binutils-gdb/sim/frv/profile-fr500.c
Joel Brobecker e2882c8578 Update copyright year range in all GDB files
gdb/ChangeLog:

        Update copyright year range in all GDB files
2018-01-02 07:38:06 +04:00

3205 lines
90 KiB
C

/* frv simulator fr500 dependent profiling code.
Copyright (C) 1998-2018 Free Software Foundation, Inc.
Contributed by Red Hat
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define WANT_CPU
#define WANT_CPU_FRVBF
#include "sim-main.h"
#include "bfd.h"
#if WITH_PROFILE_MODEL_P
#include "profile.h"
#include "profile-fr500.h"
/* Initialize cycle counting for an insn.
FIRST_P is non-zero if this is the first insn in a set of parallel
insns. */
void
fr500_model_insn_before (SIM_CPU *cpu, int first_p)
{
if (first_p)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
ps->cur_gr_complex = ps->prev_gr_complex;
d->cur_fpop = d->prev_fpop;
d->cur_media = d->prev_media;
d->cur_cc_complex = d->prev_cc_complex;
}
}
/* Record the cycles computed for an insn.
LAST_P is non-zero if this is the last insn in a set of parallel insns,
and we update the total cycle count.
CYCLES is the cycle count of the insn. */
void
fr500_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
{
if (last_p)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
ps->prev_gr_complex = ps->cur_gr_complex;
d->prev_fpop = d->cur_fpop;
d->prev_media = d->cur_media;
d->prev_cc_complex = d->cur_cc_complex;
}
}
static void
set_use_is_fpop (SIM_CPU *cpu, INT fr)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
fr500_reset_fr_flags (cpu, (fr));
d->cur_fpop |= (((DI)1) << (fr));
}
static void
set_use_not_fpop (SIM_CPU *cpu, INT fr)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
d->cur_fpop &= ~(((DI)1) << (fr));
}
static int
use_is_fpop (SIM_CPU *cpu, INT fr)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
return d->prev_fpop & (((DI)1) << (fr));
}
static void
set_use_is_media ( SIM_CPU *cpu, INT fr)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
fr500_reset_fr_flags (cpu, (fr));
d->cur_media |= (((DI)1) << (fr));
}
static void
set_use_not_media (SIM_CPU *cpu, INT fr)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
d->cur_media &= ~(((DI)1) << (fr));
}
static int
use_is_media (SIM_CPU *cpu, INT fr)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
return d->prev_media & (((DI)1) << (fr));
}
static void
set_use_is_cc_complex (SIM_CPU *cpu, INT cc)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
fr500_reset_cc_flags (cpu, cc);
d->cur_cc_complex |= (((DI)1) << (cc));
}
static void
set_use_not_cc_complex (SIM_CPU *cpu, INT cc)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
d->cur_cc_complex &= ~(((DI)1) << (cc));
}
static int
use_is_cc_complex (SIM_CPU *cpu, INT cc)
{
MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu);
return d->prev_cc_complex & (((DI)1) << (cc));
}
void
fr500_reset_fr_flags (SIM_CPU *cpu, INT fr)
{
set_use_not_fpop (cpu, fr);
set_use_not_media (cpu, fr);
}
void
fr500_reset_cc_flags (SIM_CPU *cpu, INT cc)
{
set_use_not_cc_complex (cpu, cc);
}
/* Latency of floating point registers may be less than recorded when followed
by another floating point insn. */
static void
adjust_float_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk,
int cycles)
{
/* If the registers were previously used in a floating point op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
if (in_FRi >= 0)
if (use_is_fpop (cpu, in_FRi))
decrease_FR_busy (cpu, in_FRi, cycles);
else
enforce_full_fr_latency (cpu, in_FRi);
if (in_FRj >= 0 && in_FRj != in_FRi)
if (use_is_fpop (cpu, in_FRj))
decrease_FR_busy (cpu, in_FRj, cycles);
else
enforce_full_fr_latency (cpu, in_FRj);
if (out_FRk >= 0 && out_FRk != in_FRi && out_FRk != in_FRj)
if (use_is_fpop (cpu, out_FRk))
decrease_FR_busy (cpu, out_FRk, cycles);
else
enforce_full_fr_latency (cpu, out_FRk);
}
/* Latency of floating point registers may be less than recorded when followed
by another floating point insn. */
static void
adjust_double_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk,
int cycles)
{
/* If the registers were previously used in a floating point op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles);
if (in_FRi >= 0) ++in_FRi;
if (in_FRj >= 0) ++in_FRj;
if (out_FRk >= 0) ++out_FRk;
adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles);
}
/* Latency of floating point registers is less than recorded when followed
by another floating point insn. */
static void
restore_float_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk,
int cycles)
{
/* If the registers were previously used in a floating point op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
if (in_FRi >= 0 && use_is_fpop (cpu, in_FRi))
increase_FR_busy (cpu, in_FRi, cycles);
if (in_FRj != in_FRi && use_is_fpop (cpu, in_FRj))
increase_FR_busy (cpu, in_FRj, cycles);
if (out_FRk != in_FRi && out_FRk != in_FRj && use_is_fpop (cpu, out_FRk))
increase_FR_busy (cpu, out_FRk, cycles);
}
/* Latency of floating point registers is less than recorded when followed
by another floating point insn. */
static void
restore_double_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk,
int cycles)
{
/* If the registers were previously used in a floating point op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles);
if (in_FRi >= 0) ++in_FRi;
if (in_FRj >= 0) ++in_FRj;
if (out_FRk >= 0) ++out_FRk;
restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles);
}
int
frvbf_model_fr500_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
return idesc->timing->units[unit_num].done;
}
int
frvbf_model_fr500_u_integer (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk,
INT out_ICCi_1)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* icc0-icc4 are the upper 4 fields of the CCR. */
if (out_ICCi_1 >= 0)
out_ICCi_1 += 4;
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi != out_GRk && in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_GR (cpu, out_GRk);
vliw_wait_for_CCR (cpu, out_ICCi_1);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_GR (cpu, out_GRk);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* GRk is available immediately to the next VLIW insn as is ICCi_1. */
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_imul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
int cycles;
/* icc0-icc4 are the upper 4 fields of the CCR. */
if (out_ICCi_1 >= 0)
out_ICCi_1 += 4;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi != out_GRk && in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_GRdouble (cpu, out_GRk);
vliw_wait_for_CCR (cpu, out_ICCi_1);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_GRdouble (cpu, out_GRk);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* GRk has a latency of 2 cycles. */
cycles = idesc->timing->units[unit_num].done;
update_GRdouble_latency (cpu, out_GRk, cycles + 2);
set_use_is_gr_complex (cpu, out_GRk);
set_use_is_gr_complex (cpu, out_GRk + 1);
/* ICCi_1 has a latency of 1 cycle. */
update_CCR_latency (cpu, out_ICCi_1, cycles + 1);
return cycles;
}
int
frvbf_model_fr500_u_idiv (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
int cycles;
FRV_VLIW *vliw;
int slot;
/* icc0-icc4 are the upper 4 fields of the CCR. */
if (out_ICCi_1 >= 0)
out_ICCi_1 += 4;
vliw = CPU_VLIW (cpu);
slot = vliw->next_slot - 1;
slot = (*vliw->current_vliw)[slot] - UNIT_I0;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi != out_GRk && in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_GR (cpu, out_GRk);
vliw_wait_for_CCR (cpu, out_ICCi_1);
vliw_wait_for_idiv_resource (cpu, slot);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_GR (cpu, out_GRk);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* GRk has a latency of 19 cycles! */
cycles = idesc->timing->units[unit_num].done;
update_GR_latency (cpu, out_GRk, cycles + 19);
set_use_is_gr_complex (cpu, out_GRk);
/* ICCi_1 has a latency of 19 cycles. */
update_CCR_latency (cpu, out_ICCi_1, cycles + 19);
set_use_is_cc_complex (cpu, out_ICCi_1);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
/* GNER has a latency of 18 cycles. */
update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 18);
}
/* the idiv resource has a latency of 18 cycles! */
update_idiv_resource_latency (cpu, slot, cycles + 18);
return cycles;
}
int
frvbf_model_fr500_u_branch (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_ICCi_2, INT in_FCCi_2)
{
int cycles;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* icc0-icc4 are the upper 4 fields of the CCR. */
if (in_ICCi_2 >= 0)
in_ICCi_2 += 4;
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_CCR (cpu, in_ICCi_2);
vliw_wait_for_CCR (cpu, in_FCCi_2);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* When counting branches taken or not taken, don't consider branches after
the first taken branch in a vliw insn. */
ps = CPU_PROFILE_STATE (cpu);
if (! ps->vliw_branch_taken)
{
/* (1 << 4): The pc is the 5th element in inputs, outputs.
??? can be cleaned up */
PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
int taken = (referenced & (1 << 4)) != 0;
if (taken)
{
++PROFILE_MODEL_TAKEN_COUNT (p);
ps->vliw_branch_taken = 1;
}
else
++PROFILE_MODEL_UNTAKEN_COUNT (p);
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_trap (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_ICCi_2, INT in_FCCi_2)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* icc0-icc4 are the upper 4 fields of the CCR. */
if (in_ICCi_2 >= 0)
in_ICCi_2 += 4;
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_CCR (cpu, in_ICCi_2);
vliw_wait_for_CCR (cpu, in_FCCi_2);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_check (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_ICCi_3, INT in_FCCi_3)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* icc0-icc4 are the upper 4 fields of the CCR. */
if (in_ICCi_3 >= 0)
in_ICCi_3 += 4;
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet. */
vliw_wait_for_CCR (cpu, in_ICCi_3);
vliw_wait_for_CCR (cpu, in_FCCi_3);
handle_resource_wait (cpu);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_clrgr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRk)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* Wait for both GNER registers or just the one specified. */
if (in_GRk == -1)
{
vliw_wait_for_SPR (cpu, H_SPR_GNER0);
vliw_wait_for_SPR (cpu, H_SPR_GNER1);
}
else
vliw_wait_for_SPR (cpu, GNER_FOR_GR (in_GRk));
handle_resource_wait (cpu);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_clrfr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRk)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* Wait for both GNER registers or just the one specified. */
if (in_FRk == -1)
{
vliw_wait_for_SPR (cpu, H_SPR_FNER0);
vliw_wait_for_SPR (cpu, H_SPR_FNER1);
}
else
vliw_wait_for_SPR (cpu, FNER_FOR_FR (in_FRk));
handle_resource_wait (cpu);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_commit (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRk, INT in_FRk)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* If GR is specified, then FR is not and vice-versa. If neither is
then it's a commitga or commitfa. Check the insn attribute to
figure out which. */
if (in_GRk != -1)
vliw_wait_for_SPR (cpu, GNER_FOR_GR (in_GRk));
else if (in_FRk != -1)
vliw_wait_for_SPR (cpu, FNER_FOR_FR (in_FRk));
else if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_FR_ACCESS))
{
vliw_wait_for_SPR (cpu, H_SPR_FNER0);
vliw_wait_for_SPR (cpu, H_SPR_FNER1);
}
else
{
vliw_wait_for_SPR (cpu, H_SPR_GNER0);
vliw_wait_for_SPR (cpu, H_SPR_GNER1);
}
handle_resource_wait (cpu);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT out_GRkhi, INT out_GRklo)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a GR
which is not ready yet. */
vliw_wait_for_GR (cpu, out_GRkhi);
vliw_wait_for_GR (cpu, out_GRklo);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, out_GRkhi);
load_wait_for_GR (cpu, out_GRklo);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* GRk is available immediately to the next VLIW insn. */
cycles = idesc->timing->units[unit_num].done;
set_use_not_gr_complex (cpu, out_GRkhi);
set_use_not_gr_complex (cpu, out_GRklo);
return cycles;
}
int
frvbf_model_fr500_u_gr_load (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT out_GRk, INT out_GRdoublek)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi != out_GRk && in_GRi != out_GRdoublek
&& in_GRi != out_GRdoublek + 1 && in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj != out_GRk && in_GRj != out_GRdoublek
&& in_GRj != out_GRdoublek + 1 && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_GR (cpu, out_GRk);
vliw_wait_for_GRdouble (cpu, out_GRdoublek);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_GR (cpu, out_GRk);
load_wait_for_GRdouble (cpu, out_GRdoublek);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
/* The latency of GRk for a load will depend on how long it takes to retrieve
the the data from the cache or memory. */
update_GR_latency_for_load (cpu, out_GRk, cycles);
update_GRdouble_latency_for_load (cpu, out_GRdoublek, cycles);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
/* GNER has a latency of 2 cycles. */
update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 2);
update_SPR_latency (cpu, GNER_FOR_GR (out_GRdoublek), cycles + 2);
}
if (out_GRk >= 0)
set_use_is_gr_complex (cpu, out_GRk);
if (out_GRdoublek != -1)
{
set_use_is_gr_complex (cpu, out_GRdoublek);
set_use_is_gr_complex (cpu, out_GRdoublek + 1);
}
return cycles;
}
int
frvbf_model_fr500_u_gr_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_GRk, INT in_GRdoublek)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
if (in_GRk != in_GRi && in_GRk != in_GRj && in_GRk >= 0)
{
if (use_is_gr_complex (cpu, in_GRk))
decrease_GR_busy (cpu, in_GRk, 1);
}
if (in_GRdoublek != in_GRi && in_GRdoublek != in_GRj
&& in_GRdoublek + 1 != in_GRi && in_GRdoublek + 1 != in_GRj
&& in_GRdoublek >= 0)
{
if (use_is_gr_complex (cpu, in_GRdoublek))
decrease_GR_busy (cpu, in_GRdoublek, 1);
if (use_is_gr_complex (cpu, in_GRdoublek + 1))
decrease_GR_busy (cpu, in_GRdoublek + 1, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_GR (cpu, in_GRk);
vliw_wait_for_GRdouble (cpu, in_GRdoublek);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_GR (cpu, in_GRk);
load_wait_for_GRdouble (cpu, in_GRdoublek);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_gr_r_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_GRk, INT in_GRdoublek)
{
int cycles = frvbf_model_fr500_u_gr_store (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, in_GRk,
in_GRdoublek);
if (model_insn == FRV_INSN_MODEL_PASS_2)
{
if (CPU_RSTR_INVALIDATE(cpu))
request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles);
}
return cycles;
}
int
frvbf_model_fr500_u_fr_load (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT out_FRk, INT out_FRdoublek)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
if (out_FRk >= 0)
{
if (use_is_media (cpu, out_FRk))
decrease_FR_busy (cpu, out_FRk, 1);
else
adjust_float_register_busy (cpu, -1, -1, out_FRk, 1);
}
if (out_FRdoublek >= 0)
{
if (use_is_media (cpu, out_FRdoublek))
decrease_FR_busy (cpu, out_FRdoublek, 1);
else
adjust_float_register_busy (cpu, -1, -1, out_FRdoublek, 1);
if (use_is_media (cpu, out_FRdoublek + 1))
decrease_FR_busy (cpu, out_FRdoublek + 1, 1);
else
adjust_float_register_busy (cpu, -1, -1, out_FRdoublek + 1, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_FR (cpu, out_FRk);
vliw_wait_for_FRdouble (cpu, out_FRdoublek);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
}
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_FR (cpu, out_FRk);
load_wait_for_FRdouble (cpu, out_FRdoublek);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
/* The latency of FRk for a load will depend on how long it takes to retrieve
the the data from the cache or memory. */
update_FR_latency_for_load (cpu, out_FRk, cycles);
update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
/* FNER has a latency of 3 cycles. */
update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), cycles + 3);
update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), cycles + 3);
}
fr500_reset_fr_flags (cpu, out_FRk);
return cycles;
}
int
frvbf_model_fr500_u_fr_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_FRk, INT in_FRdoublek)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
if (in_FRk >= 0)
{
if (use_is_media (cpu, in_FRk))
decrease_FR_busy (cpu, in_FRk, 1);
else
adjust_float_register_busy (cpu, -1, -1, in_FRk, 1);
}
if (in_FRdoublek >= 0)
{
if (use_is_media (cpu, in_FRdoublek))
decrease_FR_busy (cpu, in_FRdoublek, 1);
else
adjust_float_register_busy (cpu, -1, -1, in_FRdoublek, 1);
if (use_is_media (cpu, in_FRdoublek + 1))
decrease_FR_busy (cpu, in_FRdoublek + 1, 1);
else
adjust_float_register_busy (cpu, -1, -1, in_FRdoublek + 1, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_FR (cpu, in_FRk);
vliw_wait_for_FRdouble (cpu, in_FRdoublek);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_FR (cpu, in_FRk);
load_wait_for_FRdouble (cpu, in_FRdoublek);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_fr_r_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj,
INT in_FRk, INT in_FRdoublek)
{
int cycles = frvbf_model_fr500_u_fr_store (cpu, idesc, unit_num, referenced,
in_GRi, in_GRj, in_FRk,
in_FRdoublek);
if (model_insn == FRV_INSN_MODEL_PASS_2)
{
if (CPU_RSTR_INVALIDATE(cpu))
request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles);
}
return cycles;
}
int
frvbf_model_fr500_u_swap (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj, INT out_GRk)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi != out_GRk && in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_GR (cpu, out_GRk);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_GR (cpu, out_GRk);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
/* The latency of GRk will depend on how long it takes to swap
the the data from the cache or memory. */
update_GR_latency_for_swap (cpu, out_GRk, cycles);
set_use_is_gr_complex (cpu, out_GRk);
return cycles;
}
int
frvbf_model_fr500_u_fr2fr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj, INT out_FRk)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet. */
if (in_FRj >= 0)
{
if (use_is_media (cpu, in_FRj))
decrease_FR_busy (cpu, in_FRj, 1);
else
adjust_float_register_busy (cpu, -1, in_FRj, -1, 1);
}
if (out_FRk >= 0 && out_FRk != in_FRj)
{
if (use_is_media (cpu, out_FRk))
decrease_FR_busy (cpu, out_FRk, 1);
else
adjust_float_register_busy (cpu, -1, -1, out_FRk, 1);
}
vliw_wait_for_FR (cpu, in_FRj);
vliw_wait_for_FR (cpu, out_FRk);
handle_resource_wait (cpu);
load_wait_for_FR (cpu, in_FRj);
load_wait_for_FR (cpu, out_FRk);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* The latency of FRj is 3 cycles. */
cycles = idesc->timing->units[unit_num].done;
update_FR_latency (cpu, out_FRk, cycles + 3);
return cycles;
}
int
frvbf_model_fr500_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRk, INT out_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet. */
if (in_FRk >= 0)
{
if (use_is_media (cpu, in_FRk))
decrease_FR_busy (cpu, in_FRk, 1);
else
adjust_float_register_busy (cpu, -1, in_FRk, -1, 1);
}
vliw_wait_for_FR (cpu, in_FRk);
vliw_wait_for_GR (cpu, out_GRj);
handle_resource_wait (cpu);
load_wait_for_FR (cpu, in_FRk);
load_wait_for_GR (cpu, out_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* The latency of GRj is 2 cycles. */
cycles = idesc->timing->units[unit_num].done;
update_GR_latency (cpu, out_GRj, cycles + 2);
set_use_is_gr_complex (cpu, out_GRj);
return cycles;
}
int
frvbf_model_fr500_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_spr, INT out_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet. */
vliw_wait_for_SPR (cpu, in_spr);
vliw_wait_for_GR (cpu, out_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, out_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
#if 0 /* no latency? */
/* The latency of GRj is 2 cycles. */
update_GR_latency (cpu, out_GRj, cycles + 2);
#endif
return cycles;
}
int
frvbf_model_fr500_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRj, INT out_FRk)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
if (out_FRk >= 0)
{
if (use_is_media (cpu, out_FRk))
decrease_FR_busy (cpu, out_FRk, 1);
else
adjust_float_register_busy (cpu, -1, -1, out_FRk, 1);
}
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_FR (cpu, out_FRk);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRj);
load_wait_for_FR (cpu, out_FRk);
trace_vliw_wait_cycles (cpu);
return 0;
}
/* The latency of FRk is 2 cycles. */
cycles = idesc->timing->units[unit_num].done;
update_FR_latency (cpu, out_FRk, cycles + 2);
/* Mark this use of the register as NOT a floating point op. */
fr500_reset_fr_flags (cpu, out_FRk);
return cycles;
}
int
frvbf_model_fr500_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRj, INT out_spr)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRj);
vliw_wait_for_SPR (cpu, out_spr);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
#if 0
/* The latency of spr is ? cycles. */
update_SPR_latency (cpu, out_spr, cycles + ?);
#endif
return cycles;
}
int
frvbf_model_fr500_u_ici (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
request_cache_invalidate (cpu, CPU_INSN_CACHE (cpu), cycles);
return cycles;
}
int
frvbf_model_fr500_u_dci (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles);
return cycles;
}
int
frvbf_model_fr500_u_dcf (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
request_cache_flush (cpu, CPU_DATA_CACHE (cpu), cycles);
return cycles;
}
int
frvbf_model_fr500_u_icpl (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
request_cache_preload (cpu, CPU_INSN_CACHE (cpu), cycles);
return cycles;
}
int
frvbf_model_fr500_u_dcpl (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
request_cache_preload (cpu, CPU_DATA_CACHE (cpu), cycles);
return cycles;
}
int
frvbf_model_fr500_u_icul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
request_cache_unlock (cpu, CPU_INSN_CACHE (cpu), cycles);
return cycles;
}
int
frvbf_model_fr500_u_dcul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_GRi, INT in_GRj)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
/* The entire VLIW insn must wait if there is a dependency on a register
which is not ready yet.
The latency of the registers may be less than previously recorded,
depending on how they were used previously.
See Table 13-8 in the LSI. */
if (in_GRi >= 0)
{
if (use_is_gr_complex (cpu, in_GRi))
decrease_GR_busy (cpu, in_GRi, 1);
}
if (in_GRj != in_GRi && in_GRj >= 0)
{
if (use_is_gr_complex (cpu, in_GRj))
decrease_GR_busy (cpu, in_GRj, 1);
}
vliw_wait_for_GR (cpu, in_GRi);
vliw_wait_for_GR (cpu, in_GRj);
handle_resource_wait (cpu);
load_wait_for_GR (cpu, in_GRi);
load_wait_for_GR (cpu, in_GRj);
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
request_cache_unlock (cpu, CPU_DATA_CACHE (cpu), cycles);
return cycles;
}
int
frvbf_model_fr500_u_float_arith (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT in_FRdoublei, INT in_FRdoublej,
INT out_FRk, INT out_FRdoublek)
{
int cycles;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1);
adjust_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek,
1);
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FRdouble (cpu, in_FRdoublei);
post_wait_for_FRdouble (cpu, in_FRdoublej);
post_wait_for_FRdouble (cpu, out_FRdoublek);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
}
restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1);
restore_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek,
1);
/* The latency of FRk will be at least the latency of the other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
}
/* Once initiated, post-processing will take 3 cycles. */
update_FR_ptime (cpu, out_FRk, 3);
update_FRdouble_ptime (cpu, out_FRdoublek, 3);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3);
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3);
}
/* Mark this use of the register as a floating point op. */
if (out_FRk >= 0)
set_use_is_fpop (cpu, out_FRk);
if (out_FRdoublek >= 0)
{
set_use_is_fpop (cpu, out_FRdoublek);
if (out_FRdoublek < 63)
set_use_is_fpop (cpu, out_FRdoublek + 1);
}
return cycles;
}
int
frvbf_model_fr500_u_float_dual_arith (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT in_FRdoublei, INT in_FRdoublej,
INT out_FRk, INT out_FRdoublek)
{
int cycles;
INT dual_FRi;
INT dual_FRj;
INT dual_FRk;
INT dual_FRdoublei;
INT dual_FRdoublej;
INT dual_FRdoublek;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
dual_FRi = DUAL_REG (in_FRi);
dual_FRj = DUAL_REG (in_FRj);
dual_FRk = DUAL_REG (out_FRk);
dual_FRdoublei = DUAL_DOUBLE (in_FRdoublei);
dual_FRdoublej = DUAL_DOUBLE (in_FRdoublej);
dual_FRdoublek = DUAL_DOUBLE (out_FRdoublek);
adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1);
adjust_float_register_busy (cpu, dual_FRi, dual_FRj, dual_FRk, 1);
adjust_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek,
1);
adjust_double_register_busy (cpu, dual_FRdoublei, dual_FRdoublej,
dual_FRdoublek, 1);
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, dual_FRi);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_FR (cpu, dual_FRk);
post_wait_for_FRdouble (cpu, in_FRdoublei);
post_wait_for_FRdouble (cpu, in_FRdoublej);
post_wait_for_FRdouble (cpu, out_FRdoublek);
post_wait_for_FRdouble (cpu, dual_FRdoublei);
post_wait_for_FRdouble (cpu, dual_FRdoublej);
post_wait_for_FRdouble (cpu, dual_FRdoublek);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRk));
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRdoublek));
}
restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1);
restore_float_register_busy (cpu, dual_FRi, dual_FRj, dual_FRk, 1);
restore_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek,
1);
restore_double_register_busy (cpu, dual_FRdoublei, dual_FRdoublej,
dual_FRdoublek, 1);
/* The latency of FRk will be at least the latency of the other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_latency (cpu, dual_FRk, ps->post_wait);
update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
update_FRdouble_latency (cpu, dual_FRdoublek, ps->post_wait);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
update_SPR_latency (cpu, FNER_FOR_FR (dual_FRk), ps->post_wait);
update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
update_SPR_latency (cpu, FNER_FOR_FR (dual_FRdoublek), ps->post_wait);
}
/* Once initiated, post-processing will take 3 cycles. */
update_FR_ptime (cpu, out_FRk, 3);
update_FR_ptime (cpu, dual_FRk, 3);
update_FRdouble_ptime (cpu, out_FRdoublek, 3);
update_FRdouble_ptime (cpu, dual_FRdoublek, 3);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3);
update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRk), 3);
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3);
update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRdoublek), 3);
}
/* Mark this use of the register as a floating point op. */
if (out_FRk >= 0)
set_use_is_fpop (cpu, out_FRk);
if (dual_FRk >= 0)
set_use_is_fpop (cpu, dual_FRk);
if (out_FRdoublek >= 0)
{
set_use_is_fpop (cpu, out_FRdoublek);
if (out_FRdoublek < 63)
set_use_is_fpop (cpu, out_FRdoublek + 1);
}
if (dual_FRdoublek >= 0)
{
set_use_is_fpop (cpu, dual_FRdoublek);
if (dual_FRdoublek < 63)
set_use_is_fpop (cpu, dual_FRdoublek + 1);
}
return cycles;
}
int
frvbf_model_fr500_u_float_div (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj, INT out_FRk)
{
int cycles;
FRV_VLIW *vliw;
int slot;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1);
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
vliw = CPU_VLIW (cpu);
slot = vliw->next_slot - 1;
slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
post_wait_for_fdiv (cpu, slot);
restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1);
/* The latency of FRk will be at least the latency of the other inputs. */
/* Once initiated, post-processing will take 10 cycles. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 10);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
/* FNER has a latency of 10 cycles. */
update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 10);
}
/* The latency of the fdiv unit will be at least the latency of the other
inputs. Once initiated, post-processing will take 9 cycles. */
update_fdiv_resource_latency (cpu, slot, ps->post_wait + 9);
/* Mark this use of the register as a floating point op. */
set_use_is_fpop (cpu, out_FRk);
return cycles;
}
int
frvbf_model_fr500_u_float_sqrt (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj, INT in_FRdoublej,
INT out_FRk, INT out_FRdoublek)
{
int cycles;
FRV_VLIW *vliw;
int slot;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
adjust_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1);
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FRdouble (cpu, in_FRdoublej);
post_wait_for_FRdouble (cpu, out_FRdoublek);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
vliw = CPU_VLIW (cpu);
slot = vliw->next_slot - 1;
slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
post_wait_for_fsqrt (cpu, slot);
restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
restore_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1);
/* The latency of FRk will be at least the latency of the other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
/* Once initiated, post-processing will take 15 cycles. */
update_FR_ptime (cpu, out_FRk, 15);
update_FRdouble_ptime (cpu, out_FRdoublek, 15);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 15);
/* The latency of the sqrt unit will be the latency of the other
inputs plus 14 cycles. */
update_fsqrt_resource_latency (cpu, slot, ps->post_wait + 14);
/* Mark this use of the register as a floating point op. */
if (out_FRk >= 0)
set_use_is_fpop (cpu, out_FRk);
if (out_FRdoublek >= 0)
{
set_use_is_fpop (cpu, out_FRdoublek);
if (out_FRdoublek < 63)
set_use_is_fpop (cpu, out_FRdoublek + 1);
}
return cycles;
}
int
frvbf_model_fr500_u_float_dual_sqrt (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj, INT out_FRk)
{
int cycles;
FRV_VLIW *vliw;
int slot;
INT dual_FRj;
INT dual_FRk;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
dual_FRj = DUAL_REG (in_FRj);
dual_FRk = DUAL_REG (out_FRk);
adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
adjust_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1);
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_FR (cpu, dual_FRk);
vliw = CPU_VLIW (cpu);
slot = vliw->next_slot - 1;
slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
post_wait_for_fsqrt (cpu, slot);
restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
restore_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1);
/* The latency of FRk will be at least the latency of the other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_latency (cpu, dual_FRk, ps->post_wait);
/* Once initiated, post-processing will take 15 cycles. */
update_FR_ptime (cpu, out_FRk, 15);
update_FR_ptime (cpu, dual_FRk, 15);
/* The latency of the sqrt unit will be at least the latency of the other
inputs. */
update_fsqrt_resource_latency (cpu, slot, ps->post_wait + 14);
/* Mark this use of the register as a floating point op. */
if (out_FRk >= 0)
set_use_is_fpop (cpu, out_FRk);
if (dual_FRk >= 0)
set_use_is_fpop (cpu, dual_FRk);
return cycles;
}
int
frvbf_model_fr500_u_float_compare (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT in_FRdoublei, INT in_FRdoublej,
INT out_FCCi_2)
{
int cycles;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
adjust_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, -1, 1);
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FRdouble (cpu, in_FRdoublei);
post_wait_for_FRdouble (cpu, in_FRdoublej);
post_wait_for_CCR (cpu, out_FCCi_2);
restore_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, -1, 1);
/* The latency of FCCi_2 will be the latency of the other inputs plus 3
cycles. */
update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 3);
return cycles;
}
int
frvbf_model_fr500_u_float_dual_compare (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_FCCi_2)
{
int cycles;
INT dual_FRi;
INT dual_FRj;
INT dual_FCCi_2;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
dual_FRi = DUAL_REG (in_FRi);
dual_FRj = DUAL_REG (in_FRj);
dual_FCCi_2 = out_FCCi_2 + 1;
adjust_float_register_busy (cpu, in_FRi, in_FRj, -1, 1);
adjust_float_register_busy (cpu, dual_FRi, dual_FRj, -1, 1);
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, dual_FRi);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_CCR (cpu, out_FCCi_2);
post_wait_for_CCR (cpu, dual_FCCi_2);
restore_float_register_busy (cpu, in_FRi, in_FRj, -1, 1);
restore_float_register_busy (cpu, dual_FRi, dual_FRj, -1, 1);
/* The latency of FCCi_2 will be the latency of the other inputs plus 3
cycles. */
update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 3);
update_CCR_latency (cpu, dual_FCCi_2, ps->post_wait + 3);
return cycles;
}
int
frvbf_model_fr500_u_float_convert (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj, INT in_FRintj, INT in_FRdoublej,
INT out_FRk, INT out_FRintk,
INT out_FRdoublek)
{
int cycles;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
adjust_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1);
adjust_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, in_FRintj);
post_wait_for_FRdouble (cpu, in_FRdoublej);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, out_FRintk);
post_wait_for_FRdouble (cpu, out_FRdoublek);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRintk));
post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
}
restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
restore_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1);
restore_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1);
/* The latency of FRk will be at least the latency of the other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_latency (cpu, out_FRintk, ps->post_wait);
update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
update_SPR_latency (cpu, FNER_FOR_FR (out_FRintk), ps->post_wait);
update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
}
/* Once initiated, post-processing will take 3 cycles. */
update_FR_ptime (cpu, out_FRk, 3);
update_FR_ptime (cpu, out_FRintk, 3);
update_FRdouble_ptime (cpu, out_FRdoublek, 3);
if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
{
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3);
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRintk), 3);
update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3);
}
/* Mark this use of the register as a floating point op. */
if (out_FRk >= 0)
set_use_is_fpop (cpu, out_FRk);
if (out_FRintk >= 0)
set_use_is_fpop (cpu, out_FRintk);
if (out_FRdoublek >= 0)
{
set_use_is_fpop (cpu, out_FRdoublek);
set_use_is_fpop (cpu, out_FRdoublek + 1);
}
return cycles;
}
int
frvbf_model_fr500_u_float_dual_convert (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj, INT in_FRintj,
INT out_FRk, INT out_FRintk)
{
int cycles;
INT dual_FRj;
INT dual_FRintj;
INT dual_FRk;
INT dual_FRintk;
FRV_PROFILE_STATE *ps;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps = CPU_PROFILE_STATE (cpu);
ps->post_wait = cycles;
dual_FRj = DUAL_REG (in_FRj);
dual_FRintj = DUAL_REG (in_FRintj);
dual_FRk = DUAL_REG (out_FRk);
dual_FRintk = DUAL_REG (out_FRintk);
adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
adjust_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1);
adjust_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1);
adjust_float_register_busy (cpu, -1, dual_FRintj, dual_FRintk, 1);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, in_FRintj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, out_FRintk);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_FR (cpu, dual_FRintj);
post_wait_for_FR (cpu, dual_FRk);
post_wait_for_FR (cpu, dual_FRintk);
restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1);
restore_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1);
restore_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1);
restore_float_register_busy (cpu, -1, dual_FRintj, dual_FRintk, 1);
/* The latency of FRk will be at least the latency of the other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_latency (cpu, out_FRintk, ps->post_wait);
update_FR_latency (cpu, dual_FRk, ps->post_wait);
update_FR_latency (cpu, dual_FRintk, ps->post_wait);
/* Once initiated, post-processing will take 3 cycles. */
update_FR_ptime (cpu, out_FRk, 3);
update_FR_ptime (cpu, out_FRintk, 3);
update_FR_ptime (cpu, dual_FRk, 3);
update_FR_ptime (cpu, dual_FRintk, 3);
/* Mark this use of the register as a floating point op. */
if (out_FRk >= 0)
set_use_is_fpop (cpu, out_FRk);
if (out_FRintk >= 0)
set_use_is_fpop (cpu, out_FRintk);
return cycles;
}
int
frvbf_model_fr500_u_media (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj, INT in_ACC40Si, INT in_ACCGi,
INT out_FRk,
INT out_ACC40Sk, INT out_ACC40Uk, INT out_ACCGk)
{
int cycles;
FRV_PROFILE_STATE *ps;
const CGEN_INSN *insn;
int is_media_s1;
int is_media_s2;
int busy_adjustment[] = {0, 0, 0};
int *fr;
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
insn = idesc->idata;
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
if (in_FRi >= 0)
{
if (use_is_media (cpu, in_FRi))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
}
if (in_FRj >= 0 && in_FRj != in_FRi)
{
if (use_is_media (cpu, in_FRj))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
}
if (out_FRk >= 0 && out_FRk != in_FRi && out_FRk != in_FRj)
{
if (use_is_media (cpu, out_FRk))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, out_FRk, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, out_FRk);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_ACC (cpu, in_ACC40Si);
post_wait_for_ACC (cpu, in_ACCGi);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, out_ACC40Uk);
post_wait_for_ACC (cpu, out_ACCGk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
if (in_FRi >= 0)
fr[in_FRi] += busy_adjustment[0];
if (in_FRj >= 0)
fr[in_FRj] += busy_adjustment[1];
if (out_FRk >= 0)
fr[out_FRk] += busy_adjustment[2];
/* The latency of tht output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 3 cycles. */
if (out_FRk >= 0)
{
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, out_FRk);
}
/* The latency of tht output accumulator will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_ACC40Sk >= 0)
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
if (out_ACC40Uk >= 0)
update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
if (out_ACCGk >= 0)
update_ACC_latency (cpu, out_ACCGk, ps->post_wait + 1);
return cycles;
}
int
frvbf_model_fr500_u_media_quad_arith (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_FRk)
{
int cycles;
INT dual_FRi;
INT dual_FRj;
INT dual_FRk;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
dual_FRi = DUAL_REG (in_FRi);
dual_FRj = DUAL_REG (in_FRj);
dual_FRk = DUAL_REG (out_FRk);
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
if (use_is_media (cpu, in_FRi))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (dual_FRi >= 0 && use_is_media (cpu, dual_FRi))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, dual_FRi);
if (in_FRj != in_FRi)
{
if (use_is_media (cpu, in_FRj))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (dual_FRj >= 0 && use_is_media (cpu, dual_FRj))
{
busy_adjustment[3] = 2;
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
}
else
enforce_full_fr_latency (cpu, dual_FRj + 1);
}
if (out_FRk != in_FRi && out_FRk != in_FRj)
{
if (use_is_media (cpu, out_FRk))
{
busy_adjustment[4] = 2;
decrease_FR_busy (cpu, out_FRk, busy_adjustment[4]);
}
else
enforce_full_fr_latency (cpu, out_FRk);
if (dual_FRk >= 0 && use_is_media (cpu, dual_FRk))
{
busy_adjustment[5] = 2;
decrease_FR_busy (cpu, dual_FRk, busy_adjustment[5]);
}
else
enforce_full_fr_latency (cpu, dual_FRk);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, dual_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, dual_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRi] += busy_adjustment[0];
if (dual_FRi >= 0)
fr[dual_FRi] += busy_adjustment[1];
fr[in_FRj] += busy_adjustment[2];
if (dual_FRj >= 0)
fr[dual_FRj] += busy_adjustment[3];
fr[out_FRk] += busy_adjustment[4];
if (dual_FRk >= 0)
fr[dual_FRk] += busy_adjustment[5];
/* The latency of tht output register will be at least the latency of the
other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
/* Once initiated, post-processing will take 3 cycles. */
update_FR_ptime (cpu, out_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, out_FRk);
if (dual_FRk >= 0)
{
update_FR_latency (cpu, dual_FRk, ps->post_wait);
update_FR_ptime (cpu, dual_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, dual_FRk);
}
return cycles;
}
int
frvbf_model_fr500_u_media_dual_mul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_ACC40Sk, INT out_ACC40Uk)
{
int cycles;
INT dual_ACC40Sk;
INT dual_ACC40Uk;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
int *fr;
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
ps = CPU_PROFILE_STATE (cpu);
dual_ACC40Sk = DUAL_REG (out_ACC40Sk);
dual_ACC40Uk = DUAL_REG (out_ACC40Uk);
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
if (use_is_media (cpu, in_FRi))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (in_FRj != in_FRi)
{
if (use_is_media (cpu, in_FRj))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
}
if (out_ACC40Sk >= 0)
{
busy_adjustment[2] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
}
if (dual_ACC40Sk >= 0)
{
busy_adjustment[3] = 1;
decrease_ACC_busy (cpu, dual_ACC40Sk, busy_adjustment[3]);
}
if (out_ACC40Uk >= 0)
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
}
if (dual_ACC40Uk >= 0)
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, dual_ACC40Uk, busy_adjustment[5]);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, dual_ACC40Sk);
post_wait_for_ACC (cpu, out_ACC40Uk);
post_wait_for_ACC (cpu, dual_ACC40Uk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
acc = ps->acc_busy;
fr[in_FRi] += busy_adjustment[0];
fr[in_FRj] += busy_adjustment[1];
if (out_ACC40Sk >= 0)
acc[out_ACC40Sk] += busy_adjustment[2];
if (dual_ACC40Sk >= 0)
acc[dual_ACC40Sk] += busy_adjustment[3];
if (out_ACC40Uk >= 0)
acc[out_ACC40Uk] += busy_adjustment[4];
if (dual_ACC40Uk >= 0)
acc[dual_ACC40Uk] += busy_adjustment[5];
/* The latency of tht output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_ACC40Sk >= 0)
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
if (dual_ACC40Sk >= 0)
update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1);
if (out_ACC40Uk >= 0)
update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
if (dual_ACC40Uk >= 0)
update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1);
return cycles;
}
int
frvbf_model_fr500_u_media_quad_mul (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_ACC40Sk, INT out_ACC40Uk)
{
int cycles;
INT FRi_1;
INT FRj_1;
INT ACC40Sk_1;
INT ACC40Sk_2;
INT ACC40Sk_3;
INT ACC40Uk_1;
INT ACC40Uk_2;
INT ACC40Uk_3;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0 ,0};
int *fr;
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
FRi_1 = DUAL_REG (in_FRi);
FRj_1 = DUAL_REG (in_FRj);
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
ACC40Uk_1 = DUAL_REG (out_ACC40Uk);
ACC40Uk_2 = DUAL_REG (ACC40Uk_1);
ACC40Uk_3 = DUAL_REG (ACC40Uk_2);
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
ps = CPU_PROFILE_STATE (cpu);
if (use_is_media (cpu, in_FRi))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (FRi_1 >= 0)
{
if (use_is_media (cpu, FRi_1))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, FRi_1, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, FRi_1);
}
if (in_FRj != in_FRi)
{
if (use_is_media (cpu, in_FRj))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (FRj_1 >= 0)
{
if (use_is_media (cpu, FRj_1))
{
busy_adjustment[3] = 2;
decrease_FR_busy (cpu, FRj_1, busy_adjustment[3]);
}
else
enforce_full_fr_latency (cpu, FRj_1);
}
}
if (out_ACC40Sk >= 0)
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
if (ACC40Sk_1 >= 0)
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
}
if (ACC40Sk_2 >= 0)
{
busy_adjustment[6] = 1;
decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
}
if (ACC40Sk_3 >= 0)
{
busy_adjustment[7] = 1;
decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
}
}
else if (out_ACC40Uk >= 0)
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
if (ACC40Uk_1 >= 0)
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, ACC40Uk_1, busy_adjustment[5]);
}
if (ACC40Uk_2 >= 0)
{
busy_adjustment[6] = 1;
decrease_ACC_busy (cpu, ACC40Uk_2, busy_adjustment[6]);
}
if (ACC40Uk_3 >= 0)
{
busy_adjustment[7] = 1;
decrease_ACC_busy (cpu, ACC40Uk_3, busy_adjustment[7]);
}
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, FRi_1);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, FRj_1);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, ACC40Sk_1);
post_wait_for_ACC (cpu, ACC40Sk_2);
post_wait_for_ACC (cpu, ACC40Sk_3);
post_wait_for_ACC (cpu, out_ACC40Uk);
post_wait_for_ACC (cpu, ACC40Uk_1);
post_wait_for_ACC (cpu, ACC40Uk_2);
post_wait_for_ACC (cpu, ACC40Uk_3);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
acc = ps->acc_busy;
fr[in_FRi] += busy_adjustment[0];
if (FRi_1 >= 0)
fr[FRi_1] += busy_adjustment[1];
fr[in_FRj] += busy_adjustment[2];
if (FRj_1 > 0)
fr[FRj_1] += busy_adjustment[3];
if (out_ACC40Sk >= 0)
{
acc[out_ACC40Sk] += busy_adjustment[4];
if (ACC40Sk_1 >= 0)
acc[ACC40Sk_1] += busy_adjustment[5];
if (ACC40Sk_2 >= 0)
acc[ACC40Sk_2] += busy_adjustment[6];
if (ACC40Sk_3 >= 0)
acc[ACC40Sk_3] += busy_adjustment[7];
}
else if (out_ACC40Uk >= 0)
{
acc[out_ACC40Uk] += busy_adjustment[4];
if (ACC40Uk_1 >= 0)
acc[ACC40Uk_1] += busy_adjustment[5];
if (ACC40Uk_2 >= 0)
acc[ACC40Uk_2] += busy_adjustment[6];
if (ACC40Uk_3 >= 0)
acc[ACC40Uk_3] += busy_adjustment[7];
}
/* The latency of tht output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_ACC40Sk >= 0)
{
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
if (ACC40Sk_1 >= 0)
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
if (ACC40Sk_2 >= 0)
update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
if (ACC40Sk_3 >= 0)
update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
}
else if (out_ACC40Uk >= 0)
{
update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
if (ACC40Uk_1 >= 0)
update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1);
if (ACC40Uk_2 >= 0)
update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1);
if (ACC40Uk_3 >= 0)
update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1);
}
return cycles;
}
int
frvbf_model_fr500_u_media_quad_complex (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi, INT in_FRj,
INT out_ACC40Sk)
{
int cycles;
INT FRi_1;
INT FRj_1;
INT ACC40Sk_1;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
int *fr;
int *acc;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
FRi_1 = DUAL_REG (in_FRi);
FRj_1 = DUAL_REG (in_FRj);
ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
ps = CPU_PROFILE_STATE (cpu);
if (use_is_media (cpu, in_FRi))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (FRi_1 >= 0)
{
if (use_is_media (cpu, FRi_1))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, FRi_1, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, FRi_1);
}
if (in_FRj != in_FRi)
{
if (use_is_media (cpu, in_FRj))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (FRj_1 >= 0)
{
if (use_is_media (cpu, FRj_1))
{
busy_adjustment[3] = 2;
decrease_FR_busy (cpu, FRj_1, busy_adjustment[3]);
}
else
enforce_full_fr_latency (cpu, FRj_1);
}
}
if (out_ACC40Sk >= 0)
{
busy_adjustment[4] = 1;
decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
if (ACC40Sk_1 >= 0)
{
busy_adjustment[5] = 1;
decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
}
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, FRi_1);
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, FRj_1);
post_wait_for_ACC (cpu, out_ACC40Sk);
post_wait_for_ACC (cpu, ACC40Sk_1);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
acc = ps->acc_busy;
fr[in_FRi] += busy_adjustment[0];
if (FRi_1 >= 0)
fr[FRi_1] += busy_adjustment[1];
fr[in_FRj] += busy_adjustment[2];
if (FRj_1 > 0)
fr[FRj_1] += busy_adjustment[3];
if (out_ACC40Sk >= 0)
{
acc[out_ACC40Sk] += busy_adjustment[4];
if (ACC40Sk_1 >= 0)
acc[ACC40Sk_1] += busy_adjustment[5];
}
/* The latency of tht output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 1 cycle. */
if (out_ACC40Sk >= 0)
{
update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
if (ACC40Sk_1 >= 0)
update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
}
return cycles;
}
int
frvbf_model_fr500_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi,
INT out_FRk)
{
int cycles;
INT dual_FRk;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
dual_FRk = DUAL_REG (out_FRk);
ps = CPU_PROFILE_STATE (cpu);
if (use_is_media (cpu, in_FRi))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (out_FRk != in_FRi)
{
if (use_is_media (cpu, out_FRk))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, out_FRk, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, out_FRk);
}
if (dual_FRk >= 0 && dual_FRk != in_FRi)
{
if (use_is_media (cpu, dual_FRk))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, dual_FRk, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, dual_FRk);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, dual_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRi] += busy_adjustment[0];
fr[out_FRk] += busy_adjustment[1];
if (dual_FRk >= 0)
fr[dual_FRk] += busy_adjustment[2];
/* The latency of the output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 3 cycles. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, out_FRk);
if (dual_FRk >= 0)
{
update_FR_latency (cpu, dual_FRk, ps->post_wait);
update_FR_ptime (cpu, dual_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, dual_FRk);
}
return cycles;
}
int
frvbf_model_fr500_u_media_dual_unpack (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRi,
INT out_FRk)
{
int cycles;
INT FRi_1;
INT FRk_1;
INT FRk_2;
INT FRk_3;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
FRi_1 = DUAL_REG (in_FRi);
FRk_1 = DUAL_REG (out_FRk);
FRk_2 = DUAL_REG (FRk_1);
FRk_3 = DUAL_REG (FRk_2);
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
ps = CPU_PROFILE_STATE (cpu);
if (use_is_media (cpu, in_FRi))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRi);
if (FRi_1 >= 0 && use_is_media (cpu, FRi_1))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, FRi_1, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, FRi_1);
if (out_FRk != in_FRi)
{
if (use_is_media (cpu, out_FRk))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, out_FRk, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, out_FRk);
if (FRk_1 >= 0 && FRk_1 != in_FRi)
{
if (use_is_media (cpu, FRk_1))
{
busy_adjustment[3] = 2;
decrease_FR_busy (cpu, FRk_1, busy_adjustment[3]);
}
else
enforce_full_fr_latency (cpu, FRk_1);
}
if (FRk_2 >= 0 && FRk_2 != in_FRi)
{
if (use_is_media (cpu, FRk_2))
{
busy_adjustment[4] = 2;
decrease_FR_busy (cpu, FRk_2, busy_adjustment[4]);
}
else
enforce_full_fr_latency (cpu, FRk_2);
}
if (FRk_3 >= 0 && FRk_3 != in_FRi)
{
if (use_is_media (cpu, FRk_3))
{
busy_adjustment[5] = 2;
decrease_FR_busy (cpu, FRk_3, busy_adjustment[5]);
}
else
enforce_full_fr_latency (cpu, FRk_3);
}
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRi);
post_wait_for_FR (cpu, FRi_1);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, FRk_1);
post_wait_for_FR (cpu, FRk_2);
post_wait_for_FR (cpu, FRk_3);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRi] += busy_adjustment[0];
if (FRi_1 >= 0)
fr[FRi_1] += busy_adjustment[1];
fr[out_FRk] += busy_adjustment[2];
if (FRk_1 >= 0)
fr[FRk_1] += busy_adjustment[3];
if (FRk_2 >= 0)
fr[FRk_2] += busy_adjustment[4];
if (FRk_3 >= 0)
fr[FRk_3] += busy_adjustment[5];
/* The latency of tht output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 3 cycles. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, out_FRk);
if (FRk_1 >= 0)
{
update_FR_latency (cpu, FRk_1, ps->post_wait);
update_FR_ptime (cpu, FRk_1, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, FRk_1);
}
if (FRk_2 >= 0)
{
update_FR_latency (cpu, FRk_2, ps->post_wait);
update_FR_ptime (cpu, FRk_2, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, FRk_2);
}
if (FRk_3 >= 0)
{
update_FR_latency (cpu, FRk_3, ps->post_wait);
update_FR_ptime (cpu, FRk_3, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, FRk_3);
}
return cycles;
}
int
frvbf_model_fr500_u_media_dual_btoh (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj,
INT out_FRk)
{
return frvbf_model_fr500_u_media_dual_expand (cpu, idesc, unit_num,
referenced, in_FRj, out_FRk);
}
int
frvbf_model_fr500_u_media_dual_htob (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj,
INT out_FRk)
{
int cycles;
INT dual_FRj;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
dual_FRj = DUAL_REG (in_FRj);
ps = CPU_PROFILE_STATE (cpu);
if (use_is_media (cpu, in_FRj))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (dual_FRj >= 0)
{
if (use_is_media (cpu, dual_FRj))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, dual_FRj, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, dual_FRj);
}
if (out_FRk != in_FRj)
{
if (use_is_media (cpu, out_FRk))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, out_FRk, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, out_FRk);
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, dual_FRj);
post_wait_for_FR (cpu, out_FRk);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRj] += busy_adjustment[0];
if (dual_FRj >= 0)
fr[dual_FRj] += busy_adjustment[1];
fr[out_FRk] += busy_adjustment[2];
/* The latency of tht output register will be at least the latency of the
other inputs. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
/* Once initiated, post-processing will take 3 cycles. */
update_FR_ptime (cpu, out_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, out_FRk);
return cycles;
}
int
frvbf_model_fr500_u_media_dual_btohe (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_FRj,
INT out_FRk)
{
int cycles;
INT FRk_1;
INT FRk_2;
INT FRk_3;
FRV_PROFILE_STATE *ps;
int busy_adjustment[] = {0, 0, 0, 0, 0};
int *fr;
if (model_insn == FRV_INSN_MODEL_PASS_1)
return 0;
/* The preprocessing can execute right away. */
cycles = idesc->timing->units[unit_num].done;
FRk_1 = DUAL_REG (out_FRk);
FRk_2 = DUAL_REG (FRk_1);
FRk_3 = DUAL_REG (FRk_2);
/* If the previous use of the registers was a media op,
then their latency will be less than previously recorded.
See Table 13-13 in the LSI. */
ps = CPU_PROFILE_STATE (cpu);
if (use_is_media (cpu, in_FRj))
{
busy_adjustment[0] = 2;
decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
}
else
enforce_full_fr_latency (cpu, in_FRj);
if (out_FRk != in_FRj)
{
if (use_is_media (cpu, out_FRk))
{
busy_adjustment[1] = 2;
decrease_FR_busy (cpu, out_FRk, busy_adjustment[1]);
}
else
enforce_full_fr_latency (cpu, out_FRk);
if (FRk_1 >= 0 && FRk_1 != in_FRj)
{
if (use_is_media (cpu, FRk_1))
{
busy_adjustment[2] = 2;
decrease_FR_busy (cpu, FRk_1, busy_adjustment[2]);
}
else
enforce_full_fr_latency (cpu, FRk_1);
}
if (FRk_2 >= 0 && FRk_2 != in_FRj)
{
if (use_is_media (cpu, FRk_2))
{
busy_adjustment[3] = 2;
decrease_FR_busy (cpu, FRk_2, busy_adjustment[3]);
}
else
enforce_full_fr_latency (cpu, FRk_2);
}
if (FRk_3 >= 0 && FRk_3 != in_FRj)
{
if (use_is_media (cpu, FRk_3))
{
busy_adjustment[4] = 2;
decrease_FR_busy (cpu, FRk_3, busy_adjustment[4]);
}
else
enforce_full_fr_latency (cpu, FRk_3);
}
}
/* The post processing must wait if there is a dependency on a FR
which is not ready yet. */
ps->post_wait = cycles;
post_wait_for_FR (cpu, in_FRj);
post_wait_for_FR (cpu, out_FRk);
post_wait_for_FR (cpu, FRk_1);
post_wait_for_FR (cpu, FRk_2);
post_wait_for_FR (cpu, FRk_3);
/* Restore the busy cycles of the registers we used. */
fr = ps->fr_busy;
fr[in_FRj] += busy_adjustment[0];
fr[out_FRk] += busy_adjustment[1];
if (FRk_1 >= 0)
fr[FRk_1] += busy_adjustment[2];
if (FRk_2 >= 0)
fr[FRk_2] += busy_adjustment[3];
if (FRk_3 >= 0)
fr[FRk_3] += busy_adjustment[4];
/* The latency of tht output register will be at least the latency of the
other inputs. Once initiated, post-processing will take 3 cycles. */
update_FR_latency (cpu, out_FRk, ps->post_wait);
update_FR_ptime (cpu, out_FRk, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, out_FRk);
if (FRk_1 >= 0)
{
update_FR_latency (cpu, FRk_1, ps->post_wait);
update_FR_ptime (cpu, FRk_1, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, FRk_1);
}
if (FRk_2 >= 0)
{
update_FR_latency (cpu, FRk_2, ps->post_wait);
update_FR_ptime (cpu, FRk_2, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, FRk_2);
}
if (FRk_3 >= 0)
{
update_FR_latency (cpu, FRk_3, ps->post_wait);
update_FR_ptime (cpu, FRk_3, 3);
/* Mark this use of the register as a media op. */
set_use_is_media (cpu, FRk_3);
}
return cycles;
}
int
frvbf_model_fr500_u_barrier (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
int i;
/* Wait for ALL resources. */
for (i = 0; i < 64; ++i)
{
enforce_full_fr_latency (cpu, i);
vliw_wait_for_GR (cpu, i);
vliw_wait_for_FR (cpu, i);
vliw_wait_for_ACC (cpu, i);
}
for (i = 0; i < 8; ++i)
vliw_wait_for_CCR (cpu, i);
for (i = 0; i < 2; ++i)
{
vliw_wait_for_idiv_resource (cpu, i);
vliw_wait_for_fdiv_resource (cpu, i);
vliw_wait_for_fsqrt_resource (cpu, i);
}
handle_resource_wait (cpu);
for (i = 0; i < 64; ++i)
{
load_wait_for_GR (cpu, i);
load_wait_for_FR (cpu, i);
}
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
int
frvbf_model_fr500_u_membar (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
int cycles;
if (model_insn == FRV_INSN_MODEL_PASS_1)
{
int i;
/* Wait for ALL resources, except GR and ICC. */
for (i = 0; i < 64; ++i)
{
enforce_full_fr_latency (cpu, i);
vliw_wait_for_FR (cpu, i);
vliw_wait_for_ACC (cpu, i);
}
for (i = 0; i < 4; ++i)
vliw_wait_for_CCR (cpu, i);
for (i = 0; i < 2; ++i)
{
vliw_wait_for_idiv_resource (cpu, i);
vliw_wait_for_fdiv_resource (cpu, i);
vliw_wait_for_fsqrt_resource (cpu, i);
}
handle_resource_wait (cpu);
for (i = 0; i < 64; ++i)
{
load_wait_for_FR (cpu, i);
}
trace_vliw_wait_cycles (cpu);
return 0;
}
cycles = idesc->timing->units[unit_num].done;
return cycles;
}
/* The frv machine is a fictional implementation of the fr500 which implements
all frv architectural features. */
int
frvbf_model_frv_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
return idesc->timing->units[unit_num].done;
}
/* The simple machine is a fictional implementation of the fr500 which
implements limited frv architectural features. */
int
frvbf_model_simple_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
return idesc->timing->units[unit_num].done;
}
/* The tomcat machine is models a prototype fr500 machine which had a few
bugs and restrictions to work around. */
int
frvbf_model_tomcat_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
return idesc->timing->units[unit_num].done;
}
#endif /* WITH_PROFILE_MODEL_P */