mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
da3331ec16
* gdbarch.sh: Add missing opaque declarations. * gdbarch.h: Regnerate. * symtab.h: Add missing opaque declarations. * value.h, target.h, symfile.h, stabsread.h: Ditto. * x86-64-tdep.h, xmodem.h, monitor.h, typeprint.h: Ditto. * srec.h, solib-svr4.h, source.h, inferior.h: Ditto. * ser-unix.h, serial.h, remote-utils.h, gdbcore.h: Ditto. * ppc-tdep.h, ocd.h, mips-tdep.h, gdbtypes.h: Ditto. * buildsym.h, builtin-regs.h, linespec.h, language.h: Ditto. * i387-tdep.h, gdbthread.h, event-top.h, gdb.h: Ditto. * dwarf2cfi.h, doublest.h, disasm.h, cp-abi.h: Ditto. * cli-out.h, c-lang.h, ax-gdb.h, arch-utils.h: Ditto. * ada-lang.h, config/nm-lynx.h, config/nm-linux.h: Ditto. * config/sparc/tm-sp64.h, config/rs6000/tm-rs6000.h: Ditto. * config/pa/tm-hppah.h, config/m68k/tm-delta68.h: Ditto. * cli/cli-setshow.h, cli/cli-script.h: Ditto.
210 lines
7.1 KiB
C
210 lines
7.1 KiB
C
/* Machine independent variables that describe the core file under GDB.
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* Interface routines for core, executable, etc. */
|
||
|
||
#if !defined (GDBCORE_H)
|
||
#define GDBCORE_H 1
|
||
|
||
struct type;
|
||
|
||
#include "bfd.h"
|
||
|
||
/* Return the name of the executable file as a string.
|
||
ERR nonzero means get error if there is none specified;
|
||
otherwise return 0 in that case. */
|
||
|
||
extern char *get_exec_file (int err);
|
||
|
||
/* Nonzero if there is a core file. */
|
||
|
||
extern int have_core_file_p (void);
|
||
|
||
/* Read "memory data" from whatever target or inferior we have.
|
||
Returns zero if successful, errno value if not. EIO is used for
|
||
address out of bounds. If breakpoints are inserted, returns shadow
|
||
contents, not the breakpoints themselves. From breakpoint.c. */
|
||
|
||
extern int read_memory_nobpt (CORE_ADDR memaddr, char *myaddr, unsigned len);
|
||
|
||
/* Report a memory error with error(). */
|
||
|
||
extern void memory_error (int status, CORE_ADDR memaddr);
|
||
|
||
/* Like target_read_memory, but report an error if can't read. */
|
||
|
||
extern void read_memory (CORE_ADDR memaddr, char *myaddr, int len);
|
||
|
||
/* Read an integer from debugged memory, given address and number of
|
||
bytes. */
|
||
|
||
extern LONGEST read_memory_integer (CORE_ADDR memaddr, int len);
|
||
extern int safe_read_memory_integer (CORE_ADDR memaddr, int len, LONGEST *return_value);
|
||
|
||
/* Read an unsigned integer from debugged memory, given address and
|
||
number of bytes. */
|
||
|
||
extern ULONGEST read_memory_unsigned_integer (CORE_ADDR memaddr, int len);
|
||
|
||
/* Read a null-terminated string from the debuggee's memory, given address,
|
||
* a buffer into which to place the string, and the maximum available space */
|
||
|
||
extern void read_memory_string (CORE_ADDR, char *, int);
|
||
|
||
/* Read the pointer of type TYPE at ADDR, and return the address it
|
||
represents. */
|
||
|
||
CORE_ADDR read_memory_typed_address (CORE_ADDR addr, struct type *type);
|
||
|
||
/* This takes a char *, not void *. This is probably right, because
|
||
passing in an int * or whatever is wrong with respect to
|
||
byteswapping, alignment, different sizes for host vs. target types,
|
||
etc. */
|
||
|
||
extern void write_memory (CORE_ADDR memaddr, char *myaddr, int len);
|
||
|
||
/* Store VALUE at ADDR in the inferior as a LEN-byte unsigned integer. */
|
||
extern void write_memory_unsigned_integer (CORE_ADDR addr, int len,
|
||
ULONGEST value);
|
||
|
||
/* Store VALUE at ADDR in the inferior as a LEN-byte unsigned integer. */
|
||
extern void write_memory_signed_integer (CORE_ADDR addr, int len,
|
||
LONGEST value);
|
||
|
||
extern void generic_search (int len, char *data, char *mask,
|
||
CORE_ADDR startaddr, int increment,
|
||
CORE_ADDR lorange, CORE_ADDR hirange,
|
||
CORE_ADDR * addr_found, char *data_found);
|
||
|
||
/* Hook for `exec_file_command' command to call. */
|
||
|
||
extern void (*exec_file_display_hook) (char *filename);
|
||
|
||
/* Hook for "file_command", which is more useful than above
|
||
(because it is invoked AFTER symbols are read, not before) */
|
||
|
||
extern void (*file_changed_hook) (char *filename);
|
||
|
||
extern void specify_exec_file_hook (void (*hook) (char *filename));
|
||
|
||
/* Binary File Diddlers for the exec and core files */
|
||
|
||
extern bfd *core_bfd;
|
||
extern bfd *exec_bfd;
|
||
|
||
/* Whether to open exec and core files read-only or read-write. */
|
||
|
||
extern int write_files;
|
||
|
||
extern void core_file_command (char *filename, int from_tty);
|
||
|
||
extern void exec_open (char *filename, int from_tty);
|
||
|
||
extern void exec_file_attach (char *filename, int from_tty);
|
||
|
||
extern void exec_file_clear (int from_tty);
|
||
|
||
extern void validate_files (void);
|
||
|
||
extern CORE_ADDR register_addr (int regno, CORE_ADDR blockend);
|
||
|
||
#if !defined (KERNEL_U_ADDR)
|
||
extern CORE_ADDR kernel_u_addr;
|
||
#define KERNEL_U_ADDR kernel_u_addr
|
||
#endif
|
||
|
||
/* The target vector for core files. */
|
||
|
||
extern struct target_ops core_ops;
|
||
|
||
/* The current default bfd target. */
|
||
|
||
extern char *gnutarget;
|
||
|
||
extern void set_gnutarget (char *);
|
||
|
||
/* Structure to keep track of core register reading functions for
|
||
various core file types. */
|
||
|
||
struct core_fns
|
||
{
|
||
|
||
/* BFD flavour that a core file handler is prepared to read. This
|
||
can be used by the handler's core tasting function as a first
|
||
level filter to reject BFD's that don't have the right
|
||
flavour. */
|
||
|
||
enum bfd_flavour core_flavour;
|
||
|
||
/* Core file handler function to call to recognize corefile
|
||
formats that BFD rejects. Some core file format just don't fit
|
||
into the BFD model, or may require other resources to identify
|
||
them, that simply aren't available to BFD (such as symbols from
|
||
another file). Returns nonzero if the handler recognizes the
|
||
format, zero otherwise. */
|
||
|
||
int (*check_format) (bfd *);
|
||
|
||
/* Core file handler function to call to ask if it can handle a
|
||
given core file format or not. Returns zero if it can't,
|
||
nonzero otherwise. */
|
||
|
||
int (*core_sniffer) (struct core_fns *, bfd *);
|
||
|
||
/* Extract the register values out of the core file and store them where
|
||
`read_register' will find them.
|
||
|
||
CORE_REG_SECT points to the register values themselves, read into
|
||
memory.
|
||
|
||
CORE_REG_SIZE is the size of that area.
|
||
|
||
WHICH says which set of registers we are handling:
|
||
0 --- integer registers
|
||
2 --- floating-point registers, on machines where they are
|
||
discontiguous
|
||
3 --- extended floating-point registers, on machines where
|
||
these are present in yet a third area. (GNU/Linux uses
|
||
this to get at the SSE registers.)
|
||
|
||
REG_ADDR is the offset from u.u_ar0 to the register values relative to
|
||
core_reg_sect. This is used with old-fashioned core files to locate the
|
||
registers in a large upage-plus-stack ".reg" section. Original upage
|
||
address X is at location core_reg_sect+x+reg_addr. */
|
||
|
||
void (*core_read_registers) (char *core_reg_sect,
|
||
unsigned core_reg_size,
|
||
int which, CORE_ADDR reg_addr);
|
||
|
||
/* Finds the next struct core_fns. They are allocated and initialized
|
||
in whatever module implements the functions pointed to; an
|
||
initializer calls add_core_fns to add them to the global chain. */
|
||
|
||
struct core_fns *next;
|
||
|
||
};
|
||
|
||
extern void add_core_fns (struct core_fns *cf);
|
||
extern int default_core_sniffer (struct core_fns *cf, bfd * abfd);
|
||
extern int default_check_format (bfd * abfd);
|
||
|
||
#endif /* !defined (GDBCORE_H) */
|