mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
19ba03f495
See previous patch's description. gdb/ChangeLog: * macrocmd.c (print_macro_callback): Add cast(s). * macrotab.c (macro_bcache_str): Likewise. (new_macro_definition): Likewise. * main.c (captured_main): Likewise. * maint.c (print_bfd_section_info): Likewise. * mdebugread.c (mdebug_build_psymtabs): Likewise. (basic_type): Likewise. * memattr.c (mem_region_cmp): Likewise. * memory-map.c (memory_map_start_memory): Likewise. (memory_map_end_memory): Likewise. (memory_map_start_property): Likewise. (memory_map_end_property): Likewise. (clear_result): Likewise. * memrange.c (compare_mem_ranges): Likewise. * mep-tdep.c (mep_analyze_frame_prologue): Likewise. * mi/mi-cmd-var.c (mi_cmd_var_update_iter): Likewise. * mi/mi-console.c (mi_console_file_delete): Likewise. (mi_console_file_fputs): Likewise. (mi_console_raw_packet): Likewise. (mi_console_file_flush): Likewise. (mi_console_set_raw): Likewise. * mi/mi-interp.c (mi_interpreter_resume): Likewise. (mi_new_thread): Likewise. (mi_thread_exit): Likewise. (mi_record_changed): Likewise. (mi_inferior_added): Likewise. (mi_inferior_appeared): Likewise. (mi_inferior_exit): Likewise. (mi_inferior_removed): Likewise. (mi_interp_data): Likewise. (mi_on_normal_stop): Likewise. (mi_traceframe_changed): Likewise. (mi_tsv_created): Likewise. (mi_tsv_deleted): Likewise. (mi_tsv_modified): Likewise. (mi_breakpoint_created): Likewise. (mi_breakpoint_deleted): Likewise. (mi_breakpoint_modified): Likewise. (mi_output_running_pid): Likewise. (mi_inferior_count): Likewise. (mi_solib_loaded): Likewise. (mi_solib_unloaded): Likewise. (mi_command_param_changed): Likewise. (mi_memory_changed): Likewise. (report_initial_inferior): Likewise. (mi_ui_out): Likewise. (mi_set_logging): Likewise. * mi/mi-main.c (collect_cores): Likewise. (print_one_inferior): Likewise. (free_vector_of_ints): Likewise. (free_splay_tree): Likewise. (mi_execute_command): Likewise. * mi/mi-out.c (mi_table_body): Likewise. (mi_table_end): Likewise. (mi_table_header): Likewise. (mi_begin): Likewise. (mi_end): Likewise. (mi_field_int): Likewise. (mi_field_string): Likewise. (mi_field_fmt): Likewise. (mi_flush): Likewise. (mi_redirect): Likewise. (field_separator): Likewise. (mi_open): Likewise. (mi_close): Likewise. (mi_out_buffered): Likewise. (mi_out_rewind): Likewise. (mi_out_put): Likewise. (mi_version): Likewise. (mi_out_data_dtor): Likewise. * mi/mi-parse.c (mi_parse_cleanup): Likewise. * microblaze-tdep.c (microblaze_frame_cache): Likewise. * minidebug.c (lzma_open): Likewise. (lzma_pread): Likewise. (lzma_close): Likewise. (lzma_stat): Likewise. * mips-linux-tdep.c (mips_linux_init_abi): Likewise. * mips-sde-tdep.c (mips_sde_frame_cache): Likewise. (mips_sde_elf_osabi_sniff_abi_tag_sections): Likewise. * mips-tdep.c (mips_insn16_frame_cache): Likewise. (mips_micro_frame_cache): Likewise. (mips_insn32_frame_cache): Likewise. (mips_stub_frame_cache): Likewise. (gdb_print_insn_mips): Likewise. (value_of_mips_user_reg): Likewise. (mips_gdbarch_init): Likewise. * mips64obsd-tdep.c (mips64obsd_supply_gregset): Likewise. * mipsnbsd-tdep.c (mipsnbsd_supply_fpregset): Likewise. (mipsnbsd_supply_gregset): Likewise. * mn10300-linux-tdep.c (am33_supply_fpregset_method): Likewise. (am33_collect_gregset_method): Likewise. (am33_collect_fpregset_method): Likewise. * mn10300-tdep.c (mn10300_analyze_frame_prologue): Likewise. * moxie-tdep.c (moxie_frame_cache): Likewise. * msp430-tdep.c (msp430_get_opcode_byte): Likewise. (msp430_analyze_frame_prologue): Likewise. * mt-tdep.c (mt_frame_unwind_cache): Likewise. * nios2-linux-tdep.c (nios2_supply_gregset): Likewise. (nios2_collect_gregset): Likewise. * nios2-tdep.c (nios2_frame_unwind_cache): Likewise. (nios2_stub_frame_cache): Likewise. * objc-lang.c (find_methods): Likewise. * objfiles.c (objfiles_pspace_data_cleanup): Likewise. (get_objfile_pspace_data): Likewise. (get_objfile_bfd_data): Likewise. (objfile_bfd_data_free): Likewise. (add_to_objfile_sections): Likewise. (do_free_objfile_cleanup): Likewise. (resume_section_map_updates_cleanup): Likewise. * opencl-lang.c (builtin_opencl_type): Likewise. * osabi.c (generic_elf_osabi_sniff_abi_tag_sections): Likewise. * osdata.c (osdata_start_osdata): Likewise. (osdata_start_item): Likewise. (osdata_start_column): Likewise. (osdata_end_column): Likewise. (clear_parsing_data): Likewise. (osdata_free_cleanup): Likewise. * parse.c (type_stack_cleanup): Likewise. (exp_uses_objfile_iter): Likewise. * ppc-linux-tdep.c (ppc_linux_supply_gregset): Likewise. (ppc_linux_collect_gregset): Likewise. (ppu2spu_prev_arch): Likewise. (ppu2spu_this_id): Likewise. (ppu2spu_prev_register): Likewise. (ppu2spu_unwind_register): Likewise. (ppu2spu_sniffer): Likewise. (ppu2spu_dealloc_cache): Likewise. (ppc_linux_init_abi): Likewise. * ppcfbsd-tdep.c (ppcfbsd_sigtramp_frame_cache): Likewise. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_cache): Likewise. * progspace.c (restore_program_space): Likewise. * psymtab.c (find_pc_sect_psymtab): Likewise. (compare_psymbols): Likewise. (psymbol_bcache_full): Likewise. (allocate_psymtab): Likewise. (discard_psymtabs_upto): Likewise. * python/py-block.c (set_block): Likewise. (del_objfile_blocks): Likewise. * python/py-breakpoint.c (build_bp_list): Likewise. * python/py-inferior.c (inferior_to_inferior_object): Likewise. (build_inferior_list): Likewise. (py_free_inferior): Likewise. * python/py-objfile.c (py_free_objfile): Likewise. (objfile_to_objfile_object): Likewise. * python/py-prettyprint.c (py_restore_tstate): Likewise. * python/py-progspace.c (py_free_pspace): Likewise. (pspace_to_pspace_object): Likewise. * python/py-symbol.c (set_symbol): Likewise. (del_objfile_symbols): Likewise. * python/py-symtab.c (set_sal): Likewise. (set_symtab): Likewise. (del_objfile_symtab): Likewise. (del_objfile_sal): Likewise. * python/py-type.c (save_objfile_types): Likewise. (set_type): Likewise. * python/py-unwind.c (pyuw_prev_register): Likewise. (pyuw_on_new_gdbarch): Likewise. * python/py-utils.c (py_decref): Likewise. (py_xdecref): Likewise. (gdb_py_generic_dict): Likewise. * python/py-xmethods.c (gdbpy_free_xmethod_worker_data): Likewise. (gdbpy_clone_xmethod_worker_data): Likewise. (gdbpy_get_xmethod_arg_types): Likewise. (gdbpy_get_xmethod_result_type): Likewise. (gdbpy_invoke_xmethod): Likewise. * python/python.c (gdbpy_apply_type_printers): Likewise. (gdbpy_free_type_printers): Likewise. * record-btrace.c (record_btrace_disable_callback): Likewise. (bfcache_hash): Likewise. (bfcache_eq): Likewise. (btrace_get_frame_function): Likewise. (record_btrace_frame_unwind_stop_reason): Likewise. (record_btrace_frame_this_id): Likewise. (record_btrace_frame_prev_register): Likewise. (record_btrace_frame_dealloc_cache): Likewise. * record-full.c (record_full_message_wrapper): Likewise. (record_full_save_cleanups): Likewise. * regcache.c (regcache_descr): Likewise. (do_regcache_xfree): Likewise. (do_regcache_invalidate): Likewise. (do_cooked_read): Likewise. (regcache_transfer_regset): Likewise. * reggroups.c (reggroup_add): Likewise. (reggroup_next): Likewise. (reggroup_prev): Likewise. * remote-fileio.c (do_remote_fileio_request): Likewise. * remote-notif.c (remote_async_get_pending_events_handler): Likewise. (do_notif_event_xfree): Likewise. * remote.c (get_remote_arch_state): Likewise. (remote_pspace_data_cleanup): Likewise. (get_remote_exec_file): Likewise. (set_pspace_remote_exec_file): Likewise. (compare_pnums): Likewise. (clear_threads_listing_context): Likewise. (remote_newthread_step): Likewise. (start_thread): Likewise. (end_thread): Likewise. (remove_child_of_pending_fork): Likewise. (remove_stop_reply_for_inferior): Likewise. (remove_stop_reply_of_remote_state): Likewise. (remote_notif_remove_once_on_match): Likewise. (stop_reply_match_ptid_and_ws): Likewise. (kill_child_of_pending_fork): Likewise. (register_remote_g_packet_guess): Likewise. (remote_read_description_p): Likewise. (remote_read_description): Likewise. (free_actions_list_cleanup_wrapper): Likewise. (remote_async_serial_handler): Likewise. * rl78-tdep.c (rl78_get_opcode_byte): Likewise. (rl78_analyze_frame_prologue): Likewise. * rs6000-tdep.c (ppc_supply_gregset): Likewise. (ppc_supply_fpregset): Likewise. (ppc_supply_vsxregset): Likewise. (ppc_supply_vrregset): Likewise. (ppc_collect_gregset): Likewise. (ppc_collect_fpregset): Likewise. (ppc_collect_vsxregset): Likewise. (ppc_collect_vrregset): Likewise. (e500_move_ev_register): Likewise. (do_regcache_raw_write): Likewise. (rs6000_frame_cache): Likewise. (rs6000_epilogue_frame_cache): Likewise. (rs6000_gdbarch_init): Likewise. * rx-tdep.c (rx_get_opcode_byte): Likewise. (rx_analyze_frame_prologue): Likewise. (rx_frame_type): Likewise. (rx_frame_sniffer_common): Likewise. * s390-linux-tdep.c (s390_check_for_saved): Likewise. (s390_frame_unwind_cache): Likewise. (s390_stub_frame_unwind_cache): Likewise. (s390_sigtramp_frame_unwind_cache): Likewise. * score-tdep.c (score_make_prologue_cache): Likewise. * sentinel-frame.c (sentinel_frame_prev_register): Likewise. (sentinel_frame_prev_arch): Likewise. * ser-base.c (fd_event): Likewise. (push_event): Likewise. (ser_base_write): Likewise. * ser-pipe.c (pipe_close): Likewise. * serial.c (serial_write): Likewise. * sh-tdep.c (sh_frame_cache): Likewise. (sh_stub_this_id): Likewise. * sh64-tdep.c (sh64_frame_cache): Likewise. * solib-aix.c (get_solib_aix_inferior_data): Likewise. (library_list_start_library): Likewise. (library_list_start_list): Likewise. (solib_aix_free_library_list): Likewise. * solib-darwin.c (get_darwin_info): Likewise. * solib-dsbt.c (get_dsbt_info): Likewise. * solib-spu.c (append_ocl_sos): Likewise. * solib-svr4.c (svr4_pspace_data_cleanup): Likewise. (get_svr4_info): Likewise. (library_list_start_library): Likewise. (svr4_library_list_start_list): Likewise. (hash_probe_and_action): Likewise. (equal_probe_and_action): Likewise. (svr4_update_solib_event_breakpoint): Likewise. (set_solib_svr4_fetch_link_map_offsets): Likewise. (svr4_fetch_link_map_offsets): Likewise. (svr4_have_link_map_offsets): Likewise. * solib-target.c (library_list_start_segment): Likewise. (library_list_start_section): Likewise. (library_list_start_library): Likewise. (library_list_end_library): Likewise. (library_list_start_list): Likewise. (solib_target_free_library_list): Likewise. * solib.c (solib_ops): Likewise. (set_solib_ops): Likewise. * sparc-sol2-tdep.c (sparc32_sol2_sigtramp_frame_cache): Likewise. * sparc-tdep.c (sparc_frame_cache): Likewise. (sparc32_frame_cache): Likewise. (sparc32_supply_gregset): Likewise. (sparc32_collect_gregset): Likewise. (sparc32_supply_fpregset): Likewise. (sparc32_collect_fpregset): Likewise. * sparc64-sol2-tdep.c (sparc64_sol2_sigtramp_frame_cache): Likewise. * sparc64-tdep.c (sparc64_supply_gregset): Likewise. (sparc64_collect_gregset): Likewise. (sparc64_supply_fpregset): Likewise. (sparc64_collect_fpregset): Likewise. * sparc64fbsd-tdep.c (sparc64fbsd_sigtramp_frame_cache): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_frame_cache): Likewise. * sparc64obsd-tdep.c (sparc64obsd_frame_cache): Likewise. (sparc64obsd_trapframe_cache): Likewise. * sparcnbsd-tdep.c (sparc32nbsd_sigcontext_frame_cache): Likewise. * sparcobsd-tdep.c (sparc32obsd_sigtramp_frame_cache): Likewise. * spu-multiarch.c (spu_gdbarch): Likewise. * spu-tdep.c (spu_frame_unwind_cache): Likewise. (spu2ppu_prev_arch): Likewise. (spu2ppu_this_id): Likewise. (spu2ppu_prev_register): Likewise. (spu2ppu_dealloc_cache): Likewise. (spu_dis_asm_print_address): Likewise. (gdb_print_insn_spu): Likewise. (spu_get_overlay_table): Likewise. * stabsread.c (rs6000_builtin_type): Likewise. * stack.c (do_print_variable_and_value): Likewise. * stap-probe.c (get_stap_base_address_1): Likewise. * symfile-debug.c (debug_qf_has_symbols): Likewise. (debug_qf_find_last_source_symtab): Likewise. (debug_qf_forget_cached_source_info): Likewise. (debug_qf_map_symtabs_matching_filename): Likewise. (debug_qf_lookup_symbol): Likewise. (debug_qf_print_stats): Likewise. (debug_qf_dump): Likewise. (debug_qf_relocate): Likewise. (debug_qf_expand_symtabs_for_function): Likewise. (debug_qf_expand_all_symtabs): Likewise. (debug_qf_expand_symtabs_with_fullname): Likewise. (debug_qf_map_matching_symbols): Likewise. (debug_qf_expand_symtabs_matching): Likewise. (debug_qf_find_pc_sect_compunit_symtab): Likewise. (debug_qf_map_symbol_filenames): Likewise. (debug_sym_get_probes): Likewise. (debug_sym_new_init): Likewise. (debug_sym_init): Likewise. (debug_sym_read): Likewise. (debug_sym_read_psymbols): Likewise. (debug_sym_finish): Likewise. (debug_sym_offsets): Likewise. (debug_sym_read_linetable): Likewise. (debug_sym_relocate): Likewise. (uninstall_symfile_debug_logging): Likewise. * symfile-mem.c (symbol_file_add_from_memory_wrapper): Likewise. * symfile.c (place_section): Likewise. (add_section_size_callback): Likewise. (load_progress): Likewise. (load_section_callback): Likewise. (clear_memory_write_data): Likewise. (allocate_symtab): Likewise. * symmisc.c (maintenance_expand_file_matcher): Likewise. * symtab.c (lookup_symtab_callback): Likewise. (hash_demangled_name_entry): Likewise. (eq_demangled_name_entry): Likewise. (get_symbol_cache): Likewise. (symbol_cache_cleanup): Likewise. (set_symbol_cache_size): Likewise. (symbol_cache_flush): Likewise. (maintenance_print_symbol_cache): Likewise. (maintenance_print_symbol_cache_statistics): Likewise. (delete_filename_seen_cache): Likewise. (output_partial_symbol_filename): Likewise. (search_symbols_file_matches): Likewise. (search_symbols_name_matches): Likewise. (do_free_completion_list): Likewise. (maybe_add_partial_symtab_filename): Likewise. (get_main_info): Likewise. (main_info_cleanup): Likewise. * target-dcache.c (target_dcache_cleanup): Likewise. (target_dcache_init_p): Likewise. (target_dcache_invalidate): Likewise. (target_dcache_get): Likewise. (target_dcache_get_or_init): Likewise. * target-descriptions.c (target_find_description): Likewise. (tdesc_find_type): Likewise. (tdesc_data_cleanup): Likewise. (tdesc_find_arch_register): Likewise. (tdesc_register_name): Likewise. (tdesc_register_type): Likewise. (tdesc_register_reggroup_p): Likewise. (set_tdesc_pseudo_register_name): Likewise. (set_tdesc_pseudo_register_type): Likewise. (set_tdesc_pseudo_register_reggroup_p): Likewise. (tdesc_use_registers): Likewise. (free_target_description): Likewise. * target-memory.c (compare_block_starting_address): Likewise. (cleanup_request_data): Likewise. (cleanup_write_requests_vector): Likewise. * target.c (open_target): Likewise. (cleanup_restore_target_terminal): Likewise. (free_memory_read_result_vector): Likewise. * thread.c (disable_thread_stack_temporaries): Likewise. (finish_thread_state_cleanup): Likewise. (do_restore_current_thread_cleanup): Likewise. (restore_current_thread_cleanup_dtor): Likewise. (set_thread_refcount): Likewise. (tp_array_compar): Likewise. (do_captured_thread_select): Likewise. * tic6x-tdep.c (tic6x_frame_unwind_cache): Likewise. (tic6x_stub_this_id): Likewise. * tilegx-tdep.c (tilegx_frame_cache): Likewise. * top.c (do_restore_instream_cleanup): Likewise. (gdb_readline_wrapper_cleanup): Likewise. (kill_or_detach): Likewise. (print_inferior_quit_action): Likewise. * tracefile-tfile.c (match_blocktype): Likewise. (build_traceframe_info): Likewise. * tracefile.c (trace_file_writer_xfree): Likewise. * tracepoint.c (memrange_cmp): Likewise. (do_collect_symbol): Likewise. (do_clear_collection_list): Likewise. (do_restore_current_traceframe_cleanup): Likewise. (restore_current_traceframe_cleanup_dtor): Likewise. (free_current_marker): Likewise. (traceframe_info_start_memory): Likewise. (traceframe_info_start_tvar): Likewise. (free_result): Likewise. * tramp-frame.c (tramp_frame_cache): Likewise. * tui/tui-file.c (tui_file_delete): Likewise. (tui_fileopen): Likewise. (tui_sfileopen): Likewise. (tui_file_isatty): Likewise. (tui_file_rewind): Likewise. (tui_file_put): Likewise. (tui_file_fputs): Likewise. (tui_file_get_strbuf): Likewise. (tui_file_adjust_strbuf): Likewise. (tui_file_flush): Likewise. * tui/tui-layout.c (make_command_window): Likewise. (make_data_window): Likewise. (show_source_disasm_command): Likewise. (show_data): Likewise. (make_source_or_disasm_window): Likewise. (show_source_or_disasm_and_command): Likewise. * tui/tui-out.c (tui_field_int): Likewise. (tui_field_string): Likewise. (tui_field_fmt): Likewise. (tui_text): Likewise. * typeprint.c (hash_typedef_field): Likewise. (eq_typedef_field): Likewise. (do_free_typedef_hash): Likewise. (copy_typedef_hash_element): Likewise. (do_free_global_table): Likewise. (find_global_typedef): Likewise. (find_typedef_in_hash): Likewise. * ui-file.c (ui_file_write_for_put): Likewise. (do_ui_file_xstrdup): Likewise. (mem_file_delete): Likewise. (mem_file_rewind): Likewise. (mem_file_put): Likewise. (mem_file_write): Likewise. (stdio_file_delete): Likewise. (stdio_file_flush): Likewise. (stdio_file_read): Likewise. (stdio_file_write): Likewise. (stdio_file_write_async_safe): Likewise. (stdio_file_fputs): Likewise. (stdio_file_isatty): Likewise. (stdio_file_fseek): Likewise. (tee_file_delete): Likewise. (tee_file_flush): Likewise. (tee_file_write): Likewise. (tee_file_fputs): Likewise. (tee_file_isatty): Likewise. * ui-out.c (do_cleanup_table_end): Likewise. (do_cleanup_end): Likewise. * user-regs.c (user_reg_add): Likewise. (user_reg_map_name_to_regnum): Likewise. (usernum_to_user_reg): Likewise. (maintenance_print_user_registers): Likewise. * utils.c (do_bfd_close_cleanup): Likewise. (do_fclose_cleanup): Likewise. (do_obstack_free): Likewise. (do_ui_file_delete): Likewise. (do_ui_out_redirect_pop): Likewise. (do_free_section_addr_info): Likewise. (restore_integer): Likewise. (do_unpush_target): Likewise. (do_htab_delete_cleanup): Likewise. (do_restore_ui_file): Likewise. (do_value_free): Likewise. (do_free_so): Likewise. (free_current_contents): Likewise. (do_regfree_cleanup): Likewise. (core_addr_hash): Likewise. (core_addr_eq): Likewise. (do_free_char_ptr_vec): Likewise. * v850-tdep.c (v850_frame_cache): Likewise. * varobj.c (do_free_variable_cleanup): Likewise. * vax-tdep.c (vax_supply_gregset): Likewise. (vax_frame_cache): Likewise. * vaxobsd-tdep.c (vaxobsd_sigtramp_frame_cache): Likewise. * xml-support.c (gdb_xml_body_text): Likewise. (gdb_xml_values_cleanup): Likewise. (gdb_xml_start_element): Likewise. (gdb_xml_start_element_wrapper): Likewise. (gdb_xml_end_element): Likewise. (gdb_xml_end_element_wrapper): Likewise. (gdb_xml_cleanup): Likewise. (gdb_xml_fetch_external_entity): Likewise. (gdb_xml_parse_attr_enum): Likewise. (xinclude_start_include): Likewise. (xinclude_end_include): Likewise. (xml_xinclude_default): Likewise. (xml_xinclude_start_doctype): Likewise. (xml_xinclude_end_doctype): Likewise. (xml_xinclude_cleanup): Likewise. (xml_fetch_content_from_file): Likewise. * xml-syscall.c (free_syscalls_info): Likewise. (syscall_start_syscall): Likewise. * xml-tdesc.c (tdesc_end_arch): Likewise. (tdesc_end_osabi): Likewise. (tdesc_end_compatible): Likewise. (tdesc_start_target): Likewise. (tdesc_start_feature): Likewise. (tdesc_start_reg): Likewise. (tdesc_start_union): Likewise. (tdesc_start_struct): Likewise. (tdesc_start_flags): Likewise. (tdesc_start_field): Likewise. (tdesc_start_vector): Likewise. (fetch_available_features_from_target): Likewise. * xstormy16-tdep.c (xstormy16_frame_cache): Likewise. * xtensa-tdep.c (xtensa_supply_gregset): Likewise. (xtensa_frame_cache): Likewise. (xtensa_frame_prev_register): Likewise. (xtensa_extract_return_value): Likewise.
758 lines
19 KiB
C
758 lines
19 KiB
C
/* Memory attributes support, for GDB.
|
||
|
||
Copyright (C) 2001-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "command.h"
|
||
#include "gdbcmd.h"
|
||
#include "memattr.h"
|
||
#include "target.h"
|
||
#include "target-dcache.h"
|
||
#include "value.h"
|
||
#include "language.h"
|
||
#include "vec.h"
|
||
#include "breakpoint.h"
|
||
#include "cli/cli-utils.h"
|
||
|
||
const struct mem_attrib default_mem_attrib =
|
||
{
|
||
MEM_RW, /* mode */
|
||
MEM_WIDTH_UNSPECIFIED,
|
||
0, /* hwbreak */
|
||
0, /* cache */
|
||
0, /* verify */
|
||
-1 /* Flash blocksize not specified. */
|
||
};
|
||
|
||
const struct mem_attrib unknown_mem_attrib =
|
||
{
|
||
MEM_NONE, /* mode */
|
||
MEM_WIDTH_UNSPECIFIED,
|
||
0, /* hwbreak */
|
||
0, /* cache */
|
||
0, /* verify */
|
||
-1 /* Flash blocksize not specified. */
|
||
};
|
||
|
||
|
||
VEC(mem_region_s) *mem_region_list, *target_mem_region_list;
|
||
static int mem_number = 0;
|
||
|
||
/* If this flag is set, the memory region list should be automatically
|
||
updated from the target. If it is clear, the list is user-controlled
|
||
and should be left alone. */
|
||
static int mem_use_target = 1;
|
||
|
||
/* If this flag is set, we have tried to fetch the target memory regions
|
||
since the last time it was invalidated. If that list is still
|
||
empty, then the target can't supply memory regions. */
|
||
static int target_mem_regions_valid;
|
||
|
||
/* If this flag is set, gdb will assume that memory ranges not
|
||
specified by the memory map have type MEM_NONE, and will
|
||
emit errors on all accesses to that memory. */
|
||
static int inaccessible_by_default = 1;
|
||
|
||
static void
|
||
show_inaccessible_by_default (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
if (inaccessible_by_default)
|
||
fprintf_filtered (file, _("Unknown memory addresses will "
|
||
"be treated as inaccessible.\n"));
|
||
else
|
||
fprintf_filtered (file, _("Unknown memory addresses "
|
||
"will be treated as RAM.\n"));
|
||
}
|
||
|
||
|
||
/* Predicate function which returns true if LHS should sort before RHS
|
||
in a list of memory regions, useful for VEC_lower_bound. */
|
||
|
||
static int
|
||
mem_region_lessthan (const struct mem_region *lhs,
|
||
const struct mem_region *rhs)
|
||
{
|
||
return lhs->lo < rhs->lo;
|
||
}
|
||
|
||
/* A helper function suitable for qsort, used to sort a
|
||
VEC(mem_region_s) by starting address. */
|
||
|
||
int
|
||
mem_region_cmp (const void *untyped_lhs, const void *untyped_rhs)
|
||
{
|
||
const struct mem_region *lhs = (const struct mem_region *) untyped_lhs;
|
||
const struct mem_region *rhs = (const struct mem_region *) untyped_rhs;
|
||
|
||
if (lhs->lo < rhs->lo)
|
||
return -1;
|
||
else if (lhs->lo == rhs->lo)
|
||
return 0;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Allocate a new memory region, with default settings. */
|
||
|
||
void
|
||
mem_region_init (struct mem_region *newobj)
|
||
{
|
||
memset (newobj, 0, sizeof (struct mem_region));
|
||
newobj->enabled_p = 1;
|
||
newobj->attrib = default_mem_attrib;
|
||
}
|
||
|
||
/* This function should be called before any command which would
|
||
modify the memory region list. It will handle switching from
|
||
a target-provided list to a local list, if necessary. */
|
||
|
||
static void
|
||
require_user_regions (int from_tty)
|
||
{
|
||
struct mem_region *m;
|
||
int ix, length;
|
||
|
||
/* If we're already using a user-provided list, nothing to do. */
|
||
if (!mem_use_target)
|
||
return;
|
||
|
||
/* Switch to a user-provided list (possibly a copy of the current
|
||
one). */
|
||
mem_use_target = 0;
|
||
|
||
/* If we don't have a target-provided region list yet, then
|
||
no need to warn. */
|
||
if (mem_region_list == NULL)
|
||
return;
|
||
|
||
/* Otherwise, let the user know how to get back. */
|
||
if (from_tty)
|
||
warning (_("Switching to manual control of memory regions; use "
|
||
"\"mem auto\" to fetch regions from the target again."));
|
||
|
||
/* And create a new list for the user to modify. */
|
||
length = VEC_length (mem_region_s, target_mem_region_list);
|
||
mem_region_list = VEC_alloc (mem_region_s, length);
|
||
for (ix = 0; VEC_iterate (mem_region_s, target_mem_region_list, ix, m); ix++)
|
||
VEC_quick_push (mem_region_s, mem_region_list, m);
|
||
}
|
||
|
||
/* This function should be called before any command which would
|
||
read the memory region list, other than those which call
|
||
require_user_regions. It will handle fetching the
|
||
target-provided list, if necessary. */
|
||
|
||
static void
|
||
require_target_regions (void)
|
||
{
|
||
if (mem_use_target && !target_mem_regions_valid)
|
||
{
|
||
target_mem_regions_valid = 1;
|
||
target_mem_region_list = target_memory_map ();
|
||
mem_region_list = target_mem_region_list;
|
||
}
|
||
}
|
||
|
||
static void
|
||
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
|
||
const struct mem_attrib *attrib)
|
||
{
|
||
struct mem_region newobj;
|
||
int i, ix;
|
||
|
||
/* lo == hi is a useless empty region. */
|
||
if (lo >= hi && hi != 0)
|
||
{
|
||
printf_unfiltered (_("invalid memory region: low >= high\n"));
|
||
return;
|
||
}
|
||
|
||
mem_region_init (&newobj);
|
||
newobj.lo = lo;
|
||
newobj.hi = hi;
|
||
|
||
ix = VEC_lower_bound (mem_region_s, mem_region_list, &newobj,
|
||
mem_region_lessthan);
|
||
|
||
/* Check for an overlapping memory region. We only need to check
|
||
in the vicinity - at most one before and one after the
|
||
insertion point. */
|
||
for (i = ix - 1; i < ix + 1; i++)
|
||
{
|
||
struct mem_region *n;
|
||
|
||
if (i < 0)
|
||
continue;
|
||
if (i >= VEC_length (mem_region_s, mem_region_list))
|
||
continue;
|
||
|
||
n = VEC_index (mem_region_s, mem_region_list, i);
|
||
|
||
if ((lo >= n->lo && (lo < n->hi || n->hi == 0))
|
||
|| (hi > n->lo && (hi <= n->hi || n->hi == 0))
|
||
|| (lo <= n->lo && ((hi >= n->hi && n->hi != 0) || hi == 0)))
|
||
{
|
||
printf_unfiltered (_("overlapping memory region\n"));
|
||
return;
|
||
}
|
||
}
|
||
|
||
newobj.number = ++mem_number;
|
||
newobj.attrib = *attrib;
|
||
VEC_safe_insert (mem_region_s, mem_region_list, ix, &newobj);
|
||
}
|
||
|
||
/*
|
||
* Look up the memory region cooresponding to ADDR.
|
||
*/
|
||
struct mem_region *
|
||
lookup_mem_region (CORE_ADDR addr)
|
||
{
|
||
static struct mem_region region;
|
||
struct mem_region *m;
|
||
CORE_ADDR lo;
|
||
CORE_ADDR hi;
|
||
int ix;
|
||
|
||
require_target_regions ();
|
||
|
||
/* First we initialize LO and HI so that they describe the entire
|
||
memory space. As we process the memory region chain, they are
|
||
redefined to describe the minimal region containing ADDR. LO
|
||
and HI are used in the case where no memory region is defined
|
||
that contains ADDR. If a memory region is disabled, it is
|
||
treated as if it does not exist. The initial values for LO
|
||
and HI represent the bottom and top of memory. */
|
||
|
||
lo = 0;
|
||
hi = 0;
|
||
|
||
/* Either find memory range containing ADDRESS, or set LO and HI
|
||
to the nearest boundaries of an existing memory range.
|
||
|
||
If we ever want to support a huge list of memory regions, this
|
||
check should be replaced with a binary search (probably using
|
||
VEC_lower_bound). */
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
{
|
||
if (m->enabled_p == 1)
|
||
{
|
||
/* If the address is in the memory region, return that
|
||
memory range. */
|
||
if (addr >= m->lo && (addr < m->hi || m->hi == 0))
|
||
return m;
|
||
|
||
/* This (correctly) won't match if m->hi == 0, representing
|
||
the top of the address space, because CORE_ADDR is unsigned;
|
||
no value of LO is less than zero. */
|
||
if (addr >= m->hi && lo < m->hi)
|
||
lo = m->hi;
|
||
|
||
/* This will never set HI to zero; if we're here and ADDR
|
||
is at or below M, and the region starts at zero, then ADDR
|
||
would have been in the region. */
|
||
if (addr <= m->lo && (hi == 0 || hi > m->lo))
|
||
hi = m->lo;
|
||
}
|
||
}
|
||
|
||
/* Because no region was found, we must cons up one based on what
|
||
was learned above. */
|
||
region.lo = lo;
|
||
region.hi = hi;
|
||
|
||
/* When no memory map is defined at all, we always return
|
||
'default_mem_attrib', so that we do not make all memory
|
||
inaccessible for targets that don't provide a memory map. */
|
||
if (inaccessible_by_default && !VEC_empty (mem_region_s, mem_region_list))
|
||
region.attrib = unknown_mem_attrib;
|
||
else
|
||
region.attrib = default_mem_attrib;
|
||
|
||
return ®ion;
|
||
}
|
||
|
||
/* Invalidate any memory regions fetched from the target. */
|
||
|
||
void
|
||
invalidate_target_mem_regions (void)
|
||
{
|
||
if (!target_mem_regions_valid)
|
||
return;
|
||
|
||
target_mem_regions_valid = 0;
|
||
VEC_free (mem_region_s, target_mem_region_list);
|
||
if (mem_use_target)
|
||
mem_region_list = NULL;
|
||
}
|
||
|
||
/* Clear memory region list. */
|
||
|
||
static void
|
||
mem_clear (void)
|
||
{
|
||
VEC_free (mem_region_s, mem_region_list);
|
||
}
|
||
|
||
|
||
static void
|
||
mem_command (char *args, int from_tty)
|
||
{
|
||
CORE_ADDR lo, hi;
|
||
char *tok;
|
||
struct mem_attrib attrib;
|
||
|
||
if (!args)
|
||
error_no_arg (_("No mem"));
|
||
|
||
/* For "mem auto", switch back to using a target provided list. */
|
||
if (strcmp (args, "auto") == 0)
|
||
{
|
||
if (mem_use_target)
|
||
return;
|
||
|
||
if (mem_region_list != target_mem_region_list)
|
||
{
|
||
mem_clear ();
|
||
mem_region_list = target_mem_region_list;
|
||
}
|
||
|
||
mem_use_target = 1;
|
||
return;
|
||
}
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
tok = strtok (args, " \t");
|
||
if (!tok)
|
||
error (_("no lo address"));
|
||
lo = parse_and_eval_address (tok);
|
||
|
||
tok = strtok (NULL, " \t");
|
||
if (!tok)
|
||
error (_("no hi address"));
|
||
hi = parse_and_eval_address (tok);
|
||
|
||
attrib = default_mem_attrib;
|
||
while ((tok = strtok (NULL, " \t")) != NULL)
|
||
{
|
||
if (strcmp (tok, "rw") == 0)
|
||
attrib.mode = MEM_RW;
|
||
else if (strcmp (tok, "ro") == 0)
|
||
attrib.mode = MEM_RO;
|
||
else if (strcmp (tok, "wo") == 0)
|
||
attrib.mode = MEM_WO;
|
||
|
||
else if (strcmp (tok, "8") == 0)
|
||
attrib.width = MEM_WIDTH_8;
|
||
else if (strcmp (tok, "16") == 0)
|
||
{
|
||
if ((lo % 2 != 0) || (hi % 2 != 0))
|
||
error (_("region bounds not 16 bit aligned"));
|
||
attrib.width = MEM_WIDTH_16;
|
||
}
|
||
else if (strcmp (tok, "32") == 0)
|
||
{
|
||
if ((lo % 4 != 0) || (hi % 4 != 0))
|
||
error (_("region bounds not 32 bit aligned"));
|
||
attrib.width = MEM_WIDTH_32;
|
||
}
|
||
else if (strcmp (tok, "64") == 0)
|
||
{
|
||
if ((lo % 8 != 0) || (hi % 8 != 0))
|
||
error (_("region bounds not 64 bit aligned"));
|
||
attrib.width = MEM_WIDTH_64;
|
||
}
|
||
|
||
#if 0
|
||
else if (strcmp (tok, "hwbreak") == 0)
|
||
attrib.hwbreak = 1;
|
||
else if (strcmp (tok, "swbreak") == 0)
|
||
attrib.hwbreak = 0;
|
||
#endif
|
||
|
||
else if (strcmp (tok, "cache") == 0)
|
||
attrib.cache = 1;
|
||
else if (strcmp (tok, "nocache") == 0)
|
||
attrib.cache = 0;
|
||
|
||
#if 0
|
||
else if (strcmp (tok, "verify") == 0)
|
||
attrib.verify = 1;
|
||
else if (strcmp (tok, "noverify") == 0)
|
||
attrib.verify = 0;
|
||
#endif
|
||
|
||
else
|
||
error (_("unknown attribute: %s"), tok);
|
||
}
|
||
|
||
create_mem_region (lo, hi, &attrib);
|
||
}
|
||
|
||
|
||
static void
|
||
mem_info_command (char *args, int from_tty)
|
||
{
|
||
struct mem_region *m;
|
||
struct mem_attrib *attrib;
|
||
int ix;
|
||
|
||
if (mem_use_target)
|
||
printf_filtered (_("Using memory regions provided by the target.\n"));
|
||
else
|
||
printf_filtered (_("Using user-defined memory regions.\n"));
|
||
|
||
require_target_regions ();
|
||
|
||
if (!mem_region_list)
|
||
{
|
||
printf_unfiltered (_("There are no memory regions defined.\n"));
|
||
return;
|
||
}
|
||
|
||
printf_filtered ("Num ");
|
||
printf_filtered ("Enb ");
|
||
printf_filtered ("Low Addr ");
|
||
if (gdbarch_addr_bit (target_gdbarch ()) > 32)
|
||
printf_filtered (" ");
|
||
printf_filtered ("High Addr ");
|
||
if (gdbarch_addr_bit (target_gdbarch ()) > 32)
|
||
printf_filtered (" ");
|
||
printf_filtered ("Attrs ");
|
||
printf_filtered ("\n");
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
{
|
||
char *tmp;
|
||
|
||
printf_filtered ("%-3d %-3c\t",
|
||
m->number,
|
||
m->enabled_p ? 'y' : 'n');
|
||
if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
|
||
tmp = hex_string_custom (m->lo, 8);
|
||
else
|
||
tmp = hex_string_custom (m->lo, 16);
|
||
|
||
printf_filtered ("%s ", tmp);
|
||
|
||
if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
|
||
{
|
||
if (m->hi == 0)
|
||
tmp = "0x100000000";
|
||
else
|
||
tmp = hex_string_custom (m->hi, 8);
|
||
}
|
||
else
|
||
{
|
||
if (m->hi == 0)
|
||
tmp = "0x10000000000000000";
|
||
else
|
||
tmp = hex_string_custom (m->hi, 16);
|
||
}
|
||
|
||
printf_filtered ("%s ", tmp);
|
||
|
||
/* Print a token for each attribute.
|
||
|
||
* FIXME: Should we output a comma after each token? It may
|
||
* make it easier for users to read, but we'd lose the ability
|
||
* to cut-and-paste the list of attributes when defining a new
|
||
* region. Perhaps that is not important.
|
||
*
|
||
* FIXME: If more attributes are added to GDB, the output may
|
||
* become cluttered and difficult for users to read. At that
|
||
* time, we may want to consider printing tokens only if they
|
||
* are different from the default attribute. */
|
||
|
||
attrib = &m->attrib;
|
||
switch (attrib->mode)
|
||
{
|
||
case MEM_RW:
|
||
printf_filtered ("rw ");
|
||
break;
|
||
case MEM_RO:
|
||
printf_filtered ("ro ");
|
||
break;
|
||
case MEM_WO:
|
||
printf_filtered ("wo ");
|
||
break;
|
||
case MEM_FLASH:
|
||
printf_filtered ("flash blocksize 0x%x ", attrib->blocksize);
|
||
break;
|
||
}
|
||
|
||
switch (attrib->width)
|
||
{
|
||
case MEM_WIDTH_8:
|
||
printf_filtered ("8 ");
|
||
break;
|
||
case MEM_WIDTH_16:
|
||
printf_filtered ("16 ");
|
||
break;
|
||
case MEM_WIDTH_32:
|
||
printf_filtered ("32 ");
|
||
break;
|
||
case MEM_WIDTH_64:
|
||
printf_filtered ("64 ");
|
||
break;
|
||
case MEM_WIDTH_UNSPECIFIED:
|
||
break;
|
||
}
|
||
|
||
#if 0
|
||
if (attrib->hwbreak)
|
||
printf_filtered ("hwbreak");
|
||
else
|
||
printf_filtered ("swbreak");
|
||
#endif
|
||
|
||
if (attrib->cache)
|
||
printf_filtered ("cache ");
|
||
else
|
||
printf_filtered ("nocache ");
|
||
|
||
#if 0
|
||
if (attrib->verify)
|
||
printf_filtered ("verify ");
|
||
else
|
||
printf_filtered ("noverify ");
|
||
#endif
|
||
|
||
printf_filtered ("\n");
|
||
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
}
|
||
|
||
|
||
/* Enable the memory region number NUM. */
|
||
|
||
static void
|
||
mem_enable (int num)
|
||
{
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
if (m->number == num)
|
||
{
|
||
m->enabled_p = 1;
|
||
return;
|
||
}
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
}
|
||
|
||
static void
|
||
mem_enable_command (char *args, int from_tty)
|
||
{
|
||
int num;
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
target_dcache_invalidate ();
|
||
|
||
if (args == NULL || *args == '\0')
|
||
{ /* Enable all mem regions. */
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
m->enabled_p = 1;
|
||
}
|
||
else
|
||
{
|
||
struct get_number_or_range_state state;
|
||
|
||
init_number_or_range (&state, args);
|
||
while (!state.finished)
|
||
{
|
||
num = get_number_or_range (&state);
|
||
mem_enable (num);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Disable the memory region number NUM. */
|
||
|
||
static void
|
||
mem_disable (int num)
|
||
{
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
if (m->number == num)
|
||
{
|
||
m->enabled_p = 0;
|
||
return;
|
||
}
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
}
|
||
|
||
static void
|
||
mem_disable_command (char *args, int from_tty)
|
||
{
|
||
int num;
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
target_dcache_invalidate ();
|
||
|
||
if (args == NULL || *args == '\0')
|
||
{
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
m->enabled_p = 0;
|
||
}
|
||
else
|
||
{
|
||
struct get_number_or_range_state state;
|
||
|
||
init_number_or_range (&state, args);
|
||
while (!state.finished)
|
||
{
|
||
num = get_number_or_range (&state);
|
||
mem_disable (num);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Delete the memory region number NUM. */
|
||
|
||
static void
|
||
mem_delete (int num)
|
||
{
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
if (!mem_region_list)
|
||
{
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
return;
|
||
}
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
if (m->number == num)
|
||
break;
|
||
|
||
if (m == NULL)
|
||
{
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
return;
|
||
}
|
||
|
||
VEC_ordered_remove (mem_region_s, mem_region_list, ix);
|
||
}
|
||
|
||
static void
|
||
mem_delete_command (char *args, int from_tty)
|
||
{
|
||
int num;
|
||
struct get_number_or_range_state state;
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
target_dcache_invalidate ();
|
||
|
||
if (args == NULL || *args == '\0')
|
||
{
|
||
if (query (_("Delete all memory regions? ")))
|
||
mem_clear ();
|
||
dont_repeat ();
|
||
return;
|
||
}
|
||
|
||
init_number_or_range (&state, args);
|
||
while (!state.finished)
|
||
{
|
||
num = get_number_or_range (&state);
|
||
mem_delete (num);
|
||
}
|
||
|
||
dont_repeat ();
|
||
}
|
||
|
||
static void
|
||
dummy_cmd (char *args, int from_tty)
|
||
{
|
||
}
|
||
|
||
extern initialize_file_ftype _initialize_mem; /* -Wmissing-prototype */
|
||
|
||
static struct cmd_list_element *mem_set_cmdlist;
|
||
static struct cmd_list_element *mem_show_cmdlist;
|
||
|
||
void
|
||
_initialize_mem (void)
|
||
{
|
||
add_com ("mem", class_vars, mem_command, _("\
|
||
Define attributes for memory region or reset memory region handling to\n\
|
||
target-based.\n\
|
||
Usage: mem auto\n\
|
||
mem <lo addr> <hi addr> [<mode> <width> <cache>],\n\
|
||
where <mode> may be rw (read/write), ro (read-only) or wo (write-only),\n\
|
||
<width> may be 8, 16, 32, or 64, and\n\
|
||
<cache> may be cache or nocache"));
|
||
|
||
add_cmd ("mem", class_vars, mem_enable_command, _("\
|
||
Enable memory region.\n\
|
||
Arguments are the code numbers of the memory regions to enable.\n\
|
||
Usage: enable mem <code number>...\n\
|
||
Do \"info mem\" to see current list of code numbers."), &enablelist);
|
||
|
||
add_cmd ("mem", class_vars, mem_disable_command, _("\
|
||
Disable memory region.\n\
|
||
Arguments are the code numbers of the memory regions to disable.\n\
|
||
Usage: disable mem <code number>...\n\
|
||
Do \"info mem\" to see current list of code numbers."), &disablelist);
|
||
|
||
add_cmd ("mem", class_vars, mem_delete_command, _("\
|
||
Delete memory region.\n\
|
||
Arguments are the code numbers of the memory regions to delete.\n\
|
||
Usage: delete mem <code number>...\n\
|
||
Do \"info mem\" to see current list of code numbers."), &deletelist);
|
||
|
||
add_info ("mem", mem_info_command,
|
||
_("Memory region attributes"));
|
||
|
||
add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
|
||
Memory regions settings"),
|
||
&mem_set_cmdlist, "set mem ",
|
||
0/* allow-unknown */, &setlist);
|
||
add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
|
||
Memory regions settings"),
|
||
&mem_show_cmdlist, "show mem ",
|
||
0/* allow-unknown */, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("inaccessible-by-default", no_class,
|
||
&inaccessible_by_default, _("\
|
||
Set handling of unknown memory regions."), _("\
|
||
Show handling of unknown memory regions."), _("\
|
||
If on, and some memory map is defined, debugger will emit errors on\n\
|
||
accesses to memory not defined in the memory map. If off, accesses to all\n\
|
||
memory addresses will be allowed."),
|
||
NULL,
|
||
show_inaccessible_by_default,
|
||
&mem_set_cmdlist,
|
||
&mem_show_cmdlist);
|
||
}
|