mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
3a543e211e
Remove FIELD_BITPOD, replace its uses with field::loc_bitpos. Change-Id: Idb99297e0170661254276c206383a7e9bf1a935a
4757 lines
134 KiB
C
4757 lines
134 KiB
C
/* Support routines for decoding "stabs" debugging information format.
|
||
|
||
Copyright (C) 1986-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Support routines for reading and decoding debugging information in
|
||
the "stabs" format. This format is used by some systems that use
|
||
COFF or ELF where the stabs data is placed in a special section (as
|
||
well as with many old systems that used the a.out object file
|
||
format). Avoid placing any object file format specific code in
|
||
this file. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h"
|
||
#include "gdb_obstack.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
|
||
#include "libaout.h"
|
||
#include "aout/aout64.h"
|
||
#include "gdb-stabs.h"
|
||
#include "buildsym-legacy.h"
|
||
#include "complaints.h"
|
||
#include "demangle.h"
|
||
#include "gdb-demangle.h"
|
||
#include "language.h"
|
||
#include "target-float.h"
|
||
#include "c-lang.h"
|
||
#include "cp-abi.h"
|
||
#include "cp-support.h"
|
||
#include <ctype.h>
|
||
|
||
#include "stabsread.h"
|
||
|
||
/* See stabsread.h for these globals. */
|
||
unsigned int symnum;
|
||
const char *(*next_symbol_text_func) (struct objfile *);
|
||
unsigned char processing_gcc_compilation;
|
||
int within_function;
|
||
struct symbol *global_sym_chain[HASHSIZE];
|
||
struct pending_stabs *global_stabs;
|
||
int previous_stab_code;
|
||
int *this_object_header_files;
|
||
int n_this_object_header_files;
|
||
int n_allocated_this_object_header_files;
|
||
|
||
struct nextfield
|
||
{
|
||
struct nextfield *next;
|
||
|
||
/* This is the raw visibility from the stab. It is not checked
|
||
for being one of the visibilities we recognize, so code which
|
||
examines this field better be able to deal. */
|
||
int visibility;
|
||
|
||
struct field field;
|
||
};
|
||
|
||
struct next_fnfieldlist
|
||
{
|
||
struct next_fnfieldlist *next;
|
||
struct fn_fieldlist fn_fieldlist;
|
||
};
|
||
|
||
/* The routines that read and process a complete stabs for a C struct or
|
||
C++ class pass lists of data member fields and lists of member function
|
||
fields in an instance of a field_info structure, as defined below.
|
||
This is part of some reorganization of low level C++ support and is
|
||
expected to eventually go away... (FIXME) */
|
||
|
||
struct stab_field_info
|
||
{
|
||
struct nextfield *list = nullptr;
|
||
struct next_fnfieldlist *fnlist = nullptr;
|
||
|
||
auto_obstack obstack;
|
||
};
|
||
|
||
static void
|
||
read_one_struct_field (struct stab_field_info *, const char **, const char *,
|
||
struct type *, struct objfile *);
|
||
|
||
static struct type *dbx_alloc_type (int[2], struct objfile *);
|
||
|
||
static long read_huge_number (const char **, int, int *, int);
|
||
|
||
static struct type *error_type (const char **, struct objfile *);
|
||
|
||
static void
|
||
patch_block_stabs (struct pending *, struct pending_stabs *,
|
||
struct objfile *);
|
||
|
||
static void fix_common_block (struct symbol *, CORE_ADDR);
|
||
|
||
static int read_type_number (const char **, int *);
|
||
|
||
static struct type *read_type (const char **, struct objfile *);
|
||
|
||
static struct type *read_range_type (const char **, int[2],
|
||
int, struct objfile *);
|
||
|
||
static struct type *read_sun_builtin_type (const char **,
|
||
int[2], struct objfile *);
|
||
|
||
static struct type *read_sun_floating_type (const char **, int[2],
|
||
struct objfile *);
|
||
|
||
static struct type *read_enum_type (const char **, struct type *, struct objfile *);
|
||
|
||
static struct type *rs6000_builtin_type (int, struct objfile *);
|
||
|
||
static int
|
||
read_member_functions (struct stab_field_info *, const char **, struct type *,
|
||
struct objfile *);
|
||
|
||
static int
|
||
read_struct_fields (struct stab_field_info *, const char **, struct type *,
|
||
struct objfile *);
|
||
|
||
static int
|
||
read_baseclasses (struct stab_field_info *, const char **, struct type *,
|
||
struct objfile *);
|
||
|
||
static int
|
||
read_tilde_fields (struct stab_field_info *, const char **, struct type *,
|
||
struct objfile *);
|
||
|
||
static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
|
||
|
||
static int attach_fields_to_type (struct stab_field_info *, struct type *,
|
||
struct objfile *);
|
||
|
||
static struct type *read_struct_type (const char **, struct type *,
|
||
enum type_code,
|
||
struct objfile *);
|
||
|
||
static struct type *read_array_type (const char **, struct type *,
|
||
struct objfile *);
|
||
|
||
static struct field *read_args (const char **, int, struct objfile *,
|
||
int *, int *);
|
||
|
||
static void add_undefined_type (struct type *, int[2]);
|
||
|
||
static int
|
||
read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
|
||
struct objfile *);
|
||
|
||
static const char *find_name_end (const char *name);
|
||
|
||
static int process_reference (const char **string);
|
||
|
||
void stabsread_clear_cache (void);
|
||
|
||
static const char vptr_name[] = "_vptr$";
|
||
static const char vb_name[] = "_vb$";
|
||
|
||
static void
|
||
invalid_cpp_abbrev_complaint (const char *arg1)
|
||
{
|
||
complaint (_("invalid C++ abbreviation `%s'"), arg1);
|
||
}
|
||
|
||
static void
|
||
reg_value_complaint (int regnum, int num_regs, const char *sym)
|
||
{
|
||
complaint (_("bad register number %d (max %d) in symbol %s"),
|
||
regnum, num_regs - 1, sym);
|
||
}
|
||
|
||
static void
|
||
stabs_general_complaint (const char *arg1)
|
||
{
|
||
complaint ("%s", arg1);
|
||
}
|
||
|
||
/* Make a list of forward references which haven't been defined. */
|
||
|
||
static struct type **undef_types;
|
||
static int undef_types_allocated;
|
||
static int undef_types_length;
|
||
static struct symbol *current_symbol = NULL;
|
||
|
||
/* Make a list of nameless types that are undefined.
|
||
This happens when another type is referenced by its number
|
||
before this type is actually defined. For instance "t(0,1)=k(0,2)"
|
||
and type (0,2) is defined only later. */
|
||
|
||
struct nat
|
||
{
|
||
int typenums[2];
|
||
struct type *type;
|
||
};
|
||
static struct nat *noname_undefs;
|
||
static int noname_undefs_allocated;
|
||
static int noname_undefs_length;
|
||
|
||
/* Check for and handle cretinous stabs symbol name continuation! */
|
||
#define STABS_CONTINUE(pp,objfile) \
|
||
do { \
|
||
if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
|
||
*(pp) = next_symbol_text (objfile); \
|
||
} while (0)
|
||
|
||
/* Vector of types defined so far, indexed by their type numbers.
|
||
(In newer sun systems, dbx uses a pair of numbers in parens,
|
||
as in "(SUBFILENUM,NUMWITHINSUBFILE)".
|
||
Then these numbers must be translated through the type_translations
|
||
hash table to get the index into the type vector.) */
|
||
|
||
static struct type **type_vector;
|
||
|
||
/* Number of elements allocated for type_vector currently. */
|
||
|
||
static int type_vector_length;
|
||
|
||
/* Initial size of type vector. Is realloc'd larger if needed, and
|
||
realloc'd down to the size actually used, when completed. */
|
||
|
||
#define INITIAL_TYPE_VECTOR_LENGTH 160
|
||
|
||
|
||
/* Look up a dbx type-number pair. Return the address of the slot
|
||
where the type for that number-pair is stored.
|
||
The number-pair is in TYPENUMS.
|
||
|
||
This can be used for finding the type associated with that pair
|
||
or for associating a new type with the pair. */
|
||
|
||
static struct type **
|
||
dbx_lookup_type (int typenums[2], struct objfile *objfile)
|
||
{
|
||
int filenum = typenums[0];
|
||
int index = typenums[1];
|
||
unsigned old_len;
|
||
int real_filenum;
|
||
struct header_file *f;
|
||
int f_orig_length;
|
||
|
||
if (filenum == -1) /* -1,-1 is for temporary types. */
|
||
return 0;
|
||
|
||
if (filenum < 0 || filenum >= n_this_object_header_files)
|
||
{
|
||
complaint (_("Invalid symbol data: type number "
|
||
"(%d,%d) out of range at symtab pos %d."),
|
||
filenum, index, symnum);
|
||
goto error_return;
|
||
}
|
||
|
||
if (filenum == 0)
|
||
{
|
||
if (index < 0)
|
||
{
|
||
/* Caller wants address of address of type. We think
|
||
that negative (rs6k builtin) types will never appear as
|
||
"lvalues", (nor should they), so we stuff the real type
|
||
pointer into a temp, and return its address. If referenced,
|
||
this will do the right thing. */
|
||
static struct type *temp_type;
|
||
|
||
temp_type = rs6000_builtin_type (index, objfile);
|
||
return &temp_type;
|
||
}
|
||
|
||
/* Type is defined outside of header files.
|
||
Find it in this object file's type vector. */
|
||
if (index >= type_vector_length)
|
||
{
|
||
old_len = type_vector_length;
|
||
if (old_len == 0)
|
||
{
|
||
type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
|
||
type_vector = XNEWVEC (struct type *, type_vector_length);
|
||
}
|
||
while (index >= type_vector_length)
|
||
{
|
||
type_vector_length *= 2;
|
||
}
|
||
type_vector = (struct type **)
|
||
xrealloc ((char *) type_vector,
|
||
(type_vector_length * sizeof (struct type *)));
|
||
memset (&type_vector[old_len], 0,
|
||
(type_vector_length - old_len) * sizeof (struct type *));
|
||
}
|
||
return (&type_vector[index]);
|
||
}
|
||
else
|
||
{
|
||
real_filenum = this_object_header_files[filenum];
|
||
|
||
if (real_filenum >= N_HEADER_FILES (objfile))
|
||
{
|
||
static struct type *temp_type;
|
||
|
||
warning (_("GDB internal error: bad real_filenum"));
|
||
|
||
error_return:
|
||
temp_type = objfile_type (objfile)->builtin_error;
|
||
return &temp_type;
|
||
}
|
||
|
||
f = HEADER_FILES (objfile) + real_filenum;
|
||
|
||
f_orig_length = f->length;
|
||
if (index >= f_orig_length)
|
||
{
|
||
while (index >= f->length)
|
||
{
|
||
f->length *= 2;
|
||
}
|
||
f->vector = (struct type **)
|
||
xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
|
||
memset (&f->vector[f_orig_length], 0,
|
||
(f->length - f_orig_length) * sizeof (struct type *));
|
||
}
|
||
return (&f->vector[index]);
|
||
}
|
||
}
|
||
|
||
/* Make sure there is a type allocated for type numbers TYPENUMS
|
||
and return the type object.
|
||
This can create an empty (zeroed) type object.
|
||
TYPENUMS may be (-1, -1) to return a new type object that is not
|
||
put into the type vector, and so may not be referred to by number. */
|
||
|
||
static struct type *
|
||
dbx_alloc_type (int typenums[2], struct objfile *objfile)
|
||
{
|
||
struct type **type_addr;
|
||
|
||
if (typenums[0] == -1)
|
||
{
|
||
return (alloc_type (objfile));
|
||
}
|
||
|
||
type_addr = dbx_lookup_type (typenums, objfile);
|
||
|
||
/* If we are referring to a type not known at all yet,
|
||
allocate an empty type for it.
|
||
We will fill it in later if we find out how. */
|
||
if (*type_addr == 0)
|
||
{
|
||
*type_addr = alloc_type (objfile);
|
||
}
|
||
|
||
return (*type_addr);
|
||
}
|
||
|
||
/* Allocate a floating-point type of size BITS. */
|
||
|
||
static struct type *
|
||
dbx_init_float_type (struct objfile *objfile, int bits)
|
||
{
|
||
struct gdbarch *gdbarch = objfile->arch ();
|
||
const struct floatformat **format;
|
||
struct type *type;
|
||
|
||
format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
|
||
if (format)
|
||
type = init_float_type (objfile, bits, NULL, format);
|
||
else
|
||
type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* for all the stabs in a given stab vector, build appropriate types
|
||
and fix their symbols in given symbol vector. */
|
||
|
||
static void
|
||
patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
|
||
struct objfile *objfile)
|
||
{
|
||
int ii;
|
||
char *name;
|
||
const char *pp;
|
||
struct symbol *sym;
|
||
|
||
if (stabs)
|
||
{
|
||
/* for all the stab entries, find their corresponding symbols and
|
||
patch their types! */
|
||
|
||
for (ii = 0; ii < stabs->count; ++ii)
|
||
{
|
||
name = stabs->stab[ii];
|
||
pp = (char *) strchr (name, ':');
|
||
gdb_assert (pp); /* Must find a ':' or game's over. */
|
||
while (pp[1] == ':')
|
||
{
|
||
pp += 2;
|
||
pp = (char *) strchr (pp, ':');
|
||
}
|
||
sym = find_symbol_in_list (symbols, name, pp - name);
|
||
if (!sym)
|
||
{
|
||
/* FIXME-maybe: it would be nice if we noticed whether
|
||
the variable was defined *anywhere*, not just whether
|
||
it is defined in this compilation unit. But neither
|
||
xlc or GCC seem to need such a definition, and until
|
||
we do psymtabs (so that the minimal symbols from all
|
||
compilation units are available now), I'm not sure
|
||
how to get the information. */
|
||
|
||
/* On xcoff, if a global is defined and never referenced,
|
||
ld will remove it from the executable. There is then
|
||
a N_GSYM stab for it, but no regular (C_EXT) symbol. */
|
||
sym = new (&objfile->objfile_obstack) symbol;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
|
||
sym->set_linkage_name
|
||
(obstack_strndup (&objfile->objfile_obstack, name, pp - name));
|
||
pp += 2;
|
||
if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
|
||
{
|
||
/* I don't think the linker does this with functions,
|
||
so as far as I know this is never executed.
|
||
But it doesn't hurt to check. */
|
||
SYMBOL_TYPE (sym) =
|
||
lookup_function_type (read_type (&pp, objfile));
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
|
||
}
|
||
add_symbol_to_list (sym, get_global_symbols ());
|
||
}
|
||
else
|
||
{
|
||
pp += 2;
|
||
if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
|
||
{
|
||
SYMBOL_TYPE (sym) =
|
||
lookup_function_type (read_type (&pp, objfile));
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Read a number by which a type is referred to in dbx data,
|
||
or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
|
||
Just a single number N is equivalent to (0,N).
|
||
Return the two numbers by storing them in the vector TYPENUMS.
|
||
TYPENUMS will then be used as an argument to dbx_lookup_type.
|
||
|
||
Returns 0 for success, -1 for error. */
|
||
|
||
static int
|
||
read_type_number (const char **pp, int *typenums)
|
||
{
|
||
int nbits;
|
||
|
||
if (**pp == '(')
|
||
{
|
||
(*pp)++;
|
||
typenums[0] = read_huge_number (pp, ',', &nbits, 0);
|
||
if (nbits != 0)
|
||
return -1;
|
||
typenums[1] = read_huge_number (pp, ')', &nbits, 0);
|
||
if (nbits != 0)
|
||
return -1;
|
||
}
|
||
else
|
||
{
|
||
typenums[0] = 0;
|
||
typenums[1] = read_huge_number (pp, 0, &nbits, 0);
|
||
if (nbits != 0)
|
||
return -1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
|
||
#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
|
||
#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
|
||
#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
|
||
|
||
/* Structure for storing pointers to reference definitions for fast lookup
|
||
during "process_later". */
|
||
|
||
struct ref_map
|
||
{
|
||
const char *stabs;
|
||
CORE_ADDR value;
|
||
struct symbol *sym;
|
||
};
|
||
|
||
#define MAX_CHUNK_REFS 100
|
||
#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
|
||
#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
|
||
|
||
static struct ref_map *ref_map;
|
||
|
||
/* Ptr to free cell in chunk's linked list. */
|
||
static int ref_count = 0;
|
||
|
||
/* Number of chunks malloced. */
|
||
static int ref_chunk = 0;
|
||
|
||
/* This file maintains a cache of stabs aliases found in the symbol
|
||
table. If the symbol table changes, this cache must be cleared
|
||
or we are left holding onto data in invalid obstacks. */
|
||
void
|
||
stabsread_clear_cache (void)
|
||
{
|
||
ref_count = 0;
|
||
ref_chunk = 0;
|
||
}
|
||
|
||
/* Create array of pointers mapping refids to symbols and stab strings.
|
||
Add pointers to reference definition symbols and/or their values as we
|
||
find them, using their reference numbers as our index.
|
||
These will be used later when we resolve references. */
|
||
void
|
||
ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
|
||
{
|
||
if (ref_count == 0)
|
||
ref_chunk = 0;
|
||
if (refnum >= ref_count)
|
||
ref_count = refnum + 1;
|
||
if (ref_count > ref_chunk * MAX_CHUNK_REFS)
|
||
{
|
||
int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
|
||
int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
|
||
|
||
ref_map = (struct ref_map *)
|
||
xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
|
||
memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
|
||
new_chunks * REF_CHUNK_SIZE);
|
||
ref_chunk += new_chunks;
|
||
}
|
||
ref_map[refnum].stabs = stabs;
|
||
ref_map[refnum].sym = sym;
|
||
ref_map[refnum].value = value;
|
||
}
|
||
|
||
/* Return defined sym for the reference REFNUM. */
|
||
struct symbol *
|
||
ref_search (int refnum)
|
||
{
|
||
if (refnum < 0 || refnum > ref_count)
|
||
return 0;
|
||
return ref_map[refnum].sym;
|
||
}
|
||
|
||
/* Parse a reference id in STRING and return the resulting
|
||
reference number. Move STRING beyond the reference id. */
|
||
|
||
static int
|
||
process_reference (const char **string)
|
||
{
|
||
const char *p;
|
||
int refnum = 0;
|
||
|
||
if (**string != '#')
|
||
return 0;
|
||
|
||
/* Advance beyond the initial '#'. */
|
||
p = *string + 1;
|
||
|
||
/* Read number as reference id. */
|
||
while (*p && isdigit (*p))
|
||
{
|
||
refnum = refnum * 10 + *p - '0';
|
||
p++;
|
||
}
|
||
*string = p;
|
||
return refnum;
|
||
}
|
||
|
||
/* If STRING defines a reference, store away a pointer to the reference
|
||
definition for later use. Return the reference number. */
|
||
|
||
int
|
||
symbol_reference_defined (const char **string)
|
||
{
|
||
const char *p = *string;
|
||
int refnum = 0;
|
||
|
||
refnum = process_reference (&p);
|
||
|
||
/* Defining symbols end in '='. */
|
||
if (*p == '=')
|
||
{
|
||
/* Symbol is being defined here. */
|
||
*string = p + 1;
|
||
return refnum;
|
||
}
|
||
else
|
||
{
|
||
/* Must be a reference. Either the symbol has already been defined,
|
||
or this is a forward reference to it. */
|
||
*string = p;
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
static int
|
||
stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
|
||
{
|
||
int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
|
||
|
||
if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
|
||
{
|
||
reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
|
||
sym->print_name ());
|
||
|
||
regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
|
||
}
|
||
|
||
return regno;
|
||
}
|
||
|
||
static const struct symbol_register_ops stab_register_funcs = {
|
||
stab_reg_to_regnum
|
||
};
|
||
|
||
/* The "aclass" indices for computed symbols. */
|
||
|
||
static int stab_register_index;
|
||
static int stab_regparm_index;
|
||
|
||
struct symbol *
|
||
define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
|
||
struct objfile *objfile)
|
||
{
|
||
struct gdbarch *gdbarch = objfile->arch ();
|
||
struct symbol *sym;
|
||
const char *p = find_name_end (string);
|
||
int deftype;
|
||
int synonym = 0;
|
||
int i;
|
||
|
||
/* We would like to eliminate nameless symbols, but keep their types.
|
||
E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
|
||
to type 2, but, should not create a symbol to address that type. Since
|
||
the symbol will be nameless, there is no way any user can refer to it. */
|
||
|
||
int nameless;
|
||
|
||
/* Ignore syms with empty names. */
|
||
if (string[0] == 0)
|
||
return 0;
|
||
|
||
/* Ignore old-style symbols from cc -go. */
|
||
if (p == 0)
|
||
return 0;
|
||
|
||
while (p[1] == ':')
|
||
{
|
||
p += 2;
|
||
p = strchr (p, ':');
|
||
if (p == NULL)
|
||
{
|
||
complaint (
|
||
_("Bad stabs string '%s'"), string);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* If a nameless stab entry, all we need is the type, not the symbol.
|
||
e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
|
||
nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
|
||
|
||
current_symbol = sym = new (&objfile->objfile_obstack) symbol;
|
||
|
||
if (processing_gcc_compilation)
|
||
{
|
||
/* GCC 2.x puts the line number in desc. SunOS apparently puts in the
|
||
number of bytes occupied by a type or object, which we ignore. */
|
||
SYMBOL_LINE (sym) = desc;
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_LINE (sym) = 0; /* unknown */
|
||
}
|
||
|
||
sym->set_language (get_current_subfile ()->language,
|
||
&objfile->objfile_obstack);
|
||
|
||
if (is_cplus_marker (string[0]))
|
||
{
|
||
/* Special GNU C++ names. */
|
||
switch (string[1])
|
||
{
|
||
case 't':
|
||
sym->set_linkage_name ("this");
|
||
break;
|
||
|
||
case 'v': /* $vtbl_ptr_type */
|
||
goto normal;
|
||
|
||
case 'e':
|
||
sym->set_linkage_name ("eh_throw");
|
||
break;
|
||
|
||
case '_':
|
||
/* This was an anonymous type that was never fixed up. */
|
||
goto normal;
|
||
|
||
default:
|
||
complaint (_("Unknown C++ symbol name `%s'"),
|
||
string);
|
||
goto normal; /* Do *something* with it. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
normal:
|
||
gdb::unique_xmalloc_ptr<char> new_name;
|
||
|
||
if (sym->language () == language_cplus)
|
||
{
|
||
char *name = (char *) alloca (p - string + 1);
|
||
|
||
memcpy (name, string, p - string);
|
||
name[p - string] = '\0';
|
||
new_name = cp_canonicalize_string (name);
|
||
}
|
||
if (new_name != nullptr)
|
||
sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
|
||
else
|
||
sym->compute_and_set_names (gdb::string_view (string, p - string), true,
|
||
objfile->per_bfd);
|
||
|
||
if (sym->language () == language_cplus)
|
||
cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
|
||
objfile);
|
||
|
||
}
|
||
p++;
|
||
|
||
/* Determine the type of name being defined. */
|
||
#if 0
|
||
/* Getting GDB to correctly skip the symbol on an undefined symbol
|
||
descriptor and not ever dump core is a very dodgy proposition if
|
||
we do things this way. I say the acorn RISC machine can just
|
||
fix their compiler. */
|
||
/* The Acorn RISC machine's compiler can put out locals that don't
|
||
start with "234=" or "(3,4)=", so assume anything other than the
|
||
deftypes we know how to handle is a local. */
|
||
if (!strchr ("cfFGpPrStTvVXCR", *p))
|
||
#else
|
||
if (isdigit (*p) || *p == '(' || *p == '-')
|
||
#endif
|
||
deftype = 'l';
|
||
else
|
||
deftype = *p++;
|
||
|
||
switch (deftype)
|
||
{
|
||
case 'c':
|
||
/* c is a special case, not followed by a type-number.
|
||
SYMBOL:c=iVALUE for an integer constant symbol.
|
||
SYMBOL:c=rVALUE for a floating constant symbol.
|
||
SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
||
e.g. "b:c=e6,0" for "const b = blob1"
|
||
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
||
if (*p != '=')
|
||
{
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = error_type (&p, objfile);
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
return sym;
|
||
}
|
||
++p;
|
||
switch (*p++)
|
||
{
|
||
case 'r':
|
||
{
|
||
gdb_byte *dbl_valu;
|
||
struct type *dbl_type;
|
||
|
||
dbl_type = objfile_type (objfile)->builtin_double;
|
||
dbl_valu
|
||
= (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
|
||
TYPE_LENGTH (dbl_type));
|
||
|
||
target_float_from_string (dbl_valu, dbl_type, std::string (p));
|
||
|
||
SYMBOL_TYPE (sym) = dbl_type;
|
||
SYMBOL_VALUE_BYTES (sym) = dbl_valu;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
|
||
}
|
||
break;
|
||
case 'i':
|
||
{
|
||
/* Defining integer constants this way is kind of silly,
|
||
since 'e' constants allows the compiler to give not
|
||
only the value, but the type as well. C has at least
|
||
int, long, unsigned int, and long long as constant
|
||
types; other languages probably should have at least
|
||
unsigned as well as signed constants. */
|
||
|
||
SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
|
||
SYMBOL_VALUE (sym) = atoi (p);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
}
|
||
break;
|
||
|
||
case 'c':
|
||
{
|
||
SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
|
||
SYMBOL_VALUE (sym) = atoi (p);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
}
|
||
break;
|
||
|
||
case 's':
|
||
{
|
||
struct type *range_type;
|
||
int ind = 0;
|
||
char quote = *p++;
|
||
gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
|
||
gdb_byte *string_value;
|
||
|
||
if (quote != '\'' && quote != '"')
|
||
{
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = error_type (&p, objfile);
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
return sym;
|
||
}
|
||
|
||
/* Find matching quote, rejecting escaped quotes. */
|
||
while (*p && *p != quote)
|
||
{
|
||
if (*p == '\\' && p[1] == quote)
|
||
{
|
||
string_local[ind] = (gdb_byte) quote;
|
||
ind++;
|
||
p += 2;
|
||
}
|
||
else if (*p)
|
||
{
|
||
string_local[ind] = (gdb_byte) (*p);
|
||
ind++;
|
||
p++;
|
||
}
|
||
}
|
||
if (*p != quote)
|
||
{
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = error_type (&p, objfile);
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
return sym;
|
||
}
|
||
|
||
/* NULL terminate the string. */
|
||
string_local[ind] = 0;
|
||
range_type
|
||
= create_static_range_type (NULL,
|
||
objfile_type (objfile)->builtin_int,
|
||
0, ind);
|
||
SYMBOL_TYPE (sym) = create_array_type (NULL,
|
||
objfile_type (objfile)->builtin_char,
|
||
range_type);
|
||
string_value
|
||
= (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
|
||
memcpy (string_value, string_local, ind + 1);
|
||
p++;
|
||
|
||
SYMBOL_VALUE_BYTES (sym) = string_value;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
|
||
}
|
||
break;
|
||
|
||
case 'e':
|
||
/* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
|
||
can be represented as integral.
|
||
e.g. "b:c=e6,0" for "const b = blob1"
|
||
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
||
{
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
if (*p != ',')
|
||
{
|
||
SYMBOL_TYPE (sym) = error_type (&p, objfile);
|
||
break;
|
||
}
|
||
++p;
|
||
|
||
/* If the value is too big to fit in an int (perhaps because
|
||
it is unsigned), or something like that, we silently get
|
||
a bogus value. The type and everything else about it is
|
||
correct. Ideally, we should be using whatever we have
|
||
available for parsing unsigned and long long values,
|
||
however. */
|
||
SYMBOL_VALUE (sym) = atoi (p);
|
||
}
|
||
break;
|
||
default:
|
||
{
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = error_type (&p, objfile);
|
||
}
|
||
}
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
return sym;
|
||
|
||
case 'C':
|
||
/* The name of a caught exception. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
SET_SYMBOL_VALUE_ADDRESS (sym, valu);
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
break;
|
||
|
||
case 'f':
|
||
/* A static function definition. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
/* fall into process_function_types. */
|
||
|
||
process_function_types:
|
||
/* Function result types are described as the result type in stabs.
|
||
We need to convert this to the function-returning-type-X type
|
||
in GDB. E.g. "int" is converted to "function returning int". */
|
||
if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_FUNC)
|
||
SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
|
||
|
||
/* All functions in C++ have prototypes. Stabs does not offer an
|
||
explicit way to identify prototyped or unprototyped functions,
|
||
but both GCC and Sun CC emit stabs for the "call-as" type rather
|
||
than the "declared-as" type for unprototyped functions, so
|
||
we treat all functions as if they were prototyped. This is used
|
||
primarily for promotion when calling the function from GDB. */
|
||
SYMBOL_TYPE (sym)->set_is_prototyped (true);
|
||
|
||
/* fall into process_prototype_types. */
|
||
|
||
process_prototype_types:
|
||
/* Sun acc puts declared types of arguments here. */
|
||
if (*p == ';')
|
||
{
|
||
struct type *ftype = SYMBOL_TYPE (sym);
|
||
int nsemi = 0;
|
||
int nparams = 0;
|
||
const char *p1 = p;
|
||
|
||
/* Obtain a worst case guess for the number of arguments
|
||
by counting the semicolons. */
|
||
while (*p1)
|
||
{
|
||
if (*p1++ == ';')
|
||
nsemi++;
|
||
}
|
||
|
||
/* Allocate parameter information fields and fill them in. */
|
||
ftype->set_fields
|
||
((struct field *)
|
||
TYPE_ALLOC (ftype, nsemi * sizeof (struct field)));
|
||
while (*p++ == ';')
|
||
{
|
||
struct type *ptype;
|
||
|
||
/* A type number of zero indicates the start of varargs.
|
||
FIXME: GDB currently ignores vararg functions. */
|
||
if (p[0] == '0' && p[1] == '\0')
|
||
break;
|
||
ptype = read_type (&p, objfile);
|
||
|
||
/* The Sun compilers mark integer arguments, which should
|
||
be promoted to the width of the calling conventions, with
|
||
a type which references itself. This type is turned into
|
||
a TYPE_CODE_VOID type by read_type, and we have to turn
|
||
it back into builtin_int here.
|
||
FIXME: Do we need a new builtin_promoted_int_arg ? */
|
||
if (ptype->code () == TYPE_CODE_VOID)
|
||
ptype = objfile_type (objfile)->builtin_int;
|
||
ftype->field (nparams).set_type (ptype);
|
||
TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
|
||
}
|
||
ftype->set_num_fields (nparams);
|
||
ftype->set_is_prototyped (true);
|
||
}
|
||
break;
|
||
|
||
case 'F':
|
||
/* A global function definition. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_global_symbols ());
|
||
goto process_function_types;
|
||
|
||
case 'G':
|
||
/* For a class G (global) symbol, it appears that the
|
||
value is not correct. It is necessary to search for the
|
||
corresponding linker definition to find the value.
|
||
These definitions appear at the end of the namelist. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
/* Don't add symbol references to global_sym_chain.
|
||
Symbol references don't have valid names and wont't match up with
|
||
minimal symbols when the global_sym_chain is relocated.
|
||
We'll fixup symbol references when we fixup the defining symbol. */
|
||
if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
|
||
{
|
||
i = hashname (sym->linkage_name ());
|
||
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
|
||
global_sym_chain[i] = sym;
|
||
}
|
||
add_symbol_to_list (sym, get_global_symbols ());
|
||
break;
|
||
|
||
/* This case is faked by a conditional above,
|
||
when there is no code letter in the dbx data.
|
||
Dbx data never actually contains 'l'. */
|
||
case 's':
|
||
case 'l':
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
break;
|
||
|
||
case 'p':
|
||
if (*p == 'F')
|
||
/* pF is a two-letter code that means a function parameter in Fortran.
|
||
The type-number specifies the type of the return value.
|
||
Translate it into a pointer-to-function type. */
|
||
{
|
||
p++;
|
||
SYMBOL_TYPE (sym)
|
||
= lookup_pointer_type
|
||
(lookup_function_type (read_type (&p, objfile)));
|
||
}
|
||
else
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
SYMBOL_IS_ARGUMENT (sym) = 1;
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
|
||
if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
|
||
{
|
||
/* On little-endian machines, this crud is never necessary,
|
||
and, if the extra bytes contain garbage, is harmful. */
|
||
break;
|
||
}
|
||
|
||
/* If it's gcc-compiled, if it says `short', believe it. */
|
||
if (processing_gcc_compilation
|
||
|| gdbarch_believe_pcc_promotion (gdbarch))
|
||
break;
|
||
|
||
if (!gdbarch_believe_pcc_promotion (gdbarch))
|
||
{
|
||
/* If PCC says a parameter is a short or a char, it is
|
||
really an int. */
|
||
if (TYPE_LENGTH (SYMBOL_TYPE (sym))
|
||
< gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
|
||
&& SYMBOL_TYPE (sym)->code () == TYPE_CODE_INT)
|
||
{
|
||
SYMBOL_TYPE (sym) =
|
||
(SYMBOL_TYPE (sym)->is_unsigned ()
|
||
? objfile_type (objfile)->builtin_unsigned_int
|
||
: objfile_type (objfile)->builtin_int);
|
||
}
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case 'P':
|
||
/* acc seems to use P to declare the prototypes of functions that
|
||
are referenced by this file. gdb is not prepared to deal
|
||
with this extra information. FIXME, it ought to. */
|
||
if (type == N_FUN)
|
||
{
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
goto process_prototype_types;
|
||
}
|
||
/*FALLTHROUGH */
|
||
|
||
case 'R':
|
||
/* Parameter which is in a register. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
|
||
SYMBOL_IS_ARGUMENT (sym) = 1;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
break;
|
||
|
||
case 'r':
|
||
/* Register variable (either global or local). */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
if (within_function)
|
||
{
|
||
/* Sun cc uses a pair of symbols, one 'p' and one 'r', with
|
||
the same name to represent an argument passed in a
|
||
register. GCC uses 'P' for the same case. So if we find
|
||
such a symbol pair we combine it into one 'P' symbol.
|
||
For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
|
||
the 'p' symbol even if it never saves the argument onto
|
||
the stack.
|
||
|
||
On most machines, we want to preserve both symbols, so
|
||
that we can still get information about what is going on
|
||
with the stack (VAX for computing args_printed, using
|
||
stack slots instead of saved registers in backtraces,
|
||
etc.).
|
||
|
||
Note that this code illegally combines
|
||
main(argc) struct foo argc; { register struct foo argc; }
|
||
but this case is considered pathological and causes a warning
|
||
from a decent compiler. */
|
||
|
||
struct pending *local_symbols = *get_local_symbols ();
|
||
if (local_symbols
|
||
&& local_symbols->nsyms > 0
|
||
&& gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
|
||
{
|
||
struct symbol *prev_sym;
|
||
|
||
prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
|
||
if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
|
||
|| SYMBOL_CLASS (prev_sym) == LOC_ARG)
|
||
&& strcmp (prev_sym->linkage_name (),
|
||
sym->linkage_name ()) == 0)
|
||
{
|
||
SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
|
||
/* Use the type from the LOC_REGISTER; that is the type
|
||
that is actually in that register. */
|
||
SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
|
||
SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
|
||
sym = prev_sym;
|
||
break;
|
||
}
|
||
}
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
}
|
||
else
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
break;
|
||
|
||
case 'S':
|
||
/* Static symbol at top level of file. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
|
||
SET_SYMBOL_VALUE_ADDRESS (sym, valu);
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
break;
|
||
|
||
case 't':
|
||
/* In Ada, there is no distinction between typedef and non-typedef;
|
||
any type declaration implicitly has the equivalent of a typedef,
|
||
and thus 't' is in fact equivalent to 'Tt'.
|
||
|
||
Therefore, for Ada units, we check the character immediately
|
||
before the 't', and if we do not find a 'T', then make sure to
|
||
create the associated symbol in the STRUCT_DOMAIN ('t' definitions
|
||
will be stored in the VAR_DOMAIN). If the symbol was indeed
|
||
defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
|
||
elsewhere, so we don't need to take care of that.
|
||
|
||
This is important to do, because of forward references:
|
||
The cleanup of undefined types stored in undef_types only uses
|
||
STRUCT_DOMAIN symbols to perform the replacement. */
|
||
synonym = (sym->language () == language_ada && p[-2] != 'T');
|
||
|
||
/* Typedef */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
/* For a nameless type, we don't want a create a symbol, thus we
|
||
did not use `sym'. Return without further processing. */
|
||
if (nameless)
|
||
return NULL;
|
||
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
/* C++ vagaries: we may have a type which is derived from
|
||
a base type which did not have its name defined when the
|
||
derived class was output. We fill in the derived class's
|
||
base part member's name here in that case. */
|
||
if (SYMBOL_TYPE (sym)->name () != NULL)
|
||
if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_STRUCT
|
||
|| SYMBOL_TYPE (sym)->code () == TYPE_CODE_UNION)
|
||
&& TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
|
||
{
|
||
int j;
|
||
|
||
for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
|
||
if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
|
||
SYMBOL_TYPE (sym)->field (j).set_name
|
||
(TYPE_BASECLASS (SYMBOL_TYPE (sym), j)->name ());
|
||
}
|
||
|
||
if (SYMBOL_TYPE (sym)->name () == NULL)
|
||
{
|
||
if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_PTR
|
||
&& strcmp (sym->linkage_name (), vtbl_ptr_name))
|
||
|| SYMBOL_TYPE (sym)->code () == TYPE_CODE_FUNC)
|
||
{
|
||
/* If we are giving a name to a type such as "pointer to
|
||
foo" or "function returning foo", we better not set
|
||
the TYPE_NAME. If the program contains "typedef char
|
||
*caddr_t;", we don't want all variables of type char
|
||
* to print as caddr_t. This is not just a
|
||
consequence of GDB's type management; PCC and GCC (at
|
||
least through version 2.4) both output variables of
|
||
either type char * or caddr_t with the type number
|
||
defined in the 't' symbol for caddr_t. If a future
|
||
compiler cleans this up it GDB is not ready for it
|
||
yet, but if it becomes ready we somehow need to
|
||
disable this check (without breaking the PCC/GCC2.4
|
||
case).
|
||
|
||
Sigh.
|
||
|
||
Fortunately, this check seems not to be necessary
|
||
for anything except pointers or functions. */
|
||
/* ezannoni: 2000-10-26. This seems to apply for
|
||
versions of gcc older than 2.8. This was the original
|
||
problem: with the following code gdb would tell that
|
||
the type for name1 is caddr_t, and func is char().
|
||
|
||
typedef char *caddr_t;
|
||
char *name2;
|
||
struct x
|
||
{
|
||
char *name1;
|
||
} xx;
|
||
char *func()
|
||
{
|
||
}
|
||
main () {}
|
||
*/
|
||
|
||
/* Pascal accepts names for pointer types. */
|
||
if (get_current_subfile ()->language == language_pascal)
|
||
SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
|
||
}
|
||
else
|
||
SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
|
||
}
|
||
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
|
||
if (synonym)
|
||
{
|
||
/* Create the STRUCT_DOMAIN clone. */
|
||
struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
|
||
|
||
*struct_sym = *sym;
|
||
SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (struct_sym) = valu;
|
||
SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
|
||
if (SYMBOL_TYPE (sym)->name () == 0)
|
||
SYMBOL_TYPE (sym)->set_name
|
||
(obconcat (&objfile->objfile_obstack, sym->linkage_name (),
|
||
(char *) NULL));
|
||
add_symbol_to_list (struct_sym, get_file_symbols ());
|
||
}
|
||
|
||
break;
|
||
|
||
case 'T':
|
||
/* Struct, union, or enum tag. For GNU C++, this can be be followed
|
||
by 't' which means we are typedef'ing it as well. */
|
||
synonym = *p == 't';
|
||
|
||
if (synonym)
|
||
p++;
|
||
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
/* For a nameless type, we don't want a create a symbol, thus we
|
||
did not use `sym'. Return without further processing. */
|
||
if (nameless)
|
||
return NULL;
|
||
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
|
||
if (SYMBOL_TYPE (sym)->name () == 0)
|
||
SYMBOL_TYPE (sym)->set_name
|
||
(obconcat (&objfile->objfile_obstack, sym->linkage_name (),
|
||
(char *) NULL));
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
|
||
if (synonym)
|
||
{
|
||
/* Clone the sym and then modify it. */
|
||
struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
|
||
|
||
*typedef_sym = *sym;
|
||
SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (typedef_sym) = valu;
|
||
SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
|
||
if (SYMBOL_TYPE (sym)->name () == 0)
|
||
SYMBOL_TYPE (sym)->set_name
|
||
(obconcat (&objfile->objfile_obstack, sym->linkage_name (),
|
||
(char *) NULL));
|
||
add_symbol_to_list (typedef_sym, get_file_symbols ());
|
||
}
|
||
break;
|
||
|
||
case 'V':
|
||
/* Static symbol of local scope. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
|
||
SET_SYMBOL_VALUE_ADDRESS (sym, valu);
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
break;
|
||
|
||
case 'v':
|
||
/* Reference parameter */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
|
||
SYMBOL_IS_ARGUMENT (sym) = 1;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
break;
|
||
|
||
case 'a':
|
||
/* Reference parameter which is in a register. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
|
||
SYMBOL_IS_ARGUMENT (sym) = 1;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
break;
|
||
|
||
case 'X':
|
||
/* This is used by Sun FORTRAN for "function result value".
|
||
Sun claims ("dbx and dbxtool interfaces", 2nd ed)
|
||
that Pascal uses it too, but when I tried it Pascal used
|
||
"x:3" (local symbol) instead. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_local_symbols ());
|
||
break;
|
||
|
||
default:
|
||
SYMBOL_TYPE (sym) = error_type (&p, objfile);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
SYMBOL_VALUE (sym) = 0;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
add_symbol_to_list (sym, get_file_symbols ());
|
||
break;
|
||
}
|
||
|
||
/* Some systems pass variables of certain types by reference instead
|
||
of by value, i.e. they will pass the address of a structure (in a
|
||
register or on the stack) instead of the structure itself. */
|
||
|
||
if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
|
||
&& SYMBOL_IS_ARGUMENT (sym))
|
||
{
|
||
/* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
|
||
variables passed in a register). */
|
||
if (SYMBOL_CLASS (sym) == LOC_REGISTER)
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
|
||
/* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
|
||
and subsequent arguments on SPARC, for example). */
|
||
else if (SYMBOL_CLASS (sym) == LOC_ARG)
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
|
||
}
|
||
|
||
return sym;
|
||
}
|
||
|
||
/* Skip rest of this symbol and return an error type.
|
||
|
||
General notes on error recovery: error_type always skips to the
|
||
end of the symbol (modulo cretinous dbx symbol name continuation).
|
||
Thus code like this:
|
||
|
||
if (*(*pp)++ != ';')
|
||
return error_type (pp, objfile);
|
||
|
||
is wrong because if *pp starts out pointing at '\0' (typically as the
|
||
result of an earlier error), it will be incremented to point to the
|
||
start of the next symbol, which might produce strange results, at least
|
||
if you run off the end of the string table. Instead use
|
||
|
||
if (**pp != ';')
|
||
return error_type (pp, objfile);
|
||
++*pp;
|
||
|
||
or
|
||
|
||
if (**pp != ';')
|
||
foo = error_type (pp, objfile);
|
||
else
|
||
++*pp;
|
||
|
||
And in case it isn't obvious, the point of all this hair is so the compiler
|
||
can define new types and new syntaxes, and old versions of the
|
||
debugger will be able to read the new symbol tables. */
|
||
|
||
static struct type *
|
||
error_type (const char **pp, struct objfile *objfile)
|
||
{
|
||
complaint (_("couldn't parse type; debugger out of date?"));
|
||
while (1)
|
||
{
|
||
/* Skip to end of symbol. */
|
||
while (**pp != '\0')
|
||
{
|
||
(*pp)++;
|
||
}
|
||
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
|
||
{
|
||
*pp = next_symbol_text (objfile);
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
return objfile_type (objfile)->builtin_error;
|
||
}
|
||
|
||
|
||
/* Read type information or a type definition; return the type. Even
|
||
though this routine accepts either type information or a type
|
||
definition, the distinction is relevant--some parts of stabsread.c
|
||
assume that type information starts with a digit, '-', or '(' in
|
||
deciding whether to call read_type. */
|
||
|
||
static struct type *
|
||
read_type (const char **pp, struct objfile *objfile)
|
||
{
|
||
struct type *type = 0;
|
||
struct type *type1;
|
||
int typenums[2];
|
||
char type_descriptor;
|
||
|
||
/* Size in bits of type if specified by a type attribute, or -1 if
|
||
there is no size attribute. */
|
||
int type_size = -1;
|
||
|
||
/* Used to distinguish string and bitstring from char-array and set. */
|
||
int is_string = 0;
|
||
|
||
/* Used to distinguish vector from array. */
|
||
int is_vector = 0;
|
||
|
||
/* Read type number if present. The type number may be omitted.
|
||
for instance in a two-dimensional array declared with type
|
||
"ar1;1;10;ar1;1;10;4". */
|
||
if ((**pp >= '0' && **pp <= '9')
|
||
|| **pp == '('
|
||
|| **pp == '-')
|
||
{
|
||
if (read_type_number (pp, typenums) != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
if (**pp != '=')
|
||
{
|
||
/* Type is not being defined here. Either it already
|
||
exists, or this is a forward reference to it.
|
||
dbx_alloc_type handles both cases. */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
|
||
/* If this is a forward reference, arrange to complain if it
|
||
doesn't get patched up by the time we're done
|
||
reading. */
|
||
if (type->code () == TYPE_CODE_UNDEF)
|
||
add_undefined_type (type, typenums);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Type is being defined here. */
|
||
/* Skip the '='.
|
||
Also skip the type descriptor - we get it below with (*pp)[-1]. */
|
||
(*pp) += 2;
|
||
}
|
||
else
|
||
{
|
||
/* 'typenums=' not present, type is anonymous. Read and return
|
||
the definition, but don't put it in the type vector. */
|
||
typenums[0] = typenums[1] = -1;
|
||
(*pp)++;
|
||
}
|
||
|
||
again:
|
||
type_descriptor = (*pp)[-1];
|
||
switch (type_descriptor)
|
||
{
|
||
case 'x':
|
||
{
|
||
enum type_code code;
|
||
|
||
/* Used to index through file_symbols. */
|
||
struct pending *ppt;
|
||
int i;
|
||
|
||
/* Name including "struct", etc. */
|
||
char *type_name;
|
||
|
||
{
|
||
const char *from, *p, *q1, *q2;
|
||
|
||
/* Set the type code according to the following letter. */
|
||
switch ((*pp)[0])
|
||
{
|
||
case 's':
|
||
code = TYPE_CODE_STRUCT;
|
||
break;
|
||
case 'u':
|
||
code = TYPE_CODE_UNION;
|
||
break;
|
||
case 'e':
|
||
code = TYPE_CODE_ENUM;
|
||
break;
|
||
default:
|
||
{
|
||
/* Complain and keep going, so compilers can invent new
|
||
cross-reference types. */
|
||
complaint (_("Unrecognized cross-reference type `%c'"),
|
||
(*pp)[0]);
|
||
code = TYPE_CODE_STRUCT;
|
||
break;
|
||
}
|
||
}
|
||
|
||
q1 = strchr (*pp, '<');
|
||
p = strchr (*pp, ':');
|
||
if (p == NULL)
|
||
return error_type (pp, objfile);
|
||
if (q1 && p > q1 && p[1] == ':')
|
||
{
|
||
int nesting_level = 0;
|
||
|
||
for (q2 = q1; *q2; q2++)
|
||
{
|
||
if (*q2 == '<')
|
||
nesting_level++;
|
||
else if (*q2 == '>')
|
||
nesting_level--;
|
||
else if (*q2 == ':' && nesting_level == 0)
|
||
break;
|
||
}
|
||
p = q2;
|
||
if (*p != ':')
|
||
return error_type (pp, objfile);
|
||
}
|
||
type_name = NULL;
|
||
if (get_current_subfile ()->language == language_cplus)
|
||
{
|
||
char *name = (char *) alloca (p - *pp + 1);
|
||
|
||
memcpy (name, *pp, p - *pp);
|
||
name[p - *pp] = '\0';
|
||
|
||
gdb::unique_xmalloc_ptr<char> new_name = cp_canonicalize_string (name);
|
||
if (new_name != nullptr)
|
||
type_name = obstack_strdup (&objfile->objfile_obstack,
|
||
new_name.get ());
|
||
}
|
||
if (type_name == NULL)
|
||
{
|
||
char *to = type_name = (char *)
|
||
obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
|
||
|
||
/* Copy the name. */
|
||
from = *pp + 1;
|
||
while (from < p)
|
||
*to++ = *from++;
|
||
*to = '\0';
|
||
}
|
||
|
||
/* Set the pointer ahead of the name which we just read, and
|
||
the colon. */
|
||
*pp = p + 1;
|
||
}
|
||
|
||
/* If this type has already been declared, then reuse the same
|
||
type, rather than allocating a new one. This saves some
|
||
memory. */
|
||
|
||
for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
|
||
for (i = 0; i < ppt->nsyms; i++)
|
||
{
|
||
struct symbol *sym = ppt->symbol[i];
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
||
&& SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
|
||
&& (SYMBOL_TYPE (sym)->code () == code)
|
||
&& strcmp (sym->linkage_name (), type_name) == 0)
|
||
{
|
||
obstack_free (&objfile->objfile_obstack, type_name);
|
||
type = SYMBOL_TYPE (sym);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums, objfile) = type;
|
||
return type;
|
||
}
|
||
}
|
||
|
||
/* Didn't find the type to which this refers, so we must
|
||
be dealing with a forward reference. Allocate a type
|
||
structure for it, and keep track of it so we can
|
||
fill in the rest of the fields when we get the full
|
||
type. */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type->set_code (code);
|
||
type->set_name (type_name);
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
type->set_is_stub (true);
|
||
|
||
add_undefined_type (type, typenums);
|
||
return type;
|
||
}
|
||
|
||
case '-': /* RS/6000 built-in type */
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
case '(':
|
||
(*pp)--;
|
||
|
||
/* We deal with something like t(1,2)=(3,4)=... which
|
||
the Lucid compiler and recent gcc versions (post 2.7.3) use. */
|
||
|
||
/* Allocate and enter the typedef type first.
|
||
This handles recursive types. */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type->set_code (TYPE_CODE_TYPEDEF);
|
||
{
|
||
struct type *xtype = read_type (pp, objfile);
|
||
|
||
if (type == xtype)
|
||
{
|
||
/* It's being defined as itself. That means it is "void". */
|
||
type->set_code (TYPE_CODE_VOID);
|
||
TYPE_LENGTH (type) = 1;
|
||
}
|
||
else if (type_size >= 0 || is_string)
|
||
{
|
||
/* This is the absolute wrong way to construct types. Every
|
||
other debug format has found a way around this problem and
|
||
the related problems with unnecessarily stubbed types;
|
||
someone motivated should attempt to clean up the issue
|
||
here as well. Once a type pointed to has been created it
|
||
should not be modified.
|
||
|
||
Well, it's not *absolutely* wrong. Constructing recursive
|
||
types (trees, linked lists) necessarily entails modifying
|
||
types after creating them. Constructing any loop structure
|
||
entails side effects. The Dwarf 2 reader does handle this
|
||
more gracefully (it never constructs more than once
|
||
instance of a type object, so it doesn't have to copy type
|
||
objects wholesale), but it still mutates type objects after
|
||
other folks have references to them.
|
||
|
||
Keep in mind that this circularity/mutation issue shows up
|
||
at the source language level, too: C's "incomplete types",
|
||
for example. So the proper cleanup, I think, would be to
|
||
limit GDB's type smashing to match exactly those required
|
||
by the source language. So GDB could have a
|
||
"complete_this_type" function, but never create unnecessary
|
||
copies of a type otherwise. */
|
||
replace_type (type, xtype);
|
||
type->set_name (NULL);
|
||
}
|
||
else
|
||
{
|
||
type->set_target_is_stub (true);
|
||
TYPE_TARGET_TYPE (type) = xtype;
|
||
}
|
||
}
|
||
break;
|
||
|
||
/* In the following types, we must be sure to overwrite any existing
|
||
type that the typenums refer to, rather than allocating a new one
|
||
and making the typenums point to the new one. This is because there
|
||
may already be pointers to the existing type (if it had been
|
||
forward-referenced), and we must change it to a pointer, function,
|
||
reference, or whatever, *in-place*. */
|
||
|
||
case '*': /* Pointer to another type */
|
||
type1 = read_type (pp, objfile);
|
||
type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
|
||
break;
|
||
|
||
case '&': /* Reference to another type */
|
||
type1 = read_type (pp, objfile);
|
||
type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
|
||
TYPE_CODE_REF);
|
||
break;
|
||
|
||
case 'f': /* Function returning another type */
|
||
type1 = read_type (pp, objfile);
|
||
type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
|
||
break;
|
||
|
||
case 'g': /* Prototyped function. (Sun) */
|
||
{
|
||
/* Unresolved questions:
|
||
|
||
- According to Sun's ``STABS Interface Manual'', for 'f'
|
||
and 'F' symbol descriptors, a `0' in the argument type list
|
||
indicates a varargs function. But it doesn't say how 'g'
|
||
type descriptors represent that info. Someone with access
|
||
to Sun's toolchain should try it out.
|
||
|
||
- According to the comment in define_symbol (search for
|
||
`process_prototype_types:'), Sun emits integer arguments as
|
||
types which ref themselves --- like `void' types. Do we
|
||
have to deal with that here, too? Again, someone with
|
||
access to Sun's toolchain should try it out and let us
|
||
know. */
|
||
|
||
const char *type_start = (*pp) - 1;
|
||
struct type *return_type = read_type (pp, objfile);
|
||
struct type *func_type
|
||
= make_function_type (return_type,
|
||
dbx_lookup_type (typenums, objfile));
|
||
struct type_list {
|
||
struct type *type;
|
||
struct type_list *next;
|
||
} *arg_types = 0;
|
||
int num_args = 0;
|
||
|
||
while (**pp && **pp != '#')
|
||
{
|
||
struct type *arg_type = read_type (pp, objfile);
|
||
struct type_list *newobj = XALLOCA (struct type_list);
|
||
newobj->type = arg_type;
|
||
newobj->next = arg_types;
|
||
arg_types = newobj;
|
||
num_args++;
|
||
}
|
||
if (**pp == '#')
|
||
++*pp;
|
||
else
|
||
{
|
||
complaint (_("Prototyped function type didn't "
|
||
"end arguments with `#':\n%s"),
|
||
type_start);
|
||
}
|
||
|
||
/* If there is just one argument whose type is `void', then
|
||
that's just an empty argument list. */
|
||
if (arg_types
|
||
&& ! arg_types->next
|
||
&& arg_types->type->code () == TYPE_CODE_VOID)
|
||
num_args = 0;
|
||
|
||
func_type->set_fields
|
||
((struct field *) TYPE_ALLOC (func_type,
|
||
num_args * sizeof (struct field)));
|
||
memset (func_type->fields (), 0, num_args * sizeof (struct field));
|
||
{
|
||
int i;
|
||
struct type_list *t;
|
||
|
||
/* We stuck each argument type onto the front of the list
|
||
when we read it, so the list is reversed. Build the
|
||
fields array right-to-left. */
|
||
for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
|
||
func_type->field (i).set_type (t->type);
|
||
}
|
||
func_type->set_num_fields (num_args);
|
||
func_type->set_is_prototyped (true);
|
||
|
||
type = func_type;
|
||
break;
|
||
}
|
||
|
||
case 'k': /* Const qualifier on some type (Sun) */
|
||
type = read_type (pp, objfile);
|
||
type = make_cv_type (1, TYPE_VOLATILE (type), type,
|
||
dbx_lookup_type (typenums, objfile));
|
||
break;
|
||
|
||
case 'B': /* Volatile qual on some type (Sun) */
|
||
type = read_type (pp, objfile);
|
||
type = make_cv_type (TYPE_CONST (type), 1, type,
|
||
dbx_lookup_type (typenums, objfile));
|
||
break;
|
||
|
||
case '@':
|
||
if (isdigit (**pp) || **pp == '(' || **pp == '-')
|
||
{ /* Member (class & variable) type */
|
||
/* FIXME -- we should be doing smash_to_XXX types here. */
|
||
|
||
struct type *domain = read_type (pp, objfile);
|
||
struct type *memtype;
|
||
|
||
if (**pp != ',')
|
||
/* Invalid member type data format. */
|
||
return error_type (pp, objfile);
|
||
++*pp;
|
||
|
||
memtype = read_type (pp, objfile);
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
smash_to_memberptr_type (type, domain, memtype);
|
||
}
|
||
else
|
||
/* type attribute */
|
||
{
|
||
const char *attr = *pp;
|
||
|
||
/* Skip to the semicolon. */
|
||
while (**pp != ';' && **pp != '\0')
|
||
++(*pp);
|
||
if (**pp == '\0')
|
||
return error_type (pp, objfile);
|
||
else
|
||
++ * pp; /* Skip the semicolon. */
|
||
|
||
switch (*attr)
|
||
{
|
||
case 's': /* Size attribute */
|
||
type_size = atoi (attr + 1);
|
||
if (type_size <= 0)
|
||
type_size = -1;
|
||
break;
|
||
|
||
case 'S': /* String attribute */
|
||
/* FIXME: check to see if following type is array? */
|
||
is_string = 1;
|
||
break;
|
||
|
||
case 'V': /* Vector attribute */
|
||
/* FIXME: check to see if following type is array? */
|
||
is_vector = 1;
|
||
break;
|
||
|
||
default:
|
||
/* Ignore unrecognized type attributes, so future compilers
|
||
can invent new ones. */
|
||
break;
|
||
}
|
||
++*pp;
|
||
goto again;
|
||
}
|
||
break;
|
||
|
||
case '#': /* Method (class & fn) type */
|
||
if ((*pp)[0] == '#')
|
||
{
|
||
/* We'll get the parameter types from the name. */
|
||
struct type *return_type;
|
||
|
||
(*pp)++;
|
||
return_type = read_type (pp, objfile);
|
||
if (*(*pp)++ != ';')
|
||
complaint (_("invalid (minimal) member type "
|
||
"data format at symtab pos %d."),
|
||
symnum);
|
||
type = allocate_stub_method (return_type);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums, objfile) = type;
|
||
}
|
||
else
|
||
{
|
||
struct type *domain = read_type (pp, objfile);
|
||
struct type *return_type;
|
||
struct field *args;
|
||
int nargs, varargs;
|
||
|
||
if (**pp != ',')
|
||
/* Invalid member type data format. */
|
||
return error_type (pp, objfile);
|
||
else
|
||
++(*pp);
|
||
|
||
return_type = read_type (pp, objfile);
|
||
args = read_args (pp, ';', objfile, &nargs, &varargs);
|
||
if (args == NULL)
|
||
return error_type (pp, objfile);
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
smash_to_method_type (type, domain, return_type, args,
|
||
nargs, varargs);
|
||
}
|
||
break;
|
||
|
||
case 'r': /* Range type */
|
||
type = read_range_type (pp, typenums, type_size, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums, objfile) = type;
|
||
break;
|
||
|
||
case 'b':
|
||
{
|
||
/* Sun ACC builtin int type */
|
||
type = read_sun_builtin_type (pp, typenums, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums, objfile) = type;
|
||
}
|
||
break;
|
||
|
||
case 'R': /* Sun ACC builtin float type */
|
||
type = read_sun_floating_type (pp, typenums, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums, objfile) = type;
|
||
break;
|
||
|
||
case 'e': /* Enumeration type */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type = read_enum_type (pp, type, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums, objfile) = type;
|
||
break;
|
||
|
||
case 's': /* Struct type */
|
||
case 'u': /* Union type */
|
||
{
|
||
enum type_code type_code = TYPE_CODE_UNDEF;
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
switch (type_descriptor)
|
||
{
|
||
case 's':
|
||
type_code = TYPE_CODE_STRUCT;
|
||
break;
|
||
case 'u':
|
||
type_code = TYPE_CODE_UNION;
|
||
break;
|
||
}
|
||
type = read_struct_type (pp, type, type_code, objfile);
|
||
break;
|
||
}
|
||
|
||
case 'a': /* Array type */
|
||
if (**pp != 'r')
|
||
return error_type (pp, objfile);
|
||
++*pp;
|
||
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type = read_array_type (pp, type, objfile);
|
||
if (is_string)
|
||
type->set_code (TYPE_CODE_STRING);
|
||
if (is_vector)
|
||
make_vector_type (type);
|
||
break;
|
||
|
||
case 'S': /* Set type */
|
||
type1 = read_type (pp, objfile);
|
||
type = create_set_type (NULL, type1);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums, objfile) = type;
|
||
break;
|
||
|
||
default:
|
||
--*pp; /* Go back to the symbol in error. */
|
||
/* Particularly important if it was \0! */
|
||
return error_type (pp, objfile);
|
||
}
|
||
|
||
if (type == 0)
|
||
{
|
||
warning (_("GDB internal error, type is NULL in stabsread.c."));
|
||
return error_type (pp, objfile);
|
||
}
|
||
|
||
/* Size specified in a type attribute overrides any other size. */
|
||
if (type_size != -1)
|
||
TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
|
||
Return the proper type node for a given builtin type number. */
|
||
|
||
static const struct objfile_key<struct type *,
|
||
gdb::noop_deleter<struct type *>>
|
||
rs6000_builtin_type_data;
|
||
|
||
static struct type *
|
||
rs6000_builtin_type (int typenum, struct objfile *objfile)
|
||
{
|
||
struct type **negative_types = rs6000_builtin_type_data.get (objfile);
|
||
|
||
/* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
|
||
#define NUMBER_RECOGNIZED 34
|
||
struct type *rettype = NULL;
|
||
|
||
if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
|
||
{
|
||
complaint (_("Unknown builtin type %d"), typenum);
|
||
return objfile_type (objfile)->builtin_error;
|
||
}
|
||
|
||
if (!negative_types)
|
||
{
|
||
/* This includes an empty slot for type number -0. */
|
||
negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
||
NUMBER_RECOGNIZED + 1, struct type *);
|
||
rs6000_builtin_type_data.set (objfile, negative_types);
|
||
}
|
||
|
||
if (negative_types[-typenum] != NULL)
|
||
return negative_types[-typenum];
|
||
|
||
#if TARGET_CHAR_BIT != 8
|
||
#error This code wrong for TARGET_CHAR_BIT not 8
|
||
/* These definitions all assume that TARGET_CHAR_BIT is 8. I think
|
||
that if that ever becomes not true, the correct fix will be to
|
||
make the size in the struct type to be in bits, not in units of
|
||
TARGET_CHAR_BIT. */
|
||
#endif
|
||
|
||
switch (-typenum)
|
||
{
|
||
case 1:
|
||
/* The size of this and all the other types are fixed, defined
|
||
by the debugging format. If there is a type called "int" which
|
||
is other than 32 bits, then it should use a new negative type
|
||
number (or avoid negative type numbers for that case).
|
||
See stabs.texinfo. */
|
||
rettype = init_integer_type (objfile, 32, 0, "int");
|
||
break;
|
||
case 2:
|
||
rettype = init_integer_type (objfile, 8, 0, "char");
|
||
rettype->set_has_no_signedness (true);
|
||
break;
|
||
case 3:
|
||
rettype = init_integer_type (objfile, 16, 0, "short");
|
||
break;
|
||
case 4:
|
||
rettype = init_integer_type (objfile, 32, 0, "long");
|
||
break;
|
||
case 5:
|
||
rettype = init_integer_type (objfile, 8, 1, "unsigned char");
|
||
break;
|
||
case 6:
|
||
rettype = init_integer_type (objfile, 8, 0, "signed char");
|
||
break;
|
||
case 7:
|
||
rettype = init_integer_type (objfile, 16, 1, "unsigned short");
|
||
break;
|
||
case 8:
|
||
rettype = init_integer_type (objfile, 32, 1, "unsigned int");
|
||
break;
|
||
case 9:
|
||
rettype = init_integer_type (objfile, 32, 1, "unsigned");
|
||
break;
|
||
case 10:
|
||
rettype = init_integer_type (objfile, 32, 1, "unsigned long");
|
||
break;
|
||
case 11:
|
||
rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
|
||
break;
|
||
case 12:
|
||
/* IEEE single precision (32 bit). */
|
||
rettype = init_float_type (objfile, 32, "float",
|
||
floatformats_ieee_single);
|
||
break;
|
||
case 13:
|
||
/* IEEE double precision (64 bit). */
|
||
rettype = init_float_type (objfile, 64, "double",
|
||
floatformats_ieee_double);
|
||
break;
|
||
case 14:
|
||
/* This is an IEEE double on the RS/6000, and different machines with
|
||
different sizes for "long double" should use different negative
|
||
type numbers. See stabs.texinfo. */
|
||
rettype = init_float_type (objfile, 64, "long double",
|
||
floatformats_ieee_double);
|
||
break;
|
||
case 15:
|
||
rettype = init_integer_type (objfile, 32, 0, "integer");
|
||
break;
|
||
case 16:
|
||
rettype = init_boolean_type (objfile, 32, 1, "boolean");
|
||
break;
|
||
case 17:
|
||
rettype = init_float_type (objfile, 32, "short real",
|
||
floatformats_ieee_single);
|
||
break;
|
||
case 18:
|
||
rettype = init_float_type (objfile, 64, "real",
|
||
floatformats_ieee_double);
|
||
break;
|
||
case 19:
|
||
rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
|
||
break;
|
||
case 20:
|
||
rettype = init_character_type (objfile, 8, 1, "character");
|
||
break;
|
||
case 21:
|
||
rettype = init_boolean_type (objfile, 8, 1, "logical*1");
|
||
break;
|
||
case 22:
|
||
rettype = init_boolean_type (objfile, 16, 1, "logical*2");
|
||
break;
|
||
case 23:
|
||
rettype = init_boolean_type (objfile, 32, 1, "logical*4");
|
||
break;
|
||
case 24:
|
||
rettype = init_boolean_type (objfile, 32, 1, "logical");
|
||
break;
|
||
case 25:
|
||
/* Complex type consisting of two IEEE single precision values. */
|
||
rettype = init_complex_type ("complex",
|
||
rs6000_builtin_type (12, objfile));
|
||
break;
|
||
case 26:
|
||
/* Complex type consisting of two IEEE double precision values. */
|
||
rettype = init_complex_type ("double complex",
|
||
rs6000_builtin_type (13, objfile));
|
||
break;
|
||
case 27:
|
||
rettype = init_integer_type (objfile, 8, 0, "integer*1");
|
||
break;
|
||
case 28:
|
||
rettype = init_integer_type (objfile, 16, 0, "integer*2");
|
||
break;
|
||
case 29:
|
||
rettype = init_integer_type (objfile, 32, 0, "integer*4");
|
||
break;
|
||
case 30:
|
||
rettype = init_character_type (objfile, 16, 0, "wchar");
|
||
break;
|
||
case 31:
|
||
rettype = init_integer_type (objfile, 64, 0, "long long");
|
||
break;
|
||
case 32:
|
||
rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
|
||
break;
|
||
case 33:
|
||
rettype = init_integer_type (objfile, 64, 1, "logical*8");
|
||
break;
|
||
case 34:
|
||
rettype = init_integer_type (objfile, 64, 0, "integer*8");
|
||
break;
|
||
}
|
||
negative_types[-typenum] = rettype;
|
||
return rettype;
|
||
}
|
||
|
||
/* This page contains subroutines of read_type. */
|
||
|
||
/* Wrapper around method_name_from_physname to flag a complaint
|
||
if there is an error. */
|
||
|
||
static char *
|
||
stabs_method_name_from_physname (const char *physname)
|
||
{
|
||
char *method_name;
|
||
|
||
method_name = method_name_from_physname (physname);
|
||
|
||
if (method_name == NULL)
|
||
{
|
||
complaint (_("Method has bad physname %s\n"), physname);
|
||
return NULL;
|
||
}
|
||
|
||
return method_name;
|
||
}
|
||
|
||
/* Read member function stabs info for C++ classes. The form of each member
|
||
function data is:
|
||
|
||
NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
|
||
|
||
An example with two member functions is:
|
||
|
||
afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
|
||
|
||
For the case of overloaded operators, the format is op$::*.funcs, where
|
||
$ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
|
||
name (such as `+=') and `.' marks the end of the operator name.
|
||
|
||
Returns 1 for success, 0 for failure. */
|
||
|
||
static int
|
||
read_member_functions (struct stab_field_info *fip, const char **pp,
|
||
struct type *type, struct objfile *objfile)
|
||
{
|
||
int nfn_fields = 0;
|
||
int length = 0;
|
||
int i;
|
||
struct next_fnfield
|
||
{
|
||
struct next_fnfield *next;
|
||
struct fn_field fn_field;
|
||
}
|
||
*sublist;
|
||
struct type *look_ahead_type;
|
||
struct next_fnfieldlist *new_fnlist;
|
||
struct next_fnfield *new_sublist;
|
||
char *main_fn_name;
|
||
const char *p;
|
||
|
||
/* Process each list until we find something that is not a member function
|
||
or find the end of the functions. */
|
||
|
||
while (**pp != ';')
|
||
{
|
||
/* We should be positioned at the start of the function name.
|
||
Scan forward to find the first ':' and if it is not the
|
||
first of a "::" delimiter, then this is not a member function. */
|
||
p = *pp;
|
||
while (*p != ':')
|
||
{
|
||
p++;
|
||
}
|
||
if (p[1] != ':')
|
||
{
|
||
break;
|
||
}
|
||
|
||
sublist = NULL;
|
||
look_ahead_type = NULL;
|
||
length = 0;
|
||
|
||
new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
|
||
|
||
if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
|
||
{
|
||
/* This is a completely wierd case. In order to stuff in the
|
||
names that might contain colons (the usual name delimiter),
|
||
Mike Tiemann defined a different name format which is
|
||
signalled if the identifier is "op$". In that case, the
|
||
format is "op$::XXXX." where XXXX is the name. This is
|
||
used for names like "+" or "=". YUUUUUUUK! FIXME! */
|
||
/* This lets the user type "break operator+".
|
||
We could just put in "+" as the name, but that wouldn't
|
||
work for "*". */
|
||
static char opname[32] = "op$";
|
||
char *o = opname + 3;
|
||
|
||
/* Skip past '::'. */
|
||
*pp = p + 2;
|
||
|
||
STABS_CONTINUE (pp, objfile);
|
||
p = *pp;
|
||
while (*p != '.')
|
||
{
|
||
*o++ = *p++;
|
||
}
|
||
main_fn_name = savestring (opname, o - opname);
|
||
/* Skip past '.' */
|
||
*pp = p + 1;
|
||
}
|
||
else
|
||
{
|
||
main_fn_name = savestring (*pp, p - *pp);
|
||
/* Skip past '::'. */
|
||
*pp = p + 2;
|
||
}
|
||
new_fnlist->fn_fieldlist.name = main_fn_name;
|
||
|
||
do
|
||
{
|
||
new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
|
||
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if (look_ahead_type == NULL)
|
||
{
|
||
/* Normal case. */
|
||
STABS_CONTINUE (pp, objfile);
|
||
|
||
new_sublist->fn_field.type = read_type (pp, objfile);
|
||
if (**pp != ':')
|
||
{
|
||
/* Invalid symtab info for member function. */
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* g++ version 1 kludge */
|
||
new_sublist->fn_field.type = look_ahead_type;
|
||
look_ahead_type = NULL;
|
||
}
|
||
|
||
(*pp)++;
|
||
p = *pp;
|
||
while (*p != ';')
|
||
{
|
||
p++;
|
||
}
|
||
|
||
/* These are methods, not functions. */
|
||
if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
|
||
new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
|
||
|
||
/* If this is just a stub, then we don't have the real name here. */
|
||
if (new_sublist->fn_field.type->is_stub ())
|
||
{
|
||
if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
|
||
set_type_self_type (new_sublist->fn_field.type, type);
|
||
new_sublist->fn_field.is_stub = 1;
|
||
}
|
||
|
||
new_sublist->fn_field.physname = savestring (*pp, p - *pp);
|
||
*pp = p + 1;
|
||
|
||
/* Set this member function's visibility fields. */
|
||
switch (*(*pp)++)
|
||
{
|
||
case VISIBILITY_PRIVATE:
|
||
new_sublist->fn_field.is_private = 1;
|
||
break;
|
||
case VISIBILITY_PROTECTED:
|
||
new_sublist->fn_field.is_protected = 1;
|
||
break;
|
||
}
|
||
|
||
STABS_CONTINUE (pp, objfile);
|
||
switch (**pp)
|
||
{
|
||
case 'A': /* Normal functions. */
|
||
new_sublist->fn_field.is_const = 0;
|
||
new_sublist->fn_field.is_volatile = 0;
|
||
(*pp)++;
|
||
break;
|
||
case 'B': /* `const' member functions. */
|
||
new_sublist->fn_field.is_const = 1;
|
||
new_sublist->fn_field.is_volatile = 0;
|
||
(*pp)++;
|
||
break;
|
||
case 'C': /* `volatile' member function. */
|
||
new_sublist->fn_field.is_const = 0;
|
||
new_sublist->fn_field.is_volatile = 1;
|
||
(*pp)++;
|
||
break;
|
||
case 'D': /* `const volatile' member function. */
|
||
new_sublist->fn_field.is_const = 1;
|
||
new_sublist->fn_field.is_volatile = 1;
|
||
(*pp)++;
|
||
break;
|
||
case '*': /* File compiled with g++ version 1 --
|
||
no info. */
|
||
case '?':
|
||
case '.':
|
||
break;
|
||
default:
|
||
complaint (_("const/volatile indicator missing, got '%c'"),
|
||
**pp);
|
||
break;
|
||
}
|
||
|
||
switch (*(*pp)++)
|
||
{
|
||
case '*':
|
||
{
|
||
int nbits;
|
||
/* virtual member function, followed by index.
|
||
The sign bit is set to distinguish pointers-to-methods
|
||
from virtual function indicies. Since the array is
|
||
in words, the quantity must be shifted left by 1
|
||
on 16 bit machine, and by 2 on 32 bit machine, forcing
|
||
the sign bit out, and usable as a valid index into
|
||
the array. Remove the sign bit here. */
|
||
new_sublist->fn_field.voffset =
|
||
(0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
|
||
if (nbits != 0)
|
||
return 0;
|
||
|
||
STABS_CONTINUE (pp, objfile);
|
||
if (**pp == ';' || **pp == '\0')
|
||
{
|
||
/* Must be g++ version 1. */
|
||
new_sublist->fn_field.fcontext = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Figure out from whence this virtual function came.
|
||
It may belong to virtual function table of
|
||
one of its baseclasses. */
|
||
look_ahead_type = read_type (pp, objfile);
|
||
if (**pp == ':')
|
||
{
|
||
/* g++ version 1 overloaded methods. */
|
||
}
|
||
else
|
||
{
|
||
new_sublist->fn_field.fcontext = look_ahead_type;
|
||
if (**pp != ';')
|
||
{
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
++*pp;
|
||
}
|
||
look_ahead_type = NULL;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case '?':
|
||
/* static member function. */
|
||
{
|
||
int slen = strlen (main_fn_name);
|
||
|
||
new_sublist->fn_field.voffset = VOFFSET_STATIC;
|
||
|
||
/* For static member functions, we can't tell if they
|
||
are stubbed, as they are put out as functions, and not as
|
||
methods.
|
||
GCC v2 emits the fully mangled name if
|
||
dbxout.c:flag_minimal_debug is not set, so we have to
|
||
detect a fully mangled physname here and set is_stub
|
||
accordingly. Fully mangled physnames in v2 start with
|
||
the member function name, followed by two underscores.
|
||
GCC v3 currently always emits stubbed member functions,
|
||
but with fully mangled physnames, which start with _Z. */
|
||
if (!(strncmp (new_sublist->fn_field.physname,
|
||
main_fn_name, slen) == 0
|
||
&& new_sublist->fn_field.physname[slen] == '_'
|
||
&& new_sublist->fn_field.physname[slen + 1] == '_'))
|
||
{
|
||
new_sublist->fn_field.is_stub = 1;
|
||
}
|
||
break;
|
||
}
|
||
|
||
default:
|
||
/* error */
|
||
complaint (_("member function type missing, got '%c'"),
|
||
(*pp)[-1]);
|
||
/* Normal member function. */
|
||
/* Fall through. */
|
||
|
||
case '.':
|
||
/* normal member function. */
|
||
new_sublist->fn_field.voffset = 0;
|
||
new_sublist->fn_field.fcontext = 0;
|
||
break;
|
||
}
|
||
|
||
new_sublist->next = sublist;
|
||
sublist = new_sublist;
|
||
length++;
|
||
STABS_CONTINUE (pp, objfile);
|
||
}
|
||
while (**pp != ';' && **pp != '\0');
|
||
|
||
(*pp)++;
|
||
STABS_CONTINUE (pp, objfile);
|
||
|
||
/* Skip GCC 3.X member functions which are duplicates of the callable
|
||
constructor/destructor. */
|
||
if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
|
||
|| strcmp_iw (main_fn_name, "__base_dtor ") == 0
|
||
|| strcmp (main_fn_name, "__deleting_dtor") == 0)
|
||
{
|
||
xfree (main_fn_name);
|
||
}
|
||
else
|
||
{
|
||
int has_destructor = 0, has_other = 0;
|
||
int is_v3 = 0;
|
||
struct next_fnfield *tmp_sublist;
|
||
|
||
/* Various versions of GCC emit various mostly-useless
|
||
strings in the name field for special member functions.
|
||
|
||
For stub methods, we need to defer correcting the name
|
||
until we are ready to unstub the method, because the current
|
||
name string is used by gdb_mangle_name. The only stub methods
|
||
of concern here are GNU v2 operators; other methods have their
|
||
names correct (see caveat below).
|
||
|
||
For non-stub methods, in GNU v3, we have a complete physname.
|
||
Therefore we can safely correct the name now. This primarily
|
||
affects constructors and destructors, whose name will be
|
||
__comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
|
||
operators will also have incorrect names; for instance,
|
||
"operator int" will be named "operator i" (i.e. the type is
|
||
mangled).
|
||
|
||
For non-stub methods in GNU v2, we have no easy way to
|
||
know if we have a complete physname or not. For most
|
||
methods the result depends on the platform (if CPLUS_MARKER
|
||
can be `$' or `.', it will use minimal debug information, or
|
||
otherwise the full physname will be included).
|
||
|
||
Rather than dealing with this, we take a different approach.
|
||
For v3 mangled names, we can use the full physname; for v2,
|
||
we use cplus_demangle_opname (which is actually v2 specific),
|
||
because the only interesting names are all operators - once again
|
||
barring the caveat below. Skip this process if any method in the
|
||
group is a stub, to prevent our fouling up the workings of
|
||
gdb_mangle_name.
|
||
|
||
The caveat: GCC 2.95.x (and earlier?) put constructors and
|
||
destructors in the same method group. We need to split this
|
||
into two groups, because they should have different names.
|
||
So for each method group we check whether it contains both
|
||
routines whose physname appears to be a destructor (the physnames
|
||
for and destructors are always provided, due to quirks in v2
|
||
mangling) and routines whose physname does not appear to be a
|
||
destructor. If so then we break up the list into two halves.
|
||
Even if the constructors and destructors aren't in the same group
|
||
the destructor will still lack the leading tilde, so that also
|
||
needs to be fixed.
|
||
|
||
So, to summarize what we expect and handle here:
|
||
|
||
Given Given Real Real Action
|
||
method name physname physname method name
|
||
|
||
__opi [none] __opi__3Foo operator int opname
|
||
[now or later]
|
||
Foo _._3Foo _._3Foo ~Foo separate and
|
||
rename
|
||
operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
|
||
__comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
|
||
*/
|
||
|
||
tmp_sublist = sublist;
|
||
while (tmp_sublist != NULL)
|
||
{
|
||
if (tmp_sublist->fn_field.physname[0] == '_'
|
||
&& tmp_sublist->fn_field.physname[1] == 'Z')
|
||
is_v3 = 1;
|
||
|
||
if (is_destructor_name (tmp_sublist->fn_field.physname))
|
||
has_destructor++;
|
||
else
|
||
has_other++;
|
||
|
||
tmp_sublist = tmp_sublist->next;
|
||
}
|
||
|
||
if (has_destructor && has_other)
|
||
{
|
||
struct next_fnfieldlist *destr_fnlist;
|
||
struct next_fnfield *last_sublist;
|
||
|
||
/* Create a new fn_fieldlist for the destructors. */
|
||
|
||
destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
|
||
struct next_fnfieldlist);
|
||
|
||
destr_fnlist->fn_fieldlist.name
|
||
= obconcat (&objfile->objfile_obstack, "~",
|
||
new_fnlist->fn_fieldlist.name, (char *) NULL);
|
||
|
||
destr_fnlist->fn_fieldlist.fn_fields =
|
||
XOBNEWVEC (&objfile->objfile_obstack,
|
||
struct fn_field, has_destructor);
|
||
memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
|
||
sizeof (struct fn_field) * has_destructor);
|
||
tmp_sublist = sublist;
|
||
last_sublist = NULL;
|
||
i = 0;
|
||
while (tmp_sublist != NULL)
|
||
{
|
||
if (!is_destructor_name (tmp_sublist->fn_field.physname))
|
||
{
|
||
tmp_sublist = tmp_sublist->next;
|
||
continue;
|
||
}
|
||
|
||
destr_fnlist->fn_fieldlist.fn_fields[i++]
|
||
= tmp_sublist->fn_field;
|
||
if (last_sublist)
|
||
last_sublist->next = tmp_sublist->next;
|
||
else
|
||
sublist = tmp_sublist->next;
|
||
last_sublist = tmp_sublist;
|
||
tmp_sublist = tmp_sublist->next;
|
||
}
|
||
|
||
destr_fnlist->fn_fieldlist.length = has_destructor;
|
||
destr_fnlist->next = fip->fnlist;
|
||
fip->fnlist = destr_fnlist;
|
||
nfn_fields++;
|
||
length -= has_destructor;
|
||
}
|
||
else if (is_v3)
|
||
{
|
||
/* v3 mangling prevents the use of abbreviated physnames,
|
||
so we can do this here. There are stubbed methods in v3
|
||
only:
|
||
- in -gstabs instead of -gstabs+
|
||
- or for static methods, which are output as a function type
|
||
instead of a method type. */
|
||
char *new_method_name =
|
||
stabs_method_name_from_physname (sublist->fn_field.physname);
|
||
|
||
if (new_method_name != NULL
|
||
&& strcmp (new_method_name,
|
||
new_fnlist->fn_fieldlist.name) != 0)
|
||
{
|
||
new_fnlist->fn_fieldlist.name = new_method_name;
|
||
xfree (main_fn_name);
|
||
}
|
||
else
|
||
xfree (new_method_name);
|
||
}
|
||
else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
|
||
{
|
||
new_fnlist->fn_fieldlist.name =
|
||
obconcat (&objfile->objfile_obstack,
|
||
"~", main_fn_name, (char *)NULL);
|
||
xfree (main_fn_name);
|
||
}
|
||
|
||
new_fnlist->fn_fieldlist.fn_fields
|
||
= OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
|
||
for (i = length; (i--, sublist); sublist = sublist->next)
|
||
{
|
||
new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
|
||
}
|
||
|
||
new_fnlist->fn_fieldlist.length = length;
|
||
new_fnlist->next = fip->fnlist;
|
||
fip->fnlist = new_fnlist;
|
||
nfn_fields++;
|
||
}
|
||
}
|
||
|
||
if (nfn_fields)
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
|
||
TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
|
||
memset (TYPE_FN_FIELDLISTS (type), 0,
|
||
sizeof (struct fn_fieldlist) * nfn_fields);
|
||
TYPE_NFN_FIELDS (type) = nfn_fields;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Special GNU C++ name.
|
||
|
||
Returns 1 for success, 0 for failure. "failure" means that we can't
|
||
keep parsing and it's time for error_type(). */
|
||
|
||
static int
|
||
read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
|
||
struct type *type, struct objfile *objfile)
|
||
{
|
||
const char *p;
|
||
const char *name;
|
||
char cpp_abbrev;
|
||
struct type *context;
|
||
|
||
p = *pp;
|
||
if (*++p == 'v')
|
||
{
|
||
name = NULL;
|
||
cpp_abbrev = *++p;
|
||
|
||
*pp = p + 1;
|
||
|
||
/* At this point, *pp points to something like "22:23=*22...",
|
||
where the type number before the ':' is the "context" and
|
||
everything after is a regular type definition. Lookup the
|
||
type, find it's name, and construct the field name. */
|
||
|
||
context = read_type (pp, objfile);
|
||
|
||
switch (cpp_abbrev)
|
||
{
|
||
case 'f': /* $vf -- a virtual function table pointer */
|
||
name = context->name ();
|
||
if (name == NULL)
|
||
{
|
||
name = "";
|
||
}
|
||
fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
|
||
vptr_name, name, (char *) NULL));
|
||
break;
|
||
|
||
case 'b': /* $vb -- a virtual bsomethingorother */
|
||
name = context->name ();
|
||
if (name == NULL)
|
||
{
|
||
complaint (_("C++ abbreviated type name "
|
||
"unknown at symtab pos %d"),
|
||
symnum);
|
||
name = "FOO";
|
||
}
|
||
fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
|
||
vb_name, name, (char *) NULL));
|
||
break;
|
||
|
||
default:
|
||
invalid_cpp_abbrev_complaint (*pp);
|
||
fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
|
||
"INVALID_CPLUSPLUS_ABBREV",
|
||
(char *) NULL));
|
||
break;
|
||
}
|
||
|
||
/* At this point, *pp points to the ':'. Skip it and read the
|
||
field type. */
|
||
|
||
p = ++(*pp);
|
||
if (p[-1] != ':')
|
||
{
|
||
invalid_cpp_abbrev_complaint (*pp);
|
||
return 0;
|
||
}
|
||
fip->list->field.set_type (read_type (pp, objfile));
|
||
if (**pp == ',')
|
||
(*pp)++; /* Skip the comma. */
|
||
else
|
||
return 0;
|
||
|
||
{
|
||
int nbits;
|
||
|
||
fip->list->field.set_loc_bitpos (read_huge_number (pp, ';', &nbits, 0));
|
||
if (nbits != 0)
|
||
return 0;
|
||
}
|
||
/* This field is unpacked. */
|
||
FIELD_BITSIZE (fip->list->field) = 0;
|
||
fip->list->visibility = VISIBILITY_PRIVATE;
|
||
}
|
||
else
|
||
{
|
||
invalid_cpp_abbrev_complaint (*pp);
|
||
/* We have no idea what syntax an unrecognized abbrev would have, so
|
||
better return 0. If we returned 1, we would need to at least advance
|
||
*pp to avoid an infinite loop. */
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
read_one_struct_field (struct stab_field_info *fip, const char **pp,
|
||
const char *p, struct type *type,
|
||
struct objfile *objfile)
|
||
{
|
||
struct gdbarch *gdbarch = objfile->arch ();
|
||
|
||
fip->list->field.set_name
|
||
(obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp));
|
||
*pp = p + 1;
|
||
|
||
/* This means we have a visibility for a field coming. */
|
||
if (**pp == '/')
|
||
{
|
||
(*pp)++;
|
||
fip->list->visibility = *(*pp)++;
|
||
}
|
||
else
|
||
{
|
||
/* normal dbx-style format, no explicit visibility */
|
||
fip->list->visibility = VISIBILITY_PUBLIC;
|
||
}
|
||
|
||
fip->list->field.set_type (read_type (pp, objfile));
|
||
if (**pp == ':')
|
||
{
|
||
p = ++(*pp);
|
||
#if 0
|
||
/* Possible future hook for nested types. */
|
||
if (**pp == '!')
|
||
{
|
||
fip->list->field.bitpos = (long) -2; /* nested type */
|
||
p = ++(*pp);
|
||
}
|
||
else
|
||
...;
|
||
#endif
|
||
while (*p != ';')
|
||
{
|
||
p++;
|
||
}
|
||
/* Static class member. */
|
||
fip->list->field.set_loc_physname (savestring (*pp, p - *pp));
|
||
*pp = p + 1;
|
||
return;
|
||
}
|
||
else if (**pp != ',')
|
||
{
|
||
/* Bad structure-type format. */
|
||
stabs_general_complaint ("bad structure-type format");
|
||
return;
|
||
}
|
||
|
||
(*pp)++; /* Skip the comma. */
|
||
|
||
{
|
||
int nbits;
|
||
|
||
fip->list->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
|
||
if (nbits != 0)
|
||
{
|
||
stabs_general_complaint ("bad structure-type format");
|
||
return;
|
||
}
|
||
FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
|
||
if (nbits != 0)
|
||
{
|
||
stabs_general_complaint ("bad structure-type format");
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (fip->list->field.loc_bitpos () == 0
|
||
&& FIELD_BITSIZE (fip->list->field) == 0)
|
||
{
|
||
/* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
|
||
it is a field which has been optimized out. The correct stab for
|
||
this case is to use VISIBILITY_IGNORE, but that is a recent
|
||
invention. (2) It is a 0-size array. For example
|
||
union { int num; char str[0]; } foo. Printing _("<no value>" for
|
||
str in "p foo" is OK, since foo.str (and thus foo.str[3])
|
||
will continue to work, and a 0-size array as a whole doesn't
|
||
have any contents to print.
|
||
|
||
I suspect this probably could also happen with gcc -gstabs (not
|
||
-gstabs+) for static fields, and perhaps other C++ extensions.
|
||
Hopefully few people use -gstabs with gdb, since it is intended
|
||
for dbx compatibility. */
|
||
|
||
/* Ignore this field. */
|
||
fip->list->visibility = VISIBILITY_IGNORE;
|
||
}
|
||
else
|
||
{
|
||
/* Detect an unpacked field and mark it as such.
|
||
dbx gives a bit size for all fields.
|
||
Note that forward refs cannot be packed,
|
||
and treat enums as if they had the width of ints. */
|
||
|
||
struct type *field_type = check_typedef (fip->list->field.type ());
|
||
|
||
if (field_type->code () != TYPE_CODE_INT
|
||
&& field_type->code () != TYPE_CODE_RANGE
|
||
&& field_type->code () != TYPE_CODE_BOOL
|
||
&& field_type->code () != TYPE_CODE_ENUM)
|
||
{
|
||
FIELD_BITSIZE (fip->list->field) = 0;
|
||
}
|
||
if ((FIELD_BITSIZE (fip->list->field)
|
||
== TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
|
||
|| (field_type->code () == TYPE_CODE_ENUM
|
||
&& FIELD_BITSIZE (fip->list->field)
|
||
== gdbarch_int_bit (gdbarch))
|
||
)
|
||
&&
|
||
fip->list->field.loc_bitpos () % 8 == 0)
|
||
{
|
||
FIELD_BITSIZE (fip->list->field) = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Read struct or class data fields. They have the form:
|
||
|
||
NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
|
||
|
||
At the end, we see a semicolon instead of a field.
|
||
|
||
In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
|
||
a static field.
|
||
|
||
The optional VISIBILITY is one of:
|
||
|
||
'/0' (VISIBILITY_PRIVATE)
|
||
'/1' (VISIBILITY_PROTECTED)
|
||
'/2' (VISIBILITY_PUBLIC)
|
||
'/9' (VISIBILITY_IGNORE)
|
||
|
||
or nothing, for C style fields with public visibility.
|
||
|
||
Returns 1 for success, 0 for failure. */
|
||
|
||
static int
|
||
read_struct_fields (struct stab_field_info *fip, const char **pp,
|
||
struct type *type, struct objfile *objfile)
|
||
{
|
||
const char *p;
|
||
struct nextfield *newobj;
|
||
|
||
/* We better set p right now, in case there are no fields at all... */
|
||
|
||
p = *pp;
|
||
|
||
/* Read each data member type until we find the terminating ';' at the end of
|
||
the data member list, or break for some other reason such as finding the
|
||
start of the member function list. */
|
||
/* Stab string for structure/union does not end with two ';' in
|
||
SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
|
||
|
||
while (**pp != ';' && **pp != '\0')
|
||
{
|
||
STABS_CONTINUE (pp, objfile);
|
||
/* Get space to record the next field's data. */
|
||
newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
|
||
|
||
newobj->next = fip->list;
|
||
fip->list = newobj;
|
||
|
||
/* Get the field name. */
|
||
p = *pp;
|
||
|
||
/* If is starts with CPLUS_MARKER it is a special abbreviation,
|
||
unless the CPLUS_MARKER is followed by an underscore, in
|
||
which case it is just the name of an anonymous type, which we
|
||
should handle like any other type name. */
|
||
|
||
if (is_cplus_marker (p[0]) && p[1] != '_')
|
||
{
|
||
if (!read_cpp_abbrev (fip, pp, type, objfile))
|
||
return 0;
|
||
continue;
|
||
}
|
||
|
||
/* Look for the ':' that separates the field name from the field
|
||
values. Data members are delimited by a single ':', while member
|
||
functions are delimited by a pair of ':'s. When we hit the member
|
||
functions (if any), terminate scan loop and return. */
|
||
|
||
while (*p != ':' && *p != '\0')
|
||
{
|
||
p++;
|
||
}
|
||
if (*p == '\0')
|
||
return 0;
|
||
|
||
/* Check to see if we have hit the member functions yet. */
|
||
if (p[1] == ':')
|
||
{
|
||
break;
|
||
}
|
||
read_one_struct_field (fip, pp, p, type, objfile);
|
||
}
|
||
if (p[0] == ':' && p[1] == ':')
|
||
{
|
||
/* (the deleted) chill the list of fields: the last entry (at
|
||
the head) is a partially constructed entry which we now
|
||
scrub. */
|
||
fip->list = fip->list->next;
|
||
}
|
||
return 1;
|
||
}
|
||
/* *INDENT-OFF* */
|
||
/* The stabs for C++ derived classes contain baseclass information which
|
||
is marked by a '!' character after the total size. This function is
|
||
called when we encounter the baseclass marker, and slurps up all the
|
||
baseclass information.
|
||
|
||
Immediately following the '!' marker is the number of base classes that
|
||
the class is derived from, followed by information for each base class.
|
||
For each base class, there are two visibility specifiers, a bit offset
|
||
to the base class information within the derived class, a reference to
|
||
the type for the base class, and a terminating semicolon.
|
||
|
||
A typical example, with two base classes, would be "!2,020,19;0264,21;".
|
||
^^ ^ ^ ^ ^ ^ ^
|
||
Baseclass information marker __________________|| | | | | | |
|
||
Number of baseclasses __________________________| | | | | | |
|
||
Visibility specifiers (2) ________________________| | | | | |
|
||
Offset in bits from start of class _________________| | | | |
|
||
Type number for base class ___________________________| | | |
|
||
Visibility specifiers (2) _______________________________| | |
|
||
Offset in bits from start of class ________________________| |
|
||
Type number of base class ____________________________________|
|
||
|
||
Return 1 for success, 0 for (error-type-inducing) failure. */
|
||
/* *INDENT-ON* */
|
||
|
||
|
||
|
||
static int
|
||
read_baseclasses (struct stab_field_info *fip, const char **pp,
|
||
struct type *type, struct objfile *objfile)
|
||
{
|
||
int i;
|
||
struct nextfield *newobj;
|
||
|
||
if (**pp != '!')
|
||
{
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
/* Skip the '!' baseclass information marker. */
|
||
(*pp)++;
|
||
}
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
{
|
||
int nbits;
|
||
|
||
TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
|
||
if (nbits != 0)
|
||
return 0;
|
||
}
|
||
|
||
#if 0
|
||
/* Some stupid compilers have trouble with the following, so break
|
||
it up into simpler expressions. */
|
||
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
|
||
TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
|
||
#else
|
||
{
|
||
int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
|
||
char *pointer;
|
||
|
||
pointer = (char *) TYPE_ALLOC (type, num_bytes);
|
||
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
|
||
|
||
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
|
||
{
|
||
newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
|
||
|
||
newobj->next = fip->list;
|
||
fip->list = newobj;
|
||
FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
|
||
field! */
|
||
|
||
STABS_CONTINUE (pp, objfile);
|
||
switch (**pp)
|
||
{
|
||
case '0':
|
||
/* Nothing to do. */
|
||
break;
|
||
case '1':
|
||
SET_TYPE_FIELD_VIRTUAL (type, i);
|
||
break;
|
||
default:
|
||
/* Unknown character. Complain and treat it as non-virtual. */
|
||
{
|
||
complaint (_("Unknown virtual character `%c' for baseclass"),
|
||
**pp);
|
||
}
|
||
}
|
||
++(*pp);
|
||
|
||
newobj->visibility = *(*pp)++;
|
||
switch (newobj->visibility)
|
||
{
|
||
case VISIBILITY_PRIVATE:
|
||
case VISIBILITY_PROTECTED:
|
||
case VISIBILITY_PUBLIC:
|
||
break;
|
||
default:
|
||
/* Bad visibility format. Complain and treat it as
|
||
public. */
|
||
{
|
||
complaint (_("Unknown visibility `%c' for baseclass"),
|
||
newobj->visibility);
|
||
newobj->visibility = VISIBILITY_PUBLIC;
|
||
}
|
||
}
|
||
|
||
{
|
||
int nbits;
|
||
|
||
/* The remaining value is the bit offset of the portion of the object
|
||
corresponding to this baseclass. Always zero in the absence of
|
||
multiple inheritance. */
|
||
|
||
newobj->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
|
||
if (nbits != 0)
|
||
return 0;
|
||
}
|
||
|
||
/* The last piece of baseclass information is the type of the
|
||
base class. Read it, and remember it's type name as this
|
||
field's name. */
|
||
|
||
newobj->field.set_type (read_type (pp, objfile));
|
||
newobj->field.set_name (newobj->field.type ()->name ());
|
||
|
||
/* Skip trailing ';' and bump count of number of fields seen. */
|
||
if (**pp == ';')
|
||
(*pp)++;
|
||
else
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* The tail end of stabs for C++ classes that contain a virtual function
|
||
pointer contains a tilde, a %, and a type number.
|
||
The type number refers to the base class (possibly this class itself) which
|
||
contains the vtable pointer for the current class.
|
||
|
||
This function is called when we have parsed all the method declarations,
|
||
so we can look for the vptr base class info. */
|
||
|
||
static int
|
||
read_tilde_fields (struct stab_field_info *fip, const char **pp,
|
||
struct type *type, struct objfile *objfile)
|
||
{
|
||
const char *p;
|
||
|
||
STABS_CONTINUE (pp, objfile);
|
||
|
||
/* If we are positioned at a ';', then skip it. */
|
||
if (**pp == ';')
|
||
{
|
||
(*pp)++;
|
||
}
|
||
|
||
if (**pp == '~')
|
||
{
|
||
(*pp)++;
|
||
|
||
if (**pp == '=' || **pp == '+' || **pp == '-')
|
||
{
|
||
/* Obsolete flags that used to indicate the presence
|
||
of constructors and/or destructors. */
|
||
(*pp)++;
|
||
}
|
||
|
||
/* Read either a '%' or the final ';'. */
|
||
if (*(*pp)++ == '%')
|
||
{
|
||
/* The next number is the type number of the base class
|
||
(possibly our own class) which supplies the vtable for
|
||
this class. Parse it out, and search that class to find
|
||
its vtable pointer, and install those into TYPE_VPTR_BASETYPE
|
||
and TYPE_VPTR_FIELDNO. */
|
||
|
||
struct type *t;
|
||
int i;
|
||
|
||
t = read_type (pp, objfile);
|
||
p = (*pp)++;
|
||
while (*p != '\0' && *p != ';')
|
||
{
|
||
p++;
|
||
}
|
||
if (*p == '\0')
|
||
{
|
||
/* Premature end of symbol. */
|
||
return 0;
|
||
}
|
||
|
||
set_type_vptr_basetype (type, t);
|
||
if (type == t) /* Our own class provides vtbl ptr. */
|
||
{
|
||
for (i = t->num_fields () - 1;
|
||
i >= TYPE_N_BASECLASSES (t);
|
||
--i)
|
||
{
|
||
const char *name = t->field (i).name ();
|
||
|
||
if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
|
||
&& is_cplus_marker (name[sizeof (vptr_name) - 2]))
|
||
{
|
||
set_type_vptr_fieldno (type, i);
|
||
goto gotit;
|
||
}
|
||
}
|
||
/* Virtual function table field not found. */
|
||
complaint (_("virtual function table pointer "
|
||
"not found when defining class `%s'"),
|
||
type->name ());
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
|
||
}
|
||
|
||
gotit:
|
||
*pp = p + 1;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
|
||
{
|
||
int n;
|
||
|
||
for (n = TYPE_NFN_FIELDS (type);
|
||
fip->fnlist != NULL;
|
||
fip->fnlist = fip->fnlist->next)
|
||
{
|
||
--n; /* Circumvent Sun3 compiler bug. */
|
||
TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Create the vector of fields, and record how big it is.
|
||
We need this info to record proper virtual function table information
|
||
for this class's virtual functions. */
|
||
|
||
static int
|
||
attach_fields_to_type (struct stab_field_info *fip, struct type *type,
|
||
struct objfile *objfile)
|
||
{
|
||
int nfields = 0;
|
||
int non_public_fields = 0;
|
||
struct nextfield *scan;
|
||
|
||
/* Count up the number of fields that we have, as well as taking note of
|
||
whether or not there are any non-public fields, which requires us to
|
||
allocate and build the private_field_bits and protected_field_bits
|
||
bitfields. */
|
||
|
||
for (scan = fip->list; scan != NULL; scan = scan->next)
|
||
{
|
||
nfields++;
|
||
if (scan->visibility != VISIBILITY_PUBLIC)
|
||
{
|
||
non_public_fields++;
|
||
}
|
||
}
|
||
|
||
/* Now we know how many fields there are, and whether or not there are any
|
||
non-public fields. Record the field count, allocate space for the
|
||
array of fields, and create blank visibility bitfields if necessary. */
|
||
|
||
type->set_num_fields (nfields);
|
||
type->set_fields
|
||
((struct field *)
|
||
TYPE_ALLOC (type, sizeof (struct field) * nfields));
|
||
memset (type->fields (), 0, sizeof (struct field) * nfields);
|
||
|
||
if (non_public_fields)
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
|
||
TYPE_FIELD_PRIVATE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_PROTECTED_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_IGNORE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
|
||
}
|
||
|
||
/* Copy the saved-up fields into the field vector. Start from the
|
||
head of the list, adding to the tail of the field array, so that
|
||
they end up in the same order in the array in which they were
|
||
added to the list. */
|
||
|
||
while (nfields-- > 0)
|
||
{
|
||
type->field (nfields) = fip->list->field;
|
||
switch (fip->list->visibility)
|
||
{
|
||
case VISIBILITY_PRIVATE:
|
||
SET_TYPE_FIELD_PRIVATE (type, nfields);
|
||
break;
|
||
|
||
case VISIBILITY_PROTECTED:
|
||
SET_TYPE_FIELD_PROTECTED (type, nfields);
|
||
break;
|
||
|
||
case VISIBILITY_IGNORE:
|
||
SET_TYPE_FIELD_IGNORE (type, nfields);
|
||
break;
|
||
|
||
case VISIBILITY_PUBLIC:
|
||
break;
|
||
|
||
default:
|
||
/* Unknown visibility. Complain and treat it as public. */
|
||
{
|
||
complaint (_("Unknown visibility `%c' for field"),
|
||
fip->list->visibility);
|
||
}
|
||
break;
|
||
}
|
||
fip->list = fip->list->next;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Complain that the compiler has emitted more than one definition for the
|
||
structure type TYPE. */
|
||
static void
|
||
complain_about_struct_wipeout (struct type *type)
|
||
{
|
||
const char *name = "";
|
||
const char *kind = "";
|
||
|
||
if (type->name ())
|
||
{
|
||
name = type->name ();
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_STRUCT: kind = "struct "; break;
|
||
case TYPE_CODE_UNION: kind = "union "; break;
|
||
case TYPE_CODE_ENUM: kind = "enum "; break;
|
||
default: kind = "";
|
||
}
|
||
}
|
||
else
|
||
{
|
||
name = "<unknown>";
|
||
kind = "";
|
||
}
|
||
|
||
complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
|
||
}
|
||
|
||
/* Set the length for all variants of a same main_type, which are
|
||
connected in the closed chain.
|
||
|
||
This is something that needs to be done when a type is defined *after*
|
||
some cross references to this type have already been read. Consider
|
||
for instance the following scenario where we have the following two
|
||
stabs entries:
|
||
|
||
.stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
|
||
.stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
|
||
|
||
A stubbed version of type dummy is created while processing the first
|
||
stabs entry. The length of that type is initially set to zero, since
|
||
it is unknown at this point. Also, a "constant" variation of type
|
||
"dummy" is created as well (this is the "(0,22)=k(0,23)" section of
|
||
the stabs line).
|
||
|
||
The second stabs entry allows us to replace the stubbed definition
|
||
with the real definition. However, we still need to adjust the length
|
||
of the "constant" variation of that type, as its length was left
|
||
untouched during the main type replacement... */
|
||
|
||
static void
|
||
set_length_in_type_chain (struct type *type)
|
||
{
|
||
struct type *ntype = TYPE_CHAIN (type);
|
||
|
||
while (ntype != type)
|
||
{
|
||
if (TYPE_LENGTH(ntype) == 0)
|
||
TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
|
||
else
|
||
complain_about_struct_wipeout (ntype);
|
||
ntype = TYPE_CHAIN (ntype);
|
||
}
|
||
}
|
||
|
||
/* Read the description of a structure (or union type) and return an object
|
||
describing the type.
|
||
|
||
PP points to a character pointer that points to the next unconsumed token
|
||
in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
|
||
*PP will point to "4a:1,0,32;;".
|
||
|
||
TYPE points to an incomplete type that needs to be filled in.
|
||
|
||
OBJFILE points to the current objfile from which the stabs information is
|
||
being read. (Note that it is redundant in that TYPE also contains a pointer
|
||
to this same objfile, so it might be a good idea to eliminate it. FIXME).
|
||
*/
|
||
|
||
static struct type *
|
||
read_struct_type (const char **pp, struct type *type, enum type_code type_code,
|
||
struct objfile *objfile)
|
||
{
|
||
struct stab_field_info fi;
|
||
|
||
/* When describing struct/union/class types in stabs, G++ always drops
|
||
all qualifications from the name. So if you've got:
|
||
struct A { ... struct B { ... }; ... };
|
||
then G++ will emit stabs for `struct A::B' that call it simply
|
||
`struct B'. Obviously, if you've got a real top-level definition for
|
||
`struct B', or other nested definitions, this is going to cause
|
||
problems.
|
||
|
||
Obviously, GDB can't fix this by itself, but it can at least avoid
|
||
scribbling on existing structure type objects when new definitions
|
||
appear. */
|
||
if (! (type->code () == TYPE_CODE_UNDEF
|
||
|| type->is_stub ()))
|
||
{
|
||
complain_about_struct_wipeout (type);
|
||
|
||
/* It's probably best to return the type unchanged. */
|
||
return type;
|
||
}
|
||
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
type->set_code (type_code);
|
||
type->set_is_stub (false);
|
||
|
||
/* First comes the total size in bytes. */
|
||
|
||
{
|
||
int nbits;
|
||
|
||
TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
set_length_in_type_chain (type);
|
||
}
|
||
|
||
/* Now read the baseclasses, if any, read the regular C struct or C++
|
||
class member fields, attach the fields to the type, read the C++
|
||
member functions, attach them to the type, and then read any tilde
|
||
field (baseclass specifier for the class holding the main vtable). */
|
||
|
||
if (!read_baseclasses (&fi, pp, type, objfile)
|
||
|| !read_struct_fields (&fi, pp, type, objfile)
|
||
|| !attach_fields_to_type (&fi, type, objfile)
|
||
|| !read_member_functions (&fi, pp, type, objfile)
|
||
|| !attach_fn_fields_to_type (&fi, type)
|
||
|| !read_tilde_fields (&fi, pp, type, objfile))
|
||
{
|
||
type = error_type (pp, objfile);
|
||
}
|
||
|
||
return (type);
|
||
}
|
||
|
||
/* Read a definition of an array type,
|
||
and create and return a suitable type object.
|
||
Also creates a range type which represents the bounds of that
|
||
array. */
|
||
|
||
static struct type *
|
||
read_array_type (const char **pp, struct type *type,
|
||
struct objfile *objfile)
|
||
{
|
||
struct type *index_type, *element_type, *range_type;
|
||
int lower, upper;
|
||
int adjustable = 0;
|
||
int nbits;
|
||
|
||
/* Format of an array type:
|
||
"ar<index type>;lower;upper;<array_contents_type>".
|
||
OS9000: "arlower,upper;<array_contents_type>".
|
||
|
||
Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
|
||
for these, produce a type like float[][]. */
|
||
|
||
{
|
||
index_type = read_type (pp, objfile);
|
||
if (**pp != ';')
|
||
/* Improper format of array type decl. */
|
||
return error_type (pp, objfile);
|
||
++*pp;
|
||
}
|
||
|
||
if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
|
||
{
|
||
(*pp)++;
|
||
adjustable = 1;
|
||
}
|
||
lower = read_huge_number (pp, ';', &nbits, 0);
|
||
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
|
||
{
|
||
(*pp)++;
|
||
adjustable = 1;
|
||
}
|
||
upper = read_huge_number (pp, ';', &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
element_type = read_type (pp, objfile);
|
||
|
||
if (adjustable)
|
||
{
|
||
lower = 0;
|
||
upper = -1;
|
||
}
|
||
|
||
range_type =
|
||
create_static_range_type (NULL, index_type, lower, upper);
|
||
type = create_array_type (type, element_type, range_type);
|
||
|
||
return type;
|
||
}
|
||
|
||
|
||
/* Read a definition of an enumeration type,
|
||
and create and return a suitable type object.
|
||
Also defines the symbols that represent the values of the type. */
|
||
|
||
static struct type *
|
||
read_enum_type (const char **pp, struct type *type,
|
||
struct objfile *objfile)
|
||
{
|
||
struct gdbarch *gdbarch = objfile->arch ();
|
||
const char *p;
|
||
char *name;
|
||
long n;
|
||
struct symbol *sym;
|
||
int nsyms = 0;
|
||
struct pending **symlist;
|
||
struct pending *osyms, *syms;
|
||
int o_nsyms;
|
||
int nbits;
|
||
int unsigned_enum = 1;
|
||
|
||
#if 0
|
||
/* FIXME! The stabs produced by Sun CC merrily define things that ought
|
||
to be file-scope, between N_FN entries, using N_LSYM. What's a mother
|
||
to do? For now, force all enum values to file scope. */
|
||
if (within_function)
|
||
symlist = get_local_symbols ();
|
||
else
|
||
#endif
|
||
symlist = get_file_symbols ();
|
||
osyms = *symlist;
|
||
o_nsyms = osyms ? osyms->nsyms : 0;
|
||
|
||
/* The aix4 compiler emits an extra field before the enum members;
|
||
my guess is it's a type of some sort. Just ignore it. */
|
||
if (**pp == '-')
|
||
{
|
||
/* Skip over the type. */
|
||
while (**pp != ':')
|
||
(*pp)++;
|
||
|
||
/* Skip over the colon. */
|
||
(*pp)++;
|
||
}
|
||
|
||
/* Read the value-names and their values.
|
||
The input syntax is NAME:VALUE,NAME:VALUE, and so on.
|
||
A semicolon or comma instead of a NAME means the end. */
|
||
while (**pp && **pp != ';' && **pp != ',')
|
||
{
|
||
STABS_CONTINUE (pp, objfile);
|
||
p = *pp;
|
||
while (*p != ':')
|
||
p++;
|
||
name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
|
||
*pp = p + 1;
|
||
n = read_huge_number (pp, ',', &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
sym = new (&objfile->objfile_obstack) symbol;
|
||
sym->set_linkage_name (name);
|
||
sym->set_language (get_current_subfile ()->language,
|
||
&objfile->objfile_obstack);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
SYMBOL_VALUE (sym) = n;
|
||
if (n < 0)
|
||
unsigned_enum = 0;
|
||
add_symbol_to_list (sym, symlist);
|
||
nsyms++;
|
||
}
|
||
|
||
if (**pp == ';')
|
||
(*pp)++; /* Skip the semicolon. */
|
||
|
||
/* Now fill in the fields of the type-structure. */
|
||
|
||
TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
|
||
set_length_in_type_chain (type);
|
||
type->set_code (TYPE_CODE_ENUM);
|
||
type->set_is_stub (false);
|
||
if (unsigned_enum)
|
||
type->set_is_unsigned (true);
|
||
type->set_num_fields (nsyms);
|
||
type->set_fields
|
||
((struct field *)
|
||
TYPE_ALLOC (type, sizeof (struct field) * nsyms));
|
||
memset (type->fields (), 0, sizeof (struct field) * nsyms);
|
||
|
||
/* Find the symbols for the values and put them into the type.
|
||
The symbols can be found in the symlist that we put them on
|
||
to cause them to be defined. osyms contains the old value
|
||
of that symlist; everything up to there was defined by us. */
|
||
/* Note that we preserve the order of the enum constants, so
|
||
that in something like "enum {FOO, LAST_THING=FOO}" we print
|
||
FOO, not LAST_THING. */
|
||
|
||
for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
|
||
{
|
||
int last = syms == osyms ? o_nsyms : 0;
|
||
int j = syms->nsyms;
|
||
|
||
for (; --j >= last; --n)
|
||
{
|
||
struct symbol *xsym = syms->symbol[j];
|
||
|
||
SYMBOL_TYPE (xsym) = type;
|
||
type->field (n).set_name (xsym->linkage_name ());
|
||
type->field (n).set_loc_enumval (SYMBOL_VALUE (xsym));
|
||
TYPE_FIELD_BITSIZE (type, n) = 0;
|
||
}
|
||
if (syms == osyms)
|
||
break;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Sun's ACC uses a somewhat saner method for specifying the builtin
|
||
typedefs in every file (for int, long, etc):
|
||
|
||
type = b <signed> <width> <format type>; <offset>; <nbits>
|
||
signed = u or s.
|
||
optional format type = c or b for char or boolean.
|
||
offset = offset from high order bit to start bit of type.
|
||
width is # bytes in object of this type, nbits is # bits in type.
|
||
|
||
The width/offset stuff appears to be for small objects stored in
|
||
larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
|
||
FIXME. */
|
||
|
||
static struct type *
|
||
read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
|
||
{
|
||
int type_bits;
|
||
int nbits;
|
||
int unsigned_type;
|
||
int boolean_type = 0;
|
||
|
||
switch (**pp)
|
||
{
|
||
case 's':
|
||
unsigned_type = 0;
|
||
break;
|
||
case 'u':
|
||
unsigned_type = 1;
|
||
break;
|
||
default:
|
||
return error_type (pp, objfile);
|
||
}
|
||
(*pp)++;
|
||
|
||
/* For some odd reason, all forms of char put a c here. This is strange
|
||
because no other type has this honor. We can safely ignore this because
|
||
we actually determine 'char'acterness by the number of bits specified in
|
||
the descriptor.
|
||
Boolean forms, e.g Fortran logical*X, put a b here. */
|
||
|
||
if (**pp == 'c')
|
||
(*pp)++;
|
||
else if (**pp == 'b')
|
||
{
|
||
boolean_type = 1;
|
||
(*pp)++;
|
||
}
|
||
|
||
/* The first number appears to be the number of bytes occupied
|
||
by this type, except that unsigned short is 4 instead of 2.
|
||
Since this information is redundant with the third number,
|
||
we will ignore it. */
|
||
read_huge_number (pp, ';', &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
/* The second number is always 0, so ignore it too. */
|
||
read_huge_number (pp, ';', &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
/* The third number is the number of bits for this type. */
|
||
type_bits = read_huge_number (pp, 0, &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
/* The type *should* end with a semicolon. If it are embedded
|
||
in a larger type the semicolon may be the only way to know where
|
||
the type ends. If this type is at the end of the stabstring we
|
||
can deal with the omitted semicolon (but we don't have to like
|
||
it). Don't bother to complain(), Sun's compiler omits the semicolon
|
||
for "void". */
|
||
if (**pp == ';')
|
||
++(*pp);
|
||
|
||
if (type_bits == 0)
|
||
{
|
||
struct type *type = init_type (objfile, TYPE_CODE_VOID,
|
||
TARGET_CHAR_BIT, NULL);
|
||
if (unsigned_type)
|
||
type->set_is_unsigned (true);
|
||
|
||
return type;
|
||
}
|
||
|
||
if (boolean_type)
|
||
return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
|
||
else
|
||
return init_integer_type (objfile, type_bits, unsigned_type, NULL);
|
||
}
|
||
|
||
static struct type *
|
||
read_sun_floating_type (const char **pp, int typenums[2],
|
||
struct objfile *objfile)
|
||
{
|
||
int nbits;
|
||
int details;
|
||
int nbytes;
|
||
struct type *rettype;
|
||
|
||
/* The first number has more details about the type, for example
|
||
FN_COMPLEX. */
|
||
details = read_huge_number (pp, ';', &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
/* The second number is the number of bytes occupied by this type. */
|
||
nbytes = read_huge_number (pp, ';', &nbits, 0);
|
||
if (nbits != 0)
|
||
return error_type (pp, objfile);
|
||
|
||
nbits = nbytes * TARGET_CHAR_BIT;
|
||
|
||
if (details == NF_COMPLEX || details == NF_COMPLEX16
|
||
|| details == NF_COMPLEX32)
|
||
{
|
||
rettype = dbx_init_float_type (objfile, nbits / 2);
|
||
return init_complex_type (NULL, rettype);
|
||
}
|
||
|
||
return dbx_init_float_type (objfile, nbits);
|
||
}
|
||
|
||
/* Read a number from the string pointed to by *PP.
|
||
The value of *PP is advanced over the number.
|
||
If END is nonzero, the character that ends the
|
||
number must match END, or an error happens;
|
||
and that character is skipped if it does match.
|
||
If END is zero, *PP is left pointing to that character.
|
||
|
||
If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
|
||
the number is represented in an octal representation, assume that
|
||
it is represented in a 2's complement representation with a size of
|
||
TWOS_COMPLEMENT_BITS.
|
||
|
||
If the number fits in a long, set *BITS to 0 and return the value.
|
||
If not, set *BITS to be the number of bits in the number and return 0.
|
||
|
||
If encounter garbage, set *BITS to -1 and return 0. */
|
||
|
||
static long
|
||
read_huge_number (const char **pp, int end, int *bits,
|
||
int twos_complement_bits)
|
||
{
|
||
const char *p = *pp;
|
||
int sign = 1;
|
||
int sign_bit = 0;
|
||
long n = 0;
|
||
int radix = 10;
|
||
char overflow = 0;
|
||
int nbits = 0;
|
||
int c;
|
||
long upper_limit;
|
||
int twos_complement_representation = 0;
|
||
|
||
if (*p == '-')
|
||
{
|
||
sign = -1;
|
||
p++;
|
||
}
|
||
|
||
/* Leading zero means octal. GCC uses this to output values larger
|
||
than an int (because that would be hard in decimal). */
|
||
if (*p == '0')
|
||
{
|
||
radix = 8;
|
||
p++;
|
||
}
|
||
|
||
/* Skip extra zeros. */
|
||
while (*p == '0')
|
||
p++;
|
||
|
||
if (sign > 0 && radix == 8 && twos_complement_bits > 0)
|
||
{
|
||
/* Octal, possibly signed. Check if we have enough chars for a
|
||
negative number. */
|
||
|
||
size_t len;
|
||
const char *p1 = p;
|
||
|
||
while ((c = *p1) >= '0' && c < '8')
|
||
p1++;
|
||
|
||
len = p1 - p;
|
||
if (len > twos_complement_bits / 3
|
||
|| (twos_complement_bits % 3 == 0
|
||
&& len == twos_complement_bits / 3))
|
||
{
|
||
/* Ok, we have enough characters for a signed value, check
|
||
for signedness by testing if the sign bit is set. */
|
||
sign_bit = (twos_complement_bits % 3 + 2) % 3;
|
||
c = *p - '0';
|
||
if (c & (1 << sign_bit))
|
||
{
|
||
/* Definitely signed. */
|
||
twos_complement_representation = 1;
|
||
sign = -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
upper_limit = LONG_MAX / radix;
|
||
|
||
while ((c = *p++) >= '0' && c < ('0' + radix))
|
||
{
|
||
if (n <= upper_limit)
|
||
{
|
||
if (twos_complement_representation)
|
||
{
|
||
/* Octal, signed, twos complement representation. In
|
||
this case, n is the corresponding absolute value. */
|
||
if (n == 0)
|
||
{
|
||
long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
|
||
|
||
n = -sn;
|
||
}
|
||
else
|
||
{
|
||
n *= radix;
|
||
n -= c - '0';
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* unsigned representation */
|
||
n *= radix;
|
||
n += c - '0'; /* FIXME this overflows anyway. */
|
||
}
|
||
}
|
||
else
|
||
overflow = 1;
|
||
|
||
/* This depends on large values being output in octal, which is
|
||
what GCC does. */
|
||
if (radix == 8)
|
||
{
|
||
if (nbits == 0)
|
||
{
|
||
if (c == '0')
|
||
/* Ignore leading zeroes. */
|
||
;
|
||
else if (c == '1')
|
||
nbits = 1;
|
||
else if (c == '2' || c == '3')
|
||
nbits = 2;
|
||
else
|
||
nbits = 3;
|
||
}
|
||
else
|
||
nbits += 3;
|
||
}
|
||
}
|
||
if (end)
|
||
{
|
||
if (c && c != end)
|
||
{
|
||
if (bits != NULL)
|
||
*bits = -1;
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
--p;
|
||
|
||
if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
|
||
{
|
||
/* We were supposed to parse a number with maximum
|
||
TWOS_COMPLEMENT_BITS bits, but something went wrong. */
|
||
if (bits != NULL)
|
||
*bits = -1;
|
||
return 0;
|
||
}
|
||
|
||
*pp = p;
|
||
if (overflow)
|
||
{
|
||
if (nbits == 0)
|
||
{
|
||
/* Large decimal constants are an error (because it is hard to
|
||
count how many bits are in them). */
|
||
if (bits != NULL)
|
||
*bits = -1;
|
||
return 0;
|
||
}
|
||
|
||
/* -0x7f is the same as 0x80. So deal with it by adding one to
|
||
the number of bits. Two's complement represention octals
|
||
can't have a '-' in front. */
|
||
if (sign == -1 && !twos_complement_representation)
|
||
++nbits;
|
||
if (bits)
|
||
*bits = nbits;
|
||
}
|
||
else
|
||
{
|
||
if (bits)
|
||
*bits = 0;
|
||
return n * sign;
|
||
}
|
||
/* It's *BITS which has the interesting information. */
|
||
return 0;
|
||
}
|
||
|
||
static struct type *
|
||
read_range_type (const char **pp, int typenums[2], int type_size,
|
||
struct objfile *objfile)
|
||
{
|
||
struct gdbarch *gdbarch = objfile->arch ();
|
||
const char *orig_pp = *pp;
|
||
int rangenums[2];
|
||
long n2, n3;
|
||
int n2bits, n3bits;
|
||
int self_subrange;
|
||
struct type *result_type;
|
||
struct type *index_type = NULL;
|
||
|
||
/* First comes a type we are a subrange of.
|
||
In C it is usually 0, 1 or the type being defined. */
|
||
if (read_type_number (pp, rangenums) != 0)
|
||
return error_type (pp, objfile);
|
||
self_subrange = (rangenums[0] == typenums[0] &&
|
||
rangenums[1] == typenums[1]);
|
||
|
||
if (**pp == '=')
|
||
{
|
||
*pp = orig_pp;
|
||
index_type = read_type (pp, objfile);
|
||
}
|
||
|
||
/* A semicolon should now follow; skip it. */
|
||
if (**pp == ';')
|
||
(*pp)++;
|
||
|
||
/* The remaining two operands are usually lower and upper bounds
|
||
of the range. But in some special cases they mean something else. */
|
||
n2 = read_huge_number (pp, ';', &n2bits, type_size);
|
||
n3 = read_huge_number (pp, ';', &n3bits, type_size);
|
||
|
||
if (n2bits == -1 || n3bits == -1)
|
||
return error_type (pp, objfile);
|
||
|
||
if (index_type)
|
||
goto handle_true_range;
|
||
|
||
/* If limits are huge, must be large integral type. */
|
||
if (n2bits != 0 || n3bits != 0)
|
||
{
|
||
char got_signed = 0;
|
||
char got_unsigned = 0;
|
||
/* Number of bits in the type. */
|
||
int nbits = 0;
|
||
|
||
/* If a type size attribute has been specified, the bounds of
|
||
the range should fit in this size. If the lower bounds needs
|
||
more bits than the upper bound, then the type is signed. */
|
||
if (n2bits <= type_size && n3bits <= type_size)
|
||
{
|
||
if (n2bits == type_size && n2bits > n3bits)
|
||
got_signed = 1;
|
||
else
|
||
got_unsigned = 1;
|
||
nbits = type_size;
|
||
}
|
||
/* Range from 0 to <large number> is an unsigned large integral type. */
|
||
else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
|
||
{
|
||
got_unsigned = 1;
|
||
nbits = n3bits;
|
||
}
|
||
/* Range from <large number> to <large number>-1 is a large signed
|
||
integral type. Take care of the case where <large number> doesn't
|
||
fit in a long but <large number>-1 does. */
|
||
else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
|
||
|| (n2bits != 0 && n3bits == 0
|
||
&& (n2bits == sizeof (long) * HOST_CHAR_BIT)
|
||
&& n3 == LONG_MAX))
|
||
{
|
||
got_signed = 1;
|
||
nbits = n2bits;
|
||
}
|
||
|
||
if (got_signed || got_unsigned)
|
||
return init_integer_type (objfile, nbits, got_unsigned, NULL);
|
||
else
|
||
return error_type (pp, objfile);
|
||
}
|
||
|
||
/* A type defined as a subrange of itself, with bounds both 0, is void. */
|
||
if (self_subrange && n2 == 0 && n3 == 0)
|
||
return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
|
||
|
||
/* If n3 is zero and n2 is positive, we want a floating type, and n2
|
||
is the width in bytes.
|
||
|
||
Fortran programs appear to use this for complex types also. To
|
||
distinguish between floats and complex, g77 (and others?) seem
|
||
to use self-subranges for the complexes, and subranges of int for
|
||
the floats.
|
||
|
||
Also note that for complexes, g77 sets n2 to the size of one of
|
||
the member floats, not the whole complex beast. My guess is that
|
||
this was to work well with pre-COMPLEX versions of gdb. */
|
||
|
||
if (n3 == 0 && n2 > 0)
|
||
{
|
||
struct type *float_type
|
||
= dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
|
||
|
||
if (self_subrange)
|
||
return init_complex_type (NULL, float_type);
|
||
else
|
||
return float_type;
|
||
}
|
||
|
||
/* If the upper bound is -1, it must really be an unsigned integral. */
|
||
|
||
else if (n2 == 0 && n3 == -1)
|
||
{
|
||
int bits = type_size;
|
||
|
||
if (bits <= 0)
|
||
{
|
||
/* We don't know its size. It is unsigned int or unsigned
|
||
long. GCC 2.3.3 uses this for long long too, but that is
|
||
just a GDB 3.5 compatibility hack. */
|
||
bits = gdbarch_int_bit (gdbarch);
|
||
}
|
||
|
||
return init_integer_type (objfile, bits, 1, NULL);
|
||
}
|
||
|
||
/* Special case: char is defined (Who knows why) as a subrange of
|
||
itself with range 0-127. */
|
||
else if (self_subrange && n2 == 0 && n3 == 127)
|
||
{
|
||
struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
|
||
0, NULL);
|
||
type->set_has_no_signedness (true);
|
||
return type;
|
||
}
|
||
/* We used to do this only for subrange of self or subrange of int. */
|
||
else if (n2 == 0)
|
||
{
|
||
/* -1 is used for the upper bound of (4 byte) "unsigned int" and
|
||
"unsigned long", and we already checked for that,
|
||
so don't need to test for it here. */
|
||
|
||
if (n3 < 0)
|
||
/* n3 actually gives the size. */
|
||
return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
|
||
|
||
/* Is n3 == 2**(8n)-1 for some integer n? Then it's an
|
||
unsigned n-byte integer. But do require n to be a power of
|
||
two; we don't want 3- and 5-byte integers flying around. */
|
||
{
|
||
int bytes;
|
||
unsigned long bits;
|
||
|
||
bits = n3;
|
||
for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
|
||
bits >>= 8;
|
||
if (bits == 0
|
||
&& ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
|
||
return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
|
||
}
|
||
}
|
||
/* I think this is for Convex "long long". Since I don't know whether
|
||
Convex sets self_subrange, I also accept that particular size regardless
|
||
of self_subrange. */
|
||
else if (n3 == 0 && n2 < 0
|
||
&& (self_subrange
|
||
|| n2 == -gdbarch_long_long_bit
|
||
(gdbarch) / TARGET_CHAR_BIT))
|
||
return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
|
||
else if (n2 == -n3 - 1)
|
||
{
|
||
if (n3 == 0x7f)
|
||
return init_integer_type (objfile, 8, 0, NULL);
|
||
if (n3 == 0x7fff)
|
||
return init_integer_type (objfile, 16, 0, NULL);
|
||
if (n3 == 0x7fffffff)
|
||
return init_integer_type (objfile, 32, 0, NULL);
|
||
}
|
||
|
||
/* We have a real range type on our hands. Allocate space and
|
||
return a real pointer. */
|
||
handle_true_range:
|
||
|
||
if (self_subrange)
|
||
index_type = objfile_type (objfile)->builtin_int;
|
||
else
|
||
index_type = *dbx_lookup_type (rangenums, objfile);
|
||
if (index_type == NULL)
|
||
{
|
||
/* Does this actually ever happen? Is that why we are worrying
|
||
about dealing with it rather than just calling error_type? */
|
||
|
||
complaint (_("base type %d of range type is not defined"), rangenums[1]);
|
||
|
||
index_type = objfile_type (objfile)->builtin_int;
|
||
}
|
||
|
||
result_type
|
||
= create_static_range_type (NULL, index_type, n2, n3);
|
||
return (result_type);
|
||
}
|
||
|
||
/* Read in an argument list. This is a list of types, separated by commas
|
||
and terminated with END. Return the list of types read in, or NULL
|
||
if there is an error. */
|
||
|
||
static struct field *
|
||
read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
|
||
int *varargsp)
|
||
{
|
||
/* FIXME! Remove this arbitrary limit! */
|
||
struct type *types[1024]; /* Allow for fns of 1023 parameters. */
|
||
int n = 0, i;
|
||
struct field *rval;
|
||
|
||
while (**pp != end)
|
||
{
|
||
if (**pp != ',')
|
||
/* Invalid argument list: no ','. */
|
||
return NULL;
|
||
(*pp)++;
|
||
STABS_CONTINUE (pp, objfile);
|
||
types[n++] = read_type (pp, objfile);
|
||
}
|
||
(*pp)++; /* get past `end' (the ':' character). */
|
||
|
||
if (n == 0)
|
||
{
|
||
/* We should read at least the THIS parameter here. Some broken stabs
|
||
output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
|
||
have been present ";-16,(0,43)" reference instead. This way the
|
||
excessive ";" marker prematurely stops the parameters parsing. */
|
||
|
||
complaint (_("Invalid (empty) method arguments"));
|
||
*varargsp = 0;
|
||
}
|
||
else if (types[n - 1]->code () != TYPE_CODE_VOID)
|
||
*varargsp = 1;
|
||
else
|
||
{
|
||
n--;
|
||
*varargsp = 0;
|
||
}
|
||
|
||
rval = XCNEWVEC (struct field, n);
|
||
for (i = 0; i < n; i++)
|
||
rval[i].set_type (types[i]);
|
||
*nargsp = n;
|
||
return rval;
|
||
}
|
||
|
||
/* Common block handling. */
|
||
|
||
/* List of symbols declared since the last BCOMM. This list is a tail
|
||
of local_symbols. When ECOMM is seen, the symbols on the list
|
||
are noted so their proper addresses can be filled in later,
|
||
using the common block base address gotten from the assembler
|
||
stabs. */
|
||
|
||
static struct pending *common_block;
|
||
static int common_block_i;
|
||
|
||
/* Name of the current common block. We get it from the BCOMM instead of the
|
||
ECOMM to match IBM documentation (even though IBM puts the name both places
|
||
like everyone else). */
|
||
static char *common_block_name;
|
||
|
||
/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
|
||
to remain after this function returns. */
|
||
|
||
void
|
||
common_block_start (const char *name, struct objfile *objfile)
|
||
{
|
||
if (common_block_name != NULL)
|
||
{
|
||
complaint (_("Invalid symbol data: common block within common block"));
|
||
}
|
||
common_block = *get_local_symbols ();
|
||
common_block_i = common_block ? common_block->nsyms : 0;
|
||
common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
|
||
}
|
||
|
||
/* Process a N_ECOMM symbol. */
|
||
|
||
void
|
||
common_block_end (struct objfile *objfile)
|
||
{
|
||
/* Symbols declared since the BCOMM are to have the common block
|
||
start address added in when we know it. common_block and
|
||
common_block_i point to the first symbol after the BCOMM in
|
||
the local_symbols list; copy the list and hang it off the
|
||
symbol for the common block name for later fixup. */
|
||
int i;
|
||
struct symbol *sym;
|
||
struct pending *newobj = 0;
|
||
struct pending *next;
|
||
int j;
|
||
|
||
if (common_block_name == NULL)
|
||
{
|
||
complaint (_("ECOMM symbol unmatched by BCOMM"));
|
||
return;
|
||
}
|
||
|
||
sym = new (&objfile->objfile_obstack) symbol;
|
||
/* Note: common_block_name already saved on objfile_obstack. */
|
||
sym->set_linkage_name (common_block_name);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
|
||
|
||
/* Now we copy all the symbols which have been defined since the BCOMM. */
|
||
|
||
/* Copy all the struct pendings before common_block. */
|
||
for (next = *get_local_symbols ();
|
||
next != NULL && next != common_block;
|
||
next = next->next)
|
||
{
|
||
for (j = 0; j < next->nsyms; j++)
|
||
add_symbol_to_list (next->symbol[j], &newobj);
|
||
}
|
||
|
||
/* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
|
||
NULL, it means copy all the local symbols (which we already did
|
||
above). */
|
||
|
||
if (common_block != NULL)
|
||
for (j = common_block_i; j < common_block->nsyms; j++)
|
||
add_symbol_to_list (common_block->symbol[j], &newobj);
|
||
|
||
SYMBOL_TYPE (sym) = (struct type *) newobj;
|
||
|
||
/* Should we be putting local_symbols back to what it was?
|
||
Does it matter? */
|
||
|
||
i = hashname (sym->linkage_name ());
|
||
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
|
||
global_sym_chain[i] = sym;
|
||
common_block_name = NULL;
|
||
}
|
||
|
||
/* Add a common block's start address to the offset of each symbol
|
||
declared to be in it (by being between a BCOMM/ECOMM pair that uses
|
||
the common block name). */
|
||
|
||
static void
|
||
fix_common_block (struct symbol *sym, CORE_ADDR valu)
|
||
{
|
||
struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
|
||
|
||
for (; next; next = next->next)
|
||
{
|
||
int j;
|
||
|
||
for (j = next->nsyms - 1; j >= 0; j--)
|
||
SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
|
||
SYMBOL_VALUE_ADDRESS (next->symbol[j])
|
||
+ valu);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
|
||
See add_undefined_type for more details. */
|
||
|
||
static void
|
||
add_undefined_type_noname (struct type *type, int typenums[2])
|
||
{
|
||
struct nat nat;
|
||
|
||
nat.typenums[0] = typenums [0];
|
||
nat.typenums[1] = typenums [1];
|
||
nat.type = type;
|
||
|
||
if (noname_undefs_length == noname_undefs_allocated)
|
||
{
|
||
noname_undefs_allocated *= 2;
|
||
noname_undefs = (struct nat *)
|
||
xrealloc ((char *) noname_undefs,
|
||
noname_undefs_allocated * sizeof (struct nat));
|
||
}
|
||
noname_undefs[noname_undefs_length++] = nat;
|
||
}
|
||
|
||
/* Add TYPE to the UNDEF_TYPES vector.
|
||
See add_undefined_type for more details. */
|
||
|
||
static void
|
||
add_undefined_type_1 (struct type *type)
|
||
{
|
||
if (undef_types_length == undef_types_allocated)
|
||
{
|
||
undef_types_allocated *= 2;
|
||
undef_types = (struct type **)
|
||
xrealloc ((char *) undef_types,
|
||
undef_types_allocated * sizeof (struct type *));
|
||
}
|
||
undef_types[undef_types_length++] = type;
|
||
}
|
||
|
||
/* What about types defined as forward references inside of a small lexical
|
||
scope? */
|
||
/* Add a type to the list of undefined types to be checked through
|
||
once this file has been read in.
|
||
|
||
In practice, we actually maintain two such lists: The first list
|
||
(UNDEF_TYPES) is used for types whose name has been provided, and
|
||
concerns forward references (eg 'xs' or 'xu' forward references);
|
||
the second list (NONAME_UNDEFS) is used for types whose name is
|
||
unknown at creation time, because they were referenced through
|
||
their type number before the actual type was declared.
|
||
This function actually adds the given type to the proper list. */
|
||
|
||
static void
|
||
add_undefined_type (struct type *type, int typenums[2])
|
||
{
|
||
if (type->name () == NULL)
|
||
add_undefined_type_noname (type, typenums);
|
||
else
|
||
add_undefined_type_1 (type);
|
||
}
|
||
|
||
/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
|
||
|
||
static void
|
||
cleanup_undefined_types_noname (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < noname_undefs_length; i++)
|
||
{
|
||
struct nat nat = noname_undefs[i];
|
||
struct type **type;
|
||
|
||
type = dbx_lookup_type (nat.typenums, objfile);
|
||
if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
|
||
{
|
||
/* The instance flags of the undefined type are still unset,
|
||
and needs to be copied over from the reference type.
|
||
Since replace_type expects them to be identical, we need
|
||
to set these flags manually before hand. */
|
||
nat.type->set_instance_flags ((*type)->instance_flags ());
|
||
replace_type (nat.type, *type);
|
||
}
|
||
}
|
||
|
||
noname_undefs_length = 0;
|
||
}
|
||
|
||
/* Go through each undefined type, see if it's still undefined, and fix it
|
||
up if possible. We have two kinds of undefined types:
|
||
|
||
TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
|
||
Fix: update array length using the element bounds
|
||
and the target type's length.
|
||
TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
|
||
yet defined at the time a pointer to it was made.
|
||
Fix: Do a full lookup on the struct/union tag. */
|
||
|
||
static void
|
||
cleanup_undefined_types_1 (void)
|
||
{
|
||
struct type **type;
|
||
|
||
/* Iterate over every undefined type, and look for a symbol whose type
|
||
matches our undefined type. The symbol matches if:
|
||
1. It is a typedef in the STRUCT domain;
|
||
2. It has the same name, and same type code;
|
||
3. The instance flags are identical.
|
||
|
||
It is important to check the instance flags, because we have seen
|
||
examples where the debug info contained definitions such as:
|
||
|
||
"foo_t:t30=B31=xefoo_t:"
|
||
|
||
In this case, we have created an undefined type named "foo_t" whose
|
||
instance flags is null (when processing "xefoo_t"), and then created
|
||
another type with the same name, but with different instance flags
|
||
('B' means volatile). I think that the definition above is wrong,
|
||
since the same type cannot be volatile and non-volatile at the same
|
||
time, but we need to be able to cope with it when it happens. The
|
||
approach taken here is to treat these two types as different. */
|
||
|
||
for (type = undef_types; type < undef_types + undef_types_length; type++)
|
||
{
|
||
switch ((*type)->code ())
|
||
{
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ENUM:
|
||
{
|
||
/* Check if it has been defined since. Need to do this here
|
||
as well as in check_typedef to deal with the (legitimate in
|
||
C though not C++) case of several types with the same name
|
||
in different source files. */
|
||
if ((*type)->is_stub ())
|
||
{
|
||
struct pending *ppt;
|
||
int i;
|
||
/* Name of the type, without "struct" or "union". */
|
||
const char *type_name = (*type)->name ();
|
||
|
||
if (type_name == NULL)
|
||
{
|
||
complaint (_("need a type name"));
|
||
break;
|
||
}
|
||
for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
|
||
{
|
||
for (i = 0; i < ppt->nsyms; i++)
|
||
{
|
||
struct symbol *sym = ppt->symbol[i];
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
||
&& SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
|
||
&& (SYMBOL_TYPE (sym)->code () == (*type)->code ())
|
||
&& ((*type)->instance_flags ()
|
||
== SYMBOL_TYPE (sym)->instance_flags ())
|
||
&& strcmp (sym->linkage_name (), type_name) == 0)
|
||
replace_type (*type, SYMBOL_TYPE (sym));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
{
|
||
complaint (_("forward-referenced types left unresolved, "
|
||
"type code %d."),
|
||
(*type)->code ());
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
undef_types_length = 0;
|
||
}
|
||
|
||
/* Try to fix all the undefined types we encountered while processing
|
||
this unit. */
|
||
|
||
void
|
||
cleanup_undefined_stabs_types (struct objfile *objfile)
|
||
{
|
||
cleanup_undefined_types_1 ();
|
||
cleanup_undefined_types_noname (objfile);
|
||
}
|
||
|
||
/* See stabsread.h. */
|
||
|
||
void
|
||
scan_file_globals (struct objfile *objfile)
|
||
{
|
||
int hash;
|
||
struct symbol *sym, *prev;
|
||
struct objfile *resolve_objfile;
|
||
|
||
/* SVR4 based linkers copy referenced global symbols from shared
|
||
libraries to the main executable.
|
||
If we are scanning the symbols for a shared library, try to resolve
|
||
them from the minimal symbols of the main executable first. */
|
||
|
||
if (current_program_space->symfile_object_file
|
||
&& objfile != current_program_space->symfile_object_file)
|
||
resolve_objfile = current_program_space->symfile_object_file;
|
||
else
|
||
resolve_objfile = objfile;
|
||
|
||
while (1)
|
||
{
|
||
/* Avoid expensive loop through all minimal symbols if there are
|
||
no unresolved symbols. */
|
||
for (hash = 0; hash < HASHSIZE; hash++)
|
||
{
|
||
if (global_sym_chain[hash])
|
||
break;
|
||
}
|
||
if (hash >= HASHSIZE)
|
||
return;
|
||
|
||
for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
|
||
{
|
||
QUIT;
|
||
|
||
/* Skip static symbols. */
|
||
switch (MSYMBOL_TYPE (msymbol))
|
||
{
|
||
case mst_file_text:
|
||
case mst_file_data:
|
||
case mst_file_bss:
|
||
continue;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
prev = NULL;
|
||
|
||
/* Get the hash index and check all the symbols
|
||
under that hash index. */
|
||
|
||
hash = hashname (msymbol->linkage_name ());
|
||
|
||
for (sym = global_sym_chain[hash]; sym;)
|
||
{
|
||
if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
|
||
{
|
||
/* Splice this symbol out of the hash chain and
|
||
assign the value we have to it. */
|
||
if (prev)
|
||
{
|
||
SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
|
||
}
|
||
else
|
||
{
|
||
global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
|
||
}
|
||
|
||
/* Check to see whether we need to fix up a common block. */
|
||
/* Note: this code might be executed several times for
|
||
the same symbol if there are multiple references. */
|
||
if (sym)
|
||
{
|
||
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
|
||
{
|
||
fix_common_block (sym,
|
||
MSYMBOL_VALUE_ADDRESS (resolve_objfile,
|
||
msymbol));
|
||
}
|
||
else
|
||
{
|
||
SET_SYMBOL_VALUE_ADDRESS
|
||
(sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
|
||
msymbol));
|
||
}
|
||
sym->set_section_index (msymbol->section_index ());
|
||
}
|
||
|
||
if (prev)
|
||
{
|
||
sym = SYMBOL_VALUE_CHAIN (prev);
|
||
}
|
||
else
|
||
{
|
||
sym = global_sym_chain[hash];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
prev = sym;
|
||
sym = SYMBOL_VALUE_CHAIN (sym);
|
||
}
|
||
}
|
||
}
|
||
if (resolve_objfile == objfile)
|
||
break;
|
||
resolve_objfile = objfile;
|
||
}
|
||
|
||
/* Change the storage class of any remaining unresolved globals to
|
||
LOC_UNRESOLVED and remove them from the chain. */
|
||
for (hash = 0; hash < HASHSIZE; hash++)
|
||
{
|
||
sym = global_sym_chain[hash];
|
||
while (sym)
|
||
{
|
||
prev = sym;
|
||
sym = SYMBOL_VALUE_CHAIN (sym);
|
||
|
||
/* Change the symbol address from the misleading chain value
|
||
to address zero. */
|
||
SET_SYMBOL_VALUE_ADDRESS (prev, 0);
|
||
|
||
/* Complain about unresolved common block symbols. */
|
||
if (SYMBOL_CLASS (prev) == LOC_STATIC)
|
||
SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
|
||
else
|
||
complaint (_("%s: common block `%s' from "
|
||
"global_sym_chain unresolved"),
|
||
objfile_name (objfile), prev->print_name ());
|
||
}
|
||
}
|
||
memset (global_sym_chain, 0, sizeof (global_sym_chain));
|
||
}
|
||
|
||
/* Initialize anything that needs initializing when starting to read
|
||
a fresh piece of a symbol file, e.g. reading in the stuff corresponding
|
||
to a psymtab. */
|
||
|
||
void
|
||
stabsread_init (void)
|
||
{
|
||
}
|
||
|
||
/* Initialize anything that needs initializing when a completely new
|
||
symbol file is specified (not just adding some symbols from another
|
||
file, e.g. a shared library). */
|
||
|
||
void
|
||
stabsread_new_init (void)
|
||
{
|
||
/* Empty the hash table of global syms looking for values. */
|
||
memset (global_sym_chain, 0, sizeof (global_sym_chain));
|
||
}
|
||
|
||
/* Initialize anything that needs initializing at the same time as
|
||
start_symtab() is called. */
|
||
|
||
void
|
||
start_stabs (void)
|
||
{
|
||
global_stabs = NULL; /* AIX COFF */
|
||
/* Leave FILENUM of 0 free for builtin types and this file's types. */
|
||
n_this_object_header_files = 1;
|
||
type_vector_length = 0;
|
||
type_vector = (struct type **) 0;
|
||
within_function = 0;
|
||
|
||
/* FIXME: If common_block_name is not already NULL, we should complain(). */
|
||
common_block_name = NULL;
|
||
}
|
||
|
||
/* Call after end_symtab(). */
|
||
|
||
void
|
||
end_stabs (void)
|
||
{
|
||
if (type_vector)
|
||
{
|
||
xfree (type_vector);
|
||
}
|
||
type_vector = 0;
|
||
type_vector_length = 0;
|
||
previous_stab_code = 0;
|
||
}
|
||
|
||
void
|
||
finish_global_stabs (struct objfile *objfile)
|
||
{
|
||
if (global_stabs)
|
||
{
|
||
patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
|
||
xfree (global_stabs);
|
||
global_stabs = NULL;
|
||
}
|
||
}
|
||
|
||
/* Find the end of the name, delimited by a ':', but don't match
|
||
ObjC symbols which look like -[Foo bar::]:bla. */
|
||
static const char *
|
||
find_name_end (const char *name)
|
||
{
|
||
const char *s = name;
|
||
|
||
if (s[0] == '-' || *s == '+')
|
||
{
|
||
/* Must be an ObjC method symbol. */
|
||
if (s[1] != '[')
|
||
{
|
||
error (_("invalid symbol name \"%s\""), name);
|
||
}
|
||
s = strchr (s, ']');
|
||
if (s == NULL)
|
||
{
|
||
error (_("invalid symbol name \"%s\""), name);
|
||
}
|
||
return strchr (s, ':');
|
||
}
|
||
else
|
||
{
|
||
return strchr (s, ':');
|
||
}
|
||
}
|
||
|
||
/* See stabsread.h. */
|
||
|
||
int
|
||
hashname (const char *name)
|
||
{
|
||
return fast_hash (name, strlen (name)) % HASHSIZE;
|
||
}
|
||
|
||
/* Initializer for this module. */
|
||
|
||
void _initialize_stabsread ();
|
||
void
|
||
_initialize_stabsread ()
|
||
{
|
||
undef_types_allocated = 20;
|
||
undef_types_length = 0;
|
||
undef_types = XNEWVEC (struct type *, undef_types_allocated);
|
||
|
||
noname_undefs_allocated = 20;
|
||
noname_undefs_length = 0;
|
||
noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
|
||
|
||
stab_register_index = register_symbol_register_impl (LOC_REGISTER,
|
||
&stab_register_funcs);
|
||
stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
|
||
&stab_register_funcs);
|
||
}
|