mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
0b1afbb37b
While writing the previous patch, I noticed that we're not consistent with the (C) in the copyright header. The maintainers manual prefers having it, though also says it's optional. We have over 10x more files with (C) than without in gdb's code, so I spent a few minutes grepping and fixing. Funny enough, the testsuite has it backwards. I'll leave that for another time. gdb/ 2013-02-12 Pedro Alves <palves@redhat.com> * amd64-darwin-tdep.c: Add (C) after Copyright. * cli/cli-cmds.h: Ditto. * cli/cli-decode.c: Ditto. * cli/cli-decode.h: Ditto. * cli/cli-dump.c: Ditto. * cli/cli-dump.h: Ditto. * cli/cli-interp.c: Ditto. * cli/cli-logging.c: Ditto. * cli/cli-script.c: Ditto. * cli/cli-script.h: Ditto. * cli/cli-setshow.c: Ditto. * cli/cli-setshow.h: Ditto. * cli/cli-utils.c: Ditto. * cli/cli-utils.h: Ditto. * config/alpha/nm-osf3.h: Ditto. * config/djgpp/djconfig.sh: Ditto. * config/i386/nm-fbsd.h: Ditto. * config/i386/nm-i386gnu.h: Ditto. * config/nm-linux.h: Ditto. * config/nm-nto.h: Ditto. * config/rs6000/nm-rs6000.h: Ditto. * config/sparc/nm-sol2.h: Ditto. * darwin-nat-info.c: Ditto. * dfp.c: Ditto. * dfp.h: Ditto. * gdb-demangle.h: Ditto. * i386-darwin-nat.c: Ditto. * i386-darwin-tdep.c: Ditto. * linux-fork.h: Ditto. * m32c-tdep.c: Ditto. * microblaze-linux-tdep.c: Ditto. * microblaze-rom.c: Ditto. * microblaze-tdep.c: Ditto. * microblaze-tdep.h: Ditto. * mips-linux-tdep.h: Ditto. * ppc-ravenscar-thread.c: Ditto. * ppc-ravenscar-thread.h: Ditto. * prologue-value.c: Ditto. * prologue-value.h: Ditto. * ravenscar-thread.c: Ditto. * ravenscar-thread.h: Ditto. * sparc-ravenscar-thread.c: Ditto. * sparc-ravenscar-thread.h: Ditto. * tilegx-linux-tdep.c: Ditto. * unwind_stop_reasons.def: Ditto. * windows-nat.h: Ditto. * xtensa-linux-tdep.c: Ditto. * xtensa-xtregs.c: Ditto. * regformats/regdat.sh: Ditto. * regformats/regdef.h: Ditto. gdb/gdbserver/ 2013-02-12 Pedro Alves <palves@redhat.com> * linux-xtensa-low.c: Ditto. * xtensa-xtregs.c: Ditto.
591 lines
14 KiB
C
591 lines
14 KiB
C
/* Prologue value handling for GDB.
|
||
Copyright (C) 2003-2013 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include "gdb_assert.h"
|
||
#include "prologue-value.h"
|
||
#include "regcache.h"
|
||
|
||
|
||
/* Constructors. */
|
||
|
||
pv_t
|
||
pv_unknown (void)
|
||
{
|
||
pv_t v = { pvk_unknown, 0, 0 };
|
||
|
||
return v;
|
||
}
|
||
|
||
|
||
pv_t
|
||
pv_constant (CORE_ADDR k)
|
||
{
|
||
pv_t v;
|
||
|
||
v.kind = pvk_constant;
|
||
v.reg = -1; /* for debugging */
|
||
v.k = k;
|
||
|
||
return v;
|
||
}
|
||
|
||
|
||
pv_t
|
||
pv_register (int reg, CORE_ADDR k)
|
||
{
|
||
pv_t v;
|
||
|
||
v.kind = pvk_register;
|
||
v.reg = reg;
|
||
v.k = k;
|
||
|
||
return v;
|
||
}
|
||
|
||
|
||
|
||
/* Arithmetic operations. */
|
||
|
||
/* If one of *A and *B is a constant, and the other isn't, swap the
|
||
values as necessary to ensure that *B is the constant. This can
|
||
reduce the number of cases we need to analyze in the functions
|
||
below. */
|
||
static void
|
||
constant_last (pv_t *a, pv_t *b)
|
||
{
|
||
if (a->kind == pvk_constant
|
||
&& b->kind != pvk_constant)
|
||
{
|
||
pv_t temp = *a;
|
||
*a = *b;
|
||
*b = temp;
|
||
}
|
||
}
|
||
|
||
|
||
pv_t
|
||
pv_add (pv_t a, pv_t b)
|
||
{
|
||
constant_last (&a, &b);
|
||
|
||
/* We can add a constant to a register. */
|
||
if (a.kind == pvk_register
|
||
&& b.kind == pvk_constant)
|
||
return pv_register (a.reg, a.k + b.k);
|
||
|
||
/* We can add a constant to another constant. */
|
||
else if (a.kind == pvk_constant
|
||
&& b.kind == pvk_constant)
|
||
return pv_constant (a.k + b.k);
|
||
|
||
/* Anything else we don't know how to add. We don't have a
|
||
representation for, say, the sum of two registers, or a multiple
|
||
of a register's value (adding a register to itself). */
|
||
else
|
||
return pv_unknown ();
|
||
}
|
||
|
||
|
||
pv_t
|
||
pv_add_constant (pv_t v, CORE_ADDR k)
|
||
{
|
||
/* Rather than thinking of all the cases we can and can't handle,
|
||
we'll just let pv_add take care of that for us. */
|
||
return pv_add (v, pv_constant (k));
|
||
}
|
||
|
||
|
||
pv_t
|
||
pv_subtract (pv_t a, pv_t b)
|
||
{
|
||
/* This isn't quite the same as negating B and adding it to A, since
|
||
we don't have a representation for the negation of anything but a
|
||
constant. For example, we can't negate { pvk_register, R1, 10 },
|
||
but we do know that { pvk_register, R1, 10 } minus { pvk_register,
|
||
R1, 5 } is { pvk_constant, <ignored>, 5 }.
|
||
|
||
This means, for example, that we could subtract two stack
|
||
addresses; they're both relative to the original SP. Since the
|
||
frame pointer is set based on the SP, its value will be the
|
||
original SP plus some constant (probably zero), so we can use its
|
||
value just fine, too. */
|
||
|
||
constant_last (&a, &b);
|
||
|
||
/* We can subtract two constants. */
|
||
if (a.kind == pvk_constant
|
||
&& b.kind == pvk_constant)
|
||
return pv_constant (a.k - b.k);
|
||
|
||
/* We can subtract a constant from a register. */
|
||
else if (a.kind == pvk_register
|
||
&& b.kind == pvk_constant)
|
||
return pv_register (a.reg, a.k - b.k);
|
||
|
||
/* We can subtract a register from itself, yielding a constant. */
|
||
else if (a.kind == pvk_register
|
||
&& b.kind == pvk_register
|
||
&& a.reg == b.reg)
|
||
return pv_constant (a.k - b.k);
|
||
|
||
/* We don't know how to subtract anything else. */
|
||
else
|
||
return pv_unknown ();
|
||
}
|
||
|
||
|
||
pv_t
|
||
pv_logical_and (pv_t a, pv_t b)
|
||
{
|
||
constant_last (&a, &b);
|
||
|
||
/* We can 'and' two constants. */
|
||
if (a.kind == pvk_constant
|
||
&& b.kind == pvk_constant)
|
||
return pv_constant (a.k & b.k);
|
||
|
||
/* We can 'and' anything with the constant zero. */
|
||
else if (b.kind == pvk_constant
|
||
&& b.k == 0)
|
||
return pv_constant (0);
|
||
|
||
/* We can 'and' anything with ~0. */
|
||
else if (b.kind == pvk_constant
|
||
&& b.k == ~ (CORE_ADDR) 0)
|
||
return a;
|
||
|
||
/* We can 'and' a register with itself. */
|
||
else if (a.kind == pvk_register
|
||
&& b.kind == pvk_register
|
||
&& a.reg == b.reg
|
||
&& a.k == b.k)
|
||
return a;
|
||
|
||
/* Otherwise, we don't know. */
|
||
else
|
||
return pv_unknown ();
|
||
}
|
||
|
||
|
||
|
||
/* Examining prologue values. */
|
||
|
||
int
|
||
pv_is_identical (pv_t a, pv_t b)
|
||
{
|
||
if (a.kind != b.kind)
|
||
return 0;
|
||
|
||
switch (a.kind)
|
||
{
|
||
case pvk_unknown:
|
||
return 1;
|
||
case pvk_constant:
|
||
return (a.k == b.k);
|
||
case pvk_register:
|
||
return (a.reg == b.reg && a.k == b.k);
|
||
default:
|
||
gdb_assert_not_reached ("unexpected prologue value kind");
|
||
}
|
||
}
|
||
|
||
|
||
int
|
||
pv_is_constant (pv_t a)
|
||
{
|
||
return (a.kind == pvk_constant);
|
||
}
|
||
|
||
|
||
int
|
||
pv_is_register (pv_t a, int r)
|
||
{
|
||
return (a.kind == pvk_register
|
||
&& a.reg == r);
|
||
}
|
||
|
||
|
||
int
|
||
pv_is_register_k (pv_t a, int r, CORE_ADDR k)
|
||
{
|
||
return (a.kind == pvk_register
|
||
&& a.reg == r
|
||
&& a.k == k);
|
||
}
|
||
|
||
|
||
enum pv_boolean
|
||
pv_is_array_ref (pv_t addr, CORE_ADDR size,
|
||
pv_t array_addr, CORE_ADDR array_len,
|
||
CORE_ADDR elt_size,
|
||
int *i)
|
||
{
|
||
/* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
|
||
addr is *before* the start of the array, then this isn't going to
|
||
be negative... */
|
||
pv_t offset = pv_subtract (addr, array_addr);
|
||
|
||
if (offset.kind == pvk_constant)
|
||
{
|
||
/* This is a rather odd test. We want to know if the SIZE bytes
|
||
at ADDR don't overlap the array at all, so you'd expect it to
|
||
be an || expression: "if we're completely before || we're
|
||
completely after". But with unsigned arithmetic, things are
|
||
different: since it's a number circle, not a number line, the
|
||
right values for offset.k are actually one contiguous range. */
|
||
if (offset.k <= -size
|
||
&& offset.k >= array_len * elt_size)
|
||
return pv_definite_no;
|
||
else if (offset.k % elt_size != 0
|
||
|| size != elt_size)
|
||
return pv_maybe;
|
||
else
|
||
{
|
||
*i = offset.k / elt_size;
|
||
return pv_definite_yes;
|
||
}
|
||
}
|
||
else
|
||
return pv_maybe;
|
||
}
|
||
|
||
|
||
|
||
/* Areas. */
|
||
|
||
|
||
/* A particular value known to be stored in an area.
|
||
|
||
Entries form a ring, sorted by unsigned offset from the area's base
|
||
register's value. Since entries can straddle the wrap-around point,
|
||
unsigned offsets form a circle, not a number line, so the list
|
||
itself is structured the same way --- there is no inherent head.
|
||
The entry with the lowest offset simply follows the entry with the
|
||
highest offset. Entries may abut, but never overlap. The area's
|
||
'entry' pointer points to an arbitrary node in the ring. */
|
||
struct area_entry
|
||
{
|
||
/* Links in the doubly-linked ring. */
|
||
struct area_entry *prev, *next;
|
||
|
||
/* Offset of this entry's address from the value of the base
|
||
register. */
|
||
CORE_ADDR offset;
|
||
|
||
/* The size of this entry. Note that an entry may wrap around from
|
||
the end of the address space to the beginning. */
|
||
CORE_ADDR size;
|
||
|
||
/* The value stored here. */
|
||
pv_t value;
|
||
};
|
||
|
||
|
||
struct pv_area
|
||
{
|
||
/* This area's base register. */
|
||
int base_reg;
|
||
|
||
/* The mask to apply to addresses, to make the wrap-around happen at
|
||
the right place. */
|
||
CORE_ADDR addr_mask;
|
||
|
||
/* An element of the doubly-linked ring of entries, or zero if we
|
||
have none. */
|
||
struct area_entry *entry;
|
||
};
|
||
|
||
|
||
struct pv_area *
|
||
make_pv_area (int base_reg, int addr_bit)
|
||
{
|
||
struct pv_area *a = (struct pv_area *) xmalloc (sizeof (*a));
|
||
|
||
memset (a, 0, sizeof (*a));
|
||
|
||
a->base_reg = base_reg;
|
||
a->entry = 0;
|
||
|
||
/* Remember that shift amounts equal to the type's width are
|
||
undefined. */
|
||
a->addr_mask = ((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1;
|
||
|
||
return a;
|
||
}
|
||
|
||
|
||
/* Delete all entries from AREA. */
|
||
static void
|
||
clear_entries (struct pv_area *area)
|
||
{
|
||
struct area_entry *e = area->entry;
|
||
|
||
if (e)
|
||
{
|
||
/* This needs to be a do-while loop, in order to actually
|
||
process the node being checked for in the terminating
|
||
condition. */
|
||
do
|
||
{
|
||
struct area_entry *next = e->next;
|
||
|
||
xfree (e);
|
||
e = next;
|
||
}
|
||
while (e != area->entry);
|
||
|
||
area->entry = 0;
|
||
}
|
||
}
|
||
|
||
|
||
void
|
||
free_pv_area (struct pv_area *area)
|
||
{
|
||
clear_entries (area);
|
||
xfree (area);
|
||
}
|
||
|
||
|
||
static void
|
||
do_free_pv_area_cleanup (void *arg)
|
||
{
|
||
free_pv_area ((struct pv_area *) arg);
|
||
}
|
||
|
||
|
||
struct cleanup *
|
||
make_cleanup_free_pv_area (struct pv_area *area)
|
||
{
|
||
return make_cleanup (do_free_pv_area_cleanup, (void *) area);
|
||
}
|
||
|
||
|
||
int
|
||
pv_area_store_would_trash (struct pv_area *area, pv_t addr)
|
||
{
|
||
/* It may seem odd that pvk_constant appears here --- after all,
|
||
that's the case where we know the most about the address! But
|
||
pv_areas are always relative to a register, and we don't know the
|
||
value of the register, so we can't compare entry addresses to
|
||
constants. */
|
||
return (addr.kind == pvk_unknown
|
||
|| addr.kind == pvk_constant
|
||
|| (addr.kind == pvk_register && addr.reg != area->base_reg));
|
||
}
|
||
|
||
|
||
/* Return a pointer to the first entry we hit in AREA starting at
|
||
OFFSET and going forward.
|
||
|
||
This may return zero, if AREA has no entries.
|
||
|
||
And since the entries are a ring, this may return an entry that
|
||
entirely precedes OFFSET. This is the correct behavior: depending
|
||
on the sizes involved, we could still overlap such an area, with
|
||
wrap-around. */
|
||
static struct area_entry *
|
||
find_entry (struct pv_area *area, CORE_ADDR offset)
|
||
{
|
||
struct area_entry *e = area->entry;
|
||
|
||
if (! e)
|
||
return 0;
|
||
|
||
/* If the next entry would be better than the current one, then scan
|
||
forward. Since we use '<' in this loop, it always terminates.
|
||
|
||
Note that, even setting aside the addr_mask stuff, we must not
|
||
simplify this, in high school algebra fashion, to
|
||
(e->next->offset < e->offset), because of the way < interacts
|
||
with wrap-around. We have to subtract offset from both sides to
|
||
make sure both things we're comparing are on the same side of the
|
||
discontinuity. */
|
||
while (((e->next->offset - offset) & area->addr_mask)
|
||
< ((e->offset - offset) & area->addr_mask))
|
||
e = e->next;
|
||
|
||
/* If the previous entry would be better than the current one, then
|
||
scan backwards. */
|
||
while (((e->prev->offset - offset) & area->addr_mask)
|
||
< ((e->offset - offset) & area->addr_mask))
|
||
e = e->prev;
|
||
|
||
/* In case there's some locality to the searches, set the area's
|
||
pointer to the entry we've found. */
|
||
area->entry = e;
|
||
|
||
return e;
|
||
}
|
||
|
||
|
||
/* Return non-zero if the SIZE bytes at OFFSET would overlap ENTRY;
|
||
return zero otherwise. AREA is the area to which ENTRY belongs. */
|
||
static int
|
||
overlaps (struct pv_area *area,
|
||
struct area_entry *entry,
|
||
CORE_ADDR offset,
|
||
CORE_ADDR size)
|
||
{
|
||
/* Think carefully about wrap-around before simplifying this. */
|
||
return (((entry->offset - offset) & area->addr_mask) < size
|
||
|| ((offset - entry->offset) & area->addr_mask) < entry->size);
|
||
}
|
||
|
||
|
||
void
|
||
pv_area_store (struct pv_area *area,
|
||
pv_t addr,
|
||
CORE_ADDR size,
|
||
pv_t value)
|
||
{
|
||
/* Remove any (potentially) overlapping entries. */
|
||
if (pv_area_store_would_trash (area, addr))
|
||
clear_entries (area);
|
||
else
|
||
{
|
||
CORE_ADDR offset = addr.k;
|
||
struct area_entry *e = find_entry (area, offset);
|
||
|
||
/* Delete all entries that we would overlap. */
|
||
while (e && overlaps (area, e, offset, size))
|
||
{
|
||
struct area_entry *next = (e->next == e) ? 0 : e->next;
|
||
|
||
e->prev->next = e->next;
|
||
e->next->prev = e->prev;
|
||
|
||
xfree (e);
|
||
e = next;
|
||
}
|
||
|
||
/* Move the area's pointer to the next remaining entry. This
|
||
will also zero the pointer if we've deleted all the entries. */
|
||
area->entry = e;
|
||
}
|
||
|
||
/* Now, there are no entries overlapping us, and area->entry is
|
||
either zero or pointing at the closest entry after us. We can
|
||
just insert ourselves before that.
|
||
|
||
But if we're storing an unknown value, don't bother --- that's
|
||
the default. */
|
||
if (value.kind == pvk_unknown)
|
||
return;
|
||
else
|
||
{
|
||
CORE_ADDR offset = addr.k;
|
||
struct area_entry *e = (struct area_entry *) xmalloc (sizeof (*e));
|
||
|
||
e->offset = offset;
|
||
e->size = size;
|
||
e->value = value;
|
||
|
||
if (area->entry)
|
||
{
|
||
e->prev = area->entry->prev;
|
||
e->next = area->entry;
|
||
e->prev->next = e->next->prev = e;
|
||
}
|
||
else
|
||
{
|
||
e->prev = e->next = e;
|
||
area->entry = e;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
pv_t
|
||
pv_area_fetch (struct pv_area *area, pv_t addr, CORE_ADDR size)
|
||
{
|
||
/* If we have no entries, or we can't decide how ADDR relates to the
|
||
entries we do have, then the value is unknown. */
|
||
if (! area->entry
|
||
|| pv_area_store_would_trash (area, addr))
|
||
return pv_unknown ();
|
||
else
|
||
{
|
||
CORE_ADDR offset = addr.k;
|
||
struct area_entry *e = find_entry (area, offset);
|
||
|
||
/* If this entry exactly matches what we're looking for, then
|
||
we're set. Otherwise, say it's unknown. */
|
||
if (e->offset == offset && e->size == size)
|
||
return e->value;
|
||
else
|
||
return pv_unknown ();
|
||
}
|
||
}
|
||
|
||
|
||
int
|
||
pv_area_find_reg (struct pv_area *area,
|
||
struct gdbarch *gdbarch,
|
||
int reg,
|
||
CORE_ADDR *offset_p)
|
||
{
|
||
struct area_entry *e = area->entry;
|
||
|
||
if (e)
|
||
do
|
||
{
|
||
if (e->value.kind == pvk_register
|
||
&& e->value.reg == reg
|
||
&& e->value.k == 0
|
||
&& e->size == register_size (gdbarch, reg))
|
||
{
|
||
if (offset_p)
|
||
*offset_p = e->offset;
|
||
return 1;
|
||
}
|
||
|
||
e = e->next;
|
||
}
|
||
while (e != area->entry);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
void
|
||
pv_area_scan (struct pv_area *area,
|
||
void (*func) (void *closure,
|
||
pv_t addr,
|
||
CORE_ADDR size,
|
||
pv_t value),
|
||
void *closure)
|
||
{
|
||
struct area_entry *e = area->entry;
|
||
pv_t addr;
|
||
|
||
addr.kind = pvk_register;
|
||
addr.reg = area->base_reg;
|
||
|
||
if (e)
|
||
do
|
||
{
|
||
addr.k = e->offset;
|
||
func (closure, addr, e->size, e->value);
|
||
e = e->next;
|
||
}
|
||
while (e != area->entry);
|
||
}
|