mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
91d6fa6a03
Fix up all warnings generated by the addition of this switch.
4951 lines
145 KiB
C
4951 lines
145 KiB
C
/* Matsushita 10300 specific support for 32-bit ELF
|
||
Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
||
2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/mn10300.h"
|
||
#include "libiberty.h"
|
||
|
||
/* The mn10300 linker needs to keep track of the number of relocs that
|
||
it decides to copy in check_relocs for each symbol. This is so
|
||
that it can discard PC relative relocs if it doesn't need them when
|
||
linking with -Bsymbolic. We store the information in a field
|
||
extending the regular ELF linker hash table. */
|
||
|
||
struct elf32_mn10300_link_hash_entry
|
||
{
|
||
/* The basic elf link hash table entry. */
|
||
struct elf_link_hash_entry root;
|
||
|
||
/* For function symbols, the number of times this function is
|
||
called directly (ie by name). */
|
||
unsigned int direct_calls;
|
||
|
||
/* For function symbols, the size of this function's stack
|
||
(if <= 255 bytes). We stuff this into "call" instructions
|
||
to this target when it's valid and profitable to do so.
|
||
|
||
This does not include stack allocated by movm! */
|
||
unsigned char stack_size;
|
||
|
||
/* For function symbols, arguments (if any) for movm instruction
|
||
in the prologue. We stuff this value into "call" instructions
|
||
to the target when it's valid and profitable to do so. */
|
||
unsigned char movm_args;
|
||
|
||
/* For function symbols, the amount of stack space that would be allocated
|
||
by the movm instruction. This is redundant with movm_args, but we
|
||
add it to the hash table to avoid computing it over and over. */
|
||
unsigned char movm_stack_size;
|
||
|
||
/* When set, convert all "call" instructions to this target into "calls"
|
||
instructions. */
|
||
#define MN10300_CONVERT_CALL_TO_CALLS 0x1
|
||
|
||
/* Used to mark functions which have had redundant parts of their
|
||
prologue deleted. */
|
||
#define MN10300_DELETED_PROLOGUE_BYTES 0x2
|
||
unsigned char flags;
|
||
|
||
/* Calculated value. */
|
||
bfd_vma value;
|
||
};
|
||
|
||
/* We derive a hash table from the main elf linker hash table so
|
||
we can store state variables and a secondary hash table without
|
||
resorting to global variables. */
|
||
struct elf32_mn10300_link_hash_table
|
||
{
|
||
/* The main hash table. */
|
||
struct elf_link_hash_table root;
|
||
|
||
/* A hash table for static functions. We could derive a new hash table
|
||
instead of using the full elf32_mn10300_link_hash_table if we wanted
|
||
to save some memory. */
|
||
struct elf32_mn10300_link_hash_table *static_hash_table;
|
||
|
||
/* Random linker state flags. */
|
||
#define MN10300_HASH_ENTRIES_INITIALIZED 0x1
|
||
char flags;
|
||
};
|
||
|
||
#ifndef streq
|
||
#define streq(a, b) (strcmp ((a),(b)) == 0)
|
||
#endif
|
||
|
||
/* For MN10300 linker hash table. */
|
||
|
||
/* Get the MN10300 ELF linker hash table from a link_info structure. */
|
||
|
||
#define elf32_mn10300_hash_table(p) \
|
||
((struct elf32_mn10300_link_hash_table *) ((p)->hash))
|
||
|
||
#define elf32_mn10300_link_hash_traverse(table, func, info) \
|
||
(elf_link_hash_traverse \
|
||
(&(table)->root, \
|
||
(bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
|
||
(info)))
|
||
|
||
static reloc_howto_type elf_mn10300_howto_table[] =
|
||
{
|
||
/* Dummy relocation. Does nothing. */
|
||
HOWTO (R_MN10300_NONE,
|
||
0,
|
||
2,
|
||
16,
|
||
FALSE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_NONE",
|
||
FALSE,
|
||
0,
|
||
0,
|
||
FALSE),
|
||
/* Standard 32 bit reloc. */
|
||
HOWTO (R_MN10300_32,
|
||
0,
|
||
2,
|
||
32,
|
||
FALSE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_32",
|
||
FALSE,
|
||
0xffffffff,
|
||
0xffffffff,
|
||
FALSE),
|
||
/* Standard 16 bit reloc. */
|
||
HOWTO (R_MN10300_16,
|
||
0,
|
||
1,
|
||
16,
|
||
FALSE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_16",
|
||
FALSE,
|
||
0xffff,
|
||
0xffff,
|
||
FALSE),
|
||
/* Standard 8 bit reloc. */
|
||
HOWTO (R_MN10300_8,
|
||
0,
|
||
0,
|
||
8,
|
||
FALSE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_8",
|
||
FALSE,
|
||
0xff,
|
||
0xff,
|
||
FALSE),
|
||
/* Standard 32bit pc-relative reloc. */
|
||
HOWTO (R_MN10300_PCREL32,
|
||
0,
|
||
2,
|
||
32,
|
||
TRUE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_PCREL32",
|
||
FALSE,
|
||
0xffffffff,
|
||
0xffffffff,
|
||
TRUE),
|
||
/* Standard 16bit pc-relative reloc. */
|
||
HOWTO (R_MN10300_PCREL16,
|
||
0,
|
||
1,
|
||
16,
|
||
TRUE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_PCREL16",
|
||
FALSE,
|
||
0xffff,
|
||
0xffff,
|
||
TRUE),
|
||
/* Standard 8 pc-relative reloc. */
|
||
HOWTO (R_MN10300_PCREL8,
|
||
0,
|
||
0,
|
||
8,
|
||
TRUE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_PCREL8",
|
||
FALSE,
|
||
0xff,
|
||
0xff,
|
||
TRUE),
|
||
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_MN10300_GNU_VTINHERIT", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* GNU extension to record C++ vtable member usage */
|
||
HOWTO (R_MN10300_GNU_VTENTRY, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_MN10300_GNU_VTENTRY", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* Standard 24 bit reloc. */
|
||
HOWTO (R_MN10300_24,
|
||
0,
|
||
2,
|
||
24,
|
||
FALSE,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_24",
|
||
FALSE,
|
||
0xffffff,
|
||
0xffffff,
|
||
FALSE),
|
||
HOWTO (R_MN10300_GOTPC32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOTPC32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GOTPC16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOTPC16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GOTOFF32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOTOFF32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GOTOFF24, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
24, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOTOFF24", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GOTOFF16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOTOFF16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_PLT32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_PLT32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_PLT16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_PLT16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffff, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GOT32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOT32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GOT24, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
24, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOT24", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GOT16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GOT16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_COPY, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_COPY", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_GLOB_DAT, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_GLOB_DAT", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_JMP_SLOT, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_JMP_SLOT", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_RELATIVE, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* */
|
||
"R_MN10300_RELATIVE", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
EMPTY_HOWTO (24),
|
||
EMPTY_HOWTO (25),
|
||
EMPTY_HOWTO (26),
|
||
EMPTY_HOWTO (27),
|
||
EMPTY_HOWTO (28),
|
||
EMPTY_HOWTO (29),
|
||
EMPTY_HOWTO (30),
|
||
EMPTY_HOWTO (31),
|
||
EMPTY_HOWTO (32),
|
||
|
||
HOWTO (R_MN10300_SYM_DIFF, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
NULL, /* special handler. */
|
||
"R_MN10300_SYM_DIFF", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0xffffffff, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MN10300_ALIGN, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont,/* complain_on_overflow */
|
||
NULL, /* special handler. */
|
||
"R_MN10300_ALIGN", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE) /* pcrel_offset */
|
||
};
|
||
|
||
struct mn10300_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
unsigned char elf_reloc_val;
|
||
};
|
||
|
||
static const struct mn10300_reloc_map mn10300_reloc_map[] =
|
||
{
|
||
{ BFD_RELOC_NONE, R_MN10300_NONE, },
|
||
{ BFD_RELOC_32, R_MN10300_32, },
|
||
{ BFD_RELOC_16, R_MN10300_16, },
|
||
{ BFD_RELOC_8, R_MN10300_8, },
|
||
{ BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
|
||
{ BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
|
||
{ BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
|
||
{ BFD_RELOC_24, R_MN10300_24, },
|
||
{ BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
|
||
{ BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
|
||
{ BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 },
|
||
{ BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 },
|
||
{ BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 },
|
||
{ BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 },
|
||
{ BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 },
|
||
{ BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 },
|
||
{ BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 },
|
||
{ BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 },
|
||
{ BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 },
|
||
{ BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 },
|
||
{ BFD_RELOC_MN10300_COPY, R_MN10300_COPY },
|
||
{ BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT },
|
||
{ BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT },
|
||
{ BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE },
|
||
{ BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF },
|
||
{ BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN }
|
||
};
|
||
|
||
/* Create the GOT section. */
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_create_got_section (bfd * abfd,
|
||
struct bfd_link_info * info)
|
||
{
|
||
flagword flags;
|
||
flagword pltflags;
|
||
asection * s;
|
||
struct elf_link_hash_entry * h;
|
||
const struct elf_backend_data * bed = get_elf_backend_data (abfd);
|
||
int ptralign;
|
||
|
||
/* This function may be called more than once. */
|
||
if (bfd_get_section_by_name (abfd, ".got") != NULL)
|
||
return TRUE;
|
||
|
||
switch (bed->s->arch_size)
|
||
{
|
||
case 32:
|
||
ptralign = 2;
|
||
break;
|
||
|
||
case 64:
|
||
ptralign = 3;
|
||
break;
|
||
|
||
default:
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED);
|
||
|
||
pltflags = flags;
|
||
pltflags |= SEC_CODE;
|
||
if (bed->plt_not_loaded)
|
||
pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
|
||
if (bed->plt_readonly)
|
||
pltflags |= SEC_READONLY;
|
||
|
||
s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
|
||
return FALSE;
|
||
|
||
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
|
||
.plt section. */
|
||
if (bed->want_plt_sym)
|
||
{
|
||
h = _bfd_elf_define_linkage_sym (abfd, info, s,
|
||
"_PROCEDURE_LINKAGE_TABLE_");
|
||
elf_hash_table (info)->hplt = h;
|
||
if (h == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
s = bfd_make_section_with_flags (abfd, ".got", flags);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s, ptralign))
|
||
return FALSE;
|
||
|
||
if (bed->want_got_plt)
|
||
{
|
||
s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s, ptralign))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
|
||
(or .got.plt) section. We don't do this in the linker script
|
||
because we don't want to define the symbol if we are not creating
|
||
a global offset table. */
|
||
h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
|
||
elf_hash_table (info)->hgot = h;
|
||
if (h == NULL)
|
||
return FALSE;
|
||
|
||
/* The first bit of the global offset table is the header. */
|
||
s->size += bed->got_header_size;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = ARRAY_SIZE (mn10300_reloc_map); i--;)
|
||
if (mn10300_reloc_map[i].bfd_reloc_val == code)
|
||
return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;)
|
||
if (elf_mn10300_howto_table[i].name != NULL
|
||
&& strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0)
|
||
return elf_mn10300_howto_table + i;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Set the howto pointer for an MN10300 ELF reloc. */
|
||
|
||
static void
|
||
mn10300_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *cache_ptr,
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
unsigned int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (dst->r_info);
|
||
BFD_ASSERT (r_type < (unsigned int) R_MN10300_MAX);
|
||
cache_ptr->howto = elf_mn10300_howto_table + r_type;
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase.
|
||
Since we don't do .gots or .plts, we just need to consider the
|
||
virtual table relocs for gc. */
|
||
|
||
static bfd_boolean
|
||
mn10300_elf_check_relocs (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
bfd_boolean sym_diff_reloc_seen;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym * isymbuf = NULL;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
bfd * dynobj;
|
||
bfd_vma * local_got_offsets;
|
||
asection * sgot;
|
||
asection * srelgot;
|
||
asection * sreloc;
|
||
bfd_boolean result = FALSE;
|
||
|
||
sgot = NULL;
|
||
srelgot = NULL;
|
||
sreloc = NULL;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
local_got_offsets = elf_local_got_offsets (abfd);
|
||
rel_end = relocs + sec->reloc_count;
|
||
sym_diff_reloc_seen = FALSE;
|
||
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
unsigned long r_symndx;
|
||
unsigned int r_type;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
|
||
/* Some relocs require a global offset table. */
|
||
if (dynobj == NULL)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_MN10300_GOT32:
|
||
case R_MN10300_GOT24:
|
||
case R_MN10300_GOT16:
|
||
case R_MN10300_GOTOFF32:
|
||
case R_MN10300_GOTOFF24:
|
||
case R_MN10300_GOTOFF16:
|
||
case R_MN10300_GOTPC32:
|
||
case R_MN10300_GOTPC16:
|
||
elf_hash_table (info)->dynobj = dynobj = abfd;
|
||
if (! _bfd_mn10300_elf_create_got_section (dynobj, info))
|
||
goto fail;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
switch (r_type)
|
||
{
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_MN10300_GNU_VTINHERIT:
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
goto fail;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_MN10300_GNU_VTENTRY:
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
goto fail;
|
||
break;
|
||
|
||
case R_MN10300_GOT32:
|
||
case R_MN10300_GOT24:
|
||
case R_MN10300_GOT16:
|
||
/* This symbol requires a global offset table entry. */
|
||
|
||
if (sgot == NULL)
|
||
{
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
BFD_ASSERT (sgot != NULL);
|
||
}
|
||
|
||
if (srelgot == NULL
|
||
&& (h != NULL || info->shared))
|
||
{
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
if (srelgot == NULL)
|
||
{
|
||
srelgot = bfd_make_section_with_flags (dynobj,
|
||
".rela.got",
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY));
|
||
if (srelgot == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, srelgot, 2))
|
||
goto fail;
|
||
}
|
||
}
|
||
|
||
if (h != NULL)
|
||
{
|
||
if (h->got.offset != (bfd_vma) -1)
|
||
/* We have already allocated space in the .got. */
|
||
break;
|
||
|
||
h->got.offset = sgot->size;
|
||
|
||
/* Make sure this symbol is output as a dynamic symbol. */
|
||
if (h->dynindx == -1)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
goto fail;
|
||
}
|
||
|
||
srelgot->size += sizeof (Elf32_External_Rela);
|
||
}
|
||
else
|
||
{
|
||
/* This is a global offset table entry for a local
|
||
symbol. */
|
||
if (local_got_offsets == NULL)
|
||
{
|
||
size_t size;
|
||
unsigned int i;
|
||
|
||
size = symtab_hdr->sh_info * sizeof (bfd_vma);
|
||
local_got_offsets = bfd_alloc (abfd, size);
|
||
|
||
if (local_got_offsets == NULL)
|
||
goto fail;
|
||
|
||
elf_local_got_offsets (abfd) = local_got_offsets;
|
||
|
||
for (i = 0; i < symtab_hdr->sh_info; i++)
|
||
local_got_offsets[i] = (bfd_vma) -1;
|
||
}
|
||
|
||
if (local_got_offsets[r_symndx] != (bfd_vma) -1)
|
||
/* We have already allocated space in the .got. */
|
||
break;
|
||
|
||
local_got_offsets[r_symndx] = sgot->size;
|
||
|
||
if (info->shared)
|
||
/* If we are generating a shared object, we need to
|
||
output a R_MN10300_RELATIVE reloc so that the dynamic
|
||
linker can adjust this GOT entry. */
|
||
srelgot->size += sizeof (Elf32_External_Rela);
|
||
}
|
||
|
||
sgot->size += 4;
|
||
break;
|
||
|
||
case R_MN10300_PLT32:
|
||
case R_MN10300_PLT16:
|
||
/* This symbol requires a procedure linkage table entry. We
|
||
actually build the entry in adjust_dynamic_symbol,
|
||
because this might be a case of linking PIC code which is
|
||
never referenced by a dynamic object, in which case we
|
||
don't need to generate a procedure linkage table entry
|
||
after all. */
|
||
|
||
/* If this is a local symbol, we resolve it directly without
|
||
creating a procedure linkage table entry. */
|
||
if (h == NULL)
|
||
continue;
|
||
|
||
if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
|
||
|| ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
|
||
break;
|
||
|
||
h->needs_plt = 1;
|
||
break;
|
||
|
||
case R_MN10300_24:
|
||
case R_MN10300_16:
|
||
case R_MN10300_8:
|
||
case R_MN10300_PCREL32:
|
||
case R_MN10300_PCREL16:
|
||
case R_MN10300_PCREL8:
|
||
if (h != NULL)
|
||
h->non_got_ref = 1;
|
||
break;
|
||
|
||
case R_MN10300_SYM_DIFF:
|
||
sym_diff_reloc_seen = TRUE;
|
||
break;
|
||
|
||
case R_MN10300_32:
|
||
if (h != NULL)
|
||
h->non_got_ref = 1;
|
||
|
||
/* If we are creating a shared library, then we
|
||
need to copy the reloc into the shared library. */
|
||
if (info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
/* Do not generate a dynamic reloc for a
|
||
reloc associated with a SYM_DIFF operation. */
|
||
&& ! sym_diff_reloc_seen)
|
||
{
|
||
asection * sym_section = NULL;
|
||
|
||
/* Find the section containing the
|
||
symbol involved in the relocation. */
|
||
if (h == NULL)
|
||
{
|
||
Elf_Internal_Sym * isym;
|
||
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf)
|
||
{
|
||
isym = isymbuf + r_symndx;
|
||
/* All we care about is whether this local symbol is absolute. */
|
||
if (isym->st_shndx == SHN_ABS)
|
||
sym_section = bfd_abs_section_ptr;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
sym_section = h->root.u.def.section;
|
||
}
|
||
|
||
/* If the symbol is absolute then the relocation can
|
||
be resolved during linking and there is no need for
|
||
a dynamic reloc. */
|
||
if (sym_section != bfd_abs_section_ptr)
|
||
{
|
||
/* When creating a shared object, we must copy these
|
||
reloc types into the output file. We create a reloc
|
||
section in dynobj and make room for this reloc. */
|
||
if (sreloc == NULL)
|
||
{
|
||
sreloc = _bfd_elf_make_dynamic_reloc_section
|
||
(sec, dynobj, 2, abfd, /*rela?*/ TRUE);
|
||
if (sreloc == NULL)
|
||
goto fail;
|
||
}
|
||
|
||
sreloc->size += sizeof (Elf32_External_Rela);
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF)
|
||
sym_diff_reloc_seen = FALSE;
|
||
}
|
||
|
||
result = TRUE;
|
||
fail:
|
||
if (isymbuf != NULL)
|
||
free (isymbuf);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
mn10300_elf_gc_mark_hook (asection *sec,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Rela *rel,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
if (h != NULL)
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_MN10300_GNU_VTINHERIT:
|
||
case R_MN10300_GNU_VTENTRY:
|
||
return NULL;
|
||
}
|
||
|
||
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
||
}
|
||
|
||
/* Perform a relocation as part of a final link. */
|
||
|
||
static bfd_reloc_status_type
|
||
mn10300_elf_final_link_relocate (reloc_howto_type *howto,
|
||
bfd *input_bfd,
|
||
bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
bfd_vma offset,
|
||
bfd_vma value,
|
||
bfd_vma addend,
|
||
struct elf_link_hash_entry * h,
|
||
unsigned long symndx,
|
||
struct bfd_link_info *info,
|
||
asection *sym_sec ATTRIBUTE_UNUSED,
|
||
int is_local ATTRIBUTE_UNUSED)
|
||
{
|
||
static asection * sym_diff_section;
|
||
static bfd_vma sym_diff_value;
|
||
bfd_boolean is_sym_diff_reloc;
|
||
unsigned long r_type = howto->type;
|
||
bfd_byte * hit_data = contents + offset;
|
||
bfd * dynobj;
|
||
bfd_vma * local_got_offsets;
|
||
asection * sgot;
|
||
asection * splt;
|
||
asection * sreloc;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
local_got_offsets = elf_local_got_offsets (input_bfd);
|
||
|
||
sgot = NULL;
|
||
splt = NULL;
|
||
sreloc = NULL;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_MN10300_24:
|
||
case R_MN10300_16:
|
||
case R_MN10300_8:
|
||
case R_MN10300_PCREL8:
|
||
case R_MN10300_PCREL16:
|
||
case R_MN10300_PCREL32:
|
||
case R_MN10300_GOTOFF32:
|
||
case R_MN10300_GOTOFF24:
|
||
case R_MN10300_GOTOFF16:
|
||
if (info->shared
|
||
&& (input_section->flags & SEC_ALLOC) != 0
|
||
&& h != NULL
|
||
&& ! SYMBOL_REFERENCES_LOCAL (info, h))
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
is_sym_diff_reloc = FALSE;
|
||
if (sym_diff_section != NULL)
|
||
{
|
||
BFD_ASSERT (sym_diff_section == input_section);
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_MN10300_32:
|
||
case R_MN10300_24:
|
||
case R_MN10300_16:
|
||
case R_MN10300_8:
|
||
value -= sym_diff_value;
|
||
/* If we are computing a 32-bit value for the location lists
|
||
and the result is 0 then we add one to the value. A zero
|
||
value can result because of linker relaxation deleteing
|
||
prologue instructions and using a value of 1 (for the begin
|
||
and end offsets in the location list entry) results in a
|
||
nul entry which does not prevent the following entries from
|
||
being parsed. */
|
||
if (r_type == R_MN10300_32
|
||
&& value == 0
|
||
&& strcmp (input_section->name, ".debug_loc") == 0)
|
||
value = 1;
|
||
sym_diff_section = NULL;
|
||
is_sym_diff_reloc = TRUE;
|
||
break;
|
||
|
||
default:
|
||
sym_diff_section = NULL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_MN10300_SYM_DIFF:
|
||
BFD_ASSERT (addend == 0);
|
||
/* Cache the input section and value.
|
||
The offset is unreliable, since relaxation may
|
||
have reduced the following reloc's offset. */
|
||
sym_diff_section = input_section;
|
||
sym_diff_value = value;
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_ALIGN:
|
||
case R_MN10300_NONE:
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_32:
|
||
if (info->shared
|
||
/* Do not generate relocs when an R_MN10300_32 has been used
|
||
with an R_MN10300_SYM_DIFF to compute a difference of two
|
||
symbols. */
|
||
&& is_sym_diff_reloc == FALSE
|
||
/* Also, do not generate a reloc when the symbol associated
|
||
with the R_MN10300_32 reloc is absolute - there is no
|
||
need for a run time computation in this case. */
|
||
&& sym_sec != bfd_abs_section_ptr
|
||
/* If the section is not going to be allocated at load time
|
||
then there is no need to generate relocs for it. */
|
||
&& (input_section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_boolean skip, relocate;
|
||
|
||
/* When generating a shared object, these relocations are
|
||
copied into the output file to be resolved at run
|
||
time. */
|
||
if (sreloc == NULL)
|
||
{
|
||
sreloc = _bfd_elf_get_dynamic_reloc_section
|
||
(input_bfd, input_section, /*rela?*/ TRUE);
|
||
if (sreloc == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
skip = FALSE;
|
||
|
||
outrel.r_offset = _bfd_elf_section_offset (input_bfd, info,
|
||
input_section, offset);
|
||
if (outrel.r_offset == (bfd_vma) -1)
|
||
skip = TRUE;
|
||
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
if (skip)
|
||
{
|
||
memset (&outrel, 0, sizeof outrel);
|
||
relocate = FALSE;
|
||
}
|
||
else
|
||
{
|
||
/* h->dynindx may be -1 if this symbol was marked to
|
||
become local. */
|
||
if (h == NULL
|
||
|| SYMBOL_REFERENCES_LOCAL (info, h))
|
||
{
|
||
relocate = TRUE;
|
||
outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
|
||
outrel.r_addend = value + addend;
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
relocate = FALSE;
|
||
outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32);
|
||
outrel.r_addend = value + addend;
|
||
}
|
||
}
|
||
|
||
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
|
||
(bfd_byte *) (((Elf32_External_Rela *) sreloc->contents)
|
||
+ sreloc->reloc_count));
|
||
++sreloc->reloc_count;
|
||
|
||
/* If this reloc is against an external symbol, we do
|
||
not want to fiddle with the addend. Otherwise, we
|
||
need to include the symbol value so that it becomes
|
||
an addend for the dynamic reloc. */
|
||
if (! relocate)
|
||
return bfd_reloc_ok;
|
||
}
|
||
value += addend;
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_24:
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7fffff || (long) value < -0x800000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_8 (input_bfd, value & 0xff, hit_data);
|
||
bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
|
||
bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_16:
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7fff || (long) value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_8:
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7f || (long) value < -0x80)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_8 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PCREL8:
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7f || (long) value < -0x80)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_8 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PCREL16:
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7fff || (long) value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PCREL32:
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GNU_VTINHERIT:
|
||
case R_MN10300_GNU_VTENTRY:
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GOTPC32:
|
||
/* Use global offset table as symbol value. */
|
||
value = bfd_get_section_by_name (dynobj,
|
||
".got")->output_section->vma;
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GOTPC16:
|
||
/* Use global offset table as symbol value. */
|
||
value = bfd_get_section_by_name (dynobj,
|
||
".got")->output_section->vma;
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7fff || (long) value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GOTOFF32:
|
||
value -= bfd_get_section_by_name (dynobj,
|
||
".got")->output_section->vma;
|
||
value += addend;
|
||
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GOTOFF24:
|
||
value -= bfd_get_section_by_name (dynobj,
|
||
".got")->output_section->vma;
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7fffff || (long) value < -0x800000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_8 (input_bfd, value, hit_data);
|
||
bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
|
||
bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GOTOFF16:
|
||
value -= bfd_get_section_by_name (dynobj,
|
||
".got")->output_section->vma;
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7fff || (long) value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PLT32:
|
||
if (h != NULL
|
||
&& ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
|
||
&& ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
|
||
&& h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
|
||
value = (splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ h->plt.offset) - value;
|
||
}
|
||
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PLT16:
|
||
if (h != NULL
|
||
&& ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
|
||
&& ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
|
||
&& h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
|
||
value = (splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ h->plt.offset) - value;
|
||
}
|
||
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
if ((long) value > 0x7fff || (long) value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GOT32:
|
||
case R_MN10300_GOT24:
|
||
case R_MN10300_GOT16:
|
||
{
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
|
||
if (h != NULL)
|
||
{
|
||
bfd_vma off;
|
||
|
||
off = h->got.offset;
|
||
BFD_ASSERT (off != (bfd_vma) -1);
|
||
|
||
if (! elf_hash_table (info)->dynamic_sections_created
|
||
|| SYMBOL_REFERENCES_LOCAL (info, h))
|
||
/* This is actually a static link, or it is a
|
||
-Bsymbolic link and the symbol is defined
|
||
locally, or the symbol was forced to be local
|
||
because of a version file. We must initialize
|
||
this entry in the global offset table.
|
||
|
||
When doing a dynamic link, we create a .rela.got
|
||
relocation entry to initialize the value. This
|
||
is done in the finish_dynamic_symbol routine. */
|
||
bfd_put_32 (output_bfd, value,
|
||
sgot->contents + off);
|
||
|
||
value = sgot->output_offset + off;
|
||
}
|
||
else
|
||
{
|
||
bfd_vma off;
|
||
|
||
off = elf_local_got_offsets (input_bfd)[symndx];
|
||
|
||
bfd_put_32 (output_bfd, value, sgot->contents + off);
|
||
|
||
if (info->shared)
|
||
{
|
||
asection * srelgot;
|
||
Elf_Internal_Rela outrel;
|
||
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (srelgot != NULL);
|
||
|
||
outrel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ off);
|
||
outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
|
||
outrel.r_addend = value;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
|
||
(bfd_byte *) (((Elf32_External_Rela *)
|
||
srelgot->contents)
|
||
+ srelgot->reloc_count));
|
||
++ srelgot->reloc_count;
|
||
}
|
||
|
||
value = sgot->output_offset + off;
|
||
}
|
||
}
|
||
|
||
value += addend;
|
||
|
||
if (r_type == R_MN10300_GOT32)
|
||
{
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
}
|
||
else if (r_type == R_MN10300_GOT24)
|
||
{
|
||
if ((long) value > 0x7fffff || (long) value < -0x800000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_8 (input_bfd, value & 0xff, hit_data);
|
||
bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
|
||
bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
|
||
return bfd_reloc_ok;
|
||
}
|
||
else if (r_type == R_MN10300_GOT16)
|
||
{
|
||
if ((long) value > 0x7fff || (long) value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
}
|
||
/* Fall through. */
|
||
|
||
default:
|
||
return bfd_reloc_notsupported;
|
||
}
|
||
}
|
||
|
||
/* Relocate an MN10300 ELF section. */
|
||
|
||
static bfd_boolean
|
||
mn10300_elf_relocate_section (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
Elf_Internal_Rela *rel, *relend;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
struct elf32_mn10300_link_hash_entry *h;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
howto = elf_mn10300_howto_table + r_type;
|
||
|
||
/* Just skip the vtable gc relocs. */
|
||
if (r_type == R_MN10300_GNU_VTINHERIT
|
||
|| r_type == R_MN10300_GNU_VTENTRY)
|
||
continue;
|
||
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean unresolved_reloc;
|
||
bfd_boolean warned;
|
||
struct elf_link_hash_entry *hh;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
hh, sec, relocation,
|
||
unresolved_reloc, warned);
|
||
|
||
h = (struct elf32_mn10300_link_hash_entry *) hh;
|
||
|
||
if ((h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
&& ( r_type == R_MN10300_GOTPC32
|
||
|| r_type == R_MN10300_GOTPC16
|
||
|| (( r_type == R_MN10300_PLT32
|
||
|| r_type == R_MN10300_PLT16)
|
||
&& ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
|
||
&& ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
|
||
&& h->root.plt.offset != (bfd_vma) -1)
|
||
|| (( r_type == R_MN10300_GOT32
|
||
|| r_type == R_MN10300_GOT24
|
||
|| r_type == R_MN10300_GOT16)
|
||
&& elf_hash_table (info)->dynamic_sections_created
|
||
&& !SYMBOL_REFERENCES_LOCAL (info, hh))
|
||
|| (r_type == R_MN10300_32
|
||
/* _32 relocs in executables force _COPY relocs,
|
||
such that the address of the symbol ends up
|
||
being local. */
|
||
&& !info->executable
|
||
&& !SYMBOL_REFERENCES_LOCAL (info, hh)
|
||
&& ((input_section->flags & SEC_ALLOC) != 0
|
||
/* DWARF will emit R_MN10300_32 relocations
|
||
in its sections against symbols defined
|
||
externally in shared libraries. We can't
|
||
do anything with them here. */
|
||
|| ((input_section->flags & SEC_DEBUGGING) != 0
|
||
&& h->root.def_dynamic)))))
|
||
/* In these cases, we don't need the relocation
|
||
value. We check specially because in some
|
||
obscure cases sec->output_section will be NULL. */
|
||
relocation = 0;
|
||
|
||
else if (!info->relocatable && unresolved_reloc)
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
||
input_bfd,
|
||
input_section,
|
||
(long) rel->r_offset,
|
||
howto->name,
|
||
h->root.root.root.string);
|
||
}
|
||
|
||
if (sec != NULL && elf_discarded_section (sec))
|
||
{
|
||
/* For relocs against symbols from removed linkonce sections,
|
||
or sections discarded by a linker script, we just want the
|
||
section contents zeroed. Avoid any special processing. */
|
||
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
||
rel->r_info = 0;
|
||
rel->r_addend = 0;
|
||
continue;
|
||
}
|
||
|
||
if (info->relocatable)
|
||
continue;
|
||
|
||
r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
|
||
input_section,
|
||
contents, rel->r_offset,
|
||
relocation, rel->r_addend,
|
||
(struct elf_link_hash_entry *) h,
|
||
r_symndx,
|
||
info, sec, h == NULL);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char *name;
|
||
const char *msg = NULL;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.root.string;
|
||
else
|
||
{
|
||
name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
||
if (name == NULL || *name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_overflow:
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, (h ? &h->root.root : NULL), name,
|
||
howto->name, (bfd_vma) 0, input_bfd,
|
||
input_section, rel->r_offset)))
|
||
return FALSE;
|
||
break;
|
||
|
||
case bfd_reloc_undefined:
|
||
if (! ((*info->callbacks->undefined_symbol)
|
||
(info, name, input_bfd, input_section,
|
||
rel->r_offset, TRUE)))
|
||
return FALSE;
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
msg = _("internal error: out of range error");
|
||
goto common_error;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _("internal error: unsupported relocation error");
|
||
goto common_error;
|
||
|
||
case bfd_reloc_dangerous:
|
||
if (r_type == R_MN10300_PCREL32)
|
||
msg = _("error: inappropriate relocation type for shared"
|
||
" library (did you forget -fpic?)");
|
||
else
|
||
msg = _("internal error: suspicious relocation type used"
|
||
" in shared library");
|
||
goto common_error;
|
||
|
||
default:
|
||
msg = _("internal error: unknown error");
|
||
/* Fall through. */
|
||
|
||
common_error:
|
||
if (!((*info->callbacks->warning)
|
||
(info, msg, name, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finish initializing one hash table entry. */
|
||
|
||
static bfd_boolean
|
||
elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry,
|
||
void * in_args)
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *entry;
|
||
struct bfd_link_info *link_info = (struct bfd_link_info *) in_args;
|
||
unsigned int byte_count = 0;
|
||
|
||
entry = (struct elf32_mn10300_link_hash_entry *) gen_entry;
|
||
|
||
if (entry->root.root.type == bfd_link_hash_warning)
|
||
entry = (struct elf32_mn10300_link_hash_entry *) entry->root.root.u.i.link;
|
||
|
||
/* If we already know we want to convert "call" to "calls" for calls
|
||
to this symbol, then return now. */
|
||
if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
|
||
return TRUE;
|
||
|
||
/* If there are no named calls to this symbol, or there's nothing we
|
||
can move from the function itself into the "call" instruction,
|
||
then note that all "call" instructions should be converted into
|
||
"calls" instructions and return. If a symbol is available for
|
||
dynamic symbol resolution (overridable or overriding), avoid
|
||
custom calling conventions. */
|
||
if (entry->direct_calls == 0
|
||
|| (entry->stack_size == 0 && entry->movm_args == 0)
|
||
|| (elf_hash_table (link_info)->dynamic_sections_created
|
||
&& ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL
|
||
&& ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN))
|
||
{
|
||
/* Make a note that we should convert "call" instructions to "calls"
|
||
instructions for calls to this symbol. */
|
||
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
return TRUE;
|
||
}
|
||
|
||
/* We may be able to move some instructions from the function itself into
|
||
the "call" instruction. Count how many bytes we might be able to
|
||
eliminate in the function itself. */
|
||
|
||
/* A movm instruction is two bytes. */
|
||
if (entry->movm_args)
|
||
byte_count += 2;
|
||
|
||
/* Count the insn to allocate stack space too. */
|
||
if (entry->stack_size > 0)
|
||
{
|
||
if (entry->stack_size <= 128)
|
||
byte_count += 3;
|
||
else
|
||
byte_count += 4;
|
||
}
|
||
|
||
/* If using "call" will result in larger code, then turn all
|
||
the associated "call" instructions into "calls" instructions. */
|
||
if (byte_count < entry->direct_calls)
|
||
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
|
||
/* This routine never fails. */
|
||
return TRUE;
|
||
}
|
||
|
||
/* Used to count hash table entries. */
|
||
|
||
static bfd_boolean
|
||
elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED,
|
||
void * in_args)
|
||
{
|
||
int *count = (int *) in_args;
|
||
|
||
(*count) ++;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Used to enumerate hash table entries into a linear array. */
|
||
|
||
static bfd_boolean
|
||
elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry,
|
||
void * in_args)
|
||
{
|
||
struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args;
|
||
|
||
**ptr = gen_entry;
|
||
(*ptr) ++;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Used to sort the array created by the above. */
|
||
|
||
static int
|
||
sort_by_value (const void *va, const void *vb)
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *a
|
||
= *(struct elf32_mn10300_link_hash_entry **) va;
|
||
struct elf32_mn10300_link_hash_entry *b
|
||
= *(struct elf32_mn10300_link_hash_entry **) vb;
|
||
|
||
return a->value - b->value;
|
||
}
|
||
|
||
/* Compute the stack size and movm arguments for the function
|
||
referred to by HASH at address ADDR in section with
|
||
contents CONTENTS, store the information in the hash table. */
|
||
|
||
static void
|
||
compute_function_info (bfd *abfd,
|
||
struct elf32_mn10300_link_hash_entry *hash,
|
||
bfd_vma addr,
|
||
unsigned char *contents)
|
||
{
|
||
unsigned char byte1, byte2;
|
||
/* We only care about a very small subset of the possible prologue
|
||
sequences here. Basically we look for:
|
||
|
||
movm [d2,d3,a2,a3],sp (optional)
|
||
add <size>,sp (optional, and only for sizes which fit in an unsigned
|
||
8 bit number)
|
||
|
||
If we find anything else, we quit. */
|
||
|
||
/* Look for movm [regs],sp. */
|
||
byte1 = bfd_get_8 (abfd, contents + addr);
|
||
byte2 = bfd_get_8 (abfd, contents + addr + 1);
|
||
|
||
if (byte1 == 0xcf)
|
||
{
|
||
hash->movm_args = byte2;
|
||
addr += 2;
|
||
byte1 = bfd_get_8 (abfd, contents + addr);
|
||
byte2 = bfd_get_8 (abfd, contents + addr + 1);
|
||
}
|
||
|
||
/* Now figure out how much stack space will be allocated by the movm
|
||
instruction. We need this kept separate from the function's normal
|
||
stack space. */
|
||
if (hash->movm_args)
|
||
{
|
||
/* Space for d2. */
|
||
if (hash->movm_args & 0x80)
|
||
hash->movm_stack_size += 4;
|
||
|
||
/* Space for d3. */
|
||
if (hash->movm_args & 0x40)
|
||
hash->movm_stack_size += 4;
|
||
|
||
/* Space for a2. */
|
||
if (hash->movm_args & 0x20)
|
||
hash->movm_stack_size += 4;
|
||
|
||
/* Space for a3. */
|
||
if (hash->movm_args & 0x10)
|
||
hash->movm_stack_size += 4;
|
||
|
||
/* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */
|
||
if (hash->movm_args & 0x08)
|
||
hash->movm_stack_size += 8 * 4;
|
||
|
||
if (bfd_get_mach (abfd) == bfd_mach_am33
|
||
|| bfd_get_mach (abfd) == bfd_mach_am33_2)
|
||
{
|
||
/* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */
|
||
if (hash->movm_args & 0x1)
|
||
hash->movm_stack_size += 6 * 4;
|
||
|
||
/* exreg1 space. e4, e5, e6, e7 */
|
||
if (hash->movm_args & 0x2)
|
||
hash->movm_stack_size += 4 * 4;
|
||
|
||
/* exreg0 space. e2, e3 */
|
||
if (hash->movm_args & 0x4)
|
||
hash->movm_stack_size += 2 * 4;
|
||
}
|
||
}
|
||
|
||
/* Now look for the two stack adjustment variants. */
|
||
if (byte1 == 0xf8 && byte2 == 0xfe)
|
||
{
|
||
int temp = bfd_get_8 (abfd, contents + addr + 2);
|
||
temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
|
||
|
||
hash->stack_size = -temp;
|
||
}
|
||
else if (byte1 == 0xfa && byte2 == 0xfe)
|
||
{
|
||
int temp = bfd_get_16 (abfd, contents + addr + 2);
|
||
temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
|
||
temp = -temp;
|
||
|
||
if (temp < 255)
|
||
hash->stack_size = temp;
|
||
}
|
||
|
||
/* If the total stack to be allocated by the call instruction is more
|
||
than 255 bytes, then we can't remove the stack adjustment by using
|
||
"call" (we might still be able to remove the "movm" instruction. */
|
||
if (hash->stack_size + hash->movm_stack_size > 255)
|
||
hash->stack_size = 0;
|
||
}
|
||
|
||
/* Delete some bytes from a section while relaxing. */
|
||
|
||
static bfd_boolean
|
||
mn10300_elf_relax_delete_bytes (bfd *abfd,
|
||
asection *sec,
|
||
bfd_vma addr,
|
||
int count)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
unsigned int sec_shndx;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
Elf_Internal_Rela *irelalign;
|
||
bfd_vma toaddr;
|
||
Elf_Internal_Sym *isym, *isymend;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
struct elf_link_hash_entry **end_hashes;
|
||
unsigned int symcount;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
|
||
irelalign = NULL;
|
||
toaddr = sec->size;
|
||
|
||
irel = elf_section_data (sec)->relocs;
|
||
irelend = irel + sec->reloc_count;
|
||
|
||
if (sec->reloc_count > 0)
|
||
{
|
||
/* If there is an align reloc at the end of the section ignore it.
|
||
GAS creates these relocs for reasons of its own, and they just
|
||
serve to keep the section artifically inflated. */
|
||
if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN)
|
||
--irelend;
|
||
|
||
/* The deletion must stop at the next ALIGN reloc for an aligment
|
||
power larger than, or not a multiple of, the number of bytes we
|
||
are deleting. */
|
||
for (; irel < irelend; irel++)
|
||
{
|
||
int alignment = 1 << irel->r_addend;
|
||
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
|
||
&& irel->r_offset > addr
|
||
&& irel->r_offset < toaddr
|
||
&& (count < alignment
|
||
|| alignment % count != 0))
|
||
{
|
||
irelalign = irel;
|
||
toaddr = irel->r_offset;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Actually delete the bytes. */
|
||
memmove (contents + addr, contents + addr + count,
|
||
(size_t) (toaddr - addr - count));
|
||
|
||
/* Adjust the section's size if we are shrinking it, or else
|
||
pad the bytes between the end of the shrunken region and
|
||
the start of the next region with NOP codes. */
|
||
if (irelalign == NULL)
|
||
{
|
||
sec->size -= count;
|
||
/* Include symbols at the end of the section, but
|
||
not at the end of a sub-region of the section. */
|
||
toaddr ++;
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
#define NOP_OPCODE 0xcb
|
||
|
||
for (i = 0; i < count; i ++)
|
||
bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
|
||
}
|
||
|
||
/* Adjust all the relocs. */
|
||
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
||
{
|
||
/* Get the new reloc address. */
|
||
if ((irel->r_offset > addr
|
||
&& irel->r_offset < toaddr)
|
||
|| (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
|
||
&& irel->r_offset == toaddr))
|
||
irel->r_offset -= count;
|
||
}
|
||
|
||
/* Adjust the local symbols in the section, reducing their value
|
||
by the number of bytes deleted. Note - symbols within the deleted
|
||
region are moved to the address of the start of the region, which
|
||
actually means that they will address the byte beyond the end of
|
||
the region once the deletion has been completed. */
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
|
||
{
|
||
if (isym->st_shndx == sec_shndx
|
||
&& isym->st_value > addr
|
||
&& isym->st_value < toaddr)
|
||
{
|
||
if (isym->st_value < addr + count)
|
||
isym->st_value = addr;
|
||
else
|
||
isym->st_value -= count;
|
||
}
|
||
/* Adjust the function symbol's size as well. */
|
||
else if (isym->st_shndx == sec_shndx
|
||
&& ELF_ST_TYPE (isym->st_info) == STT_FUNC
|
||
&& isym->st_value + isym->st_size > addr
|
||
&& isym->st_value + isym->st_size < toaddr)
|
||
isym->st_size -= count;
|
||
}
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
end_hashes = sym_hashes + symcount;
|
||
for (; sym_hashes < end_hashes; sym_hashes++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
||
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec
|
||
&& sym_hash->root.u.def.value > addr
|
||
&& sym_hash->root.u.def.value < toaddr)
|
||
{
|
||
if (sym_hash->root.u.def.value < addr + count)
|
||
sym_hash->root.u.def.value = addr;
|
||
else
|
||
sym_hash->root.u.def.value -= count;
|
||
}
|
||
/* Adjust the function symbol's size as well. */
|
||
else if (sym_hash->root.type == bfd_link_hash_defined
|
||
&& sym_hash->root.u.def.section == sec
|
||
&& sym_hash->type == STT_FUNC
|
||
&& sym_hash->root.u.def.value + sym_hash->size > addr
|
||
&& sym_hash->root.u.def.value + sym_hash->size < toaddr)
|
||
sym_hash->size -= count;
|
||
}
|
||
|
||
/* See if we can move the ALIGN reloc forward.
|
||
We have adjusted r_offset for it already. */
|
||
if (irelalign != NULL)
|
||
{
|
||
bfd_vma alignto, alignaddr;
|
||
|
||
if ((int) irelalign->r_addend > 0)
|
||
{
|
||
/* This is the old address. */
|
||
alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
|
||
/* This is where the align points to now. */
|
||
alignaddr = BFD_ALIGN (irelalign->r_offset,
|
||
1 << irelalign->r_addend);
|
||
if (alignaddr < alignto)
|
||
/* Tail recursion. */
|
||
return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr,
|
||
(int) (alignto - alignaddr));
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if a symbol exists at the given address, else return
|
||
FALSE. */
|
||
|
||
static bfd_boolean
|
||
mn10300_elf_symbol_address_p (bfd *abfd,
|
||
asection *sec,
|
||
Elf_Internal_Sym *isym,
|
||
bfd_vma addr)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
unsigned int sec_shndx;
|
||
Elf_Internal_Sym *isymend;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
struct elf_link_hash_entry **end_hashes;
|
||
unsigned int symcount;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
/* Examine all the symbols. */
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
|
||
if (isym->st_shndx == sec_shndx
|
||
&& isym->st_value == addr)
|
||
return TRUE;
|
||
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
end_hashes = sym_hashes + symcount;
|
||
for (; sym_hashes < end_hashes; sym_hashes++)
|
||
{
|
||
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
||
|
||
if ((sym_hash->root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.u.def.section == sec
|
||
&& sym_hash->root.u.def.value == addr)
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* This function handles relaxing for the mn10300.
|
||
|
||
There are quite a few relaxing opportunities available on the mn10300:
|
||
|
||
* calls:32 -> calls:16 2 bytes
|
||
* call:32 -> call:16 2 bytes
|
||
|
||
* call:32 -> calls:32 1 byte
|
||
* call:16 -> calls:16 1 byte
|
||
* These are done anytime using "calls" would result
|
||
in smaller code, or when necessary to preserve the
|
||
meaning of the program.
|
||
|
||
* call:32 varies
|
||
* call:16
|
||
* In some circumstances we can move instructions
|
||
from a function prologue into a "call" instruction.
|
||
This is only done if the resulting code is no larger
|
||
than the original code.
|
||
|
||
* jmp:32 -> jmp:16 2 bytes
|
||
* jmp:16 -> bra:8 1 byte
|
||
|
||
* If the previous instruction is a conditional branch
|
||
around the jump/bra, we may be able to reverse its condition
|
||
and change its target to the jump's target. The jump/bra
|
||
can then be deleted. 2 bytes
|
||
|
||
* mov abs32 -> mov abs16 1 or 2 bytes
|
||
|
||
* Most instructions which accept imm32 can relax to imm16 1 or 2 bytes
|
||
- Most instructions which accept imm16 can relax to imm8 1 or 2 bytes
|
||
|
||
* Most instructions which accept d32 can relax to d16 1 or 2 bytes
|
||
- Most instructions which accept d16 can relax to d8 1 or 2 bytes
|
||
|
||
We don't handle imm16->imm8 or d16->d8 as they're very rare
|
||
and somewhat more difficult to support. */
|
||
|
||
static bfd_boolean
|
||
mn10300_elf_relax_section (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *again)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *internal_relocs = NULL;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
bfd_byte *contents = NULL;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
struct elf32_mn10300_link_hash_table *hash_table;
|
||
asection *section = sec;
|
||
bfd_vma align_gap_adjustment;
|
||
|
||
if (link_info->relocatable)
|
||
(*link_info->callbacks->einfo)
|
||
(_("%P%F: --relax and -r may not be used together\n"));
|
||
|
||
/* Assume nothing changes. */
|
||
*again = FALSE;
|
||
|
||
/* We need a pointer to the mn10300 specific hash table. */
|
||
hash_table = elf32_mn10300_hash_table (link_info);
|
||
|
||
/* Initialize fields in each hash table entry the first time through. */
|
||
if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
|
||
{
|
||
bfd *input_bfd;
|
||
|
||
/* Iterate over all the input bfds. */
|
||
for (input_bfd = link_info->input_bfds;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next)
|
||
{
|
||
/* We're going to need all the symbols for each bfd. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
/* Iterate over each section in this bfd. */
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *hash;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sym_sec = NULL;
|
||
const char *sym_name;
|
||
char *new_name;
|
||
|
||
/* If there's nothing to do in this section, skip it. */
|
||
if (! ((section->flags & SEC_RELOC) != 0
|
||
&& section->reloc_count != 0))
|
||
continue;
|
||
if ((section->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* Get cached copy of section contents if it exists. */
|
||
if (elf_section_data (section)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (section)->this_hdr.contents;
|
||
else if (section->size != 0)
|
||
{
|
||
/* Go get them off disk. */
|
||
if (!bfd_malloc_and_get_section (input_bfd, section,
|
||
&contents))
|
||
goto error_return;
|
||
}
|
||
else
|
||
contents = NULL;
|
||
|
||
/* If there aren't any relocs, then there's nothing to do. */
|
||
if ((section->flags & SEC_RELOC) != 0
|
||
&& section->reloc_count != 0)
|
||
{
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
|
||
NULL, NULL,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
/* Now examine each relocation. */
|
||
irel = internal_relocs;
|
||
irelend = irel + section->reloc_count;
|
||
for (; irel < irelend; irel++)
|
||
{
|
||
long r_type;
|
||
unsigned long r_index;
|
||
unsigned char code;
|
||
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
r_index = ELF32_R_SYM (irel->r_info);
|
||
|
||
if (r_type < 0 || r_type >= (int) R_MN10300_MAX)
|
||
goto error_return;
|
||
|
||
/* We need the name and hash table entry of the target
|
||
symbol! */
|
||
hash = NULL;
|
||
sym = NULL;
|
||
sym_sec = NULL;
|
||
|
||
if (r_index < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
struct elf_link_hash_table *elftab;
|
||
bfd_size_type amt;
|
||
|
||
isym = isymbuf + r_index;
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
else
|
||
sym_sec
|
||
= bfd_section_from_elf_index (input_bfd,
|
||
isym->st_shndx);
|
||
|
||
sym_name
|
||
= bfd_elf_string_from_elf_section (input_bfd,
|
||
(symtab_hdr
|
||
->sh_link),
|
||
isym->st_name);
|
||
|
||
/* If it isn't a function, then we don't care
|
||
about it. */
|
||
if (ELF_ST_TYPE (isym->st_info) != STT_FUNC)
|
||
continue;
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
amt = strlen (sym_name) + 10;
|
||
new_name = bfd_malloc (amt);
|
||
if (new_name == NULL)
|
||
goto error_return;
|
||
|
||
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
|
||
sym_name = new_name;
|
||
|
||
elftab = &hash_table->static_hash_table->root;
|
||
hash = ((struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (elftab, sym_name,
|
||
TRUE, TRUE, FALSE));
|
||
free (new_name);
|
||
}
|
||
else
|
||
{
|
||
r_index -= symtab_hdr->sh_info;
|
||
hash = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_sym_hashes (input_bfd)[r_index];
|
||
}
|
||
|
||
sym_name = hash->root.root.root.string;
|
||
if ((section->flags & SEC_CODE) != 0)
|
||
{
|
||
/* If this is not a "call" instruction, then we
|
||
should convert "call" instructions to "calls"
|
||
instructions. */
|
||
code = bfd_get_8 (input_bfd,
|
||
contents + irel->r_offset - 1);
|
||
if (code != 0xdd && code != 0xcd)
|
||
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
}
|
||
|
||
/* If this is a jump/call, then bump the
|
||
direct_calls counter. Else force "call" to
|
||
"calls" conversions. */
|
||
if (r_type == R_MN10300_PCREL32
|
||
|| r_type == R_MN10300_PLT32
|
||
|| r_type == R_MN10300_PLT16
|
||
|| r_type == R_MN10300_PCREL16)
|
||
hash->direct_calls++;
|
||
else
|
||
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
}
|
||
}
|
||
|
||
/* Now look at the actual contents to get the stack size,
|
||
and a list of what registers were saved in the prologue
|
||
(ie movm_args). */
|
||
if ((section->flags & SEC_CODE) != 0)
|
||
{
|
||
Elf_Internal_Sym *isym, *isymend;
|
||
unsigned int sec_shndx;
|
||
struct elf_link_hash_entry **hashes;
|
||
struct elf_link_hash_entry **end_hashes;
|
||
unsigned int symcount;
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
|
||
section);
|
||
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
hashes = elf_sym_hashes (input_bfd);
|
||
end_hashes = hashes + symcount;
|
||
|
||
/* Look at each function defined in this section and
|
||
update info for that function. */
|
||
isymend = isymbuf + symtab_hdr->sh_info;
|
||
for (isym = isymbuf; isym < isymend; isym++)
|
||
{
|
||
if (isym->st_shndx == sec_shndx
|
||
&& ELF_ST_TYPE (isym->st_info) == STT_FUNC)
|
||
{
|
||
struct elf_link_hash_table *elftab;
|
||
bfd_size_type amt;
|
||
struct elf_link_hash_entry **lhashes = hashes;
|
||
|
||
/* Skip a local symbol if it aliases a
|
||
global one. */
|
||
for (; lhashes < end_hashes; lhashes++)
|
||
{
|
||
hash = (struct elf32_mn10300_link_hash_entry *) *lhashes;
|
||
if ((hash->root.root.type == bfd_link_hash_defined
|
||
|| hash->root.root.type == bfd_link_hash_defweak)
|
||
&& hash->root.root.u.def.section == section
|
||
&& hash->root.type == STT_FUNC
|
||
&& hash->root.root.u.def.value == isym->st_value)
|
||
break;
|
||
}
|
||
if (lhashes != end_hashes)
|
||
continue;
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
else
|
||
sym_sec
|
||
= bfd_section_from_elf_index (input_bfd,
|
||
isym->st_shndx);
|
||
|
||
sym_name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link,
|
||
isym->st_name));
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
amt = strlen (sym_name) + 10;
|
||
new_name = bfd_malloc (amt);
|
||
if (new_name == NULL)
|
||
goto error_return;
|
||
|
||
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
|
||
sym_name = new_name;
|
||
|
||
elftab = &hash_table->static_hash_table->root;
|
||
hash = ((struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (elftab, sym_name,
|
||
TRUE, TRUE, FALSE));
|
||
free (new_name);
|
||
compute_function_info (input_bfd, hash,
|
||
isym->st_value, contents);
|
||
hash->value = isym->st_value;
|
||
}
|
||
}
|
||
|
||
for (; hashes < end_hashes; hashes++)
|
||
{
|
||
hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
|
||
if ((hash->root.root.type == bfd_link_hash_defined
|
||
|| hash->root.root.type == bfd_link_hash_defweak)
|
||
&& hash->root.root.u.def.section == section
|
||
&& hash->root.type == STT_FUNC)
|
||
compute_function_info (input_bfd, hash,
|
||
(hash)->root.root.u.def.value,
|
||
contents);
|
||
}
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the relocs. */
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (section)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
internal_relocs = NULL;
|
||
|
||
/* Cache or free any memory we allocated for the contents. */
|
||
if (contents != NULL
|
||
&& elf_section_data (section)->this_hdr.contents != contents)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
contents = NULL;
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the symbols. */
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (isymbuf);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
}
|
||
}
|
||
isymbuf = NULL;
|
||
}
|
||
|
||
/* Now iterate on each symbol in the hash table and perform
|
||
the final initialization steps on each. */
|
||
elf32_mn10300_link_hash_traverse (hash_table,
|
||
elf32_mn10300_finish_hash_table_entry,
|
||
link_info);
|
||
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
|
||
elf32_mn10300_finish_hash_table_entry,
|
||
link_info);
|
||
|
||
{
|
||
/* This section of code collects all our local symbols, sorts
|
||
them by value, and looks for multiple symbols referring to
|
||
the same address. For those symbols, the flags are merged.
|
||
At this point, the only flag that can be set is
|
||
MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags
|
||
together. */
|
||
int static_count = 0, i;
|
||
struct elf32_mn10300_link_hash_entry **entries;
|
||
struct elf32_mn10300_link_hash_entry **ptr;
|
||
|
||
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
|
||
elf32_mn10300_count_hash_table_entries,
|
||
&static_count);
|
||
|
||
entries = bfd_malloc (static_count * sizeof (* ptr));
|
||
|
||
ptr = entries;
|
||
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
|
||
elf32_mn10300_list_hash_table_entries,
|
||
& ptr);
|
||
|
||
qsort (entries, static_count, sizeof (entries[0]), sort_by_value);
|
||
|
||
for (i = 0; i < static_count - 1; i++)
|
||
if (entries[i]->value && entries[i]->value == entries[i+1]->value)
|
||
{
|
||
int v = entries[i]->flags;
|
||
int j;
|
||
|
||
for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++)
|
||
v |= entries[j]->flags;
|
||
|
||
for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++)
|
||
entries[j]->flags = v;
|
||
|
||
i = j - 1;
|
||
}
|
||
}
|
||
|
||
/* All entries in the hash table are fully initialized. */
|
||
hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
|
||
|
||
/* Now that everything has been initialized, go through each
|
||
code section and delete any prologue insns which will be
|
||
redundant because their operations will be performed by
|
||
a "call" instruction. */
|
||
for (input_bfd = link_info->input_bfds;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next)
|
||
{
|
||
/* We're going to need all the local symbols for each bfd. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
/* Walk over each section in this bfd. */
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
unsigned int sec_shndx;
|
||
Elf_Internal_Sym *isym, *isymend;
|
||
struct elf_link_hash_entry **hashes;
|
||
struct elf_link_hash_entry **end_hashes;
|
||
unsigned int symcount;
|
||
|
||
/* Skip non-code sections and empty sections. */
|
||
if ((section->flags & SEC_CODE) == 0 || section->size == 0)
|
||
continue;
|
||
|
||
if (section->reloc_count != 0)
|
||
{
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
|
||
NULL, NULL,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
/* Get cached copy of section contents if it exists. */
|
||
if (elf_section_data (section)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (section)->this_hdr.contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
if (!bfd_malloc_and_get_section (input_bfd, section,
|
||
&contents))
|
||
goto error_return;
|
||
}
|
||
|
||
sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
|
||
section);
|
||
|
||
/* Now look for any function in this section which needs
|
||
insns deleted from its prologue. */
|
||
isymend = isymbuf + symtab_hdr->sh_info;
|
||
for (isym = isymbuf; isym < isymend; isym++)
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *sym_hash;
|
||
asection *sym_sec = NULL;
|
||
const char *sym_name;
|
||
char *new_name;
|
||
struct elf_link_hash_table *elftab;
|
||
bfd_size_type amt;
|
||
|
||
if (isym->st_shndx != sec_shndx)
|
||
continue;
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
else
|
||
sym_sec
|
||
= bfd_section_from_elf_index (input_bfd, isym->st_shndx);
|
||
|
||
sym_name
|
||
= bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
isym->st_name);
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
amt = strlen (sym_name) + 10;
|
||
new_name = bfd_malloc (amt);
|
||
if (new_name == NULL)
|
||
goto error_return;
|
||
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
|
||
sym_name = new_name;
|
||
|
||
elftab = & hash_table->static_hash_table->root;
|
||
sym_hash = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (elftab, sym_name,
|
||
FALSE, FALSE, FALSE);
|
||
|
||
free (new_name);
|
||
if (sym_hash == NULL)
|
||
continue;
|
||
|
||
if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
|
||
&& ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
|
||
{
|
||
int bytes = 0;
|
||
|
||
/* Note that we've changed things. */
|
||
elf_section_data (section)->relocs = internal_relocs;
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Count how many bytes we're going to delete. */
|
||
if (sym_hash->movm_args)
|
||
bytes += 2;
|
||
|
||
if (sym_hash->stack_size > 0)
|
||
{
|
||
if (sym_hash->stack_size <= 128)
|
||
bytes += 3;
|
||
else
|
||
bytes += 4;
|
||
}
|
||
|
||
/* Note that we've deleted prologue bytes for this
|
||
function. */
|
||
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
|
||
|
||
/* Actually delete the bytes. */
|
||
if (!mn10300_elf_relax_delete_bytes (input_bfd,
|
||
section,
|
||
isym->st_value,
|
||
bytes))
|
||
goto error_return;
|
||
|
||
/* Something changed. Not strictly necessary, but
|
||
may lead to more relaxing opportunities. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Look for any global functions in this section which
|
||
need insns deleted from their prologues. */
|
||
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info);
|
||
hashes = elf_sym_hashes (input_bfd);
|
||
end_hashes = hashes + symcount;
|
||
for (; hashes < end_hashes; hashes++)
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *sym_hash;
|
||
|
||
sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
|
||
if ((sym_hash->root.root.type == bfd_link_hash_defined
|
||
|| sym_hash->root.root.type == bfd_link_hash_defweak)
|
||
&& sym_hash->root.root.u.def.section == section
|
||
&& ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
|
||
&& ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
|
||
{
|
||
int bytes = 0;
|
||
bfd_vma symval;
|
||
|
||
/* Note that we've changed things. */
|
||
elf_section_data (section)->relocs = internal_relocs;
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Count how many bytes we're going to delete. */
|
||
if (sym_hash->movm_args)
|
||
bytes += 2;
|
||
|
||
if (sym_hash->stack_size > 0)
|
||
{
|
||
if (sym_hash->stack_size <= 128)
|
||
bytes += 3;
|
||
else
|
||
bytes += 4;
|
||
}
|
||
|
||
/* Note that we've deleted prologue bytes for this
|
||
function. */
|
||
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
|
||
|
||
/* Actually delete the bytes. */
|
||
symval = sym_hash->root.root.u.def.value;
|
||
if (!mn10300_elf_relax_delete_bytes (input_bfd,
|
||
section,
|
||
symval,
|
||
bytes))
|
||
goto error_return;
|
||
|
||
/* Something changed. Not strictly necessary, but
|
||
may lead to more relaxing opportunities. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the relocs. */
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (section)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
internal_relocs = NULL;
|
||
|
||
/* Cache or free any memory we allocated for the contents. */
|
||
if (contents != NULL
|
||
&& elf_section_data (section)->this_hdr.contents != contents)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
}
|
||
contents = NULL;
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the symbols. */
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (isymbuf);
|
||
else
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
}
|
||
isymbuf = NULL;
|
||
}
|
||
}
|
||
|
||
/* (Re)initialize for the basic instruction shortening/relaxing pass. */
|
||
contents = NULL;
|
||
internal_relocs = NULL;
|
||
isymbuf = NULL;
|
||
/* For error_return. */
|
||
section = sec;
|
||
|
||
/* We don't have to do anything for a relocatable link, if
|
||
this section does not have relocs, or if this is not a
|
||
code section. */
|
||
if (link_info->relocatable
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0
|
||
|| (sec->flags & SEC_CODE) == 0)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
/* Scan for worst case alignment gap changes. Note that this logic
|
||
is not ideal; what we should do is run this scan for every
|
||
opcode/address range and adjust accordingly, but that's
|
||
expensive. Worst case is that for an alignment of N bytes, we
|
||
move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc
|
||
all before it. Plus, this still doesn't cover cross-section
|
||
jumps with section alignment. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
align_gap_adjustment = 0;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN)
|
||
{
|
||
bfd_vma adj = 1 << irel->r_addend;
|
||
bfd_vma aend = irel->r_offset;
|
||
|
||
aend = BFD_ALIGN (aend, 1 << irel->r_addend);
|
||
adj = 2 * adj - adj - 1;
|
||
|
||
/* Record the biggest adjustmnet. Skip any alignment at the
|
||
end of our section. */
|
||
if (align_gap_adjustment < adj
|
||
&& aend < sec->output_section->vma + sec->output_offset + sec->size)
|
||
align_gap_adjustment = adj;
|
||
}
|
||
}
|
||
|
||
/* Walk through them looking for relaxing opportunities. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma symval;
|
||
bfd_signed_vma jump_offset;
|
||
asection *sym_sec = NULL;
|
||
struct elf32_mn10300_link_hash_entry *h = NULL;
|
||
|
||
/* If this isn't something that can be relaxed, then ignore
|
||
this reloc. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
|
||
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
|
||
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
|
||
continue;
|
||
|
||
/* Get the section contents if we haven't done so already. */
|
||
if (contents == NULL)
|
||
{
|
||
/* Get cached copy if it exists. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* Read this BFD's symbols if we haven't done so already. */
|
||
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isym;
|
||
const char *sym_name;
|
||
char *new_name;
|
||
|
||
/* A local symbol. */
|
||
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
else
|
||
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
|
||
sym_name = bfd_elf_string_from_elf_section (abfd,
|
||
symtab_hdr->sh_link,
|
||
isym->st_name);
|
||
|
||
if ((sym_sec->flags & SEC_MERGE)
|
||
&& sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
|
||
{
|
||
symval = isym->st_value;
|
||
|
||
/* GAS may reduce relocations against symbols in SEC_MERGE
|
||
sections to a relocation against the section symbol when
|
||
the original addend was zero. When the reloc is against
|
||
a section symbol we should include the addend in the
|
||
offset passed to _bfd_merged_section_offset, since the
|
||
location of interest is the original symbol. On the
|
||
other hand, an access to "sym+addend" where "sym" is not
|
||
a section symbol should not include the addend; Such an
|
||
access is presumed to be an offset from "sym"; The
|
||
location of interest is just "sym". */
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
symval += irel->r_addend;
|
||
|
||
symval = _bfd_merged_section_offset (abfd, & sym_sec,
|
||
elf_section_data (sym_sec)->sec_info,
|
||
symval);
|
||
|
||
if (ELF_ST_TYPE (isym->st_info) != STT_SECTION)
|
||
symval += irel->r_addend;
|
||
|
||
symval += sym_sec->output_section->vma
|
||
+ sym_sec->output_offset - irel->r_addend;
|
||
}
|
||
else
|
||
symval = (isym->st_value
|
||
+ sym_sec->output_section->vma
|
||
+ sym_sec->output_offset);
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10);
|
||
if (new_name == NULL)
|
||
goto error_return;
|
||
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
|
||
sym_name = new_name;
|
||
|
||
h = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
||
sym_name, FALSE, FALSE, FALSE);
|
||
free (new_name);
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
|
||
/* An external symbol. */
|
||
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
||
h = (struct elf32_mn10300_link_hash_entry *)
|
||
(elf_sym_hashes (abfd)[indx]);
|
||
BFD_ASSERT (h != NULL);
|
||
if (h->root.root.type != bfd_link_hash_defined
|
||
&& h->root.root.type != bfd_link_hash_defweak)
|
||
/* This appears to be a reference to an undefined
|
||
symbol. Just ignore it--it will be caught by the
|
||
regular reloc processing. */
|
||
continue;
|
||
|
||
/* Check for a reference to a discarded symbol and ignore it. */
|
||
if (h->root.root.u.def.section->output_section == NULL)
|
||
continue;
|
||
|
||
sym_sec = h->root.root.u.def.section->output_section;
|
||
|
||
symval = (h->root.root.u.def.value
|
||
+ h->root.root.u.def.section->output_section->vma
|
||
+ h->root.root.u.def.section->output_offset);
|
||
}
|
||
|
||
/* For simplicity of coding, we are going to modify the section
|
||
contents, the section relocs, and the BFD symbol table. We
|
||
must tell the rest of the code not to free up this
|
||
information. It would be possible to instead create a table
|
||
of changes which have to be made, as is done in coff-mips.c;
|
||
that would be more work, but would require less memory when
|
||
the linker is run. */
|
||
|
||
/* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
|
||
branch/call, also deal with "call" -> "calls" conversions and
|
||
insertion of prologue data into "call" instructions. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32
|
||
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32)
|
||
{
|
||
bfd_vma value = symval;
|
||
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32
|
||
&& h != NULL
|
||
&& ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
|
||
&& ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
|
||
&& h->root.plt.offset != (bfd_vma) -1)
|
||
{
|
||
asection * splt;
|
||
|
||
splt = bfd_get_section_by_name (elf_hash_table (link_info)
|
||
->dynobj, ".plt");
|
||
|
||
value = ((splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ h->root.plt.offset)
|
||
- (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ irel->r_offset));
|
||
}
|
||
|
||
/* If we've got a "call" instruction that needs to be turned
|
||
into a "calls" instruction, do so now. It saves a byte. */
|
||
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Make sure we're working with a "call" instruction! */
|
||
if (code == 0xdd)
|
||
{
|
||
/* Note that we've changed the relocs, section contents,
|
||
etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
|
||
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
|
||
|
||
/* Fix irel->r_offset and irel->r_addend. */
|
||
irel->r_offset += 1;
|
||
irel->r_addend += 1;
|
||
|
||
/* Delete one byte of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 3, 1))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
else if (h)
|
||
{
|
||
/* We've got a "call" instruction which needs some data
|
||
from target function filled in. */
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Insert data from the target function into the "call"
|
||
instruction if needed. */
|
||
if (code == 0xdd)
|
||
{
|
||
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
|
||
bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
|
||
contents + irel->r_offset + 5);
|
||
}
|
||
}
|
||
|
||
/* Deal with pc-relative gunk. */
|
||
value -= (sec->output_section->vma + sec->output_offset);
|
||
value -= irel->r_offset;
|
||
value += irel->r_addend;
|
||
|
||
/* See if the value will fit in 16 bits, note the high value is
|
||
0x7fff + 2 as the target will be two bytes closer if we are
|
||
able to relax, if it's in the same section. */
|
||
if (sec->output_section == sym_sec->output_section)
|
||
jump_offset = 0x8001;
|
||
else
|
||
jump_offset = 0x7fff;
|
||
|
||
/* Account for jumps across alignment boundaries using
|
||
align_gap_adjustment. */
|
||
if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment
|
||
&& ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment))
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
if (code != 0xdc && code != 0xdd && code != 0xff)
|
||
continue;
|
||
|
||
/* Note that we've changed the relocs, section contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
if (code == 0xdc)
|
||
bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
|
||
else if (code == 0xdd)
|
||
bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
|
||
else if (code == 0xff)
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_PLT32)
|
||
? R_MN10300_PLT16 :
|
||
R_MN10300_PCREL16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
|
||
branch. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
|
||
{
|
||
bfd_vma value = symval;
|
||
|
||
/* If we've got a "call" instruction that needs to be turned
|
||
into a "calls" instruction, do so now. It saves a byte. */
|
||
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Make sure we're working with a "call" instruction! */
|
||
if (code == 0xcd)
|
||
{
|
||
/* Note that we've changed the relocs, section contents,
|
||
etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
|
||
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
|
||
|
||
/* Fix irel->r_offset and irel->r_addend. */
|
||
irel->r_offset += 1;
|
||
irel->r_addend += 1;
|
||
|
||
/* Delete one byte of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 1))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
else if (h)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Insert data from the target function into the "call"
|
||
instruction if needed. */
|
||
if (code == 0xcd)
|
||
{
|
||
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
|
||
bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
|
||
contents + irel->r_offset + 3);
|
||
}
|
||
}
|
||
|
||
/* Deal with pc-relative gunk. */
|
||
value -= (sec->output_section->vma + sec->output_offset);
|
||
value -= irel->r_offset;
|
||
value += irel->r_addend;
|
||
|
||
/* See if the value will fit in 8 bits, note the high value is
|
||
0x7f + 1 as the target will be one bytes closer if we are
|
||
able to relax. */
|
||
if ((long) value < 0x80 && (long) value > -0x80)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
if (code != 0xcc)
|
||
continue;
|
||
|
||
/* Note that we've changed the relocs, section contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_PCREL8);
|
||
|
||
/* Delete one byte of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 1))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
}
|
||
}
|
||
|
||
/* Try to eliminate an unconditional 8 bit pc-relative branch
|
||
which immediately follows a conditional 8 bit pc-relative
|
||
branch around the unconditional branch.
|
||
|
||
original: new:
|
||
bCC lab1 bCC' lab2
|
||
bra lab2
|
||
lab1: lab1:
|
||
|
||
This happens when the bCC can't reach lab2 at assembly time,
|
||
but due to other relaxations it can reach at link time. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
|
||
{
|
||
Elf_Internal_Rela *nrel;
|
||
bfd_vma value = symval;
|
||
unsigned char code;
|
||
|
||
/* Deal with pc-relative gunk. */
|
||
value -= (sec->output_section->vma + sec->output_offset);
|
||
value -= irel->r_offset;
|
||
value += irel->r_addend;
|
||
|
||
/* Do nothing if this reloc is the last byte in the section. */
|
||
if (irel->r_offset == sec->size)
|
||
continue;
|
||
|
||
/* See if the next instruction is an unconditional pc-relative
|
||
branch, more often than not this test will fail, so we
|
||
test it first to speed things up. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
|
||
if (code != 0xca)
|
||
continue;
|
||
|
||
/* Also make sure the next relocation applies to the next
|
||
instruction and that it's a pc-relative 8 bit branch. */
|
||
nrel = irel + 1;
|
||
if (nrel == irelend
|
||
|| irel->r_offset + 2 != nrel->r_offset
|
||
|| ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
|
||
continue;
|
||
|
||
/* Make sure our destination immediately follows the
|
||
unconditional branch. */
|
||
if (symval != (sec->output_section->vma + sec->output_offset
|
||
+ irel->r_offset + 3))
|
||
continue;
|
||
|
||
/* Now make sure we are a conditional branch. This may not
|
||
be necessary, but why take the chance.
|
||
|
||
Note these checks assume that R_MN10300_PCREL8 relocs
|
||
only occur on bCC and bCCx insns. If they occured
|
||
elsewhere, we'd need to know the start of this insn
|
||
for this check to be accurate. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
if (code != 0xc0 && code != 0xc1 && code != 0xc2
|
||
&& code != 0xc3 && code != 0xc4 && code != 0xc5
|
||
&& code != 0xc6 && code != 0xc7 && code != 0xc8
|
||
&& code != 0xc9 && code != 0xe8 && code != 0xe9
|
||
&& code != 0xea && code != 0xeb)
|
||
continue;
|
||
|
||
/* We also have to be sure there is no symbol/label
|
||
at the unconditional branch. */
|
||
if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf,
|
||
irel->r_offset + 1))
|
||
continue;
|
||
|
||
/* Note that we've changed the relocs, section contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Reverse the condition of the first branch. */
|
||
switch (code)
|
||
{
|
||
case 0xc8:
|
||
code = 0xc9;
|
||
break;
|
||
case 0xc9:
|
||
code = 0xc8;
|
||
break;
|
||
case 0xc0:
|
||
code = 0xc2;
|
||
break;
|
||
case 0xc2:
|
||
code = 0xc0;
|
||
break;
|
||
case 0xc3:
|
||
code = 0xc1;
|
||
break;
|
||
case 0xc1:
|
||
code = 0xc3;
|
||
break;
|
||
case 0xc4:
|
||
code = 0xc6;
|
||
break;
|
||
case 0xc6:
|
||
code = 0xc4;
|
||
break;
|
||
case 0xc7:
|
||
code = 0xc5;
|
||
break;
|
||
case 0xc5:
|
||
code = 0xc7;
|
||
break;
|
||
case 0xe8:
|
||
code = 0xe9;
|
||
break;
|
||
case 0x9d:
|
||
code = 0xe8;
|
||
break;
|
||
case 0xea:
|
||
code = 0xeb;
|
||
break;
|
||
case 0xeb:
|
||
code = 0xea;
|
||
break;
|
||
}
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Set the reloc type and symbol for the first branch
|
||
from the second branch. */
|
||
irel->r_info = nrel->r_info;
|
||
|
||
/* Make the reloc for the second branch a null reloc. */
|
||
nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
|
||
R_MN10300_NONE);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
}
|
||
|
||
/* Try to turn a 24 immediate, displacement or absolute address
|
||
into a 8 immediate, displacement or absolute address. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24)
|
||
{
|
||
bfd_vma value = symval;
|
||
value += irel->r_addend;
|
||
|
||
/* See if the value will fit in 8 bits. */
|
||
if ((long) value < 0x7f && (long) value > -0x80)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* AM33 insns which have 24 operands are 6 bytes long and
|
||
will have 0xfd as the first byte. */
|
||
|
||
/* Get the first opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
|
||
|
||
if (code == 0xfd)
|
||
{
|
||
/* Get the second opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
||
|
||
/* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
|
||
equivalent instructions exists. */
|
||
if (code != 0x6b && code != 0x7b
|
||
&& code != 0x8b && code != 0x9b
|
||
&& ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
|
||
|| (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
|
||
|| (code & 0x0f) == 0x0e))
|
||
{
|
||
/* Not safe if the high bit is on as relaxing may
|
||
move the value out of high mem and thus not fit
|
||
in a signed 8bit value. This is currently over
|
||
conservative. */
|
||
if ((value & 0x80) == 0)
|
||
{
|
||
/* Note that we've changed the relocation contents,
|
||
etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info =
|
||
ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_8);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax
|
||
again. Note that this is not required, and it
|
||
may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to turn a 32bit immediate, displacement or absolute address
|
||
into a 16bit immediate, displacement or absolute address. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32
|
||
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32
|
||
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
|
||
{
|
||
bfd_vma value = symval;
|
||
|
||
if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32)
|
||
{
|
||
asection * sgot;
|
||
|
||
sgot = bfd_get_section_by_name (elf_hash_table (link_info)
|
||
->dynobj, ".got");
|
||
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32)
|
||
{
|
||
value = sgot->output_offset;
|
||
|
||
if (h)
|
||
value += h->root.got.offset;
|
||
else
|
||
value += (elf_local_got_offsets
|
||
(abfd)[ELF32_R_SYM (irel->r_info)]);
|
||
}
|
||
else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
|
||
value -= sgot->output_section->vma;
|
||
else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32)
|
||
value = (sgot->output_section->vma
|
||
- (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ irel->r_offset));
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
value += irel->r_addend;
|
||
|
||
/* See if the value will fit in 24 bits.
|
||
We allow any 16bit match here. We prune those we can't
|
||
handle below. */
|
||
if ((long) value < 0x7fffff && (long) value > -0x800000)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* AM33 insns which have 32bit operands are 7 bytes long and
|
||
will have 0xfe as the first byte. */
|
||
|
||
/* Get the first opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
|
||
|
||
if (code == 0xfe)
|
||
{
|
||
/* Get the second opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
||
|
||
/* All the am33 32 -> 24 relaxing possibilities. */
|
||
/* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
|
||
equivalent instructions exists. */
|
||
if (code != 0x6b && code != 0x7b
|
||
&& code != 0x8b && code != 0x9b
|
||
&& (ELF32_R_TYPE (irel->r_info)
|
||
!= (int) R_MN10300_GOTPC32)
|
||
&& ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
|
||
|| (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
|
||
|| (code & 0x0f) == 0x0e))
|
||
{
|
||
/* Not safe if the high bit is on as relaxing may
|
||
move the value out of high mem and thus not fit
|
||
in a signed 16bit value. This is currently over
|
||
conservative. */
|
||
if ((value & 0x8000) == 0)
|
||
{
|
||
/* Note that we've changed the relocation contents,
|
||
etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info =
|
||
ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTOFF32)
|
||
? R_MN10300_GOTOFF24
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOT32)
|
||
? R_MN10300_GOT24 :
|
||
R_MN10300_24);
|
||
|
||
/* Delete one byte of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 3, 1))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax
|
||
again. Note that this is not required, and it
|
||
may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if the value will fit in 16 bits.
|
||
We allow any 16bit match here. We prune those we can't
|
||
handle below. */
|
||
if ((long) value < 0x7fff && (long) value > -0x8000)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Most insns which have 32bit operands are 6 bytes long;
|
||
exceptions are pcrel insns and bit insns.
|
||
|
||
We handle pcrel insns above. We don't bother trying
|
||
to handle the bit insns here.
|
||
|
||
The first byte of the remaining insns will be 0xfc. */
|
||
|
||
/* Get the first opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
||
|
||
if (code != 0xfc)
|
||
continue;
|
||
|
||
/* Get the second opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
if ((code & 0xf0) < 0x80)
|
||
switch (code & 0xf0)
|
||
{
|
||
/* mov (d32,am),dn -> mov (d32,am),dn
|
||
mov dm,(d32,am) -> mov dn,(d32,am)
|
||
mov (d32,am),an -> mov (d32,am),an
|
||
mov dm,(d32,am) -> mov dn,(d32,am)
|
||
movbu (d32,am),dn -> movbu (d32,am),dn
|
||
movbu dm,(d32,am) -> movbu dn,(d32,am)
|
||
movhu (d32,am),dn -> movhu (d32,am),dn
|
||
movhu dm,(d32,am) -> movhu dn,(d32,am) */
|
||
case 0x00:
|
||
case 0x10:
|
||
case 0x20:
|
||
case 0x30:
|
||
case 0x40:
|
||
case 0x50:
|
||
case 0x60:
|
||
case 0x70:
|
||
/* Not safe if the high bit is on as relaxing may
|
||
move the value out of high mem and thus not fit
|
||
in a signed 16bit value. */
|
||
if (code == 0xcc
|
||
&& (value & 0x8000))
|
||
continue;
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTOFF32)
|
||
? R_MN10300_GOTOFF16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOT32)
|
||
? R_MN10300_GOT16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTPC32)
|
||
? R_MN10300_GOTPC16 :
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
else if ((code & 0xf0) == 0x80
|
||
|| (code & 0xf0) == 0x90)
|
||
switch (code & 0xf3)
|
||
{
|
||
/* mov dn,(abs32) -> mov dn,(abs16)
|
||
movbu dn,(abs32) -> movbu dn,(abs16)
|
||
movhu dn,(abs32) -> movhu dn,(abs16) */
|
||
case 0x81:
|
||
case 0x82:
|
||
case 0x83:
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
if ((code & 0xf3) == 0x81)
|
||
code = 0x01 + (code & 0x0c);
|
||
else if ((code & 0xf3) == 0x82)
|
||
code = 0x02 + (code & 0x0c);
|
||
else if ((code & 0xf3) == 0x83)
|
||
code = 0x03 + (code & 0x0c);
|
||
else
|
||
abort ();
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTOFF32)
|
||
? R_MN10300_GOTOFF16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOT32)
|
||
? R_MN10300_GOT16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTPC32)
|
||
? R_MN10300_GOTPC16 :
|
||
R_MN10300_16);
|
||
|
||
/* The opcode got shorter too, so we have to fix the
|
||
addend and offset too! */
|
||
irel->r_offset -= 1;
|
||
|
||
/* Delete three bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 3))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
|
||
/* mov am,(abs32) -> mov am,(abs16)
|
||
mov am,(d32,sp) -> mov am,(d16,sp)
|
||
mov dm,(d32,sp) -> mov dm,(d32,sp)
|
||
movbu dm,(d32,sp) -> movbu dm,(d32,sp)
|
||
movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
|
||
case 0x80:
|
||
case 0x90:
|
||
case 0x91:
|
||
case 0x92:
|
||
case 0x93:
|
||
/* sp-based offsets are zero-extended. */
|
||
if (code >= 0x90 && code <= 0x93
|
||
&& (long) value < 0)
|
||
continue;
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTOFF32)
|
||
? R_MN10300_GOTOFF16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOT32)
|
||
? R_MN10300_GOT16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTPC32)
|
||
? R_MN10300_GOTPC16 :
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
else if ((code & 0xf0) < 0xf0)
|
||
switch (code & 0xfc)
|
||
{
|
||
/* mov imm32,dn -> mov imm16,dn
|
||
mov imm32,an -> mov imm16,an
|
||
mov (abs32),dn -> mov (abs16),dn
|
||
movbu (abs32),dn -> movbu (abs16),dn
|
||
movhu (abs32),dn -> movhu (abs16),dn */
|
||
case 0xcc:
|
||
case 0xdc:
|
||
case 0xa4:
|
||
case 0xa8:
|
||
case 0xac:
|
||
/* Not safe if the high bit is on as relaxing may
|
||
move the value out of high mem and thus not fit
|
||
in a signed 16bit value. */
|
||
if (code == 0xcc
|
||
&& (value & 0x8000))
|
||
continue;
|
||
|
||
/* mov imm16, an zero-extends the immediate. */
|
||
if (code == 0xdc
|
||
&& (long) value < 0)
|
||
continue;
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
if ((code & 0xfc) == 0xcc)
|
||
code = 0x2c + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xdc)
|
||
code = 0x24 + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xa4)
|
||
code = 0x30 + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xa8)
|
||
code = 0x34 + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xac)
|
||
code = 0x38 + (code & 0x03);
|
||
else
|
||
abort ();
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTOFF32)
|
||
? R_MN10300_GOTOFF16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOT32)
|
||
? R_MN10300_GOT16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTPC32)
|
||
? R_MN10300_GOTPC16 :
|
||
R_MN10300_16);
|
||
|
||
/* The opcode got shorter too, so we have to fix the
|
||
addend and offset too! */
|
||
irel->r_offset -= 1;
|
||
|
||
/* Delete three bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 3))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
|
||
/* mov (abs32),an -> mov (abs16),an
|
||
mov (d32,sp),an -> mov (d16,sp),an
|
||
mov (d32,sp),dn -> mov (d16,sp),dn
|
||
movbu (d32,sp),dn -> movbu (d16,sp),dn
|
||
movhu (d32,sp),dn -> movhu (d16,sp),dn
|
||
add imm32,dn -> add imm16,dn
|
||
cmp imm32,dn -> cmp imm16,dn
|
||
add imm32,an -> add imm16,an
|
||
cmp imm32,an -> cmp imm16,an
|
||
and imm32,dn -> and imm16,dn
|
||
or imm32,dn -> or imm16,dn
|
||
xor imm32,dn -> xor imm16,dn
|
||
btst imm32,dn -> btst imm16,dn */
|
||
|
||
case 0xa0:
|
||
case 0xb0:
|
||
case 0xb1:
|
||
case 0xb2:
|
||
case 0xb3:
|
||
case 0xc0:
|
||
case 0xc8:
|
||
|
||
case 0xd0:
|
||
case 0xd8:
|
||
case 0xe0:
|
||
case 0xe1:
|
||
case 0xe2:
|
||
case 0xe3:
|
||
/* cmp imm16, an zero-extends the immediate. */
|
||
if (code == 0xdc
|
||
&& (long) value < 0)
|
||
continue;
|
||
|
||
/* So do sp-based offsets. */
|
||
if (code >= 0xb0 && code <= 0xb3
|
||
&& (long) value < 0)
|
||
continue;
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTOFF32)
|
||
? R_MN10300_GOTOFF16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOT32)
|
||
? R_MN10300_GOT16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTPC32)
|
||
? R_MN10300_GOTPC16 :
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
else if (code == 0xfe)
|
||
{
|
||
/* add imm32,sp -> add imm16,sp */
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
(ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOT32)
|
||
? R_MN10300_GOT16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTOFF32)
|
||
? R_MN10300_GOTOFF16
|
||
: (ELF32_R_TYPE (irel->r_info)
|
||
== (int) R_MN10300_GOTPC32)
|
||
? R_MN10300_GOTPC16 :
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (isymbuf);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
}
|
||
}
|
||
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (isymbuf != NULL
|
||
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (contents != NULL
|
||
&& elf_section_data (section)->this_hdr.contents != contents)
|
||
free (contents);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (section)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* This is a version of bfd_generic_get_relocated_section_contents
|
||
which uses mn10300_elf_relocate_section. */
|
||
|
||
static bfd_byte *
|
||
mn10300_elf_get_relocated_section_contents (bfd *output_bfd,
|
||
struct bfd_link_info *link_info,
|
||
struct bfd_link_order *link_order,
|
||
bfd_byte *data,
|
||
bfd_boolean relocatable,
|
||
asymbol **symbols)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
asection *input_section = link_order->u.indirect.section;
|
||
bfd *input_bfd = input_section->owner;
|
||
asection **sections = NULL;
|
||
Elf_Internal_Rela *internal_relocs = NULL;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
|
||
/* We only need to handle the case of relaxing, or of having a
|
||
particular set of section contents, specially. */
|
||
if (relocatable
|
||
|| elf_section_data (input_section)->this_hdr.contents == NULL)
|
||
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
|
||
link_order, data,
|
||
relocatable,
|
||
symbols);
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
|
||
memcpy (data, elf_section_data (input_section)->this_hdr.contents,
|
||
(size_t) input_section->size);
|
||
|
||
if ((input_section->flags & SEC_RELOC) != 0
|
||
&& input_section->reloc_count > 0)
|
||
{
|
||
asection **secpp;
|
||
Elf_Internal_Sym *isym, *isymend;
|
||
bfd_size_type amt;
|
||
|
||
internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section,
|
||
NULL, NULL, FALSE);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
if (symtab_hdr->sh_info != 0)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
amt = symtab_hdr->sh_info;
|
||
amt *= sizeof (asection *);
|
||
sections = bfd_malloc (amt);
|
||
if (sections == NULL && amt != 0)
|
||
goto error_return;
|
||
|
||
isymend = isymbuf + symtab_hdr->sh_info;
|
||
for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
|
||
{
|
||
asection *isec;
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
isec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
isec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
isec = bfd_com_section_ptr;
|
||
else
|
||
isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
|
||
|
||
*secpp = isec;
|
||
}
|
||
|
||
if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
|
||
input_section, data, internal_relocs,
|
||
isymbuf, sections))
|
||
goto error_return;
|
||
|
||
if (sections != NULL)
|
||
free (sections);
|
||
if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (internal_relocs != elf_section_data (input_section)->relocs)
|
||
free (internal_relocs);
|
||
}
|
||
|
||
return data;
|
||
|
||
error_return:
|
||
if (sections != NULL)
|
||
free (sections);
|
||
if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (internal_relocs != NULL
|
||
&& internal_relocs != elf_section_data (input_section)->relocs)
|
||
free (internal_relocs);
|
||
return NULL;
|
||
}
|
||
|
||
/* Assorted hash table functions. */
|
||
|
||
/* Initialize an entry in the link hash table. */
|
||
|
||
/* Create an entry in an MN10300 ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *ret =
|
||
(struct elf32_mn10300_link_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == NULL)
|
||
ret = (struct elf32_mn10300_link_hash_entry *)
|
||
bfd_hash_allocate (table, sizeof (* ret));
|
||
if (ret == NULL)
|
||
return (struct bfd_hash_entry *) ret;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = (struct elf32_mn10300_link_hash_entry *)
|
||
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
||
table, string);
|
||
if (ret != NULL)
|
||
{
|
||
ret->direct_calls = 0;
|
||
ret->stack_size = 0;
|
||
ret->movm_args = 0;
|
||
ret->movm_stack_size = 0;
|
||
ret->flags = 0;
|
||
ret->value = 0;
|
||
}
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Create an mn10300 ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf32_mn10300_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct elf32_mn10300_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (* ret);
|
||
|
||
ret = bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
||
elf32_mn10300_link_hash_newfunc,
|
||
sizeof (struct elf32_mn10300_link_hash_entry)))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
ret->flags = 0;
|
||
amt = sizeof (struct elf_link_hash_table);
|
||
ret->static_hash_table = bfd_malloc (amt);
|
||
if (ret->static_hash_table == NULL)
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
|
||
elf32_mn10300_link_hash_newfunc,
|
||
sizeof (struct elf32_mn10300_link_hash_entry)))
|
||
{
|
||
free (ret->static_hash_table);
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
return & ret->root.root;
|
||
}
|
||
|
||
/* Free an mn10300 ELF linker hash table. */
|
||
|
||
static void
|
||
elf32_mn10300_link_hash_table_free (struct bfd_link_hash_table *hash)
|
||
{
|
||
struct elf32_mn10300_link_hash_table *ret
|
||
= (struct elf32_mn10300_link_hash_table *) hash;
|
||
|
||
_bfd_generic_link_hash_table_free
|
||
((struct bfd_link_hash_table *) ret->static_hash_table);
|
||
_bfd_generic_link_hash_table_free
|
||
((struct bfd_link_hash_table *) ret);
|
||
}
|
||
|
||
static unsigned long
|
||
elf_mn10300_mach (flagword flags)
|
||
{
|
||
switch (flags & EF_MN10300_MACH)
|
||
{
|
||
case E_MN10300_MACH_MN10300:
|
||
default:
|
||
return bfd_mach_mn10300;
|
||
|
||
case E_MN10300_MACH_AM33:
|
||
return bfd_mach_am33;
|
||
|
||
case E_MN10300_MACH_AM33_2:
|
||
return bfd_mach_am33_2;
|
||
}
|
||
}
|
||
|
||
/* The final processing done just before writing out a MN10300 ELF object
|
||
file. This gets the MN10300 architecture right based on the machine
|
||
number. */
|
||
|
||
static void
|
||
_bfd_mn10300_elf_final_write_processing (bfd *abfd,
|
||
bfd_boolean linker ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned long val;
|
||
|
||
switch (bfd_get_mach (abfd))
|
||
{
|
||
default:
|
||
case bfd_mach_mn10300:
|
||
val = E_MN10300_MACH_MN10300;
|
||
break;
|
||
|
||
case bfd_mach_am33:
|
||
val = E_MN10300_MACH_AM33;
|
||
break;
|
||
|
||
case bfd_mach_am33_2:
|
||
val = E_MN10300_MACH_AM33_2;
|
||
break;
|
||
}
|
||
|
||
elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
|
||
elf_elfheader (abfd)->e_flags |= val;
|
||
}
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_object_p (bfd *abfd)
|
||
{
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
|
||
elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
|
||
return TRUE;
|
||
}
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
|
||
{
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return TRUE;
|
||
|
||
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
||
&& bfd_get_mach (obfd) < bfd_get_mach (ibfd))
|
||
{
|
||
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
||
bfd_get_mach (ibfd)))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
#define PLT0_ENTRY_SIZE 15
|
||
#define PLT_ENTRY_SIZE 20
|
||
#define PIC_PLT_ENTRY_SIZE 24
|
||
|
||
static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] =
|
||
{
|
||
0xfc, 0xa0, 0, 0, 0, 0, /* mov (.got+8),a0 */
|
||
0xfe, 0xe, 0x10, 0, 0, 0, 0, /* mov (.got+4),r1 */
|
||
0xf0, 0xf4, /* jmp (a0) */
|
||
};
|
||
|
||
static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xfc, 0xa0, 0, 0, 0, 0, /* mov (nameN@GOT + .got),a0 */
|
||
0xf0, 0xf4, /* jmp (a0) */
|
||
0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
|
||
0xdc, 0, 0, 0, 0, /* jmp .plt0 */
|
||
};
|
||
|
||
static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] =
|
||
{
|
||
0xfc, 0x22, 0, 0, 0, 0, /* mov (nameN@GOT,a2),a0 */
|
||
0xf0, 0xf4, /* jmp (a0) */
|
||
0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
|
||
0xf8, 0x22, 8, /* mov (8,a2),a0 */
|
||
0xfb, 0xa, 0x1a, 4, /* mov (4,a2),r1 */
|
||
0xf0, 0xf4, /* jmp (a0) */
|
||
};
|
||
|
||
/* Return size of the first PLT entry. */
|
||
#define elf_mn10300_sizeof_plt0(info) \
|
||
(info->shared ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE)
|
||
|
||
/* Return size of a PLT entry. */
|
||
#define elf_mn10300_sizeof_plt(info) \
|
||
(info->shared ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE)
|
||
|
||
/* Return offset of the PLT0 address in an absolute PLT entry. */
|
||
#define elf_mn10300_plt_plt0_offset(info) 16
|
||
|
||
/* Return offset of the linker in PLT0 entry. */
|
||
#define elf_mn10300_plt0_linker_offset(info) 2
|
||
|
||
/* Return offset of the GOT id in PLT0 entry. */
|
||
#define elf_mn10300_plt0_gotid_offset(info) 9
|
||
|
||
/* Return offset of the temporary in PLT entry. */
|
||
#define elf_mn10300_plt_temp_offset(info) 8
|
||
|
||
/* Return offset of the symbol in PLT entry. */
|
||
#define elf_mn10300_plt_symbol_offset(info) 2
|
||
|
||
/* Return offset of the relocation in PLT entry. */
|
||
#define elf_mn10300_plt_reloc_offset(info) 11
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
|
||
|
||
/* Create dynamic sections when linking against a dynamic object. */
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
flagword flags;
|
||
asection * s;
|
||
const struct elf_backend_data * bed = get_elf_backend_data (abfd);
|
||
int ptralign = 0;
|
||
|
||
switch (bed->s->arch_size)
|
||
{
|
||
case 32:
|
||
ptralign = 2;
|
||
break;
|
||
|
||
case 64:
|
||
ptralign = 3;
|
||
break;
|
||
|
||
default:
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
|
||
.rel[a].bss sections. */
|
||
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED);
|
||
|
||
s = bfd_make_section_with_flags (abfd,
|
||
(bed->default_use_rela_p
|
||
? ".rela.plt" : ".rel.plt"),
|
||
flags | SEC_READONLY);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s, ptralign))
|
||
return FALSE;
|
||
|
||
if (! _bfd_mn10300_elf_create_got_section (abfd, info))
|
||
return FALSE;
|
||
|
||
{
|
||
const char * secname;
|
||
char * relname;
|
||
flagword secflags;
|
||
asection * sec;
|
||
|
||
for (sec = abfd->sections; sec; sec = sec->next)
|
||
{
|
||
secflags = bfd_get_section_flags (abfd, sec);
|
||
if ((secflags & (SEC_DATA | SEC_LINKER_CREATED))
|
||
|| ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS))
|
||
continue;
|
||
|
||
secname = bfd_get_section_name (abfd, sec);
|
||
relname = bfd_malloc (strlen (secname) + 6);
|
||
strcpy (relname, ".rela");
|
||
strcat (relname, secname);
|
||
|
||
s = bfd_make_section_with_flags (abfd, relname,
|
||
flags | SEC_READONLY);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s, ptralign))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (bed->want_dynbss)
|
||
{
|
||
/* The .dynbss section is a place to put symbols which are defined
|
||
by dynamic objects, are referenced by regular objects, and are
|
||
not functions. We must allocate space for them in the process
|
||
image and use a R_*_COPY reloc to tell the dynamic linker to
|
||
initialize them at run time. The linker script puts the .dynbss
|
||
section into the .bss section of the final image. */
|
||
s = bfd_make_section_with_flags (abfd, ".dynbss",
|
||
SEC_ALLOC | SEC_LINKER_CREATED);
|
||
if (s == NULL)
|
||
return FALSE;
|
||
|
||
/* The .rel[a].bss section holds copy relocs. This section is not
|
||
normally needed. We need to create it here, though, so that the
|
||
linker will map it to an output section. We can't just create it
|
||
only if we need it, because we will not know whether we need it
|
||
until we have seen all the input files, and the first time the
|
||
main linker code calls BFD after examining all the input files
|
||
(size_dynamic_sections) the input sections have already been
|
||
mapped to the output sections. If the section turns out not to
|
||
be needed, we can discard it later. We will never need this
|
||
section when generating a shared object, since they do not use
|
||
copy relocs. */
|
||
if (! info->shared)
|
||
{
|
||
s = bfd_make_section_with_flags (abfd,
|
||
(bed->default_use_rela_p
|
||
? ".rela.bss" : ".rel.bss"),
|
||
flags | SEC_READONLY);
|
||
if (s == NULL
|
||
|| ! bfd_set_section_alignment (abfd, s, ptralign))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info,
|
||
struct elf_link_hash_entry * h)
|
||
{
|
||
bfd * dynobj;
|
||
asection * s;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
/* Make sure we know what is going on here. */
|
||
BFD_ASSERT (dynobj != NULL
|
||
&& (h->needs_plt
|
||
|| h->u.weakdef != NULL
|
||
|| (h->def_dynamic
|
||
&& h->ref_regular
|
||
&& !h->def_regular)));
|
||
|
||
/* If this is a function, put it in the procedure linkage table. We
|
||
will fill in the contents of the procedure linkage table later,
|
||
when we know the address of the .got section. */
|
||
if (h->type == STT_FUNC
|
||
|| h->needs_plt)
|
||
{
|
||
if (! info->shared
|
||
&& !h->def_dynamic
|
||
&& !h->ref_dynamic)
|
||
{
|
||
/* This case can occur if we saw a PLT reloc in an input
|
||
file, but the symbol was never referred to by a dynamic
|
||
object. In such a case, we don't actually need to build
|
||
a procedure linkage table, and we can just do a REL32
|
||
reloc instead. */
|
||
BFD_ASSERT (h->needs_plt);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Make sure this symbol is output as a dynamic symbol. */
|
||
if (h->dynindx == -1)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".plt");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
/* If this is the first .plt entry, make room for the special
|
||
first entry. */
|
||
if (s->size == 0)
|
||
s->size += elf_mn10300_sizeof_plt0 (info);
|
||
|
||
/* If this symbol is not defined in a regular file, and we are
|
||
not generating a shared library, then set the symbol to this
|
||
location in the .plt. This is required to make function
|
||
pointers compare as equal between the normal executable and
|
||
the shared library. */
|
||
if (! info->shared
|
||
&& !h->def_regular)
|
||
{
|
||
h->root.u.def.section = s;
|
||
h->root.u.def.value = s->size;
|
||
}
|
||
|
||
h->plt.offset = s->size;
|
||
|
||
/* Make room for this entry. */
|
||
s->size += elf_mn10300_sizeof_plt (info);
|
||
|
||
/* We also need to make an entry in the .got.plt section, which
|
||
will be placed in the .got section by the linker script. */
|
||
s = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
BFD_ASSERT (s != NULL);
|
||
s->size += 4;
|
||
|
||
/* We also need to make an entry in the .rela.plt section. */
|
||
s = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
BFD_ASSERT (s != NULL);
|
||
s->size += sizeof (Elf32_External_Rela);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->u.weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
||
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object which
|
||
is not a function. */
|
||
|
||
/* If we are creating a shared library, we must presume that the
|
||
only references to the symbol are via the global offset table.
|
||
For such cases we need not do anything here; the relocations will
|
||
be handled correctly by relocate_section. */
|
||
if (info->shared)
|
||
return TRUE;
|
||
|
||
/* If there are no references to this symbol that do not use the
|
||
GOT, we don't need to generate a copy reloc. */
|
||
if (!h->non_got_ref)
|
||
return TRUE;
|
||
|
||
if (h->size == 0)
|
||
{
|
||
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
|
||
h->root.root.string);
|
||
return TRUE;
|
||
}
|
||
|
||
/* We must allocate the symbol in our .dynbss section, which will
|
||
become part of the .bss section of the executable. There will be
|
||
an entry for this symbol in the .dynsym section. The dynamic
|
||
object will contain position independent code, so all references
|
||
from the dynamic object to this symbol will go through the global
|
||
offset table. The dynamic linker will use the .dynsym entry to
|
||
determine the address it must put in the global offset table, so
|
||
both the dynamic object and the regular object will refer to the
|
||
same memory location for the variable. */
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".dynbss");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
/* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to
|
||
copy the initial value out of the dynamic object and into the
|
||
runtime process image. We need to remember the offset into the
|
||
.rela.bss section we are going to use. */
|
||
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
asection * srel;
|
||
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.bss");
|
||
BFD_ASSERT (srel != NULL);
|
||
srel->size += sizeof (Elf32_External_Rela);
|
||
h->needs_copy = 1;
|
||
}
|
||
|
||
return _bfd_elf_adjust_dynamic_copy (h, s);
|
||
}
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd,
|
||
struct bfd_link_info * info)
|
||
{
|
||
bfd * dynobj;
|
||
asection * s;
|
||
bfd_boolean plt;
|
||
bfd_boolean relocs;
|
||
bfd_boolean reltext;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
BFD_ASSERT (dynobj != NULL);
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (info->executable)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
BFD_ASSERT (s != NULL);
|
||
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We may have created entries in the .rela.got section.
|
||
However, if we are not creating the dynamic sections, we will
|
||
not actually use these entries. Reset the size of .rela.got,
|
||
which will cause it to get stripped from the output file
|
||
below. */
|
||
s = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
if (s != NULL)
|
||
s->size = 0;
|
||
}
|
||
|
||
/* The check_relocs and adjust_dynamic_symbol entry points have
|
||
determined the sizes of the various dynamic sections. Allocate
|
||
memory for them. */
|
||
plt = FALSE;
|
||
relocs = FALSE;
|
||
reltext = FALSE;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
const char * name;
|
||
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
/* It's OK to base decisions on the section name, because none
|
||
of the dynobj section names depend upon the input files. */
|
||
name = bfd_get_section_name (dynobj, s);
|
||
|
||
if (streq (name, ".plt"))
|
||
{
|
||
/* Remember whether there is a PLT. */
|
||
plt = s->size != 0;
|
||
}
|
||
else if (CONST_STRNEQ (name, ".rela"))
|
||
{
|
||
if (s->size != 0)
|
||
{
|
||
asection * target;
|
||
|
||
/* Remember whether there are any reloc sections other
|
||
than .rela.plt. */
|
||
if (! streq (name, ".rela.plt"))
|
||
{
|
||
const char * outname;
|
||
|
||
relocs = TRUE;
|
||
|
||
/* If this relocation section applies to a read only
|
||
section, then we probably need a DT_TEXTREL
|
||
entry. The entries in the .rela.plt section
|
||
really apply to the .got section, which we
|
||
created ourselves and so know is not readonly. */
|
||
outname = bfd_get_section_name (output_bfd,
|
||
s->output_section);
|
||
target = bfd_get_section_by_name (output_bfd, outname + 5);
|
||
if (target != NULL
|
||
&& (target->flags & SEC_READONLY) != 0
|
||
&& (target->flags & SEC_ALLOC) != 0)
|
||
reltext = TRUE;
|
||
}
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
}
|
||
else if (! CONST_STRNEQ (name, ".got")
|
||
&& ! streq (name, ".dynbss"))
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
|
||
if (s->size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the
|
||
output file. This is mostly to handle .rela.bss and
|
||
.rela.plt. We must create both sections in
|
||
create_dynamic_sections, because they must be created
|
||
before the linker maps input sections to output
|
||
sections. The linker does that before
|
||
adjust_dynamic_symbol is called, and it is that
|
||
function which decides whether anything needs to go
|
||
into these sections. */
|
||
s->flags |= SEC_EXCLUDE;
|
||
continue;
|
||
}
|
||
|
||
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
||
continue;
|
||
|
||
/* Allocate memory for the section contents. We use bfd_zalloc
|
||
here in case unused entries are not reclaimed before the
|
||
section's contents are written out. This should not happen,
|
||
but this way if it does, we get a R_MN10300_NONE reloc
|
||
instead of garbage. */
|
||
s->contents = bfd_zalloc (dynobj, s->size);
|
||
if (s->contents == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in _bfd_mn10300_elf_finish_dynamic_sections,
|
||
but we must add the entries now so that we get the correct
|
||
size for the .dynamic section. The DT_DEBUG entry is filled
|
||
in by the dynamic linker and used by the debugger. */
|
||
if (! info->shared)
|
||
{
|
||
if (!_bfd_elf_add_dynamic_entry (info, DT_DEBUG, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (plt)
|
||
{
|
||
if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0)
|
||
|| !_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|
||
|| !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
|
||
|| !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relocs)
|
||
{
|
||
if (!_bfd_elf_add_dynamic_entry (info, DT_RELA, 0)
|
||
|| !_bfd_elf_add_dynamic_entry (info, DT_RELASZ, 0)
|
||
|| !_bfd_elf_add_dynamic_entry (info, DT_RELAENT,
|
||
sizeof (Elf32_External_Rela)))
|
||
return FALSE;
|
||
}
|
||
|
||
if (reltext)
|
||
{
|
||
if (!_bfd_elf_add_dynamic_entry (info, DT_TEXTREL, 0))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd,
|
||
struct bfd_link_info * info,
|
||
struct elf_link_hash_entry * h,
|
||
Elf_Internal_Sym * sym)
|
||
{
|
||
bfd * dynobj;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
asection * splt;
|
||
asection * sgot;
|
||
asection * srel;
|
||
bfd_vma plt_index;
|
||
bfd_vma got_offset;
|
||
Elf_Internal_Rela rel;
|
||
|
||
/* This symbol has an entry in the procedure linkage table. Set
|
||
it up. */
|
||
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
|
||
|
||
/* Get the index in the procedure linkage table which
|
||
corresponds to this symbol. This is the index of this symbol
|
||
in all the symbols for which we are making plt entries. The
|
||
first entry in the procedure linkage table is reserved. */
|
||
plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info))
|
||
/ elf_mn10300_sizeof_plt (info));
|
||
|
||
/* Get the offset into the .got table of the entry that
|
||
corresponds to this function. Each .got entry is 4 bytes.
|
||
The first three are reserved. */
|
||
got_offset = (plt_index + 3) * 4;
|
||
|
||
/* Fill in the entry in the procedure linkage table. */
|
||
if (! info->shared)
|
||
{
|
||
memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry,
|
||
elf_mn10300_sizeof_plt (info));
|
||
bfd_put_32 (output_bfd,
|
||
(sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ got_offset),
|
||
(splt->contents + h->plt.offset
|
||
+ elf_mn10300_plt_symbol_offset (info)));
|
||
|
||
bfd_put_32 (output_bfd,
|
||
(1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)),
|
||
(splt->contents + h->plt.offset
|
||
+ elf_mn10300_plt_plt0_offset (info)));
|
||
}
|
||
else
|
||
{
|
||
memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry,
|
||
elf_mn10300_sizeof_plt (info));
|
||
|
||
bfd_put_32 (output_bfd, got_offset,
|
||
(splt->contents + h->plt.offset
|
||
+ elf_mn10300_plt_symbol_offset (info)));
|
||
}
|
||
|
||
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
|
||
(splt->contents + h->plt.offset
|
||
+ elf_mn10300_plt_reloc_offset (info)));
|
||
|
||
/* Fill in the entry in the global offset table. */
|
||
bfd_put_32 (output_bfd,
|
||
(splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ h->plt.offset
|
||
+ elf_mn10300_plt_temp_offset (info)),
|
||
sgot->contents + got_offset);
|
||
|
||
/* Fill in the entry in the .rela.plt section. */
|
||
rel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ got_offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT);
|
||
rel.r_addend = 0;
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel,
|
||
(bfd_byte *) ((Elf32_External_Rela *) srel->contents
|
||
+ plt_index));
|
||
|
||
if (!h->def_regular)
|
||
/* Mark the symbol as undefined, rather than as defined in
|
||
the .plt section. Leave the value alone. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
}
|
||
|
||
if (h->got.offset != (bfd_vma) -1)
|
||
{
|
||
asection * sgot;
|
||
asection * srel;
|
||
Elf_Internal_Rela rel;
|
||
|
||
/* This symbol has an entry in the global offset table. Set it up. */
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (sgot != NULL && srel != NULL);
|
||
|
||
rel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ (h->got.offset & ~1));
|
||
|
||
/* If this is a -Bsymbolic link, and the symbol is defined
|
||
locally, we just want to emit a RELATIVE reloc. Likewise if
|
||
the symbol was forced to be local because of a version file.
|
||
The entry in the global offset table will already have been
|
||
initialized in the relocate_section function. */
|
||
if (info->shared
|
||
&& (info->symbolic || h->dynindx == -1)
|
||
&& h->def_regular)
|
||
{
|
||
rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
|
||
rel.r_addend = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT);
|
||
rel.r_addend = 0;
|
||
}
|
||
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rel,
|
||
(bfd_byte *) ((Elf32_External_Rela *) srel->contents
|
||
+ srel->reloc_count));
|
||
++ srel->reloc_count;
|
||
}
|
||
|
||
if (h->needs_copy)
|
||
{
|
||
asection * s;
|
||
Elf_Internal_Rela rel;
|
||
|
||
/* This symbol needs a copy reloc. Set it up. */
|
||
BFD_ASSERT (h->dynindx != -1
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak));
|
||
|
||
s = bfd_get_section_by_name (h->root.u.def.section->owner,
|
||
".rela.bss");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
rel.r_offset = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY);
|
||
rel.r_addend = 0;
|
||
bfd_elf32_swap_reloca_out (output_bfd, & rel,
|
||
(bfd_byte *) ((Elf32_External_Rela *) s->contents
|
||
+ s->reloc_count));
|
||
++ s->reloc_count;
|
||
}
|
||
|
||
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
||
if (streq (h->root.root.string, "_DYNAMIC")
|
||
|| h == elf_hash_table (info)->hgot)
|
||
sym->st_shndx = SHN_ABS;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
_bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd,
|
||
struct bfd_link_info * info)
|
||
{
|
||
bfd * dynobj;
|
||
asection * sgot;
|
||
asection * sdyn;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
BFD_ASSERT (sgot != NULL);
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
asection * splt;
|
||
Elf32_External_Dyn * dyncon;
|
||
Elf32_External_Dyn * dynconend;
|
||
|
||
BFD_ASSERT (sdyn != NULL);
|
||
|
||
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
||
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char * name;
|
||
asection * s;
|
||
|
||
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case DT_PLTGOT:
|
||
name = ".got";
|
||
goto get_vma;
|
||
|
||
case DT_JMPREL:
|
||
name = ".rela.plt";
|
||
get_vma:
|
||
s = bfd_get_section_by_name (output_bfd, name);
|
||
BFD_ASSERT (s != NULL);
|
||
dyn.d_un.d_ptr = s->vma;
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
s = bfd_get_section_by_name (output_bfd, ".rela.plt");
|
||
BFD_ASSERT (s != NULL);
|
||
dyn.d_un.d_val = s->size;
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_RELASZ:
|
||
/* My reading of the SVR4 ABI indicates that the
|
||
procedure linkage table relocs (DT_JMPREL) should be
|
||
included in the overall relocs (DT_RELA). This is
|
||
what Solaris does. However, UnixWare can not handle
|
||
that case. Therefore, we override the DT_RELASZ entry
|
||
here to make it not include the JMPREL relocs. Since
|
||
the linker script arranges for .rela.plt to follow all
|
||
other relocation sections, we don't have to worry
|
||
about changing the DT_RELA entry. */
|
||
s = bfd_get_section_by_name (output_bfd, ".rela.plt");
|
||
if (s != NULL)
|
||
dyn.d_un.d_val -= s->size;
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Fill in the first entry in the procedure linkage table. */
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
if (splt && splt->size > 0)
|
||
{
|
||
if (info->shared)
|
||
{
|
||
memcpy (splt->contents, elf_mn10300_pic_plt_entry,
|
||
elf_mn10300_sizeof_plt (info));
|
||
}
|
||
else
|
||
{
|
||
memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE);
|
||
bfd_put_32 (output_bfd,
|
||
sgot->output_section->vma + sgot->output_offset + 4,
|
||
splt->contents + elf_mn10300_plt0_gotid_offset (info));
|
||
bfd_put_32 (output_bfd,
|
||
sgot->output_section->vma + sgot->output_offset + 8,
|
||
splt->contents + elf_mn10300_plt0_linker_offset (info));
|
||
}
|
||
|
||
/* UnixWare sets the entsize of .plt to 4, although that doesn't
|
||
really seem like the right value. */
|
||
elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
|
||
}
|
||
}
|
||
|
||
/* Fill in the first three entries in the global offset table. */
|
||
if (sgot->size > 0)
|
||
{
|
||
if (sdyn == NULL)
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
|
||
else
|
||
bfd_put_32 (output_bfd,
|
||
sdyn->output_section->vma + sdyn->output_offset,
|
||
sgot->contents);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
|
||
}
|
||
|
||
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Classify relocation types, such that combreloc can sort them
|
||
properly. */
|
||
|
||
static enum elf_reloc_type_class
|
||
_bfd_mn10300_elf_reloc_type_class (const Elf_Internal_Rela *rela)
|
||
{
|
||
switch ((int) ELF32_R_TYPE (rela->r_info))
|
||
{
|
||
case R_MN10300_RELATIVE: return reloc_class_relative;
|
||
case R_MN10300_JMP_SLOT: return reloc_class_plt;
|
||
case R_MN10300_COPY: return reloc_class_copy;
|
||
default: return reloc_class_normal;
|
||
}
|
||
}
|
||
|
||
#ifndef ELF_ARCH
|
||
#define TARGET_LITTLE_SYM bfd_elf32_mn10300_vec
|
||
#define TARGET_LITTLE_NAME "elf32-mn10300"
|
||
#define ELF_ARCH bfd_arch_mn10300
|
||
#define ELF_MACHINE_CODE EM_MN10300
|
||
#define ELF_MACHINE_ALT1 EM_CYGNUS_MN10300
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
#endif
|
||
|
||
#define elf_info_to_howto mn10300_info_to_howto
|
||
#define elf_info_to_howto_rel 0
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_rela_normal 1
|
||
#define elf_backend_check_relocs mn10300_elf_check_relocs
|
||
#define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook
|
||
#define elf_backend_relocate_section mn10300_elf_relocate_section
|
||
#define bfd_elf32_bfd_relax_section mn10300_elf_relax_section
|
||
#define bfd_elf32_bfd_get_relocated_section_contents \
|
||
mn10300_elf_get_relocated_section_contents
|
||
#define bfd_elf32_bfd_link_hash_table_create \
|
||
elf32_mn10300_link_hash_table_create
|
||
#define bfd_elf32_bfd_link_hash_table_free \
|
||
elf32_mn10300_link_hash_table_free
|
||
|
||
#ifndef elf_symbol_leading_char
|
||
#define elf_symbol_leading_char '_'
|
||
#endif
|
||
|
||
/* So we can set bits in e_flags. */
|
||
#define elf_backend_final_write_processing \
|
||
_bfd_mn10300_elf_final_write_processing
|
||
#define elf_backend_object_p _bfd_mn10300_elf_object_p
|
||
|
||
#define bfd_elf32_bfd_merge_private_bfd_data \
|
||
_bfd_mn10300_elf_merge_private_bfd_data
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_create_dynamic_sections \
|
||
_bfd_mn10300_elf_create_dynamic_sections
|
||
#define elf_backend_adjust_dynamic_symbol \
|
||
_bfd_mn10300_elf_adjust_dynamic_symbol
|
||
#define elf_backend_size_dynamic_sections \
|
||
_bfd_mn10300_elf_size_dynamic_sections
|
||
#define elf_backend_omit_section_dynsym \
|
||
((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
|
||
#define elf_backend_finish_dynamic_symbol \
|
||
_bfd_mn10300_elf_finish_dynamic_symbol
|
||
#define elf_backend_finish_dynamic_sections \
|
||
_bfd_mn10300_elf_finish_dynamic_sections
|
||
|
||
#define elf_backend_reloc_type_class \
|
||
_bfd_mn10300_elf_reloc_type_class
|
||
|
||
#define elf_backend_want_got_plt 1
|
||
#define elf_backend_plt_readonly 1
|
||
#define elf_backend_want_plt_sym 0
|
||
#define elf_backend_got_header_size 12
|
||
|
||
#include "elf32-target.h"
|