binutils-gdb/gdb/i386-nto-tdep.c
Andrew Burgess 08106042d9 gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target.  I got this error:

  (gdb) show architecture
  The target architecture is set to "auto" (currently "i386").
  (gdb) file /tmp/hello.rv32.exe
  Reading symbols from /tmp/hello.rv32.exe...
  (gdb) show architecture
  The target architecture is set to "auto" (currently "riscv:rv32").
  (gdb) run
  Starting program: /tmp/hello.rv32.exe
  ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.

What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target.  After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.

When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace.  GDB sees an initial stop from the inferior
as soon as the inferior comes to life.  In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.

After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:

  i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);

The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep.  After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.

The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target.  I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?

I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.

This commit can be split into two parts:

 (1) In gdbarch.h and arch-utils.c.  In these files I have modified
 gdbarch_tdep (the function) so that it now takes a template argument,
 like this:

    template<typename TDepType>
    static inline TDepType *
    gdbarch_tdep (struct gdbarch *gdbarch)
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
      return static_cast<TDepType *> (tdep);
    }

  After this change we are no better protected, but the cast is now
  done within the gdbarch_tdep function rather than at the call sites,
  this leads to the second, much larger change in this commit,

  (2) Everywhere gdbarch_tdep is called, we make changes like this:

    -  i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
    +  i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);

There should be no functional change after this commit.

In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
2022-07-21 15:19:42 +01:00

380 lines
10 KiB
C

/* Target-dependent code for QNX Neutrino x86.
Copyright (C) 2003-2022 Free Software Foundation, Inc.
Contributed by QNX Software Systems Ltd.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "osabi.h"
#include "regcache.h"
#include "target.h"
#include "i386-tdep.h"
#include "i387-tdep.h"
#include "nto-tdep.h"
#include "solib.h"
#include "solib-svr4.h"
#ifndef X86_CPU_FXSR
#define X86_CPU_FXSR (1L << 12)
#endif
/* Why 13? Look in our /usr/include/x86/context.h header at the
x86_cpu_registers structure and you'll see an 'exx' junk register
that is just filler. Don't ask me, ask the kernel guys. */
#define NUM_GPREGS 13
/* Mapping between the general-purpose registers in `struct xxx'
format and GDB's register cache layout. */
/* From <x86/context.h>. */
static int i386nto_gregset_reg_offset[] =
{
7 * 4, /* %eax */
6 * 4, /* %ecx */
5 * 4, /* %edx */
4 * 4, /* %ebx */
11 * 4, /* %esp */
2 * 4, /* %epb */
1 * 4, /* %esi */
0 * 4, /* %edi */
8 * 4, /* %eip */
10 * 4, /* %eflags */
9 * 4, /* %cs */
12 * 4, /* %ss */
-1 /* filler */
};
/* Given a GDB register number REGNUM, return the offset into
Neutrino's register structure or -1 if the register is unknown. */
static int
nto_reg_offset (int regnum)
{
if (regnum >= 0 && regnum < ARRAY_SIZE (i386nto_gregset_reg_offset))
return i386nto_gregset_reg_offset[regnum];
return -1;
}
static void
i386nto_supply_gregset (struct regcache *regcache, char *gpregs)
{
struct gdbarch *gdbarch = regcache->arch ();
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
gdb_assert (tdep->gregset_reg_offset == i386nto_gregset_reg_offset);
i386_gregset.supply_regset (&i386_gregset, regcache, -1,
gpregs, NUM_GPREGS * 4);
}
static void
i386nto_supply_fpregset (struct regcache *regcache, char *fpregs)
{
if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
i387_supply_fxsave (regcache, -1, fpregs);
else
i387_supply_fsave (regcache, -1, fpregs);
}
static void
i386nto_supply_regset (struct regcache *regcache, int regset, char *data)
{
switch (regset)
{
case NTO_REG_GENERAL:
i386nto_supply_gregset (regcache, data);
break;
case NTO_REG_FLOAT:
i386nto_supply_fpregset (regcache, data);
break;
}
}
static int
i386nto_regset_id (int regno)
{
if (regno == -1)
return NTO_REG_END;
else if (regno < I386_NUM_GREGS)
return NTO_REG_GENERAL;
else if (regno < I386_NUM_GREGS + I387_NUM_REGS)
return NTO_REG_FLOAT;
else if (regno < I386_SSE_NUM_REGS)
return NTO_REG_FLOAT; /* We store xmm registers in fxsave_area. */
return -1; /* Error. */
}
static int
i386nto_register_area (struct gdbarch *gdbarch,
int regno, int regset, unsigned *off)
{
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
*off = 0;
if (regset == NTO_REG_GENERAL)
{
if (regno == -1)
return NUM_GPREGS * 4;
*off = nto_reg_offset (regno);
if (*off == -1)
return 0;
return 4;
}
else if (regset == NTO_REG_FLOAT)
{
unsigned off_adjust, regsize, regset_size, regno_base;
/* The following are flags indicating number in our fxsave_area. */
int first_four = (regno >= I387_FCTRL_REGNUM (tdep)
&& regno <= I387_FISEG_REGNUM (tdep));
int second_four = (regno > I387_FISEG_REGNUM (tdep)
&& regno <= I387_FOP_REGNUM (tdep));
int st_reg = (regno >= I387_ST0_REGNUM (tdep)
&& regno < I387_ST0_REGNUM (tdep) + 8);
int xmm_reg = (regno >= I387_XMM0_REGNUM (tdep)
&& regno < I387_MXCSR_REGNUM (tdep));
if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
{
off_adjust = 32;
regsize = 16;
regset_size = 512;
/* fxsave_area structure. */
if (first_four)
{
/* fpu_control_word, fpu_status_word, fpu_tag_word, fpu_operand
registers. */
regsize = 2; /* Two bytes each. */
off_adjust = 0;
regno_base = I387_FCTRL_REGNUM (tdep);
}
else if (second_four)
{
/* fpu_ip, fpu_cs, fpu_op, fpu_ds registers. */
regsize = 4;
off_adjust = 8;
regno_base = I387_FISEG_REGNUM (tdep) + 1;
}
else if (st_reg)
{
/* ST registers. */
regsize = 16;
off_adjust = 32;
regno_base = I387_ST0_REGNUM (tdep);
}
else if (xmm_reg)
{
/* XMM registers. */
regsize = 16;
off_adjust = 160;
regno_base = I387_XMM0_REGNUM (tdep);
}
else if (regno == I387_MXCSR_REGNUM (tdep))
{
regsize = 4;
off_adjust = 24;
regno_base = I387_MXCSR_REGNUM (tdep);
}
else
{
/* Whole regset. */
gdb_assert (regno == -1);
off_adjust = 0;
regno_base = 0;
regsize = regset_size;
}
}
else
{
regset_size = 108;
/* fsave_area structure. */
if (first_four || second_four)
{
/* fpu_control_word, ... , fpu_ds registers. */
regsize = 4;
off_adjust = 0;
regno_base = I387_FCTRL_REGNUM (tdep);
}
else if (st_reg)
{
/* One of ST registers. */
regsize = 10;
off_adjust = 7 * 4;
regno_base = I387_ST0_REGNUM (tdep);
}
else
{
/* Whole regset. */
gdb_assert (regno == -1);
off_adjust = 0;
regno_base = 0;
regsize = regset_size;
}
}
if (regno != -1)
*off = off_adjust + (regno - regno_base) * regsize;
else
*off = 0;
return regsize;
}
return -1;
}
static int
i386nto_regset_fill (const struct regcache *regcache, int regset, char *data)
{
if (regset == NTO_REG_GENERAL)
{
int regno;
for (regno = 0; regno < NUM_GPREGS; regno++)
{
int offset = nto_reg_offset (regno);
if (offset != -1)
regcache->raw_collect (regno, data + offset);
}
}
else if (regset == NTO_REG_FLOAT)
{
if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR)
i387_collect_fxsave (regcache, -1, data);
else
i387_collect_fsave (regcache, -1, data);
}
else
return -1;
return 0;
}
/* Return whether THIS_FRAME corresponds to a QNX Neutrino sigtramp
routine. */
static int
i386nto_sigtramp_p (struct frame_info *this_frame)
{
CORE_ADDR pc = get_frame_pc (this_frame);
const char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
return name && strcmp ("__signalstub", name) == 0;
}
/* Assuming THIS_FRAME is a QNX Neutrino sigtramp routine, return the
address of the associated sigcontext structure. */
static CORE_ADDR
i386nto_sigcontext_addr (struct frame_info *this_frame)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
CORE_ADDR ptrctx;
/* We store __ucontext_t addr in EDI register. */
get_frame_register (this_frame, I386_EDI_REGNUM, buf);
ptrctx = extract_unsigned_integer (buf, 4, byte_order);
ptrctx += 24 /* Context pointer is at this offset. */;
return ptrctx;
}
static void
init_i386nto_ops (void)
{
nto_regset_id = i386nto_regset_id;
nto_supply_gregset = i386nto_supply_gregset;
nto_supply_fpregset = i386nto_supply_fpregset;
nto_supply_altregset = nto_dummy_supply_regset;
nto_supply_regset = i386nto_supply_regset;
nto_register_area = i386nto_register_area;
nto_regset_fill = i386nto_regset_fill;
nto_fetch_link_map_offsets =
svr4_ilp32_fetch_link_map_offsets;
}
static void
i386nto_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
static struct target_so_ops nto_svr4_so_ops;
/* Deal with our strange signals. */
nto_initialize_signals ();
/* NTO uses ELF. */
i386_elf_init_abi (info, gdbarch);
/* Neutrino rewinds to look more normal. Need to override the i386
default which is [unfortunately] to decrement the PC. */
set_gdbarch_decr_pc_after_break (gdbarch, 0);
tdep->gregset_reg_offset = i386nto_gregset_reg_offset;
tdep->gregset_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset);
tdep->sizeof_gregset = NUM_GPREGS * 4;
tdep->sigtramp_p = i386nto_sigtramp_p;
tdep->sigcontext_addr = i386nto_sigcontext_addr;
tdep->sc_reg_offset = i386nto_gregset_reg_offset;
tdep->sc_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset);
/* Setjmp()'s return PC saved in EDX (5). */
tdep->jb_pc_offset = 20; /* 5x32 bit ints in. */
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
/* Initialize this lazily, to avoid an initialization order
dependency on solib-svr4.c's _initialize routine. */
if (nto_svr4_so_ops.in_dynsym_resolve_code == NULL)
{
nto_svr4_so_ops = svr4_so_ops;
/* Our loader handles solib relocations differently than svr4. */
nto_svr4_so_ops.relocate_section_addresses
= nto_relocate_section_addresses;
/* Supply a nice function to find our solibs. */
nto_svr4_so_ops.find_and_open_solib
= nto_find_and_open_solib;
/* Our linker code is in libc. */
nto_svr4_so_ops.in_dynsym_resolve_code
= nto_in_dynsym_resolve_code;
}
set_solib_ops (gdbarch, &nto_svr4_so_ops);
set_gdbarch_wchar_bit (gdbarch, 32);
set_gdbarch_wchar_signed (gdbarch, 0);
}
void _initialize_i386nto_tdep ();
void
_initialize_i386nto_tdep ()
{
init_i386nto_ops ();
gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_QNXNTO,
i386nto_init_abi);
gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour,
nto_elf_osabi_sniffer);
}