mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
08bdefb58b
Change inferior_list, the global list of inferiors, to use intrusive_list. I think most other changes are somewhat obvious fallouts from this change. There is a small change in behavior in scoped_mock_context. Before this patch, constructing a scoped_mock_context would replace the whole inferior list with only the new mock inferior. Tests using two scoped_mock_contexts therefore needed to manually link the two inferiors together, as the second scoped_mock_context would bump the first mock inferior from the thread list. With this patch, a scoped_mock_context adds its mock inferior to the inferior list on construction, and removes it on destruction. This means that tests run with mock inferiors in the inferior list in addition to any pre-existing inferiors (there is always at least one). There is no possible pid clash problem, since each scoped mock inferior uses its own process target, and pids are per process target. Co-Authored-By: Simon Marchi <simon.marchi@efficios.com> Change-Id: I7eb6a8f867d4dcf8b8cd2dcffd118f7270756018
462 lines
12 KiB
C
462 lines
12 KiB
C
/* Program and address space management, for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 2009-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdbcmd.h"
|
||
#include "objfiles.h"
|
||
#include "arch-utils.h"
|
||
#include "gdbcore.h"
|
||
#include "solib.h"
|
||
#include "solist.h"
|
||
#include "gdbthread.h"
|
||
#include "inferior.h"
|
||
#include <algorithm>
|
||
|
||
/* The last program space number assigned. */
|
||
static int last_program_space_num = 0;
|
||
|
||
/* The head of the program spaces list. */
|
||
std::vector<struct program_space *> program_spaces;
|
||
|
||
/* Pointer to the current program space. */
|
||
struct program_space *current_program_space;
|
||
|
||
/* The last address space number assigned. */
|
||
static int highest_address_space_num;
|
||
|
||
|
||
|
||
/* Keep a registry of per-program_space data-pointers required by other GDB
|
||
modules. */
|
||
|
||
DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
|
||
|
||
/* Keep a registry of per-address_space data-pointers required by other GDB
|
||
modules. */
|
||
|
||
DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
|
||
|
||
|
||
|
||
/* Create a new address space object, and add it to the list. */
|
||
|
||
struct address_space *
|
||
new_address_space (void)
|
||
{
|
||
struct address_space *aspace;
|
||
|
||
aspace = XCNEW (struct address_space);
|
||
aspace->num = ++highest_address_space_num;
|
||
address_space_alloc_data (aspace);
|
||
|
||
return aspace;
|
||
}
|
||
|
||
/* Maybe create a new address space object, and add it to the list, or
|
||
return a pointer to an existing address space, in case inferiors
|
||
share an address space on this target system. */
|
||
|
||
struct address_space *
|
||
maybe_new_address_space (void)
|
||
{
|
||
int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
|
||
|
||
if (shared_aspace)
|
||
{
|
||
/* Just return the first in the list. */
|
||
return program_spaces[0]->aspace;
|
||
}
|
||
|
||
return new_address_space ();
|
||
}
|
||
|
||
static void
|
||
free_address_space (struct address_space *aspace)
|
||
{
|
||
address_space_free_data (aspace);
|
||
xfree (aspace);
|
||
}
|
||
|
||
int
|
||
address_space_num (struct address_space *aspace)
|
||
{
|
||
return aspace->num;
|
||
}
|
||
|
||
/* Start counting over from scratch. */
|
||
|
||
static void
|
||
init_address_spaces (void)
|
||
{
|
||
highest_address_space_num = 0;
|
||
}
|
||
|
||
|
||
|
||
/* Remove a program space from the program spaces list. */
|
||
|
||
static void
|
||
remove_program_space (program_space *pspace)
|
||
{
|
||
gdb_assert (pspace != NULL);
|
||
|
||
auto iter = std::find (program_spaces.begin (), program_spaces.end (),
|
||
pspace);
|
||
gdb_assert (iter != program_spaces.end ());
|
||
program_spaces.erase (iter);
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
program_space::program_space (address_space *aspace_)
|
||
: num (++last_program_space_num),
|
||
aspace (aspace_)
|
||
{
|
||
program_space_alloc_data (this);
|
||
|
||
program_spaces.push_back (this);
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
program_space::~program_space ()
|
||
{
|
||
gdb_assert (this != current_program_space);
|
||
|
||
remove_program_space (this);
|
||
|
||
scoped_restore_current_program_space restore_pspace;
|
||
|
||
set_current_program_space (this);
|
||
|
||
breakpoint_program_space_exit (this);
|
||
no_shared_libraries (NULL, 0);
|
||
free_all_objfiles ();
|
||
/* Defer breakpoint re-set because we don't want to create new
|
||
locations for this pspace which we're tearing down. */
|
||
clear_symtab_users (SYMFILE_DEFER_BP_RESET);
|
||
if (!gdbarch_has_shared_address_space (target_gdbarch ()))
|
||
free_address_space (this->aspace);
|
||
/* Discard any data modules have associated with the PSPACE. */
|
||
program_space_free_data (this);
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::free_all_objfiles ()
|
||
{
|
||
/* Any objfile reference would become stale. */
|
||
for (struct so_list *so : current_program_space->solibs ())
|
||
gdb_assert (so->objfile == NULL);
|
||
|
||
while (!objfiles_list.empty ())
|
||
objfiles_list.front ()->unlink ();
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::add_objfile (std::shared_ptr<objfile> &&objfile,
|
||
struct objfile *before)
|
||
{
|
||
if (before == nullptr)
|
||
objfiles_list.push_back (std::move (objfile));
|
||
else
|
||
{
|
||
auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
|
||
[=] (const std::shared_ptr<::objfile> &objf)
|
||
{
|
||
return objf.get () == before;
|
||
});
|
||
gdb_assert (iter != objfiles_list.end ());
|
||
objfiles_list.insert (iter, std::move (objfile));
|
||
}
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::remove_objfile (struct objfile *objfile)
|
||
{
|
||
/* Removing an objfile from the objfile list invalidates any frame
|
||
that was built using frame info found in the objfile. Reinit the
|
||
frame cache to get rid of any frame that might otherwise
|
||
reference stale info. */
|
||
reinit_frame_cache ();
|
||
|
||
auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
|
||
[=] (const std::shared_ptr<::objfile> &objf)
|
||
{
|
||
return objf.get () == objfile;
|
||
});
|
||
gdb_assert (iter != objfiles_list.end ());
|
||
objfiles_list.erase (iter);
|
||
|
||
if (objfile == symfile_object_file)
|
||
symfile_object_file = NULL;
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::exec_close ()
|
||
{
|
||
if (ebfd != nullptr)
|
||
{
|
||
/* Removing target sections may close the exec_ops target.
|
||
Clear ebfd before doing so to prevent recursion. */
|
||
ebfd.reset (nullptr);
|
||
ebfd_mtime = 0;
|
||
|
||
remove_target_sections (&ebfd);
|
||
|
||
exec_filename.reset (nullptr);
|
||
}
|
||
}
|
||
|
||
/* Copies program space SRC to DEST. Copies the main executable file,
|
||
and the main symbol file. Returns DEST. */
|
||
|
||
struct program_space *
|
||
clone_program_space (struct program_space *dest, struct program_space *src)
|
||
{
|
||
scoped_restore_current_program_space restore_pspace;
|
||
|
||
set_current_program_space (dest);
|
||
|
||
if (src->exec_filename != NULL)
|
||
exec_file_attach (src->exec_filename.get (), 0);
|
||
|
||
if (src->symfile_object_file != NULL)
|
||
symbol_file_add_main (objfile_name (src->symfile_object_file),
|
||
SYMFILE_DEFER_BP_RESET);
|
||
|
||
return dest;
|
||
}
|
||
|
||
/* Sets PSPACE as the current program space. It is the caller's
|
||
responsibility to make sure that the currently selected
|
||
inferior/thread matches the selected program space. */
|
||
|
||
void
|
||
set_current_program_space (struct program_space *pspace)
|
||
{
|
||
if (current_program_space == pspace)
|
||
return;
|
||
|
||
gdb_assert (pspace != NULL);
|
||
|
||
current_program_space = pspace;
|
||
|
||
/* Different symbols change our view of the frame chain. */
|
||
reinit_frame_cache ();
|
||
}
|
||
|
||
/* Returns true iff there's no inferior bound to PSPACE. */
|
||
|
||
bool
|
||
program_space::empty ()
|
||
{
|
||
return find_inferior_for_program_space (this) == nullptr;
|
||
}
|
||
|
||
/* Prints the list of program spaces and their details on UIOUT. If
|
||
REQUESTED is not -1, it's the ID of the pspace that should be
|
||
printed. Otherwise, all spaces are printed. */
|
||
|
||
static void
|
||
print_program_space (struct ui_out *uiout, int requested)
|
||
{
|
||
int count = 0;
|
||
|
||
/* Compute number of pspaces we will print. */
|
||
for (struct program_space *pspace : program_spaces)
|
||
{
|
||
if (requested != -1 && pspace->num != requested)
|
||
continue;
|
||
|
||
++count;
|
||
}
|
||
|
||
/* There should always be at least one. */
|
||
gdb_assert (count > 0);
|
||
|
||
ui_out_emit_table table_emitter (uiout, 3, count, "pspaces");
|
||
uiout->table_header (1, ui_left, "current", "");
|
||
uiout->table_header (4, ui_left, "id", "Id");
|
||
uiout->table_header (17, ui_left, "exec", "Executable");
|
||
uiout->table_body ();
|
||
|
||
for (struct program_space *pspace : program_spaces)
|
||
{
|
||
int printed_header;
|
||
|
||
if (requested != -1 && requested != pspace->num)
|
||
continue;
|
||
|
||
ui_out_emit_tuple tuple_emitter (uiout, NULL);
|
||
|
||
if (pspace == current_program_space)
|
||
uiout->field_string ("current", "*");
|
||
else
|
||
uiout->field_skip ("current");
|
||
|
||
uiout->field_signed ("id", pspace->num);
|
||
|
||
if (pspace->exec_filename != nullptr)
|
||
uiout->field_string ("exec", pspace->exec_filename.get ());
|
||
else
|
||
uiout->field_skip ("exec");
|
||
|
||
/* Print extra info that doesn't really fit in tabular form.
|
||
Currently, we print the list of inferiors bound to a pspace.
|
||
There can be more than one inferior bound to the same pspace,
|
||
e.g., both parent/child inferiors in a vfork, or, on targets
|
||
that share pspaces between inferiors. */
|
||
printed_header = 0;
|
||
|
||
/* We're going to switch inferiors. */
|
||
scoped_restore_current_thread restore_thread;
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
if (inf->pspace == pspace)
|
||
{
|
||
/* Switch to inferior in order to call target methods. */
|
||
switch_to_inferior_no_thread (inf);
|
||
|
||
if (!printed_header)
|
||
{
|
||
printed_header = 1;
|
||
printf_filtered ("\n\tBound inferiors: ID %d (%s)",
|
||
inf->num,
|
||
target_pid_to_str (ptid_t (inf->pid)).c_str ());
|
||
}
|
||
else
|
||
printf_filtered (", ID %d (%s)",
|
||
inf->num,
|
||
target_pid_to_str (ptid_t (inf->pid)).c_str ());
|
||
}
|
||
|
||
uiout->text ("\n");
|
||
}
|
||
}
|
||
|
||
/* Boolean test for an already-known program space id. */
|
||
|
||
static int
|
||
valid_program_space_id (int num)
|
||
{
|
||
for (struct program_space *pspace : program_spaces)
|
||
if (pspace->num == num)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If ARGS is NULL or empty, print information about all program
|
||
spaces. Otherwise, ARGS is a text representation of a LONG
|
||
indicating which the program space to print information about. */
|
||
|
||
static void
|
||
maintenance_info_program_spaces_command (const char *args, int from_tty)
|
||
{
|
||
int requested = -1;
|
||
|
||
if (args && *args)
|
||
{
|
||
requested = parse_and_eval_long (args);
|
||
if (!valid_program_space_id (requested))
|
||
error (_("program space ID %d not known."), requested);
|
||
}
|
||
|
||
print_program_space (current_uiout, requested);
|
||
}
|
||
|
||
/* Update all program spaces matching to address spaces. The user may
|
||
have created several program spaces, and loaded executables into
|
||
them before connecting to the target interface that will create the
|
||
inferiors. All that happens before GDB has a chance to know if the
|
||
inferiors will share an address space or not. Call this after
|
||
having connected to the target interface and having fetched the
|
||
target description, to fixup the program/address spaces mappings.
|
||
|
||
It is assumed that there are no bound inferiors yet, otherwise,
|
||
they'd be left with stale referenced to released aspaces. */
|
||
|
||
void
|
||
update_address_spaces (void)
|
||
{
|
||
int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
|
||
|
||
init_address_spaces ();
|
||
|
||
if (shared_aspace)
|
||
{
|
||
struct address_space *aspace = new_address_space ();
|
||
|
||
free_address_space (current_program_space->aspace);
|
||
for (struct program_space *pspace : program_spaces)
|
||
pspace->aspace = aspace;
|
||
}
|
||
else
|
||
for (struct program_space *pspace : program_spaces)
|
||
{
|
||
free_address_space (pspace->aspace);
|
||
pspace->aspace = new_address_space ();
|
||
}
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
if (gdbarch_has_global_solist (target_gdbarch ()))
|
||
inf->aspace = maybe_new_address_space ();
|
||
else
|
||
inf->aspace = inf->pspace->aspace;
|
||
}
|
||
|
||
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::clear_solib_cache ()
|
||
{
|
||
added_solibs.clear ();
|
||
deleted_solibs.clear ();
|
||
}
|
||
|
||
|
||
|
||
void
|
||
initialize_progspace (void)
|
||
{
|
||
add_cmd ("program-spaces", class_maintenance,
|
||
maintenance_info_program_spaces_command,
|
||
_("Info about currently known program spaces."),
|
||
&maintenanceinfolist);
|
||
|
||
/* There's always one program space. Note that this function isn't
|
||
an automatic _initialize_foo function, since other
|
||
_initialize_foo routines may need to install their per-pspace
|
||
data keys. We can only allocate a progspace when all those
|
||
modules have done that. Do this before
|
||
initialize_current_architecture, because that accesses the ebfd
|
||
of current_program_space. */
|
||
current_program_space = new program_space (new_address_space ());
|
||
}
|