
||
static void elf_xtensa_info_to_howto_rela
|
||
PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
|
||
static reloc_howto_type *elf_xtensa_reloc_type_lookup
|
||
PARAMS ((bfd *abfd, bfd_reloc_code_real_type code));
|
||
extern int xtensa_read_table_entries
|
||
PARAMS ((bfd *, asection *, property_table_entry **, const char *));
|
||
static bfd_boolean elf_xtensa_check_relocs
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
const Elf_Internal_Rela *));
|
||
static void elf_xtensa_hide_symbol
|
||
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
|
||
static asection *elf_xtensa_gc_mark_hook
|
||
PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
|
||
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
||
static bfd_boolean elf_xtensa_gc_sweep_hook
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
const Elf_Internal_Rela *));
|
||
static bfd_boolean elf_xtensa_create_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static bfd_boolean elf_xtensa_adjust_dynamic_symbol
|
||
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
||
static bfd_boolean elf_xtensa_size_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static bfd_boolean elf_xtensa_modify_segment_map
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static bfd_boolean elf_xtensa_relocate_section
|
||
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
|
||
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
||
static bfd_boolean elf_xtensa_relax_section
|
||
PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *again));
|
||
static bfd_boolean elf_xtensa_finish_dynamic_symbol
|
||
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
|
||
Elf_Internal_Sym *));
|
||
static bfd_boolean elf_xtensa_finish_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static bfd_boolean elf_xtensa_merge_private_bfd_data
|
||
PARAMS ((bfd *, bfd *));
|
||
static bfd_boolean elf_xtensa_set_private_flags
|
||
PARAMS ((bfd *, flagword));
|
||
extern flagword elf_xtensa_get_private_bfd_flags
|
||
PARAMS ((bfd *));
|
||
static bfd_boolean elf_xtensa_print_private_bfd_data
|
||
PARAMS ((bfd *, PTR));
|
||
static bfd_boolean elf_xtensa_object_p
|
||
PARAMS ((bfd *));
|
||
static void elf_xtensa_final_write_processing
|
||
PARAMS ((bfd *, bfd_boolean));
|
||
static enum elf_reloc_type_class elf_xtensa_reloc_type_class
|
||
PARAMS ((const Elf_Internal_Rela *));
|
||
static bfd_boolean elf_xtensa_discard_info
|
||
PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *));
|
||
static bfd_boolean elf_xtensa_ignore_discarded_relocs
|
||
PARAMS ((asection *));
|
||
static bfd_boolean elf_xtensa_grok_prstatus
|
||
PARAMS ((bfd *, Elf_Internal_Note *));
|
||
static bfd_boolean elf_xtensa_grok_psinfo
|
||
PARAMS ((bfd *, Elf_Internal_Note *));
|
||
static bfd_boolean elf_xtensa_new_section_hook
|
||
PARAMS ((bfd *, asection *));
|
||
|
||
|
||
/* Local helper functions. */
|
||
|
||
static bfd_boolean xtensa_elf_dynamic_symbol_p
|
||
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
|
||
static int property_table_compare
|
||
PARAMS ((const PTR, const PTR));
|
||
static bfd_boolean elf_xtensa_in_literal_pool
|
||
PARAMS ((property_table_entry *, int, bfd_vma));
|
||
static void elf_xtensa_make_sym_local
|
||
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
||
static bfd_boolean add_extra_plt_sections
|
||
PARAMS ((bfd *, int));
|
||
static bfd_boolean elf_xtensa_fix_refcounts
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static bfd_boolean elf_xtensa_allocate_plt_size
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static bfd_boolean elf_xtensa_allocate_got_size
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static void elf_xtensa_allocate_local_got_size
|
||
PARAMS ((struct bfd_link_info *, asection *));
|
||
static bfd_reloc_status_type elf_xtensa_do_reloc
|
||
PARAMS ((reloc_howto_type *, bfd *, asection *, bfd_vma, bfd_byte *,
|
||
bfd_vma, bfd_boolean, char **));
|
||
static char * vsprint_msg
|
||
VPARAMS ((const char *, const char *, int, ...));
|
||
static char *build_encoding_error_message
|
||
PARAMS ((xtensa_opcode, xtensa_encode_result));
|
||
static bfd_reloc_status_type bfd_elf_xtensa_reloc
|
||
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
|
||
static void do_fix_for_relocatable_link
|
||
PARAMS ((Elf_Internal_Rela *, bfd *, asection *));
|
||
static void do_fix_for_final_link
|
||
PARAMS ((Elf_Internal_Rela *, asection *, bfd_vma *));
|
||
static bfd_vma elf_xtensa_create_plt_entry
|
||
PARAMS ((bfd *, bfd *, unsigned));
|
||
static int elf_xtensa_combine_prop_entries
|
||
PARAMS ((bfd *, asection *, asection *));
|
||
static bfd_boolean elf_xtensa_discard_info_for_section
|
||
PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *,
|
||
asection *));
|
||
|
||
/* Local functions to handle Xtensa configurability. */
|
||
|
||
static void init_call_opcodes
|
||
PARAMS ((void));
|
||
static bfd_boolean is_indirect_call_opcode
|
||
PARAMS ((xtensa_opcode));
|
||
static bfd_boolean is_direct_call_opcode
|
||
PARAMS ((xtensa_opcode));
|
||
static bfd_boolean is_windowed_call_opcode
|
||
PARAMS ((xtensa_opcode));
|
||
static xtensa_opcode get_l32r_opcode
|
||
PARAMS ((void));
|
||
static bfd_vma l32r_offset
|
||
PARAMS ((bfd_vma, bfd_vma));
|
||
static int get_relocation_opnd
|
||
PARAMS ((Elf_Internal_Rela *));
|
||
static xtensa_opcode get_relocation_opcode
|
||
PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *));
|
||
static bfd_boolean is_l32r_relocation
|
||
PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *));
|
||
|
||
/* Functions for link-time code simplifications. */
|
||
|
||
static bfd_reloc_status_type elf_xtensa_do_asm_simplify
|
||
PARAMS ((bfd_byte *, bfd_vma, bfd_vma));
|
||
static bfd_reloc_status_type contract_asm_expansion
|
||
PARAMS ((bfd_byte *, bfd_vma, Elf_Internal_Rela *));
|
||
static xtensa_opcode swap_callx_for_call_opcode
|
||
PARAMS ((xtensa_opcode));
|
||
static xtensa_opcode get_expanded_call_opcode
|
||
PARAMS ((bfd_byte *, int));
|
||
|
||
/* Access to internal relocations, section contents and symbols. */
|
||
|
||
static Elf_Internal_Rela *retrieve_internal_relocs
|
||
PARAMS ((bfd *, asection *, bfd_boolean));
|
||
static void pin_internal_relocs
|
||
PARAMS ((asection *, Elf_Internal_Rela *));
|
||
static void release_internal_relocs
|
||
PARAMS ((asection *, Elf_Internal_Rela *));
|
||
static bfd_byte *retrieve_contents
|
||
PARAMS ((bfd *, asection *, bfd_boolean));
|
||
static void pin_contents
|
||
PARAMS ((asection *, bfd_byte *));
|
||
static void release_contents
|
||
PARAMS ((asection *, bfd_byte *));
|
||
static Elf_Internal_Sym *retrieve_local_syms
|
||
PARAMS ((bfd *));
|
||
|
||
/* Miscellaneous utility functions. */
|
||
|
||
static asection *elf_xtensa_get_plt_section
|
||
PARAMS ((bfd *, int));
|
||
static asection *elf_xtensa_get_gotplt_section
|
||
PARAMS ((bfd *, int));
|
||
static asection *get_elf_r_symndx_section
|
||
PARAMS ((bfd *, unsigned long));
|
||
static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
|
||
PARAMS ((bfd *, unsigned long));
|
||
static bfd_vma get_elf_r_symndx_offset
|
||
PARAMS ((bfd *, unsigned long));
|
||
static bfd_boolean pcrel_reloc_fits
|
||
PARAMS ((xtensa_operand, bfd_vma, bfd_vma));
|
||
static bfd_boolean xtensa_is_property_section
|
||
PARAMS ((asection *));
|
||
static bfd_boolean xtensa_is_littable_section
|
||
PARAMS ((asection *));
|
||
static bfd_boolean is_literal_section
|
||
PARAMS ((asection *));
|
||
static int internal_reloc_compare
|
||
PARAMS ((const PTR, const PTR));
|
||
extern char *xtensa_get_property_section_name
|
||
PARAMS ((asection *, const char *));
|
||
|
||
/* Other functions called directly by the linker. */
|
||
|
||
typedef void (*deps_callback_t)
|
||
PARAMS ((asection *, bfd_vma, asection *, bfd_vma, PTR));
|
||
extern bfd_boolean xtensa_callback_required_dependence
|
||
PARAMS ((bfd *, asection *, struct bfd_link_info *,
|
||
deps_callback_t, PTR));
|
||
|
||
|
||
typedef struct xtensa_relax_info_struct xtensa_relax_info;
|
||
|
||
|
||
/* Total count of PLT relocations seen during check_relocs.
|
||
The actual PLT code must be split into multiple sections and all
|
||
the sections have to be created before size_dynamic_sections,
|
||
where we figure out the exact number of PLT entries that will be
|
||
needed. It is OK if this count is an overestimate, e.g., some
|
||
relocations may be removed by GC. */
|
||
|
||
static int plt_reloc_count = 0;
|
||
|
||
|
||
/* When this is true, relocations may have been modified to refer to
|
||
symbols from other input files. The per-section list of "fix"
|
||
records needs to be checked when resolving relocations. */
|
||
|
||
static bfd_boolean relaxing_section = FALSE;
|
||
|
||
|
||
static reloc_howto_type elf_howto_table[] =
|
||
{
|
||
HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
|
||
FALSE, 0x00000000, 0x00000000, FALSE),
|
||
HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
/* Replace a 32-bit value with a value from the runtime linker (only
|
||
used by linker-generated stub functions). The r_addend value is
|
||
special: 1 means to substitute a pointer to the runtime linker's
|
||
dynamic resolver function; 2 means to substitute the link map for
|
||
the shared object. */
|
||
HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
||
NULL, "R_XTENSA_RTLD",
|
||
FALSE, 0x00000000, 0x00000000, FALSE),
|
||
HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
|
||
FALSE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
|
||
FALSE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
|
||
FALSE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
|
||
FALSE, 0xffffffff, 0xffffffff, FALSE),
|
||
EMPTY_HOWTO (7),
|
||
HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
|
||
FALSE, 0x00000000, 0x00000000, TRUE),
|
||
HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
|
||
FALSE, 0x00000000, 0x00000000, TRUE),
|
||
HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
|
||
FALSE, 0x00000000, 0x00000000, TRUE),
|
||
/* Assembly auto-expansion. */
|
||
HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
|
||
FALSE, 0x00000000, 0x00000000, FALSE),
|
||
/* Relax assembly auto-expansion. */
|
||
HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
||
bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
|
||
FALSE, 0x00000000, 0x00000000, TRUE),
|
||
EMPTY_HOWTO (13),
|
||
EMPTY_HOWTO (14),
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
|
||
NULL, "R_XTENSA_GNU_VTINHERIT",
|
||
FALSE, 0x00000000, 0x00000000, FALSE),
|
||
/* GNU extension to record C++ vtable member usage. */
|
||
HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
|
||
_bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
|
||
FALSE, 0x00000000, 0x00000000, FALSE)
|
||
};
|
||
|
||
#ifdef DEBUG_GEN_RELOC
|
||
#define TRACE(str) \
|
||
fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
|
||
#else
|
||
#define TRACE(str)
|
||
#endif
|
||
|
||
static reloc_howto_type *
|
||
elf_xtensa_reloc_type_lookup (abfd, code)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
bfd_reloc_code_real_type code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_NONE:
|
||
TRACE ("BFD_RELOC_NONE");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
|
||
|
||
case BFD_RELOC_32:
|
||
TRACE ("BFD_RELOC_32");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_32 ];
|
||
|
||
case BFD_RELOC_XTENSA_RTLD:
|
||
TRACE ("BFD_RELOC_XTENSA_RTLD");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
|
||
|
||
case BFD_RELOC_XTENSA_GLOB_DAT:
|
||
TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
|
||
|
||
case BFD_RELOC_XTENSA_JMP_SLOT:
|
||
TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
|
||
|
||
case BFD_RELOC_XTENSA_RELATIVE:
|
||
TRACE ("BFD_RELOC_XTENSA_RELATIVE");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
|
||
|
||
case BFD_RELOC_XTENSA_PLT:
|
||
TRACE ("BFD_RELOC_XTENSA_PLT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
|
||
|
||
case BFD_RELOC_XTENSA_OP0:
|
||
TRACE ("BFD_RELOC_XTENSA_OP0");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
|
||
|
||
case BFD_RELOC_XTENSA_OP1:
|
||
TRACE ("BFD_RELOC_XTENSA_OP1");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
|
||
|
||
case BFD_RELOC_XTENSA_OP2:
|
||
TRACE ("BFD_RELOC_XTENSA_OP2");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
|
||
|
||
case BFD_RELOC_XTENSA_ASM_EXPAND:
|
||
TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
|
||
|
||
case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
|
||
TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
TRACE ("BFD_RELOC_VTABLE_INHERIT");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
|
||
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
TRACE ("BFD_RELOC_VTABLE_ENTRY");
|
||
return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
TRACE ("Unknown");
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Given an ELF "rela" relocation, find the corresponding howto and record
|
||
it in the BFD internal arelent representation of the relocation. */
|
||
|
||
static void
|
||
elf_xtensa_info_to_howto_rela (abfd, cache_ptr, dst)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
arelent *cache_ptr;
|
||
Elf_Internal_Rela *dst;
|
||
{
|
||
unsigned int r_type = ELF32_R_TYPE (dst->r_info);
|
||
|
||
BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
|
||
cache_ptr->howto = &elf_howto_table[r_type];
|
||
}
|
||
|
||
|
||
/* Functions for the Xtensa ELF linker. */
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
|
||
|
||
/* The size in bytes of an entry in the procedure linkage table.
|
||
(This does _not_ include the space for the literals associated with
|
||
the PLT entry.) */
|
||
|
||
#define PLT_ENTRY_SIZE 16
|
||
|
||
/* For _really_ large PLTs, we may need to alternate between literals
|
||
and code to keep the literals within the 256K range of the L32R
|
||
instructions in the code. It's unlikely that anyone would ever need
|
||
such a big PLT, but an arbitrary limit on the PLT size would be bad.
|
||
Thus, we split the PLT into chunks. Since there's very little
|
||
overhead (2 extra literals) for each chunk, the chunk size is kept
|
||
small so that the code for handling multiple chunks get used and
|
||
tested regularly. With 254 entries, there are 1K of literals for
|
||
each chunk, and that seems like a nice round number. */
|
||
|
||
#define PLT_ENTRIES_PER_CHUNK 254
|
||
|
||
/* PLT entries are actually used as stub functions for lazy symbol
|
||
resolution. Once the symbol is resolved, the stub function is never
|
||
invoked. Note: the 32-byte frame size used here cannot be changed
|
||
without a corresponding change in the runtime linker. */
|
||
|
||
static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0x6c, 0x10, 0x04, /* entry sp, 32 */
|
||
0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
||
0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
||
0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
||
0x0a, 0x80, 0x00, /* jx a8 */
|
||
0 /* unused */
|
||
};
|
||
|
||
static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0x36, 0x41, 0x00, /* entry sp, 32 */
|
||
0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
||
0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
||
0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
||
0xa0, 0x08, 0x00, /* jx a8 */
|
||
0 /* unused */
|
||
};
|
||
|
||
|
||
static inline bfd_boolean
|
||
xtensa_elf_dynamic_symbol_p (h, info)
|
||
struct elf_link_hash_entry *h;
|
||
struct bfd_link_info *info;
|
||
{
|
||
/* Check if we should do dynamic things to this symbol. The
|
||
"ignore_protected" argument need not be set, because Xtensa code
|
||
does not require special handling of STV_PROTECTED to make function
|
||
pointer comparisons work properly. The PLT addresses are never
|
||
used for function pointers. */
|
||
|
||
return _bfd_elf_dynamic_symbol_p (h, info, 0);
|
||
}
|
||
|
||
|
||
static int
|
||
property_table_compare (ap, bp)
|
||
const PTR ap;
|
||
const PTR bp;
|
||
{
|
||
const property_table_entry *a = (const property_table_entry *) ap;
|
||
const property_table_entry *b = (const property_table_entry *) bp;
|
||
|
||
/* Check if one entry overlaps with the other; this shouldn't happen
|
||
except when searching for a match. */
|
||
if ((b->address >= a->address && b->address < (a->address + a->size))
|
||
|| (a->address >= b->address && a->address < (b->address + b->size)))
|
||
return 0;
|
||
|
||
return (a->address - b->address);
|
||
}
|
||
|
||
|
||
/* Get the literal table or instruction table entries for the given
|
||
section. Sets TABLE_P and returns the number of entries. On error,
|
||
returns a negative value. */
|
||
|
||
int
|
||
xtensa_read_table_entries (abfd, section, table_p, sec_name)
|
||
bfd *abfd;
|
||
asection *section;
|
||
property_table_entry **table_p;
|
||
const char *sec_name;
|
||
{
|
||
asection *table_section;
|
||
char *table_section_name;
|
||
bfd_size_type table_size = 0;
|
||
bfd_byte *table_data;
|
||
property_table_entry *blocks;
|
||
int block_count;
|
||
bfd_size_type num_records;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_vma section_addr;
|
||
|
||
table_section_name =
|
||
xtensa_get_property_section_name (section, sec_name);
|
||
table_section = bfd_get_section_by_name (abfd, table_section_name);
|
||
free (table_section_name);
|
||
if (table_section != NULL)
|
||
table_size = (table_section->_cooked_size
|
||
? table_section->_cooked_size : table_section->_raw_size);
|
||
|
||
if (table_size == 0)
|
||
{
|
||
*table_p = NULL;
|
||
return 0;
|
||
}
|
||
|
||
num_records = table_size / 8;
|
||
table_data = retrieve_contents (abfd, table_section, TRUE);
|
||
blocks = (property_table_entry *)
|
||
bfd_malloc (num_records * sizeof (property_table_entry));
|
||
block_count = 0;
|
||
|
||
section_addr = section->output_section->vma + section->output_offset;
|
||
|
||
/* If the file has not yet been relocated, process the relocations
|
||
and sort out the table entries that apply to the specified section. */
|
||
internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
|
||
if (internal_relocs && !table_section->reloc_done)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < table_section->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *rel = &internal_relocs[i];
|
||
unsigned long r_symndx;
|
||
|
||
if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
|
||
continue;
|
||
|
||
BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
if (get_elf_r_symndx_section (abfd, r_symndx) == section)
|
||
{
|
||
bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
|
||
blocks[block_count].address =
|
||
(section_addr + sym_off + rel->r_addend
|
||
+ bfd_get_32 (abfd, table_data + rel->r_offset));
|
||
blocks[block_count].size =
|
||
bfd_get_32 (abfd, table_data + rel->r_offset + 4);
|
||
block_count++;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* The file has already been relocated and the addresses are
|
||
already in the table. */
|
||
bfd_vma off;
|
||
|
||
for (off = 0; off < table_size; off += 8)
|
||
{
|
||
bfd_vma address = bfd_get_32 (abfd, table_data + off);
|
||
|
||
if (address >= section_addr
|
||
&& address < ( section_addr + section->_raw_size))
|
||
{
|
||
blocks[block_count].address = address;
|
||
blocks[block_count].size =
|
||
bfd_get_32 (abfd, table_data + off + 4);
|
||
block_count++;
|
||
}
|
||
}
|
||
}
|
||
|
||
release_contents (table_section, table_data);
|
||
release_internal_relocs (table_section, internal_relocs);
|
||
|
||
if (block_count > 0)
|
||
{
|
||
/* Now sort them into address order for easy reference. */
|
||
qsort (blocks, block_count, sizeof (property_table_entry),
|
||
property_table_compare);
|
||
}
|
||
|
||
*table_p = blocks;
|
||
return block_count;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_in_literal_pool (lit_table, lit_table_size, addr)
|
||
property_table_entry *lit_table;
|
||
int lit_table_size;
|
||
bfd_vma addr;
|
||
{
|
||
property_table_entry entry;
|
||
|
||
if (lit_table_size == 0)
|
||
return FALSE;
|
||
|
||
entry.address = addr;
|
||
entry.size = 1;
|
||
|
||
if (bsearch (&entry, lit_table, lit_table_size,
|
||
sizeof (property_table_entry), property_table_compare))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Look through the relocs for a section during the first phase, and
|
||
calculate needed space in the dynamic reloc sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_check_relocs (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
|
||
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
||
{
|
||
(*_bfd_error_handler) (_("%s: bad symbol index: %d"),
|
||
bfd_archive_filename (abfd),
|
||
r_symndx);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_32:
|
||
if (h == NULL)
|
||
goto local_literal;
|
||
|
||
if ((sec->flags & SEC_ALLOC) != 0)
|
||
{
|
||
if (h->got.refcount <= 0)
|
||
h->got.refcount = 1;
|
||
else
|
||
h->got.refcount += 1;
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_PLT:
|
||
/* If this relocation is against a local symbol, then it's
|
||
exactly the same as a normal local GOT entry. */
|
||
if (h == NULL)
|
||
goto local_literal;
|
||
|
||
if ((sec->flags & SEC_ALLOC) != 0)
|
||
{
|
||
if (h->plt.refcount <= 0)
|
||
{
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
||
h->plt.refcount = 1;
|
||
}
|
||
else
|
||
h->plt.refcount += 1;
|
||
|
||
/* Keep track of the total PLT relocation count even if we
|
||
don't yet know whether the dynamic sections will be
|
||
created. */
|
||
plt_reloc_count += 1;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
|
||
plt_reloc_count))
|
||
return FALSE;
|
||
}
|
||
}
|
||
break;
|
||
|
||
local_literal:
|
||
if ((sec->flags & SEC_ALLOC) != 0)
|
||
{
|
||
bfd_signed_vma *local_got_refcounts;
|
||
|
||
/* This is a global offset table entry for a local symbol. */
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
if (local_got_refcounts == NULL)
|
||
{
|
||
bfd_size_type size;
|
||
|
||
size = symtab_hdr->sh_info;
|
||
size *= sizeof (bfd_signed_vma);
|
||
local_got_refcounts = ((bfd_signed_vma *)
|
||
bfd_zalloc (abfd, size));
|
||
if (local_got_refcounts == NULL)
|
||
return FALSE;
|
||
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
||
}
|
||
local_got_refcounts[r_symndx] += 1;
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_OP0:
|
||
case R_XTENSA_OP1:
|
||
case R_XTENSA_OP2:
|
||
case R_XTENSA_ASM_EXPAND:
|
||
case R_XTENSA_ASM_SIMPLIFY:
|
||
/* Nothing to do for these. */
|
||
break;
|
||
|
||
case R_XTENSA_GNU_VTINHERIT:
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
case R_XTENSA_GNU_VTENTRY:
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
return FALSE;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static void
|
||
elf_xtensa_hide_symbol (info, h, force_local)
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_boolean force_local;
|
||
{
|
||
/* For a shared link, move the plt refcount to the got refcount to leave
|
||
space for RELATIVE relocs. */
|
||
elf_xtensa_make_sym_local (info, h);
|
||
|
||
_bfd_elf_link_hash_hide_symbol (info, h, force_local);
|
||
}
|
||
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
elf_xtensa_gc_mark_hook (sec, info, rel, h, sym)
|
||
asection *sec;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
Elf_Internal_Rela *rel;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
if (h != NULL)
|
||
{
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_XTENSA_GNU_VTINHERIT:
|
||
case R_XTENSA_GNU_VTENTRY:
|
||
break;
|
||
|
||
default:
|
||
switch (h->root.type)
|
||
{
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
return h->root.u.def.section;
|
||
|
||
case bfd_link_hash_common:
|
||
return h->root.u.c.p->section;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Update the GOT & PLT entry reference counts
|
||
for the section being removed. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_gc_sweep_hook (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_signed_vma *local_got_refcounts;
|
||
const Elf_Internal_Rela *rel, *relend;
|
||
|
||
if ((sec->flags & SEC_ALLOC) == 0)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; rel++)
|
||
{
|
||
unsigned long r_symndx;
|
||
unsigned int r_type;
|
||
struct elf_link_hash_entry *h = NULL;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
switch (r_type)
|
||
{
|
||
case R_XTENSA_32:
|
||
if (h == NULL)
|
||
goto local_literal;
|
||
if (h->got.refcount > 0)
|
||
h->got.refcount--;
|
||
break;
|
||
|
||
case R_XTENSA_PLT:
|
||
if (h == NULL)
|
||
goto local_literal;
|
||
if (h->plt.refcount > 0)
|
||
h->plt.refcount--;
|
||
break;
|
||
|
||
local_literal:
|
||
if (local_got_refcounts[r_symndx] > 0)
|
||
local_got_refcounts[r_symndx] -= 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Create all the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_create_dynamic_sections (dynobj, info)
|
||
bfd *dynobj;
|
||
struct bfd_link_info *info;
|
||
{
|
||
flagword flags, noalloc_flags;
|
||
asection *s;
|
||
|
||
/* First do all the standard stuff. */
|
||
if (! _bfd_elf_create_dynamic_sections (dynobj, info))
|
||
return FALSE;
|
||
|
||
/* Create any extra PLT sections in case check_relocs has already
|
||
been called on all the non-dynamic input files. */
|
||
if (!add_extra_plt_sections (dynobj, plt_reloc_count))
|
||
return FALSE;
|
||
|
||
noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED | SEC_READONLY);
|
||
flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
|
||
|
||
/* Mark the ".got.plt" section READONLY. */
|
||
s = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (dynobj, s, flags))
|
||
return FALSE;
|
||
|
||
/* Create ".rela.got". */
|
||
s = bfd_make_section (dynobj, ".rela.got");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (dynobj, s, flags)
|
||
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
||
return FALSE;
|
||
|
||
/* Create ".got.loc" (literal tables for use by dynamic linker). */
|
||
s = bfd_make_section (dynobj, ".got.loc");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (dynobj, s, flags)
|
||
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
||
return FALSE;
|
||
|
||
/* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
|
||
s = bfd_make_section (dynobj, ".xt.lit.plt");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (dynobj, s, noalloc_flags)
|
||
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
add_extra_plt_sections (dynobj, count)
|
||
bfd *dynobj;
|
||
int count;
|
||
{
|
||
int chunk;
|
||
|
||
/* Iterate over all chunks except 0 which uses the standard ".plt" and
|
||
".got.plt" sections. */
|
||
for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
|
||
{
|
||
char *sname;
|
||
flagword flags;
|
||
asection *s;
|
||
|
||
/* Stop when we find a section has already been created. */
|
||
if (elf_xtensa_get_plt_section (dynobj, chunk))
|
||
break;
|
||
|
||
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED | SEC_READONLY);
|
||
|
||
sname = (char *) bfd_malloc (10);
|
||
sprintf (sname, ".plt.%u", chunk);
|
||
s = bfd_make_section (dynobj, sname);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (dynobj, s, flags | SEC_CODE)
|
||
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
||
return FALSE;
|
||
|
||
sname = (char *) bfd_malloc (14);
|
||
sprintf (sname, ".got.plt.%u", chunk);
|
||
s = bfd_make_section (dynobj, sname);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (dynobj, s, flags)
|
||
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_adjust_dynamic_symbol (info, h)
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
struct elf_link_hash_entry *h;
|
||
{
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|
||
|| h->weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->weakdef->root.u.def.value;
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object. The
|
||
reference must go through the GOT, so there's no need for COPY relocs,
|
||
.dynbss, etc. */
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static void
|
||
elf_xtensa_make_sym_local (info, h)
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
{
|
||
if (info->shared)
|
||
{
|
||
if (h->plt.refcount > 0)
|
||
{
|
||
/* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
|
||
if (h->got.refcount < 0)
|
||
h->got.refcount = 0;
|
||
h->got.refcount += h->plt.refcount;
|
||
h->plt.refcount = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Don't need any dynamic relocations at all. */
|
||
h->plt.refcount = 0;
|
||
h->got.refcount = 0;
|
||
}
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_fix_refcounts (h, arg)
|
||
struct elf_link_hash_entry *h;
|
||
PTR arg;
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *) arg;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
if (! xtensa_elf_dynamic_symbol_p (h, info))
|
||
elf_xtensa_make_sym_local (info, h);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_allocate_plt_size (h, arg)
|
||
struct elf_link_hash_entry *h;
|
||
PTR arg;
|
||
{
|
||
asection *srelplt = (asection *) arg;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
if (h->plt.refcount > 0)
|
||
srelplt->_raw_size += (h->plt.refcount * sizeof (Elf32_External_Rela));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_allocate_got_size (h, arg)
|
||
struct elf_link_hash_entry *h;
|
||
PTR arg;
|
||
{
|
||
asection *srelgot = (asection *) arg;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
if (h->got.refcount > 0)
|
||
srelgot->_raw_size += (h->got.refcount * sizeof (Elf32_External_Rela));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static void
|
||
elf_xtensa_allocate_local_got_size (info, srelgot)
|
||
struct bfd_link_info *info;
|
||
asection *srelgot;
|
||
{
|
||
bfd *i;
|
||
|
||
for (i = info->input_bfds; i; i = i->link_next)
|
||
{
|
||
bfd_signed_vma *local_got_refcounts;
|
||
bfd_size_type j, cnt;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
|
||
local_got_refcounts = elf_local_got_refcounts (i);
|
||
if (!local_got_refcounts)
|
||
continue;
|
||
|
||
symtab_hdr = &elf_tdata (i)->symtab_hdr;
|
||
cnt = symtab_hdr->sh_info;
|
||
|
||
for (j = 0; j < cnt; ++j)
|
||
{
|
||
if (local_got_refcounts[j] > 0)
|
||
srelgot->_raw_size += (local_got_refcounts[j]
|
||
* sizeof (Elf32_External_Rela));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_size_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd ATTRIBUTE_UNUSED;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj, *abfd;
|
||
asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
|
||
bfd_boolean relplt, relgot;
|
||
int plt_entries, plt_chunks, chunk;
|
||
|
||
plt_entries = 0;
|
||
plt_chunks = 0;
|
||
srelgot = 0;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
if (dynobj == NULL)
|
||
abort ();
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (info->executable)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
if (s == NULL)
|
||
abort ();
|
||
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
|
||
/* Allocate room for one word in ".got". */
|
||
s = bfd_get_section_by_name (dynobj, ".got");
|
||
if (s == NULL)
|
||
abort ();
|
||
s->_raw_size = 4;
|
||
|
||
/* Adjust refcounts for symbols that we now know are not "dynamic". */
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_xtensa_fix_refcounts,
|
||
(PTR) info);
|
||
|
||
/* Allocate space in ".rela.got" for literals that reference
|
||
global symbols. */
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
if (srelgot == NULL)
|
||
abort ();
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_xtensa_allocate_got_size,
|
||
(PTR) srelgot);
|
||
|
||
/* If we are generating a shared object, we also need space in
|
||
".rela.got" for R_XTENSA_RELATIVE relocs for literals that
|
||
reference local symbols. */
|
||
if (info->shared)
|
||
elf_xtensa_allocate_local_got_size (info, srelgot);
|
||
|
||
/* Allocate space in ".rela.plt" for literals that have PLT entries. */
|
||
srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
if (srelplt == NULL)
|
||
abort ();
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_xtensa_allocate_plt_size,
|
||
(PTR) srelplt);
|
||
|
||
/* Allocate space in ".plt" to match the size of ".rela.plt". For
|
||
each PLT entry, we need the PLT code plus a 4-byte literal.
|
||
For each chunk of ".plt", we also need two more 4-byte
|
||
literals, two corresponding entries in ".rela.got", and an
|
||
8-byte entry in ".xt.lit.plt". */
|
||
spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
|
||
if (spltlittbl == NULL)
|
||
abort ();
|
||
|
||
plt_entries = srelplt->_raw_size / sizeof (Elf32_External_Rela);
|
||
plt_chunks =
|
||
(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
|
||
|
||
/* Iterate over all the PLT chunks, including any extra sections
|
||
created earlier because the initial count of PLT relocations
|
||
was an overestimate. */
|
||
for (chunk = 0;
|
||
(splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
|
||
chunk++)
|
||
{
|
||
int chunk_entries;
|
||
|
||
sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
|
||
if (sgotplt == NULL)
|
||
abort ();
|
||
|
||
if (chunk < plt_chunks - 1)
|
||
chunk_entries = PLT_ENTRIES_PER_CHUNK;
|
||
else if (chunk == plt_chunks - 1)
|
||
chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
|
||
else
|
||
chunk_entries = 0;
|
||
|
||
if (chunk_entries != 0)
|
||
{
|
||
sgotplt->_raw_size = 4 * (chunk_entries + 2);
|
||
splt->_raw_size = PLT_ENTRY_SIZE * chunk_entries;
|
||
srelgot->_raw_size += 2 * sizeof (Elf32_External_Rela);
|
||
spltlittbl->_raw_size += 8;
|
||
}
|
||
else
|
||
{
|
||
sgotplt->_raw_size = 0;
|
||
splt->_raw_size = 0;
|
||
}
|
||
}
|
||
|
||
/* Allocate space in ".got.loc" to match the total size of all the
|
||
literal tables. */
|
||
sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
|
||
if (sgotloc == NULL)
|
||
abort ();
|
||
sgotloc->_raw_size = spltlittbl->_raw_size;
|
||
for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
||
{
|
||
if (abfd->flags & DYNAMIC)
|
||
continue;
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (! elf_discarded_section (s)
|
||
&& xtensa_is_littable_section (s)
|
||
&& s != spltlittbl)
|
||
sgotloc->_raw_size += s->_raw_size;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate memory for dynamic sections. */
|
||
relplt = FALSE;
|
||
relgot = FALSE;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *name;
|
||
bfd_boolean strip;
|
||
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
/* It's OK to base decisions on the section name, because none
|
||
of the dynobj section names depend upon the input files. */
|
||
name = bfd_get_section_name (dynobj, s);
|
||
|
||
strip = FALSE;
|
||
|
||
if (strncmp (name, ".rela", 5) == 0)
|
||
{
|
||
if (strcmp (name, ".rela.plt") == 0)
|
||
relplt = TRUE;
|
||
else if (strcmp (name, ".rela.got") == 0)
|
||
relgot = TRUE;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
else if (strncmp (name, ".plt.", 5) == 0
|
||
|| strncmp (name, ".got.plt.", 9) == 0)
|
||
{
|
||
if (s->_raw_size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the output
|
||
file. We must create the ".plt*" and ".got.plt*"
|
||
sections in create_dynamic_sections and/or check_relocs
|
||
based on a conservative estimate of the PLT relocation
|
||
count, because the sections must be created before the
|
||
linker maps input sections to output sections. The
|
||
linker does that before size_dynamic_sections, where we
|
||
compute the exact size of the PLT, so there may be more
|
||
of these sections than are actually needed. */
|
||
strip = TRUE;
|
||
}
|
||
}
|
||
else if (strcmp (name, ".got") != 0
|
||
&& strcmp (name, ".plt") != 0
|
||
&& strcmp (name, ".got.plt") != 0
|
||
&& strcmp (name, ".xt.lit.plt") != 0
|
||
&& strcmp (name, ".got.loc") != 0)
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (strip)
|
||
_bfd_strip_section_from_output (info, s);
|
||
else
|
||
{
|
||
/* Allocate memory for the section contents. */
|
||
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
|
||
if (s->contents == NULL && s->_raw_size != 0)
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Add the special XTENSA_RTLD relocations now. The offsets won't be
|
||
known until finish_dynamic_sections, but we need to get the relocs
|
||
in place before they are sorted. */
|
||
if (srelgot == NULL)
|
||
abort ();
|
||
for (chunk = 0; chunk < plt_chunks; chunk++)
|
||
{
|
||
Elf_Internal_Rela irela;
|
||
bfd_byte *loc;
|
||
|
||
irela.r_offset = 0;
|
||
irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
|
||
irela.r_addend = 0;
|
||
|
||
loc = (srelgot->contents
|
||
+ srelgot->reloc_count * sizeof (Elf32_External_Rela));
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela,
|
||
loc + sizeof (Elf32_External_Rela));
|
||
srelgot->reloc_count += 2;
|
||
}
|
||
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf_xtensa_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
#define add_dynamic_entry(TAG, VAL) \
|
||
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
||
|
||
if (! info->shared)
|
||
{
|
||
if (!add_dynamic_entry (DT_DEBUG, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relplt)
|
||
{
|
||
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
||
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
||
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
||
|| !add_dynamic_entry (DT_JMPREL, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relgot)
|
||
{
|
||
if (!add_dynamic_entry (DT_RELA, 0)
|
||
|| !add_dynamic_entry (DT_RELASZ, 0)
|
||
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
||
return FALSE;
|
||
}
|
||
|
||
if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
|
||
|| !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
|
||
return FALSE;
|
||
}
|
||
#undef add_dynamic_entry
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Remove any PT_LOAD segments with no allocated sections. Prior to
|
||
binutils 2.13, this function used to remove the non-SEC_ALLOC
|
||
sections from PT_LOAD segments, but that task has now been moved
|
||
into elf.c. We still need this function to remove any empty
|
||
segments that result, but there's nothing Xtensa-specific about
|
||
this and it probably ought to be moved into elf.c as well. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_modify_segment_map (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
{
|
||
struct elf_segment_map **m_p;
|
||
|
||
m_p = &elf_tdata (abfd)->segment_map;
|
||
while (*m_p != NULL)
|
||
{
|
||
if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
|
||
*m_p = (*m_p)->next;
|
||
else
|
||
m_p = &(*m_p)->next;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Perform the specified relocation. The instruction at (contents + address)
|
||
is modified to set one operand to represent the value in "relocation". The
|
||
operand position is determined by the relocation type recorded in the
|
||
howto. */
|
||
|
||
#define CALL_SEGMENT_BITS (30)
|
||
#define CALL_SEGMENT_SIZE (1<<CALL_SEGMENT_BITS)
|
||
|
||
static bfd_reloc_status_type
|
||
elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
|
||
contents, address, is_weak_undef, error_message)
|
||
reloc_howto_type *howto;
|
||
bfd *abfd;
|
||
asection *input_section;
|
||
bfd_vma relocation;
|
||
bfd_byte *contents;
|
||
bfd_vma address;
|
||
bfd_boolean is_weak_undef;
|
||
char **error_message;
|
||
{
|
||
xtensa_opcode opcode;
|
||
xtensa_operand operand;
|
||
xtensa_encode_result encode_result;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
xtensa_insnbuf ibuff;
|
||
bfd_vma self_address;
|
||
int opnd;
|
||
uint32 newval;
|
||
|
||
switch (howto->type)
|
||
{
|
||
case R_XTENSA_NONE:
|
||
return bfd_reloc_ok;
|
||
|
||
case R_XTENSA_ASM_EXPAND:
|
||
if (!is_weak_undef)
|
||
{
|
||
/* Check for windowed CALL across a 1GB boundary. */
|
||
xtensa_opcode opcode =
|
||
get_expanded_call_opcode (contents + address,
|
||
input_section->_raw_size - address);
|
||
if (is_windowed_call_opcode (opcode))
|
||
{
|
||
self_address = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ address);
|
||
if ((self_address >> CALL_SEGMENT_BITS) !=
|
||
(relocation >> CALL_SEGMENT_BITS))
|
||
{
|
||
*error_message = "windowed longcall crosses 1GB boundary; "
|
||
"return may fail";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
}
|
||
}
|
||
return bfd_reloc_ok;
|
||
|
||
case R_XTENSA_ASM_SIMPLIFY:
|
||
{
|
||
/* Convert the L32R/CALLX to CALL. */
|
||
bfd_reloc_status_type retval =
|
||
elf_xtensa_do_asm_simplify (contents, address,
|
||
input_section->_raw_size);
|
||
if (retval != bfd_reloc_ok)
|
||
return retval;
|
||
|
||
/* The CALL needs to be relocated. Continue below for that part. */
|
||
address += 3;
|
||
howto = &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
|
||
}
|
||
break;
|
||
|
||
case R_XTENSA_32:
|
||
case R_XTENSA_PLT:
|
||
{
|
||
bfd_vma x;
|
||
x = bfd_get_32 (abfd, contents + address);
|
||
x = x + relocation;
|
||
bfd_put_32 (abfd, x, contents + address);
|
||
}
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Read the instruction into a buffer and decode the opcode. */
|
||
ibuff = xtensa_insnbuf_alloc (isa);
|
||
xtensa_insnbuf_from_chars (isa, ibuff, contents + address);
|
||
opcode = xtensa_decode_insn (isa, ibuff);
|
||
|
||
/* Determine which operand is being relocated. */
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
{
|
||
*error_message = "cannot decode instruction";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
if (howto->type < R_XTENSA_OP0 || howto->type > R_XTENSA_OP2)
|
||
{
|
||
*error_message = "unexpected relocation";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
opnd = howto->type - R_XTENSA_OP0;
|
||
|
||
/* Calculate the PC address for this instruction. */
|
||
if (!howto->pc_relative)
|
||
{
|
||
*error_message = "expected PC-relative relocation";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
self_address = (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ address);
|
||
|
||
/* Apply the relocation. */
|
||
operand = xtensa_get_operand (isa, opcode, opnd);
|
||
newval = xtensa_operand_do_reloc (operand, relocation, self_address);
|
||
encode_result = xtensa_operand_encode (operand, &newval);
|
||
xtensa_operand_set_field (operand, ibuff, newval);
|
||
|
||
/* Write the modified instruction back out of the buffer. */
|
||
xtensa_insnbuf_to_chars (isa, ibuff, contents + address);
|
||
free (ibuff);
|
||
|
||
if (encode_result != xtensa_encode_result_ok)
|
||
{
|
||
char *message = build_encoding_error_message (opcode, encode_result);
|
||
*error_message = message;
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
/* Final check for call. */
|
||
if (is_direct_call_opcode (opcode)
|
||
&& is_windowed_call_opcode (opcode))
|
||
{
|
||
if ((self_address >> CALL_SEGMENT_BITS) !=
|
||
(relocation >> CALL_SEGMENT_BITS))
|
||
{
|
||
*error_message = "windowed call crosses 1GB boundary; "
|
||
"return may fail";
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
}
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
|
||
static char *
|
||
vsprint_msg VPARAMS ((const char *origmsg, const char *fmt, int arglen, ...))
|
||
{
|
||
/* To reduce the size of the memory leak,
|
||
we only use a single message buffer. */
|
||
static bfd_size_type alloc_size = 0;
|
||
static char *message = NULL;
|
||
bfd_size_type orig_len, len = 0;
|
||
bfd_boolean is_append;
|
||
|
||
VA_OPEN (ap, arglen);
|
||
VA_FIXEDARG (ap, const char *, origmsg);
|
||
|
||
is_append = (origmsg == message);
|
||
|
||
orig_len = strlen (origmsg);
|
||
len = orig_len + strlen (fmt) + arglen + 20;
|
||
if (len > alloc_size)
|
||
{
|
||
message = (char *) bfd_realloc (message, len);
|
||
alloc_size = len;
|
||
}
|
||
if (!is_append)
|
||
memcpy (message, origmsg, orig_len);
|
||
vsprintf (message + orig_len, fmt, ap);
|
||
VA_CLOSE (ap);
|
||
return message;
|
||
}
|
||
|
||
|
||
static char *
|
||
build_encoding_error_message (opcode, encode_result)
|
||
xtensa_opcode opcode;
|
||
xtensa_encode_result encode_result;
|
||
{
|
||
const char *opname = xtensa_opcode_name (xtensa_default_isa, opcode);
|
||
const char *msg = NULL;
|
||
|
||
switch (encode_result)
|
||
{
|
||
case xtensa_encode_result_ok:
|
||
msg = "unexpected valid encoding";
|
||
break;
|
||
case xtensa_encode_result_align:
|
||
msg = "misaligned encoding";
|
||
break;
|
||
case xtensa_encode_result_not_in_table:
|
||
msg = "encoding not in lookup table";
|
||
break;
|
||
case xtensa_encode_result_too_low:
|
||
msg = "encoding out of range: too low";
|
||
break;
|
||
case xtensa_encode_result_too_high:
|
||
msg = "encoding out of range: too high";
|
||
break;
|
||
case xtensa_encode_result_not_ok:
|
||
default:
|
||
msg = "could not encode";
|
||
break;
|
||
}
|
||
|
||
if (is_direct_call_opcode (opcode)
|
||
&& (encode_result == xtensa_encode_result_too_low
|
||
|| encode_result == xtensa_encode_result_too_high))
|
||
|
||
msg = "direct call out of range";
|
||
|
||
else if (opcode == get_l32r_opcode ())
|
||
{
|
||
/* L32Rs have the strange interaction with encoding in that they
|
||
have an unsigned immediate field, so libisa returns "too high"
|
||
when the absolute value is out of range and never returns "too
|
||
low", but I leave the "too low" message in case anything
|
||
changes. */
|
||
if (encode_result == xtensa_encode_result_too_low)
|
||
msg = "literal out of range";
|
||
else if (encode_result == xtensa_encode_result_too_high)
|
||
msg = "literal placed after use";
|
||
}
|
||
|
||
return vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
|
||
}
|
||
|
||
|
||
/* This function is registered as the "special_function" in the
|
||
Xtensa howto for handling simplify operations.
|
||
bfd_perform_relocation / bfd_install_relocation use it to
|
||
perform (install) the specified relocation. Since this replaces the code
|
||
in bfd_perform_relocation, it is basically an Xtensa-specific,
|
||
stripped-down version of bfd_perform_relocation. */
|
||
|
||
static bfd_reloc_status_type
|
||
bfd_elf_xtensa_reloc (abfd, reloc_entry, symbol, data, input_section,
|
||
output_bfd, error_message)
|
||
bfd *abfd;
|
||
arelent *reloc_entry;
|
||
asymbol *symbol;
|
||
PTR data;
|
||
asection *input_section;
|
||
bfd *output_bfd;
|
||
char **error_message;
|
||
{
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type flag;
|
||
bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
|
||
bfd_vma output_base = 0;
|
||
reloc_howto_type *howto = reloc_entry->howto;
|
||
asection *reloc_target_output_section;
|
||
bfd_boolean is_weak_undef;
|
||
|
||
/* ELF relocs are against symbols. If we are producing relocatable
|
||
output, and the reloc is against an external symbol, the resulting
|
||
reloc will also be against the same symbol. In such a case, we
|
||
don't want to change anything about the way the reloc is handled,
|
||
since it will all be done at final link time. This test is similar
|
||
to what bfd_elf_generic_reloc does except that it lets relocs with
|
||
howto->partial_inplace go through even if the addend is non-zero.
|
||
(The real problem is that partial_inplace is set for XTENSA_32
|
||
relocs to begin with, but that's a long story and there's little we
|
||
can do about it now....) */
|
||
|
||
if (output_bfd != (bfd *) NULL
|
||
&& (symbol->flags & BSF_SECTION_SYM) == 0)
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Is the address of the relocation really within the section? */
|
||
if (reloc_entry->address > (input_section->_cooked_size
|
||
/ bfd_octets_per_byte (abfd)))
|
||
return bfd_reloc_outofrange;
|
||
|
||
/* Work out which section the relocation is targeted at and the
|
||
initial relocation command value. */
|
||
|
||
/* Get symbol value. (Common symbols are special.) */
|
||
if (bfd_is_com_section (symbol->section))
|
||
relocation = 0;
|
||
else
|
||
relocation = symbol->value;
|
||
|
||
reloc_target_output_section = symbol->section->output_section;
|
||
|
||
/* Convert input-section-relative symbol value to absolute. */
|
||
if ((output_bfd && !howto->partial_inplace)
|
||
|| reloc_target_output_section == NULL)
|
||
output_base = 0;
|
||
else
|
||
output_base = reloc_target_output_section->vma;
|
||
|
||
relocation += output_base + symbol->section->output_offset;
|
||
|
||
/* Add in supplied addend. */
|
||
relocation += reloc_entry->addend;
|
||
|
||
/* Here the variable relocation holds the final address of the
|
||
symbol we are relocating against, plus any addend. */
|
||
if (output_bfd)
|
||
{
|
||
if (!howto->partial_inplace)
|
||
{
|
||
/* This is a partial relocation, and we want to apply the relocation
|
||
to the reloc entry rather than the raw data. Everything except
|
||
relocations against section symbols has already been handled
|
||
above. */
|
||
|
||
BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
|
||
reloc_entry->addend = relocation;
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
else
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
reloc_entry->addend = 0;
|
||
}
|
||
}
|
||
|
||
is_weak_undef = (bfd_is_und_section (symbol->section)
|
||
&& (symbol->flags & BSF_WEAK) != 0);
|
||
flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
|
||
(bfd_byte *) data, (bfd_vma) octets,
|
||
is_weak_undef, error_message);
|
||
|
||
if (flag == bfd_reloc_dangerous)
|
||
{
|
||
/* Add the symbol name to the error message. */
|
||
if (! *error_message)
|
||
*error_message = "";
|
||
*error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
|
||
strlen (symbol->name) + 17,
|
||
symbol->name, reloc_entry->addend);
|
||
}
|
||
|
||
return flag;
|
||
}
|
||
|
||
|
||
/* Set up an entry in the procedure linkage table. */
|
||
|
||
static bfd_vma
|
||
elf_xtensa_create_plt_entry (dynobj, output_bfd, reloc_index)
|
||
bfd *dynobj;
|
||
bfd *output_bfd;
|
||
unsigned reloc_index;
|
||
{
|
||
asection *splt, *sgotplt;
|
||
bfd_vma plt_base, got_base;
|
||
bfd_vma code_offset, lit_offset;
|
||
int chunk;
|
||
|
||
chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
|
||
splt = elf_xtensa_get_plt_section (dynobj, chunk);
|
||
sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
|
||
BFD_ASSERT (splt != NULL && sgotplt != NULL);
|
||
|
||
plt_base = splt->output_section->vma + splt->output_offset;
|
||
got_base = sgotplt->output_section->vma + sgotplt->output_offset;
|
||
|
||
lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
|
||
code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
|
||
|
||
/* Fill in the literal entry. This is the offset of the dynamic
|
||
relocation entry. */
|
||
bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
|
||
sgotplt->contents + lit_offset);
|
||
|
||
/* Fill in the entry in the procedure linkage table. */
|
||
memcpy (splt->contents + code_offset,
|
||
(bfd_big_endian (output_bfd)
|
||
? elf_xtensa_be_plt_entry
|
||
: elf_xtensa_le_plt_entry),
|
||
PLT_ENTRY_SIZE);
|
||
bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
|
||
plt_base + code_offset + 3),
|
||
splt->contents + code_offset + 4);
|
||
bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
|
||
plt_base + code_offset + 6),
|
||
splt->contents + code_offset + 7);
|
||
bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
|
||
plt_base + code_offset + 9),
|
||
splt->contents + code_offset + 10);
|
||
|
||
return plt_base + code_offset;
|
||
}
|
||
|
||
|
||
/* Relocate an Xtensa ELF section. This is invoked by the linker for
|
||
both relocatable and final links. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_relocate_section (output_bfd, info, input_bfd,
|
||
input_section, contents, relocs,
|
||
local_syms, local_sections)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *relocs;
|
||
Elf_Internal_Sym *local_syms;
|
||
asection **local_sections;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
asection *srelgot, *srelplt;
|
||
bfd *dynobj;
|
||
property_table_entry *lit_table = 0;
|
||
int ltblsize = 0;
|
||
char *error_message = NULL;
|
||
|
||
if (xtensa_default_isa == NULL)
|
||
xtensa_isa_init ();
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
|
||
srelgot = NULL;
|
||
srelplt = NULL;
|
||
if (dynobj != NULL)
|
||
{
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
|
||
srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
ltblsize = xtensa_read_table_entries (input_bfd, input_section,
|
||
&lit_table, XTENSA_LIT_SEC_NAME);
|
||
if (ltblsize < 0)
|
||
return FALSE;
|
||
}
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
bfd_boolean is_weak_undef;
|
||
bfd_boolean unresolved_reloc;
|
||
bfd_boolean warned;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (r_type == (int) R_XTENSA_GNU_VTINHERIT
|
||
|| r_type == (int) R_XTENSA_GNU_VTENTRY)
|
||
continue;
|
||
|
||
if (r_type < 0 || r_type >= (int) R_XTENSA_max)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
howto = &elf_howto_table[r_type];
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
if (info->relocatable)
|
||
{
|
||
/* This is a relocatable link.
|
||
1) If the reloc is against a section symbol, adjust
|
||
according to the output section.
|
||
2) If there is a new target for this relocation,
|
||
the new target will be in the same output section.
|
||
We adjust the relocation by the output section
|
||
difference. */
|
||
|
||
if (relaxing_section)
|
||
{
|
||
/* Check if this references a section in another input file. */
|
||
do_fix_for_relocatable_link (rel, input_bfd, input_section);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
}
|
||
|
||
if (r_type == R_XTENSA_ASM_SIMPLIFY)
|
||
{
|
||
/* Convert ASM_SIMPLIFY into the simpler relocation
|
||
so that they never escape a relaxing link. */
|
||
contract_asm_expansion (contents, input_section->_raw_size, rel);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
}
|
||
|
||
/* This is a relocatable link, so we don't have to change
|
||
anything unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
{
|
||
sec = local_sections[r_symndx];
|
||
rel->r_addend += sec->output_offset + sym->st_value;
|
||
}
|
||
}
|
||
|
||
/* If there is an addend with a partial_inplace howto,
|
||
then move the addend to the contents. This is a hack
|
||
to work around problems with DWARF in relocatable links
|
||
with some previous version of BFD. Now we can't easily get
|
||
rid of the hack without breaking backward compatibility.... */
|
||
if (rel->r_addend)
|
||
{
|
||
howto = &elf_howto_table[r_type];
|
||
if (howto->partial_inplace)
|
||
{
|
||
r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
|
||
rel->r_addend, contents,
|
||
rel->r_offset, FALSE,
|
||
&error_message);
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
if (!((*info->callbacks->reloc_dangerous)
|
||
(info, error_message, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
rel->r_addend = 0;
|
||
}
|
||
}
|
||
|
||
/* Done with work for relocatable link; continue with next reloc. */
|
||
continue;
|
||
}
|
||
|
||
/* This is a final link. */
|
||
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
is_weak_undef = FALSE;
|
||
unresolved_reloc = FALSE;
|
||
warned = FALSE;
|
||
|
||
if (howto->partial_inplace)
|
||
{
|
||
/* Because R_XTENSA_32 was made partial_inplace to fix some
|
||
problems with DWARF info in partial links, there may be
|
||
an addend stored in the contents. Take it out of there
|
||
and move it back into the addend field of the reloc. */
|
||
rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
|
||
bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
|
||
}
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
||
}
|
||
else
|
||
{
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation,
|
||
unresolved_reloc, warned);
|
||
|
||
if (relocation == 0
|
||
&& !unresolved_reloc
|
||
&& h->root.type == bfd_link_hash_undefweak)
|
||
is_weak_undef = TRUE;
|
||
}
|
||
|
||
if (relaxing_section)
|
||
{
|
||
/* Check if this references a section in another input file. */
|
||
do_fix_for_final_link (rel, input_section, &relocation);
|
||
|
||
/* Update some already cached values. */
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
howto = &elf_howto_table[r_type];
|
||
}
|
||
|
||
/* Sanity check the address. */
|
||
if (rel->r_offset >= input_section->_raw_size
|
||
&& ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Generate dynamic relocations. */
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
|
||
|
||
if (dynamic_symbol && (r_type == R_XTENSA_OP0
|
||
|| r_type == R_XTENSA_OP1
|
||
|| r_type == R_XTENSA_OP2))
|
||
{
|
||
/* This is an error. The symbol's real value won't be known
|
||
until runtime and it's likely to be out of range anyway. */
|
||
const char *name = h->root.root.string;
|
||
error_message = vsprint_msg ("invalid relocation for dynamic "
|
||
"symbol", ": %s",
|
||
strlen (name) + 2, name);
|
||
if (!((*info->callbacks->reloc_dangerous)
|
||
(info, error_message, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
|
||
&& (input_section->flags & SEC_ALLOC) != 0
|
||
&& (dynamic_symbol || info->shared))
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
asection *srel;
|
||
|
||
if (dynamic_symbol && r_type == R_XTENSA_PLT)
|
||
srel = srelplt;
|
||
else
|
||
srel = srelgot;
|
||
|
||
BFD_ASSERT (srel != NULL);
|
||
|
||
outrel.r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info,
|
||
input_section, rel->r_offset);
|
||
|
||
if ((outrel.r_offset | 1) == (bfd_vma) -1)
|
||
memset (&outrel, 0, sizeof outrel);
|
||
else
|
||
{
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
/* Complain if the relocation is in a read-only section
|
||
and not in a literal pool. */
|
||
if ((input_section->flags & SEC_READONLY) != 0
|
||
&& !elf_xtensa_in_literal_pool (lit_table, ltblsize,
|
||
outrel.r_offset))
|
||
{
|
||
error_message =
|
||
_("dynamic relocation in read-only section");
|
||
if (!((*info->callbacks->reloc_dangerous)
|
||
(info, error_message, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
|
||
if (dynamic_symbol)
|
||
{
|
||
outrel.r_addend = rel->r_addend;
|
||
rel->r_addend = 0;
|
||
|
||
if (r_type == R_XTENSA_32)
|
||
{
|
||
outrel.r_info =
|
||
ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
|
||
relocation = 0;
|
||
}
|
||
else /* r_type == R_XTENSA_PLT */
|
||
{
|
||
outrel.r_info =
|
||
ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
|
||
|
||
/* Create the PLT entry and set the initial
|
||
contents of the literal entry to the address of
|
||
the PLT entry. */
|
||
relocation =
|
||
elf_xtensa_create_plt_entry (dynobj, output_bfd,
|
||
srel->reloc_count);
|
||
}
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else
|
||
{
|
||
/* Generate a RELATIVE relocation. */
|
||
outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
|
||
outrel.r_addend = 0;
|
||
}
|
||
}
|
||
|
||
loc = (srel->contents
|
||
+ srel->reloc_count++ * sizeof (Elf32_External_Rela));
|
||
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
||
BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
|
||
<= srel->_cooked_size);
|
||
}
|
||
}
|
||
|
||
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
||
because such sections are not SEC_ALLOC and thus ld.so will
|
||
not process them. */
|
||
if (unresolved_reloc
|
||
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
|
||
(*_bfd_error_handler)
|
||
(_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
|
||
bfd_archive_filename (input_bfd),
|
||
bfd_get_section_name (input_bfd, input_section),
|
||
(long) rel->r_offset,
|
||
h->root.root.string);
|
||
|
||
/* There's no point in calling bfd_perform_relocation here.
|
||
Just go directly to our "special function". */
|
||
r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
|
||
relocation + rel->r_addend,
|
||
contents, rel->r_offset, is_weak_undef,
|
||
&error_message);
|
||
|
||
if (r != bfd_reloc_ok && !warned)
|
||
{
|
||
const char *name;
|
||
|
||
BFD_ASSERT (r == bfd_reloc_dangerous);
|
||
BFD_ASSERT (error_message != (char *) NULL);
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name);
|
||
if (name && *name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
if (name)
|
||
error_message = vsprint_msg (error_message, ": %s",
|
||
strlen (name), name);
|
||
if (!((*info->callbacks->reloc_dangerous)
|
||
(info, error_message, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (lit_table)
|
||
free (lit_table);
|
||
|
||
input_section->reloc_done = TRUE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Finish up dynamic symbol handling. There's not much to do here since
|
||
the PLT and GOT entries are all set up by relocate_section. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_finish_dynamic_symbol (output_bfd, info, h, sym)
|
||
bfd *output_bfd ATTRIBUTE_UNUSED;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
||
{
|
||
/* Mark the symbol as undefined, rather than as defined in
|
||
the .plt section. Leave the value alone. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
}
|
||
|
||
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
||
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
||
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
||
sym->st_shndx = SHN_ABS;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Combine adjacent literal table entries in the output. Adjacent
|
||
entries within each input section may have been removed during
|
||
relaxation, but we repeat the process here, even though it's too late
|
||
to shrink the output section, because it's important to minimize the
|
||
number of literal table entries to reduce the start-up work for the
|
||
runtime linker. Returns the number of remaining table entries or -1
|
||
on error. */
|
||
|
||
static int
|
||
elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc)
|
||
bfd *output_bfd;
|
||
asection *sxtlit;
|
||
asection *sgotloc;
|
||
{
|
||
bfd_byte *contents;
|
||
property_table_entry *table;
|
||
bfd_size_type section_size, sgotloc_size;
|
||
bfd_vma offset;
|
||
int n, m, num;
|
||
|
||
section_size = (sxtlit->_cooked_size != 0
|
||
? sxtlit->_cooked_size : sxtlit->_raw_size);
|
||
BFD_ASSERT (section_size % 8 == 0);
|
||
num = section_size / 8;
|
||
|
||
sgotloc_size = (sgotloc->_cooked_size != 0
|
||
? sgotloc->_cooked_size : sgotloc->_raw_size);
|
||
if (sgotloc_size != section_size)
|
||
{
|
||
(*_bfd_error_handler)
|
||
("internal inconsistency in size of .got.loc section");
|
||
return -1;
|
||
}
|
||
|
||
contents = (bfd_byte *) bfd_malloc (section_size);
|
||
table = (property_table_entry *)
|
||
bfd_malloc (num * sizeof (property_table_entry));
|
||
if (contents == 0 || table == 0)
|
||
return -1;
|
||
|
||
/* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
|
||
propagates to the output section, where it doesn't really apply and
|
||
where it breaks the following call to bfd_get_section_contents. */
|
||
sxtlit->flags &= ~SEC_IN_MEMORY;
|
||
|
||
if (! bfd_get_section_contents (output_bfd, sxtlit, contents, 0,
|
||
section_size))
|
||
return -1;
|
||
|
||
/* There should never be any relocations left at this point, so this
|
||
is quite a bit easier than what is done during relaxation. */
|
||
|
||
/* Copy the raw contents into a property table array and sort it. */
|
||
offset = 0;
|
||
for (n = 0; n < num; n++)
|
||
{
|
||
table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
|
||
table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
|
||
offset += 8;
|
||
}
|
||
qsort (table, num, sizeof (property_table_entry), property_table_compare);
|
||
|
||
for (n = 0; n < num; n++)
|
||
{
|
||
bfd_boolean remove = FALSE;
|
||
|
||
if (table[n].size == 0)
|
||
remove = TRUE;
|
||
else if (n > 0 &&
|
||
(table[n-1].address + table[n-1].size == table[n].address))
|
||
{
|
||
table[n-1].size += table[n].size;
|
||
remove = TRUE;
|
||
}
|
||
|
||
if (remove)
|
||
{
|
||
for (m = n; m < num - 1; m++)
|
||
{
|
||
table[m].address = table[m+1].address;
|
||
table[m].size = table[m+1].size;
|
||
}
|
||
|
||
n--;
|
||
num--;
|
||
}
|
||
}
|
||
|
||
/* Copy the data back to the raw contents. */
|
||
offset = 0;
|
||
for (n = 0; n < num; n++)
|
||
{
|
||
bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
|
||
bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
|
||
offset += 8;
|
||
}
|
||
|
||
/* Clear the removed bytes. */
|
||
if ((bfd_size_type) (num * 8) < section_size)
|
||
{
|
||
memset (&contents[num * 8], 0, section_size - num * 8);
|
||
sxtlit->_cooked_size = num * 8;
|
||
}
|
||
|
||
if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
|
||
section_size))
|
||
return -1;
|
||
|
||
/* Copy the contents to ".got.loc". */
|
||
memcpy (sgotloc->contents, contents, section_size);
|
||
|
||
free (contents);
|
||
free (table);
|
||
return num;
|
||
}
|
||
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_finish_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj;
|
||
asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
|
||
Elf32_External_Dyn *dyncon, *dynconend;
|
||
int num_xtlit_entries;
|
||
|
||
if (! elf_hash_table (info)->dynamic_sections_created)
|
||
return TRUE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
BFD_ASSERT (sdyn != NULL);
|
||
|
||
/* Set the first entry in the global offset table to the address of
|
||
the dynamic section. */
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
if (sgot)
|
||
{
|
||
BFD_ASSERT (sgot->_raw_size == 4);
|
||
if (sdyn == NULL)
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
|
||
else
|
||
bfd_put_32 (output_bfd,
|
||
sdyn->output_section->vma + sdyn->output_offset,
|
||
sgot->contents);
|
||
}
|
||
|
||
srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
if (srelplt != NULL && srelplt->_raw_size != 0)
|
||
{
|
||
asection *sgotplt, *srelgot, *spltlittbl;
|
||
int chunk, plt_chunks, plt_entries;
|
||
Elf_Internal_Rela irela;
|
||
bfd_byte *loc;
|
||
unsigned rtld_reloc;
|
||
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
|
||
BFD_ASSERT (srelgot != NULL);
|
||
|
||
spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
|
||
BFD_ASSERT (spltlittbl != NULL);
|
||
|
||
/* Find the first XTENSA_RTLD relocation. Presumably the rest
|
||
of them follow immediately after.... */
|
||
for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
|
||
{
|
||
loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
||
if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
|
||
break;
|
||
}
|
||
BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
|
||
|
||
plt_entries = (srelplt->_raw_size / sizeof (Elf32_External_Rela));
|
||
plt_chunks =
|
||
(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
|
||
|
||
for (chunk = 0; chunk < plt_chunks; chunk++)
|
||
{
|
||
int chunk_entries = 0;
|
||
|
||
sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
|
||
BFD_ASSERT (sgotplt != NULL);
|
||
|
||
/* Emit special RTLD relocations for the first two entries in
|
||
each chunk of the .got.plt section. */
|
||
|
||
loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
||
BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
|
||
irela.r_offset = (sgotplt->output_section->vma
|
||
+ sgotplt->output_offset);
|
||
irela.r_addend = 1; /* tell rtld to set value to resolver function */
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
||
rtld_reloc += 1;
|
||
BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
|
||
|
||
/* Next literal immediately follows the first. */
|
||
loc += sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
||
BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
|
||
irela.r_offset = (sgotplt->output_section->vma
|
||
+ sgotplt->output_offset + 4);
|
||
/* Tell rtld to set value to object's link map. */
|
||
irela.r_addend = 2;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
||
rtld_reloc += 1;
|
||
BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
|
||
|
||
/* Fill in the literal table. */
|
||
if (chunk < plt_chunks - 1)
|
||
chunk_entries = PLT_ENTRIES_PER_CHUNK;
|
||
else
|
||
chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
|
||
|
||
BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->_cooked_size);
|
||
bfd_put_32 (output_bfd,
|
||
sgotplt->output_section->vma + sgotplt->output_offset,
|
||
spltlittbl->contents + (chunk * 8) + 0);
|
||
bfd_put_32 (output_bfd,
|
||
8 + (chunk_entries * 4),
|
||
spltlittbl->contents + (chunk * 8) + 4);
|
||
}
|
||
|
||
/* All the dynamic relocations have been emitted at this point.
|
||
Make sure the relocation sections are the correct size. */
|
||
if (srelgot->_cooked_size != (sizeof (Elf32_External_Rela)
|
||
* srelgot->reloc_count)
|
||
|| srelplt->_cooked_size != (sizeof (Elf32_External_Rela)
|
||
* srelplt->reloc_count))
|
||
abort ();
|
||
|
||
/* The .xt.lit.plt section has just been modified. This must
|
||
happen before the code below which combines adjacent literal
|
||
table entries, and the .xt.lit.plt contents have to be forced to
|
||
the output here. */
|
||
if (! bfd_set_section_contents (output_bfd,
|
||
spltlittbl->output_section,
|
||
spltlittbl->contents,
|
||
spltlittbl->output_offset,
|
||
spltlittbl->_raw_size))
|
||
return FALSE;
|
||
/* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
|
||
spltlittbl->flags &= ~SEC_HAS_CONTENTS;
|
||
}
|
||
|
||
/* Combine adjacent literal table entries. */
|
||
BFD_ASSERT (! info->relocatable);
|
||
sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
|
||
sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
|
||
BFD_ASSERT (sxtlit && sgotloc);
|
||
num_xtlit_entries =
|
||
elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
|
||
if (num_xtlit_entries < 0)
|
||
return FALSE;
|
||
|
||
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char *name;
|
||
asection *s;
|
||
|
||
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case DT_XTENSA_GOT_LOC_SZ:
|
||
dyn.d_un.d_val = num_xtlit_entries;
|
||
break;
|
||
|
||
case DT_XTENSA_GOT_LOC_OFF:
|
||
name = ".got.loc";
|
||
goto get_vma;
|
||
case DT_PLTGOT:
|
||
name = ".got";
|
||
goto get_vma;
|
||
case DT_JMPREL:
|
||
name = ".rela.plt";
|
||
get_vma:
|
||
s = bfd_get_section_by_name (output_bfd, name);
|
||
BFD_ASSERT (s);
|
||
dyn.d_un.d_ptr = s->vma;
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
s = bfd_get_section_by_name (output_bfd, ".rela.plt");
|
||
BFD_ASSERT (s);
|
||
dyn.d_un.d_val = (s->_cooked_size ? s->_cooked_size : s->_raw_size);
|
||
break;
|
||
|
||
case DT_RELASZ:
|
||
/* Adjust RELASZ to not include JMPREL. This matches what
|
||
glibc expects and what is done for several other ELF
|
||
targets (e.g., i386, alpha), but the "correct" behavior
|
||
seems to be unresolved. Since the linker script arranges
|
||
for .rela.plt to follow all other relocation sections, we
|
||
don't have to worry about changing the DT_RELA entry. */
|
||
s = bfd_get_section_by_name (output_bfd, ".rela.plt");
|
||
if (s)
|
||
{
|
||
dyn.d_un.d_val -=
|
||
(s->_cooked_size ? s->_cooked_size : s->_raw_size);
|
||
}
|
||
break;
|
||
}
|
||
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Functions for dealing with the e_flags field. */
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_merge_private_bfd_data (ibfd, obfd)
|
||
bfd *ibfd;
|
||
bfd *obfd;
|
||
{
|
||
unsigned out_mach, in_mach;
|
||
flagword out_flag, in_flag;
|
||
|
||
/* Check if we have the same endianess. */
|
||
if (!_bfd_generic_verify_endian_match (ibfd, obfd))
|
||
return FALSE;
|
||
|
||
/* Don't even pretend to support mixed-format linking. */
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return FALSE;
|
||
|
||
out_flag = elf_elfheader (obfd)->e_flags;
|
||
in_flag = elf_elfheader (ibfd)->e_flags;
|
||
|
||
out_mach = out_flag & EF_XTENSA_MACH;
|
||
in_mach = in_flag & EF_XTENSA_MACH;
|
||
if (out_mach != in_mach)
|
||
{
|
||
(*_bfd_error_handler)
|
||
("%s: incompatible machine type. Output is 0x%x. Input is 0x%x",
|
||
bfd_archive_filename (ibfd), out_mach, in_mach);
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return FALSE;
|
||
}
|
||
|
||
if (! elf_flags_init (obfd))
|
||
{
|
||
elf_flags_init (obfd) = TRUE;
|
||
elf_elfheader (obfd)->e_flags = in_flag;
|
||
|
||
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
||
&& bfd_get_arch_info (obfd)->the_default)
|
||
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
||
bfd_get_mach (ibfd));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
if ((out_flag & EF_XTENSA_XT_INSN) !=
|
||
(in_flag & EF_XTENSA_XT_INSN))
|
||
elf_elfheader(obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
|
||
|
||
if ((out_flag & EF_XTENSA_XT_LIT) !=
|
||
(in_flag & EF_XTENSA_XT_LIT))
|
||
elf_elfheader(obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_set_private_flags (abfd, flags)
|
||
bfd *abfd;
|
||
flagword flags;
|
||
{
|
||
BFD_ASSERT (!elf_flags_init (abfd)
|
||
|| elf_elfheader (abfd)->e_flags == flags);
|
||
|
||
elf_elfheader (abfd)->e_flags |= flags;
|
||
elf_flags_init (abfd) = TRUE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
extern flagword
|
||
elf_xtensa_get_private_bfd_flags (abfd)
|
||
bfd *abfd;
|
||
{
|
||
return elf_elfheader (abfd)->e_flags;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_print_private_bfd_data (abfd, farg)
|
||
bfd *abfd;
|
||
PTR farg;
|
||
{
|
||
FILE *f = (FILE *) farg;
|
||
flagword e_flags = elf_elfheader (abfd)->e_flags;
|
||
|
||
fprintf (f, "\nXtensa header:\n");
|
||
if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
|
||
fprintf (f, "\nMachine = Base\n");
|
||
else
|
||
fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
|
||
|
||
fprintf (f, "Insn tables = %s\n",
|
||
(e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
|
||
|
||
fprintf (f, "Literal tables = %s\n",
|
||
(e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
|
||
|
||
return _bfd_elf_print_private_bfd_data (abfd, farg);
|
||
}
|
||
|
||
|
||
/* Set the right machine number for an Xtensa ELF file. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_object_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
int mach;
|
||
unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
|
||
|
||
switch (arch)
|
||
{
|
||
case E_XTENSA_MACH:
|
||
mach = bfd_mach_xtensa;
|
||
break;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
|
||
(void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* The final processing done just before writing out an Xtensa ELF object
|
||
file. This gets the Xtensa architecture right based on the machine
|
||
number. */
|
||
|
||
static void
|
||
elf_xtensa_final_write_processing (abfd, linker)
|
||
bfd *abfd;
|
||
bfd_boolean linker ATTRIBUTE_UNUSED;
|
||
{
|
||
int mach;
|
||
unsigned long val;
|
||
|
||
switch (mach = bfd_get_mach (abfd))
|
||
{
|
||
case bfd_mach_xtensa:
|
||
val = E_XTENSA_MACH;
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
|
||
elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
|
||
elf_elfheader (abfd)->e_flags |= val;
|
||
}
|
||
|
||
|
||
static enum elf_reloc_type_class
|
||
elf_xtensa_reloc_type_class (rela)
|
||
const Elf_Internal_Rela *rela;
|
||
{
|
||
switch ((int) ELF32_R_TYPE (rela->r_info))
|
||
{
|
||
case R_XTENSA_RELATIVE:
|
||
return reloc_class_relative;
|
||
case R_XTENSA_JMP_SLOT:
|
||
return reloc_class_plt;
|
||
default:
|
||
return reloc_class_normal;
|
||
}
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)
|
||
bfd *abfd;
|
||
struct elf_reloc_cookie *cookie;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
{
|
||
bfd_byte *contents;
|
||
bfd_vma section_size;
|
||
bfd_vma offset, actual_offset;
|
||
size_t removed_bytes = 0;
|
||
|
||
section_size = (sec->_cooked_size ? sec->_cooked_size : sec->_raw_size);
|
||
if (section_size == 0 || section_size % 8 != 0)
|
||
return FALSE;
|
||
|
||
if (sec->output_section
|
||
&& bfd_is_abs_section (sec->output_section))
|
||
return FALSE;
|
||
|
||
contents = retrieve_contents (abfd, sec, info->keep_memory);
|
||
if (!contents)
|
||
return FALSE;
|
||
|
||
cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
|
||
if (!cookie->rels)
|
||
{
|
||
release_contents (sec, contents);
|
||
return FALSE;
|
||
}
|
||
|
||
cookie->rel = cookie->rels;
|
||
cookie->relend = cookie->rels + sec->reloc_count;
|
||
|
||
for (offset = 0; offset < section_size; offset += 8)
|
||
{
|
||
actual_offset = offset - removed_bytes;
|
||
|
||
/* The ...symbol_deleted_p function will skip over relocs but it
|
||
won't adjust their offsets, so do that here. */
|
||
while (cookie->rel < cookie->relend
|
||
&& cookie->rel->r_offset < offset)
|
||
{
|
||
cookie->rel->r_offset -= removed_bytes;
|
||
cookie->rel++;
|
||
}
|
||
|
||
while (cookie->rel < cookie->relend
|
||
&& cookie->rel->r_offset == offset)
|
||
{
|
||
if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
|
||
{
|
||
/* Remove the table entry. (If the reloc type is NONE, then
|
||
the entry has already been merged with another and deleted
|
||
during relaxation.) */
|
||
if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
|
||
{
|
||
/* Shift the contents up. */
|
||
if (offset + 8 < section_size)
|
||
memmove (&contents[actual_offset],
|
||
&contents[actual_offset+8],
|
||
section_size - offset - 8);
|
||
removed_bytes += 8;
|
||
}
|
||
|
||
/* Remove this relocation. */
|
||
cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
}
|
||
|
||
/* Adjust the relocation offset for previous removals. This
|
||
should not be done before calling ...symbol_deleted_p
|
||
because it might mess up the offset comparisons there.
|
||
Make sure the offset doesn't underflow in the case where
|
||
the first entry is removed. */
|
||
if (cookie->rel->r_offset >= removed_bytes)
|
||
cookie->rel->r_offset -= removed_bytes;
|
||
else
|
||
cookie->rel->r_offset = 0;
|
||
|
||
cookie->rel++;
|
||
}
|
||
}
|
||
|
||
if (removed_bytes != 0)
|
||
{
|
||
/* Adjust any remaining relocs (shouldn't be any). */
|
||
for (; cookie->rel < cookie->relend; cookie->rel++)
|
||
{
|
||
if (cookie->rel->r_offset >= removed_bytes)
|
||
cookie->rel->r_offset -= removed_bytes;
|
||
else
|
||
cookie->rel->r_offset = 0;
|
||
}
|
||
|
||
/* Clear the removed bytes. */
|
||
memset (&contents[section_size - removed_bytes], 0, removed_bytes);
|
||
|
||
pin_contents (sec, contents);
|
||
pin_internal_relocs (sec, cookie->rels);
|
||
|
||
sec->_cooked_size = section_size - removed_bytes;
|
||
/* Also shrink _raw_size. See comments in relax_property_section. */
|
||
sec->_raw_size = sec->_cooked_size;
|
||
|
||
if (xtensa_is_littable_section (sec))
|
||
{
|
||
bfd *dynobj = elf_hash_table (info)->dynobj;
|
||
if (dynobj)
|
||
{
|
||
asection *sgotloc =
|
||
bfd_get_section_by_name (dynobj, ".got.loc");
|
||
if (sgotloc)
|
||
{
|
||
bfd_size_type sgotloc_size =
|
||
(sgotloc->_cooked_size ? sgotloc->_cooked_size
|
||
: sgotloc->_raw_size);
|
||
sgotloc->_cooked_size = sgotloc_size - removed_bytes;
|
||
sgotloc->_raw_size = sgotloc_size - removed_bytes;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, cookie->rels);
|
||
}
|
||
|
||
return (removed_bytes != 0);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_discard_info (abfd, cookie, info)
|
||
bfd *abfd;
|
||
struct elf_reloc_cookie *cookie;
|
||
struct bfd_link_info *info;
|
||
{
|
||
asection *sec;
|
||
bfd_boolean changed = FALSE;
|
||
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (xtensa_is_property_section (sec))
|
||
{
|
||
if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
|
||
changed = TRUE;
|
||
}
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_ignore_discarded_relocs (sec)
|
||
asection *sec;
|
||
{
|
||
return xtensa_is_property_section (sec);
|
||
}
|
||
|
||
|
||
/* Support for core dump NOTE sections. */
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_grok_prstatus (abfd, note)
|
||
bfd *abfd;
|
||
Elf_Internal_Note *note;
|
||
{
|
||
int offset;
|
||
unsigned int raw_size;
|
||
|
||
/* The size for Xtensa is variable, so don't try to recognize the format
|
||
based on the size. Just assume this is GNU/Linux. */
|
||
|
||
/* pr_cursig */
|
||
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
|
||
|
||
/* pr_pid */
|
||
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
|
||
|
||
/* pr_reg */
|
||
offset = 72;
|
||
raw_size = note->descsz - offset - 4;
|
||
|
||
/* Make a ".reg/999" section. */
|
||
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
||
raw_size, note->descpos + offset);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_grok_psinfo (abfd, note)
|
||
bfd *abfd;
|
||
Elf_Internal_Note *note;
|
||
{
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return FALSE;
|
||
|
||
case 128: /* GNU/Linux elf_prpsinfo */
|
||
elf_tdata (abfd)->core_program
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
|
||
elf_tdata (abfd)->core_command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
|
||
}
|
||
|
||
/* Note that for some reason, a spurious space is tacked
|
||
onto the end of the args in some (at least one anyway)
|
||
implementations, so strip it off if it exists. */
|
||
|
||
{
|
||
char *command = elf_tdata (abfd)->core_command;
|
||
int n = strlen (command);
|
||
|
||
if (0 < n && command[n - 1] == ' ')
|
||
command[n - 1] = '\0';
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Generic Xtensa configurability stuff. */
|
||
|
||
static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call0_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call4_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call8_op = XTENSA_UNDEFINED;
|
||
static xtensa_opcode call12_op = XTENSA_UNDEFINED;
|
||
|
||
static void
|
||
init_call_opcodes ()
|
||
{
|
||
if (callx0_op == XTENSA_UNDEFINED)
|
||
{
|
||
callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
|
||
callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
|
||
callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
|
||
callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
|
||
call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
|
||
call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
|
||
call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
|
||
call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
|
||
}
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_indirect_call_opcode (opcode)
|
||
xtensa_opcode opcode;
|
||
{
|
||
init_call_opcodes ();
|
||
return (opcode == callx0_op
|
||
|| opcode == callx4_op
|
||
|| opcode == callx8_op
|
||
|| opcode == callx12_op);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_direct_call_opcode (opcode)
|
||
xtensa_opcode opcode;
|
||
{
|
||
init_call_opcodes ();
|
||
return (opcode == call0_op
|
||
|| opcode == call4_op
|
||
|| opcode == call8_op
|
||
|| opcode == call12_op);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_windowed_call_opcode (opcode)
|
||
xtensa_opcode opcode;
|
||
{
|
||
init_call_opcodes ();
|
||
return (opcode == call4_op
|
||
|| opcode == call8_op
|
||
|| opcode == call12_op
|
||
|| opcode == callx4_op
|
||
|| opcode == callx8_op
|
||
|| opcode == callx12_op);
|
||
}
|
||
|
||
|
||
static xtensa_opcode
|
||
get_l32r_opcode (void)
|
||
{
|
||
static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
|
||
if (l32r_opcode == XTENSA_UNDEFINED)
|
||
{
|
||
l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
|
||
BFD_ASSERT (l32r_opcode != XTENSA_UNDEFINED);
|
||
}
|
||
return l32r_opcode;
|
||
}
|
||
|
||
|
||
static bfd_vma
|
||
l32r_offset (addr, pc)
|
||
bfd_vma addr;
|
||
bfd_vma pc;
|
||
{
|
||
bfd_vma offset;
|
||
|
||
offset = addr - ((pc+3) & -4);
|
||
BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
|
||
offset = (signed int) offset >> 2;
|
||
BFD_ASSERT ((signed int) offset >> 16 == -1);
|
||
return offset;
|
||
}
|
||
|
||
|
||
/* Get the operand number for a PC-relative relocation.
|
||
If the relocation is not a PC-relative one, return (-1). */
|
||
|
||
static int
|
||
get_relocation_opnd (irel)
|
||
Elf_Internal_Rela *irel;
|
||
{
|
||
if (ELF32_R_TYPE (irel->r_info) < R_XTENSA_OP0
|
||
|| ELF32_R_TYPE (irel->r_info) >= R_XTENSA_max)
|
||
return -1;
|
||
return ELF32_R_TYPE (irel->r_info) - R_XTENSA_OP0;
|
||
}
|
||
|
||
|
||
/* Get the opcode for a relocation. */
|
||
|
||
static xtensa_opcode
|
||
get_relocation_opcode (sec, contents, irel)
|
||
asection *sec;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *irel;
|
||
{
|
||
static xtensa_insnbuf ibuff = NULL;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
|
||
if (get_relocation_opnd (irel) == -1)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (contents == NULL)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (sec->_raw_size <= irel->r_offset)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (ibuff == NULL)
|
||
ibuff = xtensa_insnbuf_alloc (isa);
|
||
|
||
/* Decode the instruction. */
|
||
xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset]);
|
||
return xtensa_decode_insn (isa, ibuff);
|
||
}
|
||
|
||
|
||
bfd_boolean
|
||
is_l32r_relocation (sec, contents, irel)
|
||
asection *sec;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *irel;
|
||
{
|
||
xtensa_opcode opcode;
|
||
|
||
if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_OP1)
|
||
return FALSE;
|
||
|
||
opcode = get_relocation_opcode (sec, contents, irel);
|
||
return (opcode == get_l32r_opcode ());
|
||
}
|
||
|
||
|
||
/* Code for transforming CALLs at link-time. */
|
||
|
||
static bfd_reloc_status_type
|
||
elf_xtensa_do_asm_simplify (contents, address, content_length)
|
||
bfd_byte *contents;
|
||
bfd_vma address;
|
||
bfd_vma content_length;
|
||
{
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
xtensa_opcode opcode;
|
||
xtensa_operand operand;
|
||
xtensa_opcode direct_call_opcode;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
bfd_byte *chbuf = contents + address;
|
||
int opn;
|
||
|
||
if (insnbuf == NULL)
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
|
||
if (content_length < address)
|
||
{
|
||
(*_bfd_error_handler)
|
||
("Attempt to convert L32R/CALLX to CALL failed");
|
||
return bfd_reloc_other;
|
||
}
|
||
|
||
opcode = get_expanded_call_opcode (chbuf, content_length - address);
|
||
direct_call_opcode = swap_callx_for_call_opcode (opcode);
|
||
if (direct_call_opcode == XTENSA_UNDEFINED)
|
||
{
|
||
(*_bfd_error_handler)
|
||
("Attempt to convert L32R/CALLX to CALL failed");
|
||
return bfd_reloc_other;
|
||
}
|
||
|
||
/* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
|
||
opcode = xtensa_opcode_lookup (isa, "or");
|
||
xtensa_encode_insn (isa, opcode, insnbuf);
|
||
for (opn = 0; opn < 3; opn++)
|
||
{
|
||
operand = xtensa_get_operand (isa, opcode, opn);
|
||
xtensa_operand_set_field (operand, insnbuf, 1);
|
||
}
|
||
xtensa_insnbuf_to_chars (isa, insnbuf, chbuf);
|
||
|
||
/* Assemble a CALL ("callN 0") into the 3 byte offset. */
|
||
xtensa_encode_insn (isa, direct_call_opcode, insnbuf);
|
||
operand = xtensa_get_operand (isa, opcode, 0);
|
||
xtensa_operand_set_field (operand, insnbuf, 0);
|
||
xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3);
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
|
||
static bfd_reloc_status_type
|
||
contract_asm_expansion (contents, content_length, irel)
|
||
bfd_byte *contents;
|
||
bfd_vma content_length;
|
||
Elf_Internal_Rela *irel;
|
||
{
|
||
bfd_reloc_status_type retval =
|
||
elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length);
|
||
|
||
if (retval != bfd_reloc_ok)
|
||
return retval;
|
||
|
||
/* Update the irel->r_offset field so that the right immediate and
|
||
the right instruction are modified during the relocation. */
|
||
irel->r_offset += 3;
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_OP0);
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
|
||
static xtensa_opcode
|
||
swap_callx_for_call_opcode (opcode)
|
||
xtensa_opcode opcode;
|
||
{
|
||
init_call_opcodes ();
|
||
|
||
if (opcode == callx0_op) return call0_op;
|
||
if (opcode == callx4_op) return call4_op;
|
||
if (opcode == callx8_op) return call8_op;
|
||
if (opcode == callx12_op) return call12_op;
|
||
|
||
/* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
|
||
return XTENSA_UNDEFINED;
|
||
}
|
||
|
||
|
||
/* Check if "buf" is pointing to a "L32R aN; CALLX aN" sequence, and
|
||
if so, return the CALLX opcode. If not, return XTENSA_UNDEFINED. */
|
||
|
||
#define L32R_TARGET_REG_OPERAND 0
|
||
#define CALLN_SOURCE_OPERAND 0
|
||
|
||
static xtensa_opcode
|
||
get_expanded_call_opcode (buf, bufsize)
|
||
bfd_byte *buf;
|
||
int bufsize;
|
||
{
|
||
static xtensa_insnbuf insnbuf = NULL;
|
||
xtensa_opcode opcode;
|
||
xtensa_operand operand;
|
||
xtensa_isa isa = xtensa_default_isa;
|
||
uint32 regno, call_regno;
|
||
|
||
/* Buffer must be at least 6 bytes. */
|
||
if (bufsize < 6)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
if (insnbuf == NULL)
|
||
insnbuf = xtensa_insnbuf_alloc (isa);
|
||
|
||
xtensa_insnbuf_from_chars (isa, insnbuf, buf);
|
||
opcode = xtensa_decode_insn (isa, insnbuf);
|
||
|
||
if (opcode != get_l32r_opcode ())
|
||
return XTENSA_UNDEFINED;
|
||
|
||
operand = xtensa_get_operand (isa, opcode, L32R_TARGET_REG_OPERAND);
|
||
regno = xtensa_operand_decode
|
||
(operand, xtensa_operand_get_field (operand, insnbuf));
|
||
|
||
/* Next instruction should be an CALLXn with operand 0 == regno. */
|
||
xtensa_insnbuf_from_chars (isa, insnbuf,
|
||
buf + xtensa_insn_length (isa, opcode));
|
||
opcode = xtensa_decode_insn (isa, insnbuf);
|
||
|
||
if (!is_indirect_call_opcode (opcode))
|
||
return XTENSA_UNDEFINED;
|
||
|
||
operand = xtensa_get_operand (isa, opcode, CALLN_SOURCE_OPERAND);
|
||
call_regno = xtensa_operand_decode
|
||
(operand, xtensa_operand_get_field (operand, insnbuf));
|
||
if (call_regno != regno)
|
||
return XTENSA_UNDEFINED;
|
||
|
||
return opcode;
|
||
}
|
||
|
||
|
||
/* Data structures used during relaxation. */
|
||
|
||
/* r_reloc: relocation values. */
|
||
|
||
/* Through the relaxation process, we need to keep track of the values
|
||
that will result from evaluating relocations. The standard ELF
|
||
relocation structure is not sufficient for this purpose because we're
|
||
operating on multiple input files at once, so we need to know which
|
||
input file a relocation refers to. The r_reloc structure thus
|
||
records both the input file (bfd) and ELF relocation.
|
||
|
||
For efficiency, an r_reloc also contains a "target_offset" field to
|
||
cache the target-section-relative offset value that is represented by
|
||
the relocation. */
|
||
|
||
typedef struct r_reloc_struct r_reloc;
|
||
|
||
struct r_reloc_struct
|
||
{
|
||
bfd *abfd;
|
||
Elf_Internal_Rela rela;
|
||
bfd_vma target_offset;
|
||
};
|
||
|
||
static bfd_boolean r_reloc_is_const
|
||
PARAMS ((const r_reloc *));
|
||
static void r_reloc_init
|
||
PARAMS ((r_reloc *, bfd *, Elf_Internal_Rela *));
|
||
static bfd_vma r_reloc_get_target_offset
|
||
PARAMS ((const r_reloc *));
|
||
static asection *r_reloc_get_section
|
||
PARAMS ((const r_reloc *));
|
||
static bfd_boolean r_reloc_is_defined
|
||
PARAMS ((const r_reloc *));
|
||
static struct elf_link_hash_entry *r_reloc_get_hash_entry
|
||
PARAMS ((const r_reloc *));
|
||
|
||
|
||
/* The r_reloc structure is included by value in literal_value, but not
|
||
every literal_value has an associated relocation -- some are simple
|
||
constants. In such cases, we set all the fields in the r_reloc
|
||
struct to zero. The r_reloc_is_const function should be used to
|
||
detect this case. */
|
||
|
||
static bfd_boolean
|
||
r_reloc_is_const (r_rel)
|
||
const r_reloc *r_rel;
|
||
{
|
||
return (r_rel->abfd == NULL);
|
||
}
|
||
|
||
|
||
static void
|
||
r_reloc_init (r_rel, abfd, irel)
|
||
r_reloc *r_rel;
|
||
bfd *abfd;
|
||
Elf_Internal_Rela *irel;
|
||
{
|
||
if (irel != NULL)
|
||
{
|
||
r_rel->rela = *irel;
|
||
r_rel->abfd = abfd;
|
||
r_rel->target_offset = r_reloc_get_target_offset (r_rel);
|
||
}
|
||
else
|
||
memset (r_rel, 0, sizeof (r_reloc));
|
||
}
|
||
|
||
|
||
static bfd_vma
|
||
r_reloc_get_target_offset (r_rel)
|
||
const r_reloc *r_rel;
|
||
{
|
||
bfd_vma target_offset;
|
||
unsigned long r_symndx;
|
||
|
||
BFD_ASSERT (!r_reloc_is_const (r_rel));
|
||
r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
||
target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
|
||
return (target_offset + r_rel->rela.r_addend);
|
||
}
|
||
|
||
|
||
static struct elf_link_hash_entry *
|
||
r_reloc_get_hash_entry (r_rel)
|
||
const r_reloc *r_rel;
|
||
{
|
||
unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
||
return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
|
||
}
|
||
|
||
|
||
static asection *
|
||
r_reloc_get_section (r_rel)
|
||
const r_reloc *r_rel;
|
||
{
|
||
unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
||
return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
r_reloc_is_defined (r_rel)
|
||
const r_reloc *r_rel;
|
||
{
|
||
asection *sec = r_reloc_get_section (r_rel);
|
||
if (sec == bfd_abs_section_ptr
|
||
|| sec == bfd_com_section_ptr
|
||
|| sec == bfd_und_section_ptr)
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* source_reloc: relocations that reference literal sections. */
|
||
|
||
/* To determine whether literals can be coalesced, we need to first
|
||
record all the relocations that reference the literals. The
|
||
source_reloc structure below is used for this purpose. The
|
||
source_reloc entries are kept in a per-literal-section array, sorted
|
||
by offset within the literal section (i.e., target offset).
|
||
|
||
The source_sec and r_rel.rela.r_offset fields identify the source of
|
||
the relocation. The r_rel field records the relocation value, i.e.,
|
||
the offset of the literal being referenced. The opnd field is needed
|
||
to determine the range of the immediate field to which the relocation
|
||
applies, so we can determine whether another literal with the same
|
||
value is within range. The is_null field is true when the relocation
|
||
is being removed (e.g., when an L32R is being removed due to a CALLX
|
||
that is converted to a direct CALL). */
|
||
|
||
typedef struct source_reloc_struct source_reloc;
|
||
|
||
struct source_reloc_struct
|
||
{
|
||
asection *source_sec;
|
||
r_reloc r_rel;
|
||
xtensa_operand opnd;
|
||
bfd_boolean is_null;
|
||
};
|
||
|
||
|
||
static void init_source_reloc
|
||
PARAMS ((source_reloc *, asection *, const r_reloc *, xtensa_operand));
|
||
static source_reloc *find_source_reloc
|
||
PARAMS ((source_reloc *, int, asection *, Elf_Internal_Rela *));
|
||
static int source_reloc_compare
|
||
PARAMS ((const PTR, const PTR));
|
||
|
||
|
||
static void
|
||
init_source_reloc (reloc, source_sec, r_rel, opnd)
|
||
source_reloc *reloc;
|
||
asection *source_sec;
|
||
const r_reloc *r_rel;
|
||
xtensa_operand opnd;
|
||
{
|
||
reloc->source_sec = source_sec;
|
||
reloc->r_rel = *r_rel;
|
||
reloc->opnd = opnd;
|
||
reloc->is_null = FALSE;
|
||
}
|
||
|
||
|
||
/* Find the source_reloc for a particular source offset and relocation
|
||
type. Note that the array is sorted by _target_ offset, so this is
|
||
just a linear search. */
|
||
|
||
static source_reloc *
|
||
find_source_reloc (src_relocs, src_count, sec, irel)
|
||
source_reloc *src_relocs;
|
||
int src_count;
|
||
asection *sec;
|
||
Elf_Internal_Rela *irel;
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < src_count; i++)
|
||
{
|
||
if (src_relocs[i].source_sec == sec
|
||
&& src_relocs[i].r_rel.rela.r_offset == irel->r_offset
|
||
&& (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
|
||
== ELF32_R_TYPE (irel->r_info)))
|
||
return &src_relocs[i];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static int
|
||
source_reloc_compare (ap, bp)
|
||
const PTR ap;
|
||
const PTR bp;
|
||
{
|
||
const source_reloc *a = (const source_reloc *) ap;
|
||
const source_reloc *b = (const source_reloc *) bp;
|
||
|
||
return (a->r_rel.target_offset - b->r_rel.target_offset);
|
||
}
|
||
|
||
|
||
/* Literal values and value hash tables. */
|
||
|
||
/* Literals with the same value can be coalesced. The literal_value
|
||
structure records the value of a literal: the "r_rel" field holds the
|
||
information from the relocation on the literal (if there is one) and
|
||
the "value" field holds the contents of the literal word itself.
|
||
|
||
The value_map structure records a literal value along with the
|
||
location of a literal holding that value. The value_map hash table
|
||
is indexed by the literal value, so that we can quickly check if a
|
||
particular literal value has been seen before and is thus a candidate
|
||
for coalescing. */
|
||
|
||
typedef struct literal_value_struct literal_value;
|
||
typedef struct value_map_struct value_map;
|
||
typedef struct value_map_hash_table_struct value_map_hash_table;
|
||
|
||
struct literal_value_struct
|
||
{
|
||
r_reloc r_rel;
|
||
unsigned long value;
|
||
};
|
||
|
||
struct value_map_struct
|
||
{
|
||
literal_value val; /* The literal value. */
|
||
r_reloc loc; /* Location of the literal. */
|
||
value_map *next;
|
||
};
|
||
|
||
struct value_map_hash_table_struct
|
||
{
|
||
unsigned bucket_count;
|
||
value_map **buckets;
|
||
unsigned count;
|
||
};
|
||
|
||
|
||
static bfd_boolean is_same_value
|
||
PARAMS ((const literal_value *, const literal_value *, bfd_boolean));
|
||
static value_map_hash_table *value_map_hash_table_init
|
||
PARAMS ((void));
|
||
static unsigned hash_literal_value
|
||
PARAMS ((const literal_value *));
|
||
static unsigned hash_bfd_vma
|
||
PARAMS ((bfd_vma));
|
||
static value_map *get_cached_value
|
||
PARAMS ((value_map_hash_table *, const literal_value *, bfd_boolean));
|
||
static value_map *add_value_map
|
||
PARAMS ((value_map_hash_table *, const literal_value *, const r_reloc *,
|
||
bfd_boolean));
|
||
|
||
|
||
static bfd_boolean
|
||
is_same_value (src1, src2, final_static_link)
|
||
const literal_value *src1;
|
||
const literal_value *src2;
|
||
bfd_boolean final_static_link;
|
||
{
|
||
struct elf_link_hash_entry *h1, *h2;
|
||
|
||
if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
|
||
return FALSE;
|
||
|
||
if (r_reloc_is_const (&src1->r_rel))
|
||
return (src1->value == src2->value);
|
||
|
||
if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
|
||
!= ELF32_R_TYPE (src2->r_rel.rela.r_info))
|
||
return FALSE;
|
||
|
||
if (r_reloc_get_target_offset (&src1->r_rel)
|
||
!= r_reloc_get_target_offset (&src2->r_rel))
|
||
return FALSE;
|
||
|
||
if (src1->value != src2->value)
|
||
return FALSE;
|
||
|
||
/* Now check for the same section (if defined) or the same elf_hash
|
||
(if undefined or weak). */
|
||
h1 = r_reloc_get_hash_entry (&src1->r_rel);
|
||
h2 = r_reloc_get_hash_entry (&src2->r_rel);
|
||
if (r_reloc_is_defined (&src1->r_rel)
|
||
&& (final_static_link
|
||
|| ((!h1 || h1->root.type != bfd_link_hash_defweak)
|
||
&& (!h2 || h2->root.type != bfd_link_hash_defweak))))
|
||
{
|
||
if (r_reloc_get_section (&src1->r_rel)
|
||
!= r_reloc_get_section (&src2->r_rel))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
/* Require that the hash entries (i.e., symbols) be identical. */
|
||
if (h1 != h2 || h1 == 0)
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Must be power of 2. */
|
||
#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
|
||
|
||
static value_map_hash_table *
|
||
value_map_hash_table_init ()
|
||
{
|
||
value_map_hash_table *values;
|
||
|
||
values = (value_map_hash_table *)
|
||
bfd_malloc (sizeof (value_map_hash_table));
|
||
|
||
values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
|
||
values->count = 0;
|
||
values->buckets = (value_map **)
|
||
bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
|
||
|
||
return values;
|
||
}
|
||
|
||
|
||
static unsigned
|
||
hash_bfd_vma (val)
|
||
bfd_vma val;
|
||
{
|
||
return (val >> 2) + (val >> 10);
|
||
}
|
||
|
||
|
||
static unsigned
|
||
hash_literal_value (src)
|
||
const literal_value *src;
|
||
{
|
||
unsigned hash_val;
|
||
|
||
if (r_reloc_is_const (&src->r_rel))
|
||
return hash_bfd_vma (src->value);
|
||
|
||
hash_val = (hash_bfd_vma (r_reloc_get_target_offset (&src->r_rel))
|
||
+ hash_bfd_vma (src->value));
|
||
|
||
/* Now check for the same section and the same elf_hash. */
|
||
if (r_reloc_is_defined (&src->r_rel))
|
||
hash_val += hash_bfd_vma ((bfd_vma) (unsigned) r_reloc_get_section (&src->r_rel));
|
||
else
|
||
hash_val += hash_bfd_vma ((bfd_vma) (unsigned) r_reloc_get_hash_entry (&src->r_rel));
|
||
|
||
return hash_val;
|
||
}
|
||
|
||
|
||
/* Check if the specified literal_value has been seen before. */
|
||
|
||
static value_map *
|
||
get_cached_value (map, val, final_static_link)
|
||
value_map_hash_table *map;
|
||
const literal_value *val;
|
||
bfd_boolean final_static_link;
|
||
{
|
||
value_map *map_e;
|
||
value_map *bucket;
|
||
unsigned idx;
|
||
|
||
idx = hash_literal_value (val);
|
||
idx = idx & (map->bucket_count - 1);
|
||
bucket = map->buckets[idx];
|
||
for (map_e = bucket; map_e; map_e = map_e->next)
|
||
{
|
||
if (is_same_value (&map_e->val, val, final_static_link))
|
||
return map_e;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Record a new literal value. It is illegal to call this if VALUE
|
||
already has an entry here. */
|
||
|
||
static value_map *
|
||
add_value_map (map, val, loc, final_static_link)
|
||
value_map_hash_table *map;
|
||
const literal_value *val;
|
||
const r_reloc *loc;
|
||
bfd_boolean final_static_link;
|
||
{
|
||
value_map **bucket_p;
|
||
unsigned idx;
|
||
|
||
value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
|
||
|
||
BFD_ASSERT (get_cached_value (map, val, final_static_link) == NULL);
|
||
val_e->val = *val;
|
||
val_e->loc = *loc;
|
||
|
||
idx = hash_literal_value (val);
|
||
idx = idx & (map->bucket_count - 1);
|
||
bucket_p = &map->buckets[idx];
|
||
|
||
val_e->next = *bucket_p;
|
||
*bucket_p = val_e;
|
||
map->count++;
|
||
/* FIXME: consider resizing the hash table if we get too many entries */
|
||
|
||
return val_e;
|
||
}
|
||
|
||
|
||
/* Lists of literals being coalesced or removed. */
|
||
|
||
/* In the usual case, the literal identified by "from" is being
|
||
coalesced with another literal identified by "to". If the literal is
|
||
unused and is being removed altogether, "to.abfd" will be NULL.
|
||
The removed_literal entries are kept on a per-section list, sorted
|
||
by the "from" offset field. */
|
||
|
||
typedef struct removed_literal_struct removed_literal;
|
||
typedef struct removed_literal_list_struct removed_literal_list;
|
||
|
||
struct removed_literal_struct
|
||
{
|
||
r_reloc from;
|
||
r_reloc to;
|
||
removed_literal *next;
|
||
};
|
||
|
||
struct removed_literal_list_struct
|
||
{
|
||
removed_literal *head;
|
||
removed_literal *tail;
|
||
};
|
||
|
||
|
||
static void add_removed_literal
|
||
PARAMS ((removed_literal_list *, const r_reloc *, const r_reloc *));
|
||
static removed_literal *find_removed_literal
|
||
PARAMS ((removed_literal_list *, bfd_vma));
|
||
static bfd_vma offset_with_removed_literals
|
||
PARAMS ((removed_literal_list *, bfd_vma));
|
||
|
||
|
||
/* Record that the literal at "from" is being removed. If "to" is not
|
||
NULL, the "from" literal is being coalesced with the "to" literal. */
|
||
|
||
static void
|
||
add_removed_literal (removed_list, from, to)
|
||
removed_literal_list *removed_list;
|
||
const r_reloc *from;
|
||
const r_reloc *to;
|
||
{
|
||
removed_literal *r, *new_r, *next_r;
|
||
|
||
new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
|
||
|
||
new_r->from = *from;
|
||
if (to)
|
||
new_r->to = *to;
|
||
else
|
||
new_r->to.abfd = NULL;
|
||
new_r->next = NULL;
|
||
|
||
r = removed_list->head;
|
||
if (r == NULL)
|
||
{
|
||
removed_list->head = new_r;
|
||
removed_list->tail = new_r;
|
||
}
|
||
/* Special check for common case of append. */
|
||
else if (removed_list->tail->from.target_offset < from->target_offset)
|
||
{
|
||
removed_list->tail->next = new_r;
|
||
removed_list->tail = new_r;
|
||
}
|
||
else
|
||
{
|
||
while (r->from.target_offset < from->target_offset
|
||
&& r->next != NULL)
|
||
{
|
||
r = r->next;
|
||
}
|
||
next_r = r->next;
|
||
r->next = new_r;
|
||
new_r->next = next_r;
|
||
if (next_r == NULL)
|
||
removed_list->tail = new_r;
|
||
}
|
||
}
|
||
|
||
|
||
/* Check if the list of removed literals contains an entry for the
|
||
given address. Return the entry if found. */
|
||
|
||
static removed_literal *
|
||
find_removed_literal (removed_list, addr)
|
||
removed_literal_list *removed_list;
|
||
bfd_vma addr;
|
||
{
|
||
removed_literal *r = removed_list->head;
|
||
while (r && r->from.target_offset < addr)
|
||
r = r->next;
|
||
if (r && r->from.target_offset == addr)
|
||
return r;
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Adjust an offset in a section to compensate for literals that are
|
||
being removed. Search the list of removed literals and subtract
|
||
4 bytes for every removed literal prior to the given address. */
|
||
|
||
static bfd_vma
|
||
offset_with_removed_literals (removed_list, addr)
|
||
removed_literal_list *removed_list;
|
||
bfd_vma addr;
|
||
{
|
||
removed_literal *r = removed_list->head;
|
||
unsigned num_bytes = 0;
|
||
|
||
if (r == NULL)
|
||
return addr;
|
||
|
||
while (r && r->from.target_offset <= addr)
|
||
{
|
||
num_bytes += 4;
|
||
r = r->next;
|
||
}
|
||
if (num_bytes > addr)
|
||
return 0;
|
||
return (addr - num_bytes);
|
||
}
|
||
|
||
|
||
/* Coalescing literals may require a relocation to refer to a section in
|
||
a different input file, but the standard relocation information
|
||
cannot express that. Instead, the reloc_bfd_fix structures are used
|
||
to "fix" the relocations that refer to sections in other input files.
|
||
These structures are kept on per-section lists. The "src_type" field
|
||
records the relocation type in case there are multiple relocations on
|
||
the same location. FIXME: This is ugly; an alternative might be to
|
||
add new symbols with the "owner" field to some other input file. */
|
||
|
||
typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
|
||
|
||
struct reloc_bfd_fix_struct
|
||
{
|
||
asection *src_sec;
|
||
bfd_vma src_offset;
|
||
unsigned src_type; /* Relocation type. */
|
||
|
||
bfd *target_abfd;
|
||
asection *target_sec;
|
||
bfd_vma target_offset;
|
||
|
||
reloc_bfd_fix *next;
|
||
};
|
||
|
||
|
||
static reloc_bfd_fix *reloc_bfd_fix_init
|
||
PARAMS ((asection *, bfd_vma, unsigned, bfd *, asection *, bfd_vma));
|
||
static reloc_bfd_fix *get_bfd_fix
|
||
PARAMS ((reloc_bfd_fix *, asection *, bfd_vma, unsigned));
|
||
|
||
|
||
static reloc_bfd_fix *
|
||
reloc_bfd_fix_init (src_sec, src_offset, src_type,
|
||
target_abfd, target_sec, target_offset)
|
||
asection *src_sec;
|
||
bfd_vma src_offset;
|
||
unsigned src_type;
|
||
bfd *target_abfd;
|
||
asection *target_sec;
|
||
bfd_vma target_offset;
|
||
{
|
||
reloc_bfd_fix *fix;
|
||
|
||
fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
|
||
fix->src_sec = src_sec;
|
||
fix->src_offset = src_offset;
|
||
fix->src_type = src_type;
|
||
fix->target_abfd = target_abfd;
|
||
fix->target_sec = target_sec;
|
||
fix->target_offset = target_offset;
|
||
|
||
return fix;
|
||
}
|
||
|
||
|
||
static reloc_bfd_fix *
|
||
get_bfd_fix (fix_list, sec, offset, type)
|
||
reloc_bfd_fix *fix_list;
|
||
asection *sec;
|
||
bfd_vma offset;
|
||
unsigned type;
|
||
{
|
||
reloc_bfd_fix *r;
|
||
|
||
for (r = fix_list; r != NULL; r = r->next)
|
||
{
|
||
if (r->src_sec == sec
|
||
&& r->src_offset == offset
|
||
&& r->src_type == type)
|
||
return r;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Per-section data for relaxation. */
|
||
|
||
struct xtensa_relax_info_struct
|
||
{
|
||
bfd_boolean is_relaxable_literal_section;
|
||
int visited; /* Number of times visited. */
|
||
|
||
source_reloc *src_relocs; /* Array[src_count]. */
|
||
int src_count;
|
||
int src_next; /* Next src_relocs entry to assign. */
|
||
|
||
removed_literal_list removed_list;
|
||
|
||
reloc_bfd_fix *fix_list;
|
||
};
|
||
|
||
struct elf_xtensa_section_data
|
||
{
|
||
struct bfd_elf_section_data elf;
|
||
xtensa_relax_info relax_info;
|
||
};
|
||
|
||
static void init_xtensa_relax_info
|
||
PARAMS ((asection *));
|
||
static xtensa_relax_info *get_xtensa_relax_info
|
||
PARAMS ((asection *));
|
||
static void add_fix
|
||
PARAMS ((asection *, reloc_bfd_fix *));
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_new_section_hook (abfd, sec)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
{
|
||
struct elf_xtensa_section_data *sdata;
|
||
bfd_size_type amt = sizeof (*sdata);
|
||
|
||
sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
|
||
if (sdata == NULL)
|
||
return FALSE;
|
||
sec->used_by_bfd = (PTR) sdata;
|
||
|
||
return _bfd_elf_new_section_hook (abfd, sec);
|
||
}
|
||
|
||
|
||
static void
|
||
init_xtensa_relax_info (sec)
|
||
asection *sec;
|
||
{
|
||
xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
|
||
|
||
relax_info->is_relaxable_literal_section = FALSE;
|
||
relax_info->visited = 0;
|
||
|
||
relax_info->src_relocs = NULL;
|
||
relax_info->src_count = 0;
|
||
relax_info->src_next = 0;
|
||
|
||
relax_info->removed_list.head = NULL;
|
||
relax_info->removed_list.tail = NULL;
|
||
|
||
relax_info->fix_list = NULL;
|
||
}
|
||
|
||
|
||
static xtensa_relax_info *
|
||
get_xtensa_relax_info (sec)
|
||
asection *sec;
|
||
{
|
||
struct elf_xtensa_section_data *section_data;
|
||
|
||
/* No info available if no section or if it is an output section. */
|
||
if (!sec || sec == sec->output_section)
|
||
return NULL;
|
||
|
||
section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
|
||
return §ion_data->relax_info;
|
||
}
|
||
|
||
|
||
static void
|
||
add_fix (src_sec, fix)
|
||
asection *src_sec;
|
||
reloc_bfd_fix *fix;
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
|
||
relax_info = get_xtensa_relax_info (src_sec);
|
||
fix->next = relax_info->fix_list;
|
||
relax_info->fix_list = fix;
|
||
}
|
||
|
||
|
||
/* Access to internal relocations, section contents and symbols. */
|
||
|
||
/* During relaxation, we need to modify relocations, section contents,
|
||
and symbol definitions, and we need to keep the original values from
|
||
being reloaded from the input files, i.e., we need to "pin" the
|
||
modified values in memory. We also want to continue to observe the
|
||
setting of the "keep-memory" flag. The following functions wrap the
|
||
standard BFD functions to take care of this for us. */
|
||
|
||
static Elf_Internal_Rela *
|
||
retrieve_internal_relocs (abfd, sec, keep_memory)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
bfd_boolean keep_memory;
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
|
||
if ((sec->flags & SEC_LINKER_CREATED) != 0)
|
||
return NULL;
|
||
|
||
internal_relocs = elf_section_data (sec)->relocs;
|
||
if (internal_relocs == NULL)
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
|
||
keep_memory));
|
||
return internal_relocs;
|
||
}
|
||
|
||
|
||
static void
|
||
pin_internal_relocs (sec, internal_relocs)
|
||
asection *sec;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
{
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
}
|
||
|
||
|
||
static void
|
||
release_internal_relocs (sec, internal_relocs)
|
||
asection *sec;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
{
|
||
if (internal_relocs
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
}
|
||
|
||
|
||
static bfd_byte *
|
||
retrieve_contents (abfd, sec, keep_memory)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
bfd_boolean keep_memory;
|
||
{
|
||
bfd_byte *contents;
|
||
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
|
||
if (contents == NULL && sec->_raw_size != 0)
|
||
{
|
||
contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
|
||
if (contents != NULL)
|
||
{
|
||
if (! bfd_get_section_contents (abfd, sec, contents,
|
||
(file_ptr) 0, sec->_raw_size))
|
||
{
|
||
free (contents);
|
||
return NULL;
|
||
}
|
||
if (keep_memory)
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
return contents;
|
||
}
|
||
|
||
|
||
static void
|
||
pin_contents (sec, contents)
|
||
asection *sec;
|
||
bfd_byte *contents;
|
||
{
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
|
||
|
||
static void
|
||
release_contents (sec, contents)
|
||
asection *sec;
|
||
bfd_byte *contents;
|
||
{
|
||
if (contents &&
|
||
elf_section_data (sec)->this_hdr.contents != contents)
|
||
free (contents);
|
||
}
|
||
|
||
|
||
static Elf_Internal_Sym *
|
||
retrieve_local_syms (input_bfd)
|
||
bfd *input_bfd;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *isymbuf;
|
||
size_t locsymcount;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
locsymcount = symtab_hdr->sh_info;
|
||
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL && locsymcount != 0)
|
||
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
|
||
NULL, NULL, NULL);
|
||
|
||
/* Save the symbols for this input file so they won't be read again. */
|
||
if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
return isymbuf;
|
||
}
|
||
|
||
|
||
/* Code for link-time relaxation. */
|
||
|
||
/* Local helper functions. */
|
||
static bfd_boolean analyze_relocations
|
||
PARAMS ((struct bfd_link_info *));
|
||
static bfd_boolean find_relaxable_sections
|
||
PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
|
||
static bfd_boolean collect_source_relocs
|
||
PARAMS ((bfd *, asection *, struct bfd_link_info *));
|
||
static bfd_boolean is_resolvable_asm_expansion
|
||
PARAMS ((bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
|
||
struct bfd_link_info *, bfd_boolean *));
|
||
static bfd_boolean remove_literals
|
||
PARAMS ((bfd *, asection *, struct bfd_link_info *, value_map_hash_table *));
|
||
static bfd_boolean relax_section
|
||
PARAMS ((bfd *, asection *, struct bfd_link_info *));
|
||
static bfd_boolean relax_property_section
|
||
PARAMS ((bfd *, asection *, struct bfd_link_info *));
|
||
static bfd_boolean relax_section_symbols
|
||
PARAMS ((bfd *, asection *));
|
||
static bfd_boolean relocations_reach
|
||
PARAMS ((source_reloc *, int, const r_reloc *));
|
||
static void translate_reloc
|
||
PARAMS ((const r_reloc *, r_reloc *));
|
||
static Elf_Internal_Rela *get_irel_at_offset
|
||
PARAMS ((asection *, Elf_Internal_Rela *, bfd_vma));
|
||
static Elf_Internal_Rela *find_associated_l32r_irel
|
||
PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *,
|
||
Elf_Internal_Rela *));
|
||
static void shrink_dynamic_reloc_sections
|
||
PARAMS ((struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *));
|
||
|
||
|
||
static bfd_boolean
|
||
elf_xtensa_relax_section (abfd, sec, link_info, again)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
bfd_boolean *again;
|
||
{
|
||
static value_map_hash_table *values = NULL;
|
||
xtensa_relax_info *relax_info;
|
||
|
||
if (!values)
|
||
{
|
||
/* Do some overall initialization for relaxation. */
|
||
values = value_map_hash_table_init ();
|
||
relaxing_section = TRUE;
|
||
if (!analyze_relocations (link_info))
|
||
return FALSE;
|
||
}
|
||
*again = FALSE;
|
||
|
||
/* Don't mess with linker-created sections. */
|
||
if ((sec->flags & SEC_LINKER_CREATED) != 0)
|
||
return TRUE;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info != NULL);
|
||
|
||
switch (relax_info->visited)
|
||
{
|
||
case 0:
|
||
/* Note: It would be nice to fold this pass into
|
||
analyze_relocations, but it is important for this step that the
|
||
sections be examined in link order. */
|
||
if (!remove_literals (abfd, sec, link_info, values))
|
||
return FALSE;
|
||
*again = TRUE;
|
||
break;
|
||
|
||
case 1:
|
||
if (!relax_section (abfd, sec, link_info))
|
||
return FALSE;
|
||
*again = TRUE;
|
||
break;
|
||
|
||
case 2:
|
||
if (!relax_section_symbols (abfd, sec))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
|
||
relax_info->visited++;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Initialization for relaxation. */
|
||
|
||
/* This function is called once at the start of relaxation. It scans
|
||
all the input sections and marks the ones that are relaxable (i.e.,
|
||
literal sections with L32R relocations against them). It then
|
||
collect source_reloc information for all the relocations against
|
||
those relaxable sections. */
|
||
|
||
static bfd_boolean
|
||
analyze_relocations (link_info)
|
||
struct bfd_link_info *link_info;
|
||
{
|
||
bfd *abfd;
|
||
asection *sec;
|
||
bfd_boolean is_relaxable = FALSE;
|
||
|
||
/* Initialize the per-section relaxation info. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
init_xtensa_relax_info (sec);
|
||
}
|
||
|
||
/* Mark relaxable sections (and count relocations against each one). */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Bail out if there are no relaxable sections. */
|
||
if (!is_relaxable)
|
||
return TRUE;
|
||
|
||
/* Allocate space for source_relocs. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (relax_info->is_relaxable_literal_section)
|
||
{
|
||
relax_info->src_relocs = (source_reloc *)
|
||
bfd_malloc (relax_info->src_count * sizeof (source_reloc));
|
||
}
|
||
}
|
||
|
||
/* Collect info on relocations against each relaxable section. */
|
||
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (!collect_source_relocs (abfd, sec, link_info))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Find all the literal sections that might be relaxed. The motivation
|
||
for this pass is that collect_source_relocs() needs to record _all_
|
||
the relocations that target each relaxable section. That is
|
||
expensive and unnecessary unless the target section is actually going
|
||
to be relaxed. This pass identifies all such sections by checking if
|
||
they have L32Rs pointing to them. In the process, the total number
|
||
of relocations targeting each section is also counted so that we
|
||
know how much space to allocate for source_relocs against each
|
||
relaxable literal section. */
|
||
|
||
static bfd_boolean
|
||
find_relaxable_sections (abfd, sec, link_info, is_relaxable_p)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
bfd_boolean *is_relaxable_p;
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
bfd_boolean ok = TRUE;
|
||
unsigned i;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
return ok;
|
||
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec->_raw_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
r_reloc r_rel;
|
||
asection *target_sec;
|
||
xtensa_relax_info *target_relax_info;
|
||
|
||
r_reloc_init (&r_rel, abfd, irel);
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
if (!target_relax_info)
|
||
continue;
|
||
|
||
/* Count relocations against the target section. */
|
||
target_relax_info->src_count++;
|
||
|
||
if (is_literal_section (target_sec)
|
||
&& is_l32r_relocation (sec, contents, irel)
|
||
&& r_reloc_is_defined (&r_rel))
|
||
{
|
||
/* Mark the target section as relaxable. */
|
||
target_relax_info->is_relaxable_literal_section = TRUE;
|
||
*is_relaxable_p = TRUE;
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Record _all_ the relocations that point to relaxable literal
|
||
sections, and get rid of ASM_EXPAND relocs by either converting them
|
||
to ASM_SIMPLIFY or by removing them. */
|
||
|
||
static bfd_boolean
|
||
collect_source_relocs (abfd, sec, link_info)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
bfd_boolean ok = TRUE;
|
||
unsigned i;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
return ok;
|
||
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec->_raw_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
/* Record relocations against relaxable literal sections. */
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
r_reloc r_rel;
|
||
asection *target_sec;
|
||
xtensa_relax_info *target_relax_info;
|
||
|
||
r_reloc_init (&r_rel, abfd, irel);
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
if (target_relax_info
|
||
&& target_relax_info->is_relaxable_literal_section)
|
||
{
|
||
xtensa_opcode opcode;
|
||
xtensa_operand opnd;
|
||
source_reloc *s_reloc;
|
||
int src_next;
|
||
|
||
src_next = target_relax_info->src_next++;
|
||
s_reloc = &target_relax_info->src_relocs[src_next];
|
||
|
||
opcode = get_relocation_opcode (sec, contents, irel);
|
||
if (opcode == XTENSA_UNDEFINED)
|
||
opnd = NULL;
|
||
else
|
||
opnd = xtensa_get_operand (xtensa_default_isa, opcode,
|
||
get_relocation_opnd (irel));
|
||
|
||
init_source_reloc (s_reloc, sec, &r_rel, opnd);
|
||
}
|
||
}
|
||
|
||
/* Now get rid of ASM_EXPAND relocations. At this point, the
|
||
src_relocs array for the target literal section may still be
|
||
incomplete, but it must at least contain the entries for the L32R
|
||
relocations associated with ASM_EXPANDs because they were just
|
||
added in the preceding loop over the relocations. */
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
bfd_boolean is_reachable;
|
||
|
||
if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
|
||
&is_reachable))
|
||
continue;
|
||
|
||
if (is_reachable)
|
||
{
|
||
Elf_Internal_Rela *l32r_irel;
|
||
r_reloc r_rel;
|
||
asection *target_sec;
|
||
xtensa_relax_info *target_relax_info;
|
||
|
||
/* Mark the source_reloc for the L32R so that it will be
|
||
removed in remove_literals(), along with the associated
|
||
literal. */
|
||
l32r_irel = find_associated_l32r_irel (sec, contents,
|
||
irel, internal_relocs);
|
||
if (l32r_irel == NULL)
|
||
continue;
|
||
|
||
r_reloc_init (&r_rel, abfd, l32r_irel);
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
if (target_relax_info
|
||
&& target_relax_info->is_relaxable_literal_section)
|
||
{
|
||
source_reloc *s_reloc;
|
||
|
||
/* Search the source_relocs for the entry corresponding to
|
||
the l32r_irel. Note: The src_relocs array is not yet
|
||
sorted, but it wouldn't matter anyway because we're
|
||
searching by source offset instead of target offset. */
|
||
s_reloc = find_source_reloc (target_relax_info->src_relocs,
|
||
target_relax_info->src_next,
|
||
sec, l32r_irel);
|
||
BFD_ASSERT (s_reloc);
|
||
s_reloc->is_null = TRUE;
|
||
}
|
||
|
||
/* Convert this reloc to ASM_SIMPLIFY. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_XTENSA_ASM_SIMPLIFY);
|
||
l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
else
|
||
{
|
||
/* It is resolvable but doesn't reach. We resolve now
|
||
by eliminating the relocation -- the call will remain
|
||
expanded into L32R/CALLX. */
|
||
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Return TRUE if the asm expansion can be resolved. Generally it can
|
||
be resolved on a final link or when a partial link locates it in the
|
||
same section as the target. Set "is_reachable" flag if the target of
|
||
the call is within the range of a direct call, given the current VMA
|
||
for this section and the target section. */
|
||
|
||
bfd_boolean
|
||
is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
|
||
is_reachable_p)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *irel;
|
||
struct bfd_link_info *link_info;
|
||
bfd_boolean *is_reachable_p;
|
||
{
|
||
asection *target_sec;
|
||
bfd_vma target_offset;
|
||
r_reloc r_rel;
|
||
xtensa_opcode opcode, direct_call_opcode;
|
||
bfd_vma self_address;
|
||
bfd_vma dest_address;
|
||
|
||
*is_reachable_p = FALSE;
|
||
|
||
if (contents == NULL)
|
||
return FALSE;
|
||
|
||
if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
|
||
return FALSE;
|
||
|
||
opcode = get_expanded_call_opcode (contents + irel->r_offset,
|
||
sec->_raw_size - irel->r_offset);
|
||
|
||
direct_call_opcode = swap_callx_for_call_opcode (opcode);
|
||
if (direct_call_opcode == XTENSA_UNDEFINED)
|
||
return FALSE;
|
||
|
||
/* Check and see that the target resolves. */
|
||
r_reloc_init (&r_rel, abfd, irel);
|
||
if (!r_reloc_is_defined (&r_rel))
|
||
return FALSE;
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_offset = r_reloc_get_target_offset (&r_rel);
|
||
|
||
/* If the target is in a shared library, then it doesn't reach. This
|
||
isn't supposed to come up because the compiler should never generate
|
||
non-PIC calls on systems that use shared libraries, but the linker
|
||
shouldn't crash regardless. */
|
||
if (!target_sec->output_section)
|
||
return FALSE;
|
||
|
||
/* For relocatable sections, we can only simplify when the output
|
||
section of the target is the same as the output section of the
|
||
source. */
|
||
if (link_info->relocatable
|
||
&& (target_sec->output_section != sec->output_section))
|
||
return FALSE;
|
||
|
||
self_address = (sec->output_section->vma
|
||
+ sec->output_offset + irel->r_offset + 3);
|
||
dest_address = (target_sec->output_section->vma
|
||
+ target_sec->output_offset + target_offset);
|
||
|
||
*is_reachable_p = pcrel_reloc_fits
|
||
(xtensa_get_operand (xtensa_default_isa, direct_call_opcode, 0),
|
||
self_address, dest_address);
|
||
|
||
if ((self_address >> CALL_SEGMENT_BITS) !=
|
||
(dest_address >> CALL_SEGMENT_BITS))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
static Elf_Internal_Rela *
|
||
find_associated_l32r_irel (sec, contents, other_irel, internal_relocs)
|
||
asection *sec;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *other_irel;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
|
||
if (irel == other_irel)
|
||
continue;
|
||
if (irel->r_offset != other_irel->r_offset)
|
||
continue;
|
||
if (is_l32r_relocation (sec, contents, irel))
|
||
return irel;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* First relaxation pass. */
|
||
|
||
/* If the section is relaxable (i.e., a literal section), check each
|
||
literal to see if it has the same value as another literal that has
|
||
already been seen, either in the current section or a previous one.
|
||
If so, add an entry to the per-section list of removed literals. The
|
||
actual changes are deferred until the next pass. */
|
||
|
||
static bfd_boolean
|
||
remove_literals (abfd, sec, link_info, values)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
value_map_hash_table *values;
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
source_reloc *src_relocs;
|
||
bfd_boolean final_static_link;
|
||
bfd_boolean ok = TRUE;
|
||
int i;
|
||
|
||
/* Do nothing if it is not a relaxable literal section. */
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
|
||
if (!relax_info->is_relaxable_literal_section)
|
||
return ok;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec->_raw_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
final_static_link =
|
||
(!link_info->relocatable
|
||
&& !elf_hash_table (link_info)->dynamic_sections_created);
|
||
|
||
/* Sort the source_relocs by target offset. */
|
||
src_relocs = relax_info->src_relocs;
|
||
qsort (src_relocs, relax_info->src_count,
|
||
sizeof (source_reloc), source_reloc_compare);
|
||
|
||
for (i = 0; i < relax_info->src_count; i++)
|
||
{
|
||
source_reloc *rel;
|
||
Elf_Internal_Rela *irel = NULL;
|
||
literal_value val;
|
||
value_map *val_map;
|
||
|
||
rel = &src_relocs[i];
|
||
irel = get_irel_at_offset (sec, internal_relocs,
|
||
rel->r_rel.target_offset);
|
||
|
||
/* If the target_offset for this relocation is the same as the
|
||
previous relocation, then we've already considered whether the
|
||
literal can be coalesced. Skip to the next one.... */
|
||
if (i != 0 && (src_relocs[i-1].r_rel.target_offset
|
||
== rel->r_rel.target_offset))
|
||
continue;
|
||
|
||
/* Check if the relocation was from an L32R that is being removed
|
||
because a CALLX was converted to a direct CALL, and check if
|
||
there are no other relocations to the literal. */
|
||
if (rel->is_null
|
||
&& (i == relax_info->src_count - 1
|
||
|| (src_relocs[i+1].r_rel.target_offset
|
||
!= rel->r_rel.target_offset)))
|
||
{
|
||
/* Mark the unused literal so that it will be removed. */
|
||
add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
|
||
|
||
/* Zero out the relocation on this literal location. */
|
||
if (irel)
|
||
{
|
||
if (elf_hash_table (link_info)->dynamic_sections_created)
|
||
shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
|
||
|
||
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
/* Find the literal value. */
|
||
r_reloc_init (&val.r_rel, abfd, irel);
|
||
BFD_ASSERT (rel->r_rel.target_offset < sec->_raw_size);
|
||
val.value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
|
||
|
||
/* Check if we've seen another literal with the same value. */
|
||
val_map = get_cached_value (values, &val, final_static_link);
|
||
if (val_map != NULL)
|
||
{
|
||
/* First check that THIS and all the other relocs to this
|
||
literal will FIT if we move them to the new address. */
|
||
|
||
if (relocations_reach (rel, relax_info->src_count - i,
|
||
&val_map->loc))
|
||
{
|
||
/* Mark that the literal will be coalesced. */
|
||
add_removed_literal (&relax_info->removed_list,
|
||
&rel->r_rel, &val_map->loc);
|
||
}
|
||
else
|
||
{
|
||
/* Relocations do not reach -- do not remove this literal. */
|
||
val_map->loc = rel->r_rel;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is the first time we've seen this literal value. */
|
||
BFD_ASSERT (sec == r_reloc_get_section (&rel->r_rel));
|
||
add_value_map (values, &val, &rel->r_rel, final_static_link);
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_contents (sec, contents);
|
||
release_internal_relocs (sec, internal_relocs);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Check if the original relocations (presumably on L32R instructions)
|
||
identified by reloc[0..N] can be changed to reference the literal
|
||
identified by r_rel. If r_rel is out of range for any of the
|
||
original relocations, then we don't want to coalesce the original
|
||
literal with the one at r_rel. We only check reloc[0..N], where the
|
||
offsets are all the same as for reloc[0] (i.e., they're all
|
||
referencing the same literal) and where N is also bounded by the
|
||
number of remaining entries in the "reloc" array. The "reloc" array
|
||
is sorted by target offset so we know all the entries for the same
|
||
literal will be contiguous. */
|
||
|
||
static bfd_boolean
|
||
relocations_reach (reloc, remaining_relocs, r_rel)
|
||
source_reloc *reloc;
|
||
int remaining_relocs;
|
||
const r_reloc *r_rel;
|
||
{
|
||
bfd_vma from_offset, source_address, dest_address;
|
||
asection *sec;
|
||
int i;
|
||
|
||
if (!r_reloc_is_defined (r_rel))
|
||
return FALSE;
|
||
|
||
sec = r_reloc_get_section (r_rel);
|
||
from_offset = reloc[0].r_rel.target_offset;
|
||
|
||
for (i = 0; i < remaining_relocs; i++)
|
||
{
|
||
if (reloc[i].r_rel.target_offset != from_offset)
|
||
break;
|
||
|
||
/* Ignore relocations that have been removed. */
|
||
if (reloc[i].is_null)
|
||
continue;
|
||
|
||
/* The original and new output section for these must be the same
|
||
in order to coalesce. */
|
||
if (r_reloc_get_section (&reloc[i].r_rel)->output_section
|
||
!= sec->output_section)
|
||
return FALSE;
|
||
|
||
/* A NULL operand means it is not a PC-relative relocation, so
|
||
the literal can be moved anywhere. */
|
||
if (reloc[i].opnd)
|
||
{
|
||
/* Otherwise, check to see that it fits. */
|
||
source_address = (reloc[i].source_sec->output_section->vma
|
||
+ reloc[i].source_sec->output_offset
|
||
+ reloc[i].r_rel.rela.r_offset);
|
||
dest_address = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ r_rel->target_offset);
|
||
|
||
if (!pcrel_reloc_fits (reloc[i].opnd, source_address, dest_address))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* WARNING: linear search here. If the relocation are in order by
|
||
address, we can use a faster binary search. ALSO, we assume that
|
||
there is only 1 non-NONE relocation per address. */
|
||
|
||
static Elf_Internal_Rela *
|
||
get_irel_at_offset (sec, internal_relocs, offset)
|
||
asection *sec;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_vma offset;
|
||
{
|
||
unsigned i;
|
||
if (!internal_relocs)
|
||
return NULL;
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
if (irel->r_offset == offset
|
||
&& ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
|
||
return irel;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Second relaxation pass. */
|
||
|
||
/* Modify all of the relocations to point to the right spot, and if this
|
||
is a relaxable section, delete the unwanted literals and fix the
|
||
cooked_size. */
|
||
|
||
bfd_boolean
|
||
relax_section (abfd, sec, link_info)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
xtensa_relax_info *relax_info;
|
||
bfd_byte *contents;
|
||
bfd_boolean ok = TRUE;
|
||
unsigned i;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
|
||
/* Handle property sections (e.g., literal tables) specially. */
|
||
if (xtensa_is_property_section (sec))
|
||
{
|
||
BFD_ASSERT (!relax_info->is_relaxable_literal_section);
|
||
return relax_property_section (abfd, sec, link_info);
|
||
}
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec->_raw_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
if (internal_relocs)
|
||
{
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel;
|
||
xtensa_relax_info *target_relax_info;
|
||
bfd_vma source_offset;
|
||
r_reloc r_rel;
|
||
unsigned r_type;
|
||
asection *target_sec;
|
||
|
||
/* Locally change the source address.
|
||
Translate the target to the new target address.
|
||
If it points to this section and has been removed,
|
||
NULLify it.
|
||
Write it back. */
|
||
|
||
irel = &internal_relocs[i];
|
||
source_offset = irel->r_offset;
|
||
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
r_reloc_init (&r_rel, abfd, irel);
|
||
|
||
if (relax_info->is_relaxable_literal_section)
|
||
{
|
||
if (r_type != R_XTENSA_NONE
|
||
&& find_removed_literal (&relax_info->removed_list,
|
||
irel->r_offset))
|
||
{
|
||
/* Remove this relocation. */
|
||
if (elf_hash_table (link_info)->dynamic_sections_created)
|
||
shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
|
||
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
irel->r_offset = offset_with_removed_literals
|
||
(&relax_info->removed_list, irel->r_offset);
|
||
continue;
|
||
}
|
||
source_offset =
|
||
offset_with_removed_literals (&relax_info->removed_list,
|
||
irel->r_offset);
|
||
irel->r_offset = source_offset;
|
||
}
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
if (target_relax_info
|
||
&& target_relax_info->is_relaxable_literal_section)
|
||
{
|
||
r_reloc new_rel;
|
||
reloc_bfd_fix *fix;
|
||
|
||
translate_reloc (&r_rel, &new_rel);
|
||
|
||
/* FIXME: If the relocation still references a section in
|
||
the same input file, the relocation should be modified
|
||
directly instead of adding a "fix" record. */
|
||
|
||
fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
|
||
r_reloc_get_section (&new_rel),
|
||
new_rel.target_offset);
|
||
add_fix (sec, fix);
|
||
}
|
||
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
}
|
||
|
||
if (relax_info->is_relaxable_literal_section)
|
||
{
|
||
/* Walk through the contents and delete literals that are not needed
|
||
anymore. */
|
||
|
||
unsigned long size = sec->_cooked_size;
|
||
unsigned long removed = 0;
|
||
|
||
removed_literal *reloc = relax_info->removed_list.head;
|
||
for (; reloc; reloc = reloc->next)
|
||
{
|
||
unsigned long upper = sec->_raw_size;
|
||
bfd_vma start = reloc->from.target_offset + 4;
|
||
if (reloc->next)
|
||
upper = reloc->next->from.target_offset;
|
||
if (upper - start != 0)
|
||
{
|
||
BFD_ASSERT (start <= upper);
|
||
memmove (contents + start - removed - 4,
|
||
contents + start,
|
||
upper - start );
|
||
pin_contents (sec, contents);
|
||
}
|
||
removed += 4;
|
||
size -= 4;
|
||
}
|
||
|
||
/* Change the section size. */
|
||
sec->_cooked_size = size;
|
||
/* Also shrink _raw_size. (The code in relocate_section that
|
||
checks that relocations are within the section must use
|
||
_raw_size because of the way the stabs sections are relaxed;
|
||
shrinking _raw_size means that these checks will not be
|
||
unnecessarily lax.) */
|
||
sec->_raw_size = size;
|
||
}
|
||
|
||
error_return:
|
||
release_internal_relocs (sec, internal_relocs);
|
||
release_contents (sec, contents);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Fix up a relocation to take account of removed literals. */
|
||
|
||
static void
|
||
translate_reloc (orig_rel, new_rel)
|
||
const r_reloc *orig_rel;
|
||
r_reloc *new_rel;
|
||
{
|
||
asection *sec;
|
||
xtensa_relax_info *relax_info;
|
||
removed_literal *removed;
|
||
unsigned long new_offset;
|
||
|
||
*new_rel = *orig_rel;
|
||
|
||
if (!r_reloc_is_defined (orig_rel))
|
||
return;
|
||
sec = r_reloc_get_section (orig_rel);
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
|
||
if (!relax_info->is_relaxable_literal_section)
|
||
return;
|
||
|
||
/* Check if the original relocation is against a literal being removed. */
|
||
removed = find_removed_literal (&relax_info->removed_list,
|
||
orig_rel->target_offset);
|
||
if (removed)
|
||
{
|
||
asection *new_sec;
|
||
|
||
/* The fact that there is still a relocation to this literal indicates
|
||
that the literal is being coalesced, not simply removed. */
|
||
BFD_ASSERT (removed->to.abfd != NULL);
|
||
|
||
/* This was moved to some other address (possibly in another section). */
|
||
*new_rel = removed->to;
|
||
new_sec = r_reloc_get_section (new_rel);
|
||
if (new_sec != sec)
|
||
{
|
||
sec = new_sec;
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
if (!relax_info || !relax_info->is_relaxable_literal_section)
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* ...and the target address may have been moved within its section. */
|
||
new_offset = offset_with_removed_literals (&relax_info->removed_list,
|
||
new_rel->target_offset);
|
||
|
||
/* Modify the offset and addend. */
|
||
new_rel->target_offset = new_offset;
|
||
new_rel->rela.r_addend += (new_offset - new_rel->target_offset);
|
||
}
|
||
|
||
|
||
/* For dynamic links, there may be a dynamic relocation for each
|
||
literal. The number of dynamic relocations must be computed in
|
||
size_dynamic_sections, which occurs before relaxation. When a
|
||
literal is removed, this function checks if there is a corresponding
|
||
dynamic relocation and shrinks the size of the appropriate dynamic
|
||
relocation section accordingly. At this point, the contents of the
|
||
dynamic relocation sections have not yet been filled in, so there's
|
||
nothing else that needs to be done. */
|
||
|
||
static void
|
||
shrink_dynamic_reloc_sections (info, abfd, input_section, rel)
|
||
struct bfd_link_info *info;
|
||
bfd *abfd;
|
||
asection *input_section;
|
||
Elf_Internal_Rela *rel;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
unsigned long r_symndx;
|
||
int r_type;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_boolean dynamic_symbol;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
|
||
dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
|
||
|
||
if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
|
||
&& (input_section->flags & SEC_ALLOC) != 0
|
||
&& (dynamic_symbol || info->shared))
|
||
{
|
||
bfd *dynobj;
|
||
const char *srel_name;
|
||
asection *srel;
|
||
bfd_boolean is_plt = FALSE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
BFD_ASSERT (dynobj != NULL);
|
||
|
||
if (dynamic_symbol && r_type == R_XTENSA_PLT)
|
||
{
|
||
srel_name = ".rela.plt";
|
||
is_plt = TRUE;
|
||
}
|
||
else
|
||
srel_name = ".rela.got";
|
||
|
||
/* Reduce size of the .rela.* section by one reloc. */
|
||
srel = bfd_get_section_by_name (dynobj, srel_name);
|
||
BFD_ASSERT (srel != NULL);
|
||
BFD_ASSERT (srel->_cooked_size >= sizeof (Elf32_External_Rela));
|
||
srel->_cooked_size -= sizeof (Elf32_External_Rela);
|
||
|
||
/* Also shrink _raw_size. (This seems wrong but other bfd code seems
|
||
to assume that linker-created sections will never be relaxed and
|
||
hence _raw_size must always equal _cooked_size.) */
|
||
srel->_raw_size = srel->_cooked_size;
|
||
|
||
if (is_plt)
|
||
{
|
||
asection *splt, *sgotplt, *srelgot;
|
||
int reloc_index, chunk;
|
||
|
||
/* Find the PLT reloc index of the entry being removed. This
|
||
is computed from the size of ".rela.plt". It is needed to
|
||
figure out which PLT chunk to resize. Usually "last index
|
||
= size - 1" since the index starts at zero, but in this
|
||
context, the size has just been decremented so there's no
|
||
need to subtract one. */
|
||
reloc_index = srel->_cooked_size / sizeof (Elf32_External_Rela);
|
||
|
||
chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
|
||
splt = elf_xtensa_get_plt_section (dynobj, chunk);
|
||
sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
|
||
BFD_ASSERT (splt != NULL && sgotplt != NULL);
|
||
|
||
/* Check if an entire PLT chunk has just been eliminated. */
|
||
if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
|
||
{
|
||
/* The two magic GOT entries for that chunk can go away. */
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (srelgot != NULL);
|
||
srelgot->reloc_count -= 2;
|
||
srelgot->_cooked_size -= 2 * sizeof (Elf32_External_Rela);
|
||
/* Shrink _raw_size (see comment above). */
|
||
srelgot->_raw_size = srelgot->_cooked_size;
|
||
|
||
sgotplt->_cooked_size -= 8;
|
||
|
||
/* There should be only one entry left (and it will be
|
||
removed below). */
|
||
BFD_ASSERT (sgotplt->_cooked_size == 4);
|
||
BFD_ASSERT (splt->_cooked_size == PLT_ENTRY_SIZE);
|
||
}
|
||
|
||
BFD_ASSERT (sgotplt->_cooked_size >= 4);
|
||
BFD_ASSERT (splt->_cooked_size >= PLT_ENTRY_SIZE);
|
||
|
||
sgotplt->_cooked_size -= 4;
|
||
splt->_cooked_size -= PLT_ENTRY_SIZE;
|
||
|
||
/* Shrink _raw_sizes (see comment above). */
|
||
sgotplt->_raw_size = sgotplt->_cooked_size;
|
||
splt->_raw_size = splt->_cooked_size;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* This is similar to relax_section except that when a target is moved,
|
||
we shift addresses up. We also need to modify the size. This
|
||
algorithm does NOT allow for relocations into the middle of the
|
||
property sections. */
|
||
|
||
static bfd_boolean
|
||
relax_property_section (abfd, sec, link_info)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
unsigned i, nexti;
|
||
bfd_boolean ok = TRUE;
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec->_raw_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
if (internal_relocs)
|
||
{
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel;
|
||
xtensa_relax_info *target_relax_info;
|
||
r_reloc r_rel;
|
||
unsigned r_type;
|
||
asection *target_sec;
|
||
|
||
/* Locally change the source address.
|
||
Translate the target to the new target address.
|
||
If it points to this section and has been removed, MOVE IT.
|
||
Also, don't forget to modify the associated SIZE at
|
||
(offset + 4). */
|
||
|
||
irel = &internal_relocs[i];
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
if (r_type == R_XTENSA_NONE)
|
||
continue;
|
||
|
||
r_reloc_init (&r_rel, abfd, irel);
|
||
|
||
target_sec = r_reloc_get_section (&r_rel);
|
||
target_relax_info = get_xtensa_relax_info (target_sec);
|
||
|
||
if (target_relax_info
|
||
&& target_relax_info->is_relaxable_literal_section)
|
||
{
|
||
/* Translate the relocation's destination. */
|
||
bfd_vma new_offset;
|
||
bfd_vma new_end_offset;
|
||
bfd_byte *size_p;
|
||
long old_size, new_size;
|
||
|
||
new_offset =
|
||
offset_with_removed_literals (&target_relax_info->removed_list,
|
||
r_rel.target_offset);
|
||
|
||
/* Assert that we are not out of bounds. */
|
||
size_p = &contents[irel->r_offset + 4];
|
||
old_size = bfd_get_32 (abfd, &contents[irel->r_offset + 4]);
|
||
|
||
new_end_offset =
|
||
offset_with_removed_literals (&target_relax_info->removed_list,
|
||
r_rel.target_offset + old_size);
|
||
|
||
new_size = new_end_offset - new_offset;
|
||
if (new_size != old_size)
|
||
{
|
||
bfd_put_32 (abfd, new_size, size_p);
|
||
pin_contents (sec, contents);
|
||
}
|
||
|
||
if (new_offset != r_rel.target_offset)
|
||
{
|
||
bfd_vma diff = new_offset - r_rel.target_offset;
|
||
irel->r_addend += diff;
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Combine adjacent property table entries. This is also done in
|
||
finish_dynamic_sections() but at that point it's too late to
|
||
reclaim the space in the output section, so we do this twice. */
|
||
|
||
if (internal_relocs)
|
||
{
|
||
Elf_Internal_Rela *last_irel = NULL;
|
||
int removed_bytes = 0;
|
||
bfd_vma offset, last_irel_offset;
|
||
bfd_vma section_size;
|
||
|
||
/* Walk over memory and irels at the same time.
|
||
This REQUIRES that the internal_relocs be sorted by offset. */
|
||
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
||
internal_reloc_compare);
|
||
nexti = 0; /* Index into internal_relocs. */
|
||
|
||
pin_internal_relocs (sec, internal_relocs);
|
||
pin_contents (sec, contents);
|
||
|
||
last_irel_offset = (bfd_vma) -1;
|
||
section_size = (sec->_cooked_size ? sec->_cooked_size : sec->_raw_size);
|
||
BFD_ASSERT (section_size % 8 == 0);
|
||
|
||
for (offset = 0; offset < section_size; offset += 8)
|
||
{
|
||
Elf_Internal_Rela *irel, *next_irel;
|
||
bfd_vma bytes_to_remove, size, actual_offset;
|
||
bfd_boolean remove_this_irel;
|
||
|
||
irel = NULL;
|
||
next_irel = NULL;
|
||
|
||
/* Find the next two relocations (if there are that many left),
|
||
skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
|
||
the starting reloc index. After these two loops, "i"
|
||
is the index of the first non-NONE reloc past that starting
|
||
index, and "nexti" is the index for the next non-NONE reloc
|
||
after "i". */
|
||
|
||
for (i = nexti; i < sec->reloc_count; i++)
|
||
{
|
||
if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
|
||
{
|
||
irel = &internal_relocs[i];
|
||
break;
|
||
}
|
||
internal_relocs[i].r_offset -= removed_bytes;
|
||
}
|
||
|
||
for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
|
||
{
|
||
if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
|
||
!= R_XTENSA_NONE)
|
||
{
|
||
next_irel = &internal_relocs[nexti];
|
||
break;
|
||
}
|
||
internal_relocs[nexti].r_offset -= removed_bytes;
|
||
}
|
||
|
||
remove_this_irel = FALSE;
|
||
bytes_to_remove = 0;
|
||
actual_offset = offset - removed_bytes;
|
||
size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
|
||
|
||
/* Check that the irels are sorted by offset,
|
||
with only one per address. */
|
||
BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
|
||
BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
|
||
|
||
/* Make sure there isn't a reloc on the size field. */
|
||
if (irel && irel->r_offset == offset + 4)
|
||
{
|
||
irel->r_offset -= removed_bytes;
|
||
last_irel_offset = irel->r_offset;
|
||
}
|
||
else if (next_irel && next_irel->r_offset == offset + 4)
|
||
{
|
||
nexti += 1;
|
||
irel->r_offset -= removed_bytes;
|
||
next_irel->r_offset -= removed_bytes;
|
||
last_irel_offset = next_irel->r_offset;
|
||
}
|
||
else if (size == 0)
|
||
{
|
||
/* Always remove entries with zero size. */
|
||
bytes_to_remove = 8;
|
||
if (irel && irel->r_offset == offset)
|
||
{
|
||
remove_this_irel = TRUE;
|
||
|
||
irel->r_offset -= removed_bytes;
|
||
last_irel_offset = irel->r_offset;
|
||
}
|
||
}
|
||
else if (irel && irel->r_offset == offset)
|
||
{
|
||
if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
|
||
{
|
||
if (last_irel)
|
||
{
|
||
bfd_vma old_size =
|
||
bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
|
||
bfd_vma old_address =
|
||
(last_irel->r_addend
|
||
+ bfd_get_32 (abfd, &contents[last_irel->r_offset]));
|
||
bfd_vma new_address =
|
||
(irel->r_addend
|
||
+ bfd_get_32 (abfd, &contents[actual_offset]));
|
||
|
||
if ((ELF32_R_SYM (irel->r_info) ==
|
||
ELF32_R_SYM (last_irel->r_info))
|
||
&& (old_address + old_size == new_address))
|
||
{
|
||
/* fix the old size */
|
||
bfd_put_32 (abfd, old_size + size,
|
||
&contents[last_irel->r_offset + 4]);
|
||
bytes_to_remove = 8;
|
||
remove_this_irel = TRUE;
|
||
}
|
||
else
|
||
last_irel = irel;
|
||
}
|
||
else
|
||
last_irel = irel;
|
||
}
|
||
|
||
irel->r_offset -= removed_bytes;
|
||
last_irel_offset = irel->r_offset;
|
||
}
|
||
|
||
if (remove_this_irel)
|
||
{
|
||
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
||
irel->r_offset -= bytes_to_remove;
|
||
}
|
||
|
||
if (bytes_to_remove != 0)
|
||
{
|
||
removed_bytes += bytes_to_remove;
|
||
if (offset + 8 < section_size)
|
||
memmove (&contents[actual_offset],
|
||
&contents[actual_offset+8],
|
||
section_size - offset - 8);
|
||
}
|
||
}
|
||
|
||
if (removed_bytes)
|
||
{
|
||
/* Clear the removed bytes. */
|
||
memset (&contents[section_size - removed_bytes], 0, removed_bytes);
|
||
|
||
sec->_cooked_size = section_size - removed_bytes;
|
||
/* Also shrink _raw_size. (The code in relocate_section that
|
||
checks that relocations are within the section must use
|
||
_raw_size because of the way the stabs sections are
|
||
relaxed; shrinking _raw_size means that these checks will
|
||
not be unnecessarily lax.) */
|
||
sec->_raw_size = sec->_cooked_size;
|
||
|
||
if (xtensa_is_littable_section (sec))
|
||
{
|
||
bfd *dynobj = elf_hash_table (link_info)->dynobj;
|
||
if (dynobj)
|
||
{
|
||
asection *sgotloc =
|
||
bfd_get_section_by_name (dynobj, ".got.loc");
|
||
if (sgotloc)
|
||
{
|
||
bfd_size_type sgotloc_size =
|
||
(sgotloc->_cooked_size ? sgotloc->_cooked_size
|
||
: sgotloc->_raw_size);
|
||
sgotloc->_cooked_size = sgotloc_size - removed_bytes;
|
||
sgotloc->_raw_size = sgotloc_size - removed_bytes;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_internal_relocs (sec, internal_relocs);
|
||
release_contents (sec, contents);
|
||
return ok;
|
||
}
|
||
|
||
|
||
/* Third relaxation pass. */
|
||
|
||
/* Change symbol values to account for removed literals. */
|
||
|
||
bfd_boolean
|
||
relax_section_symbols (abfd, sec)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
{
|
||
xtensa_relax_info *relax_info;
|
||
unsigned int sec_shndx;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *isymbuf;
|
||
unsigned i, num_syms, num_locals;
|
||
|
||
relax_info = get_xtensa_relax_info (sec);
|
||
BFD_ASSERT (relax_info);
|
||
|
||
if (!relax_info->is_relaxable_literal_section)
|
||
return TRUE;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
|
||
num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
|
||
num_locals = symtab_hdr->sh_info;
|
||
|
||
/* Adjust the local symbols defined in this section. */
|
||
for (i = 0; i < num_locals; i++)
|
||
{
|
||
Elf_Internal_Sym *isym = &isymbuf[i];
|
||
|
||
if (isym->st_shndx == sec_shndx)
|
||
{
|
||
bfd_vma new_address = offset_with_removed_literals
|
||
(&relax_info->removed_list, isym->st_value);
|
||
if (new_address != isym->st_value)
|
||
isym->st_value = new_address;
|
||
}
|
||
}
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
for (i = 0; i < (num_syms - num_locals); i++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash;
|
||
|
||
sym_hash = elf_sym_hashes (abfd)[i];
|
||
|
||
if (sym_hash->root.type == bfd_link_hash_warning)
|
||
sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
|
||
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec)
|
||
{
|
||
bfd_vma new_address = offset_with_removed_literals
|
||
(&relax_info->removed_list, sym_hash->root.u.def.value);
|
||
if (new_address != sym_hash->root.u.def.value)
|
||
sym_hash->root.u.def.value = new_address;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* "Fix" handling functions, called while performing relocations. */
|
||
|
||
static void
|
||
do_fix_for_relocatable_link (rel, input_bfd, input_section)
|
||
Elf_Internal_Rela *rel;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
{
|
||
r_reloc r_rel;
|
||
asection *sec, *old_sec;
|
||
bfd_vma old_offset;
|
||
int r_type = ELF32_R_TYPE (rel->r_info);
|
||
reloc_bfd_fix *fix_list;
|
||
reloc_bfd_fix *fix;
|
||
|
||
if (r_type == R_XTENSA_NONE)
|
||
return;
|
||
|
||
fix_list = (get_xtensa_relax_info (input_section))->fix_list;
|
||
if (fix_list == NULL)
|
||
return;
|
||
|
||
fix = get_bfd_fix (fix_list, input_section, rel->r_offset, r_type);
|
||
if (fix == NULL)
|
||
return;
|
||
|
||
r_reloc_init (&r_rel, input_bfd, rel);
|
||
old_sec = r_reloc_get_section (&r_rel);
|
||
old_offset = r_reloc_get_target_offset (&r_rel);
|
||
|
||
if (old_sec == NULL || !r_reloc_is_defined (&r_rel))
|
||
{
|
||
BFD_ASSERT (r_type == R_XTENSA_ASM_EXPAND);
|
||
/* Leave it be. Resolution will happen in a later stage. */
|
||
}
|
||
else
|
||
{
|
||
sec = fix->target_sec;
|
||
rel->r_addend += ((sec->output_offset + fix->target_offset)
|
||
- (old_sec->output_offset + old_offset));
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
do_fix_for_final_link (rel, input_section, relocationp)
|
||
Elf_Internal_Rela *rel;
|
||
asection *input_section;
|
||
bfd_vma *relocationp;
|
||
{
|
||
asection *sec;
|
||
int r_type = ELF32_R_TYPE (rel->r_info);
|
||
reloc_bfd_fix *fix_list;
|
||
reloc_bfd_fix *fix;
|
||
|
||
if (r_type == R_XTENSA_NONE)
|
||
return;
|
||
|
||
fix_list = (get_xtensa_relax_info (input_section))->fix_list;
|
||
if (fix_list == NULL)
|
||
return;
|
||
|
||
fix = get_bfd_fix (fix_list, input_section, rel->r_offset, r_type);
|
||
if (fix == NULL)
|
||
return;
|
||
|
||
sec = fix->target_sec;
|
||
*relocationp = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ fix->target_offset - rel->r_addend);
|
||
}
|
||
|
||
|
||
/* Miscellaneous utility functions.... */
|
||
|
||
static asection *
|
||
elf_xtensa_get_plt_section (dynobj, chunk)
|
||
bfd *dynobj;
|
||
int chunk;
|
||
{
|
||
char plt_name[10];
|
||
|
||
if (chunk == 0)
|
||
return bfd_get_section_by_name (dynobj, ".plt");
|
||
|
||
sprintf (plt_name, ".plt.%u", chunk);
|
||
return bfd_get_section_by_name (dynobj, plt_name);
|
||
}
|
||
|
||
|
||
static asection *
|
||
elf_xtensa_get_gotplt_section (dynobj, chunk)
|
||
bfd *dynobj;
|
||
int chunk;
|
||
{
|
||
char got_name[14];
|
||
|
||
if (chunk == 0)
|
||
return bfd_get_section_by_name (dynobj, ".got.plt");
|
||
|
||
sprintf (got_name, ".got.plt.%u", chunk);
|
||
return bfd_get_section_by_name (dynobj, got_name);
|
||
}
|
||
|
||
|
||
/* Get the input section for a given symbol index.
|
||
If the symbol is:
|
||
. a section symbol, return the section;
|
||
. a common symbol, return the common section;
|
||
. an undefined symbol, return the undefined section;
|
||
. an indirect symbol, follow the links;
|
||
. an absolute value, return the absolute section. */
|
||
|
||
static asection *
|
||
get_elf_r_symndx_section (abfd, r_symndx)
|
||
bfd *abfd;
|
||
unsigned long r_symndx;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
asection *target_sec = NULL;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isymbuf;
|
||
unsigned int section_index;
|
||
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
section_index = isymbuf[r_symndx].st_shndx;
|
||
|
||
if (section_index == SHN_UNDEF)
|
||
target_sec = bfd_und_section_ptr;
|
||
else if (section_index > 0 && section_index < SHN_LORESERVE)
|
||
target_sec = bfd_section_from_elf_index (abfd, section_index);
|
||
else if (section_index == SHN_ABS)
|
||
target_sec = bfd_abs_section_ptr;
|
||
else if (section_index == SHN_COMMON)
|
||
target_sec = bfd_com_section_ptr;
|
||
else
|
||
/* Who knows? */
|
||
target_sec = NULL;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
||
struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
switch (h->root.type)
|
||
{
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
target_sec = h->root.u.def.section;
|
||
break;
|
||
case bfd_link_hash_common:
|
||
target_sec = bfd_com_section_ptr;
|
||
break;
|
||
case bfd_link_hash_undefined:
|
||
case bfd_link_hash_undefweak:
|
||
target_sec = bfd_und_section_ptr;
|
||
break;
|
||
default: /* New indirect warning. */
|
||
target_sec = bfd_und_section_ptr;
|
||
break;
|
||
}
|
||
}
|
||
return target_sec;
|
||
}
|
||
|
||
|
||
static struct elf_link_hash_entry *
|
||
get_elf_r_symndx_hash_entry (abfd, r_symndx)
|
||
bfd *abfd;
|
||
unsigned long r_symndx;
|
||
{
|
||
unsigned long indx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
return NULL;
|
||
|
||
indx = r_symndx - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
return h;
|
||
}
|
||
|
||
|
||
/* Get the section-relative offset for a symbol number. */
|
||
|
||
static bfd_vma
|
||
get_elf_r_symndx_offset (abfd, r_symndx)
|
||
bfd *abfd;
|
||
unsigned long r_symndx;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
bfd_vma offset = 0;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isymbuf;
|
||
isymbuf = retrieve_local_syms (abfd);
|
||
offset = isymbuf[r_symndx].st_value;
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
||
struct elf_link_hash_entry *h =
|
||
elf_sym_hashes (abfd)[indx];
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
offset = h->root.u.def.value;
|
||
}
|
||
return offset;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
pcrel_reloc_fits (opnd, self_address, dest_address)
|
||
xtensa_operand opnd;
|
||
bfd_vma self_address;
|
||
bfd_vma dest_address;
|
||
{
|
||
uint32 new_address =
|
||
xtensa_operand_do_reloc (opnd, dest_address, self_address);
|
||
return (xtensa_operand_encode (opnd, &new_address)
|
||
== xtensa_encode_result_ok);
|
||
}
|
||
|
||
|
||
static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
|
||
static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
|
||
static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
|
||
|
||
|
||
static bfd_boolean
|
||
xtensa_is_property_section (sec)
|
||
asection *sec;
|
||
{
|
||
if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
|
||
|| strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
|
||
return TRUE;
|
||
|
||
if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
|
||
&& (sec->name[linkonce_len] == 'x'
|
||
|| sec->name[linkonce_len] == 'p')
|
||
&& sec->name[linkonce_len + 1] == '.')
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
xtensa_is_littable_section (sec)
|
||
asection *sec;
|
||
{
|
||
if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
|
||
return TRUE;
|
||
|
||
if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
|
||
&& sec->name[linkonce_len] == 'p'
|
||
&& sec->name[linkonce_len + 1] == '.')
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static bfd_boolean
|
||
is_literal_section (sec)
|
||
asection *sec;
|
||
{
|
||
/* FIXME: the current definition of this leaves a lot to be desired.... */
|
||
if (sec == NULL || sec->name == NULL)
|
||
return FALSE;
|
||
return (strstr (sec->name, "literal") != NULL);
|
||
}
|
||
|
||
|
||
static int
|
||
internal_reloc_compare (ap, bp)
|
||
const PTR ap;
|
||
const PTR bp;
|
||
{
|
||
const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
|
||
const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
|
||
|
||
return (a->r_offset - b->r_offset);
|
||
}
|
||
|
||
|
||
char *
|
||
xtensa_get_property_section_name (sec, base_name)
|
||
asection *sec;
|
||
const char *base_name;
|
||
{
|
||
if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
|
||
{
|
||
char *prop_sec_name;
|
||
const char *suffix;
|
||
char linkonce_kind = 0;
|
||
|
||
if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
|
||
linkonce_kind = 'x';
|
||
else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
|
||
linkonce_kind = 'p';
|
||
else
|
||
abort ();
|
||
|
||
prop_sec_name = (char *) bfd_malloc (strlen (sec->name) + 1);
|
||
memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
|
||
prop_sec_name[linkonce_len] = linkonce_kind;
|
||
prop_sec_name[linkonce_len + 1] = '.';
|
||
|
||
suffix = sec->name + linkonce_len;
|
||
/* For backward compatibility, replace "t." instead of inserting
|
||
the new linkonce_kind. */
|
||
if (strncmp (suffix, "t.", 2) == 0)
|
||
suffix += 2;
|
||
strcpy (prop_sec_name + linkonce_len + 2, suffix);
|
||
|
||
return prop_sec_name;
|
||
}
|
||
|
||
return strdup (base_name);
|
||
}
|
||
|
||
|
||
/* Other functions called directly by the linker. */
|
||
|
||
bfd_boolean
|
||
xtensa_callback_required_dependence (abfd, sec, link_info, callback, closure)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
deps_callback_t callback;
|
||
PTR closure;
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_byte *contents;
|
||
unsigned i;
|
||
bfd_boolean ok = TRUE;
|
||
|
||
/* ".plt*" sections have no explicit relocations but they contain L32R
|
||
instructions that reference the corresponding ".got.plt*" sections. */
|
||
if ((sec->flags & SEC_LINKER_CREATED) != 0
|
||
&& strncmp (sec->name, ".plt", 4) == 0)
|
||
{
|
||
asection *sgotplt;
|
||
|
||
/* Find the corresponding ".got.plt*" section. */
|
||
if (sec->name[4] == '\0')
|
||
sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
|
||
else
|
||
{
|
||
char got_name[14];
|
||
int chunk = 0;
|
||
|
||
BFD_ASSERT (sec->name[4] == '.');
|
||
chunk = strtol (&sec->name[5], NULL, 10);
|
||
|
||
sprintf (got_name, ".got.plt.%u", chunk);
|
||
sgotplt = bfd_get_section_by_name (sec->owner, got_name);
|
||
}
|
||
BFD_ASSERT (sgotplt);
|
||
|
||
/* Assume worst-case offsets: L32R at the very end of the ".plt"
|
||
section referencing a literal at the very beginning of
|
||
".got.plt". This is very close to the real dependence, anyway. */
|
||
(*callback) (sec, sec->_raw_size, sgotplt, 0, closure);
|
||
}
|
||
|
||
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL
|
||
|| sec->reloc_count == 0)
|
||
return ok;
|
||
|
||
/* Cache the contents for the duration of this scan. */
|
||
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
||
if (contents == NULL && sec->_raw_size != 0)
|
||
{
|
||
ok = FALSE;
|
||
goto error_return;
|
||
}
|
||
|
||
if (xtensa_default_isa == NULL)
|
||
xtensa_isa_init ();
|
||
|
||
for (i = 0; i < sec->reloc_count; i++)
|
||
{
|
||
Elf_Internal_Rela *irel = &internal_relocs[i];
|
||
if (is_l32r_relocation (sec, contents, irel))
|
||
{
|
||
r_reloc l32r_rel;
|
||
asection *target_sec;
|
||
bfd_vma target_offset;
|
||
|
||
r_reloc_init (&l32r_rel, abfd, irel);
|
||
target_sec = NULL;
|
||
target_offset = 0;
|
||
/* L32Rs must be local to the input file. */
|
||
if (r_reloc_is_defined (&l32r_rel))
|
||
{
|
||
target_sec = r_reloc_get_section (&l32r_rel);
|
||
target_offset = r_reloc_get_target_offset (&l32r_rel);
|
||
}
|
||
(*callback) (sec, irel->r_offset, target_sec, target_offset,
|
||
closure);
|
||
}
|
||
}
|
||
|
||
error_return:
|
||
release_internal_relocs (sec, internal_relocs);
|
||
release_contents (sec, contents);
|
||
return ok;
|
||
}
|
||
|
||
/* The default literal sections should always be marked as "code" (i.e.,
|
||
SHF_EXECINSTR). This is particularly important for the Linux kernel
|
||
module loader so that the literals are not placed after the text. */
|
||
static struct bfd_elf_special_section const elf_xtensa_special_sections[]=
|
||
{
|
||
{ ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
|
||
#ifndef ELF_ARCH
|
||
#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
|
||
#define TARGET_LITTLE_NAME "elf32-xtensa-le"
|
||
#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
|
||
#define TARGET_BIG_NAME "elf32-xtensa-be"
|
||
#define ELF_ARCH bfd_arch_xtensa
|
||
|
||
/* The new EM_XTENSA value will be recognized beginning in the Xtensa T1040
|
||
release. However, we still have to generate files with the EM_XTENSA_OLD
|
||
value so that pre-T1040 tools can read the files. As soon as we stop
|
||
caring about pre-T1040 tools, the following two values should be
|
||
swapped. At the same time, any other code that uses EM_XTENSA_OLD
|
||
(e.g., prep_headers() in elf.c) should be changed to use EM_XTENSA. */
|
||
#define ELF_MACHINE_CODE EM_XTENSA_OLD
|
||
#define ELF_MACHINE_ALT1 EM_XTENSA
|
||
|
||
#if XCHAL_HAVE_MMU
|
||
#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
|
||
#else /* !XCHAL_HAVE_MMU */
|
||
#define ELF_MAXPAGESIZE 1
|
||
#endif /* !XCHAL_HAVE_MMU */
|
||
#endif /* ELF_ARCH */
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_can_refcount 1
|
||
#define elf_backend_plt_readonly 1
|
||
#define elf_backend_got_header_size 4
|
||
#define elf_backend_want_dynbss 0
|
||
#define elf_backend_want_got_plt 1
|
||
|
||
#define elf_info_to_howto elf_xtensa_info_to_howto_rela
|
||
|
||
#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
|
||
#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
|
||
#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
|
||
#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
|
||
#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
|
||
#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
|
||
|
||
#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
|
||
#define elf_backend_check_relocs elf_xtensa_check_relocs
|
||
#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
|
||
#define elf_backend_discard_info elf_xtensa_discard_info
|
||
#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
|
||
#define elf_backend_final_write_processing elf_xtensa_final_write_processing
|
||
#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
|
||
#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
|
||
#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
|
||
#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
|
||
#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
|
||
#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
|
||
#define elf_backend_hide_symbol elf_xtensa_hide_symbol
|
||
#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
|
||
#define elf_backend_object_p elf_xtensa_object_p
|
||
#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
|
||
#define elf_backend_relocate_section elf_xtensa_relocate_section
|
||
#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
|
||
#define elf_backend_special_sections elf_xtensa_special_sections
|
||
|
||
#include "elf32-target.h"
|