mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
61f4b35041
This changes copy_name to return a std::string, updating all the callers. In some cases, an extra copy was removed. This also required a little bit of constification. Tested by the buildbot. gdb/ChangeLog 2019-04-19 Tom Tromey <tom@tromey.com> * type-stack.h (struct type_stack) <insert>: Constify string. * type-stack.c (type_stack::insert): Constify string. * gdbtypes.h (lookup_template_type): Update. (address_space_name_to_int): Update. * gdbtypes.c (address_space_name_to_int): Make space_identifier const. (lookup_template_type): Make name const. * c-exp.y: Update rules. (lex_one_token, classify_name, classify_inner_name) (c_print_token): Update. * p-exp.y: Update rules. (yylex): Update. * f-exp.y: Update rules. (yylex): Update. * d-exp.y: Update rules. (lex_one_token, classify_name, classify_inner_name): Update. * parse.c (write_dollar_variable, copy_name): Return std::string. * parser-defs.h (copy_name): Change return type. * m2-exp.y: Update rules. (yylex): Update. * go-exp.y (lex_one_token): Update. Update rules. (classify_unsafe_function, classify_packaged_name) (classify_name, yylex): Update.
1751 lines
46 KiB
Plaintext
1751 lines
46 KiB
Plaintext
/* YACC parser for Pascal expressions, for GDB.
|
||
Copyright (C) 2000-2019 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file is derived from c-exp.y */
|
||
|
||
/* Parse a Pascal expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result.
|
||
|
||
Note that malloc's and realloc's in this file are transformed to
|
||
xmalloc and xrealloc respectively by the same sed command in the
|
||
makefile that remaps any other malloc/realloc inserted by the parser
|
||
generator. Doing this with #defines and trying to control the interaction
|
||
with include files (<malloc.h> and <stdlib.h> for example) just became
|
||
too messy, particularly when such includes can be inserted at random
|
||
times by the parser generator. */
|
||
|
||
/* Known bugs or limitations:
|
||
- pascal string operations are not supported at all.
|
||
- there are some problems with boolean types.
|
||
- Pascal type hexadecimal constants are not supported
|
||
because they conflict with the internal variables format.
|
||
Probably also lots of other problems, less well defined PM. */
|
||
%{
|
||
|
||
#include "defs.h"
|
||
#include <ctype.h>
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "p-lang.h"
|
||
#include "bfd.h" /* Required by objfiles.h. */
|
||
#include "symfile.h" /* Required by objfiles.h. */
|
||
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
|
||
#include "block.h"
|
||
#include "completer.h"
|
||
|
||
#define parse_type(ps) builtin_type (ps->gdbarch ())
|
||
|
||
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
|
||
etc). */
|
||
#define GDB_YY_REMAP_PREFIX pascal_
|
||
#include "yy-remap.h"
|
||
|
||
/* The state of the parser, used internally when we are parsing the
|
||
expression. */
|
||
|
||
static struct parser_state *pstate = NULL;
|
||
|
||
/* Depth of parentheses. */
|
||
static int paren_depth;
|
||
|
||
int yyparse (void);
|
||
|
||
static int yylex (void);
|
||
|
||
static void yyerror (const char *);
|
||
|
||
static char *uptok (const char *, int);
|
||
%}
|
||
|
||
/* Although the yacc "value" of an expression is not used,
|
||
since the result is stored in the structure being created,
|
||
other node types do have values. */
|
||
|
||
%union
|
||
{
|
||
LONGEST lval;
|
||
struct {
|
||
LONGEST val;
|
||
struct type *type;
|
||
} typed_val_int;
|
||
struct {
|
||
gdb_byte val[16];
|
||
struct type *type;
|
||
} typed_val_float;
|
||
struct symbol *sym;
|
||
struct type *tval;
|
||
struct stoken sval;
|
||
struct ttype tsym;
|
||
struct symtoken ssym;
|
||
int voidval;
|
||
const struct block *bval;
|
||
enum exp_opcode opcode;
|
||
struct internalvar *ivar;
|
||
|
||
struct type **tvec;
|
||
int *ivec;
|
||
}
|
||
|
||
%{
|
||
/* YYSTYPE gets defined by %union */
|
||
static int parse_number (struct parser_state *,
|
||
const char *, int, int, YYSTYPE *);
|
||
|
||
static struct type *current_type;
|
||
static struct internalvar *intvar;
|
||
static int leftdiv_is_integer;
|
||
static void push_current_type (void);
|
||
static void pop_current_type (void);
|
||
static int search_field;
|
||
%}
|
||
|
||
%type <voidval> exp exp1 type_exp start normal_start variable qualified_name
|
||
%type <tval> type typebase
|
||
/* %type <bval> block */
|
||
|
||
/* Fancy type parsing. */
|
||
%type <tval> ptype
|
||
|
||
%token <typed_val_int> INT
|
||
%token <typed_val_float> FLOAT
|
||
|
||
/* Both NAME and TYPENAME tokens represent symbols in the input,
|
||
and both convey their data as strings.
|
||
But a TYPENAME is a string that happens to be defined as a typedef
|
||
or builtin type name (such as int or char)
|
||
and a NAME is any other symbol.
|
||
Contexts where this distinction is not important can use the
|
||
nonterminal "name", which matches either NAME or TYPENAME. */
|
||
|
||
%token <sval> STRING
|
||
%token <sval> FIELDNAME
|
||
%token <voidval> COMPLETE
|
||
%token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
|
||
%token <tsym> TYPENAME
|
||
%type <sval> name
|
||
%type <ssym> name_not_typename
|
||
|
||
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
|
||
but which would parse as a valid number in the current input radix.
|
||
E.g. "c" when input_radix==16. Depending on the parse, it will be
|
||
turned into a name or into a number. */
|
||
|
||
%token <ssym> NAME_OR_INT
|
||
|
||
%token STRUCT CLASS SIZEOF COLONCOLON
|
||
%token ERROR
|
||
|
||
/* Special type cases, put in to allow the parser to distinguish different
|
||
legal basetypes. */
|
||
|
||
%token <voidval> DOLLAR_VARIABLE
|
||
|
||
|
||
/* Object pascal */
|
||
%token THIS
|
||
%token <lval> TRUEKEYWORD FALSEKEYWORD
|
||
|
||
%left ','
|
||
%left ABOVE_COMMA
|
||
%right ASSIGN
|
||
%left NOT
|
||
%left OR
|
||
%left XOR
|
||
%left ANDAND
|
||
%left '=' NOTEQUAL
|
||
%left '<' '>' LEQ GEQ
|
||
%left LSH RSH DIV MOD
|
||
%left '@'
|
||
%left '+' '-'
|
||
%left '*' '/'
|
||
%right UNARY INCREMENT DECREMENT
|
||
%right ARROW '.' '[' '('
|
||
%left '^'
|
||
%token <ssym> BLOCKNAME
|
||
%type <bval> block
|
||
%left COLONCOLON
|
||
|
||
|
||
%%
|
||
|
||
start : { current_type = NULL;
|
||
intvar = NULL;
|
||
search_field = 0;
|
||
leftdiv_is_integer = 0;
|
||
}
|
||
normal_start {}
|
||
;
|
||
|
||
normal_start :
|
||
exp1
|
||
| type_exp
|
||
;
|
||
|
||
type_exp: type
|
||
{ write_exp_elt_opcode (pstate, OP_TYPE);
|
||
write_exp_elt_type (pstate, $1);
|
||
write_exp_elt_opcode (pstate, OP_TYPE);
|
||
current_type = $1; } ;
|
||
|
||
/* Expressions, including the comma operator. */
|
||
exp1 : exp
|
||
| exp1 ',' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_COMMA); }
|
||
;
|
||
|
||
/* Expressions, not including the comma operator. */
|
||
exp : exp '^' %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_IND);
|
||
if (current_type)
|
||
current_type = TYPE_TARGET_TYPE (current_type); }
|
||
;
|
||
|
||
exp : '@' exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_ADDR);
|
||
if (current_type)
|
||
current_type = TYPE_POINTER_TYPE (current_type); }
|
||
;
|
||
|
||
exp : '-' exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_NEG); }
|
||
;
|
||
|
||
exp : NOT exp %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
|
||
;
|
||
|
||
exp : INCREMENT '(' exp ')' %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
|
||
;
|
||
|
||
exp : DECREMENT '(' exp ')' %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
|
||
;
|
||
|
||
|
||
field_exp : exp '.' %prec UNARY
|
||
{ search_field = 1; }
|
||
;
|
||
|
||
exp : field_exp FIELDNAME
|
||
{ write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
write_exp_string (pstate, $2);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
search_field = 0;
|
||
if (current_type)
|
||
{
|
||
while (TYPE_CODE (current_type)
|
||
== TYPE_CODE_PTR)
|
||
current_type =
|
||
TYPE_TARGET_TYPE (current_type);
|
||
current_type = lookup_struct_elt_type (
|
||
current_type, $2.ptr, 0);
|
||
}
|
||
}
|
||
;
|
||
|
||
|
||
exp : field_exp name
|
||
{ write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
write_exp_string (pstate, $2);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
search_field = 0;
|
||
if (current_type)
|
||
{
|
||
while (TYPE_CODE (current_type)
|
||
== TYPE_CODE_PTR)
|
||
current_type =
|
||
TYPE_TARGET_TYPE (current_type);
|
||
current_type = lookup_struct_elt_type (
|
||
current_type, $2.ptr, 0);
|
||
}
|
||
}
|
||
;
|
||
exp : field_exp name COMPLETE
|
||
{ pstate->mark_struct_expression ();
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
write_exp_string (pstate, $2);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
|
||
;
|
||
exp : field_exp COMPLETE
|
||
{ struct stoken s;
|
||
pstate->mark_struct_expression ();
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
s.ptr = "";
|
||
s.length = 0;
|
||
write_exp_string (pstate, s);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
|
||
;
|
||
|
||
exp : exp '['
|
||
/* We need to save the current_type value. */
|
||
{ const char *arrayname;
|
||
int arrayfieldindex;
|
||
arrayfieldindex = is_pascal_string_type (
|
||
current_type, NULL, NULL,
|
||
NULL, NULL, &arrayname);
|
||
if (arrayfieldindex)
|
||
{
|
||
struct stoken stringsval;
|
||
char *buf;
|
||
|
||
buf = (char *) alloca (strlen (arrayname) + 1);
|
||
stringsval.ptr = buf;
|
||
stringsval.length = strlen (arrayname);
|
||
strcpy (buf, arrayname);
|
||
current_type = TYPE_FIELD_TYPE (current_type,
|
||
arrayfieldindex - 1);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
write_exp_string (pstate, stringsval);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
}
|
||
push_current_type (); }
|
||
exp1 ']'
|
||
{ pop_current_type ();
|
||
write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
|
||
if (current_type)
|
||
current_type = TYPE_TARGET_TYPE (current_type); }
|
||
;
|
||
|
||
exp : exp '('
|
||
/* This is to save the value of arglist_len
|
||
being accumulated by an outer function call. */
|
||
{ push_current_type ();
|
||
pstate->start_arglist (); }
|
||
arglist ')' %prec ARROW
|
||
{ write_exp_elt_opcode (pstate, OP_FUNCALL);
|
||
write_exp_elt_longcst (pstate,
|
||
pstate->end_arglist ());
|
||
write_exp_elt_opcode (pstate, OP_FUNCALL);
|
||
pop_current_type ();
|
||
if (current_type)
|
||
current_type = TYPE_TARGET_TYPE (current_type);
|
||
}
|
||
;
|
||
|
||
arglist :
|
||
| exp
|
||
{ pstate->arglist_len = 1; }
|
||
| arglist ',' exp %prec ABOVE_COMMA
|
||
{ pstate->arglist_len++; }
|
||
;
|
||
|
||
exp : type '(' exp ')' %prec UNARY
|
||
{ if (current_type)
|
||
{
|
||
/* Allow automatic dereference of classes. */
|
||
if ((TYPE_CODE (current_type) == TYPE_CODE_PTR)
|
||
&& (TYPE_CODE (TYPE_TARGET_TYPE (current_type)) == TYPE_CODE_STRUCT)
|
||
&& (TYPE_CODE ($1) == TYPE_CODE_STRUCT))
|
||
write_exp_elt_opcode (pstate, UNOP_IND);
|
||
}
|
||
write_exp_elt_opcode (pstate, UNOP_CAST);
|
||
write_exp_elt_type (pstate, $1);
|
||
write_exp_elt_opcode (pstate, UNOP_CAST);
|
||
current_type = $1; }
|
||
;
|
||
|
||
exp : '(' exp1 ')'
|
||
{ }
|
||
;
|
||
|
||
/* Binary operators in order of decreasing precedence. */
|
||
|
||
exp : exp '*' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_MUL); }
|
||
;
|
||
|
||
exp : exp '/' {
|
||
if (current_type && is_integral_type (current_type))
|
||
leftdiv_is_integer = 1;
|
||
}
|
||
exp
|
||
{
|
||
if (leftdiv_is_integer && current_type
|
||
&& is_integral_type (current_type))
|
||
{
|
||
write_exp_elt_opcode (pstate, UNOP_CAST);
|
||
write_exp_elt_type (pstate,
|
||
parse_type (pstate)
|
||
->builtin_long_double);
|
||
current_type
|
||
= parse_type (pstate)->builtin_long_double;
|
||
write_exp_elt_opcode (pstate, UNOP_CAST);
|
||
leftdiv_is_integer = 0;
|
||
}
|
||
|
||
write_exp_elt_opcode (pstate, BINOP_DIV);
|
||
}
|
||
;
|
||
|
||
exp : exp DIV exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_INTDIV); }
|
||
;
|
||
|
||
exp : exp MOD exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_REM); }
|
||
;
|
||
|
||
exp : exp '+' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_ADD); }
|
||
;
|
||
|
||
exp : exp '-' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_SUB); }
|
||
;
|
||
|
||
exp : exp LSH exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LSH); }
|
||
;
|
||
|
||
exp : exp RSH exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_RSH); }
|
||
;
|
||
|
||
exp : exp '=' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_EQUAL);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
}
|
||
;
|
||
|
||
exp : exp NOTEQUAL exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_NOTEQUAL);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
}
|
||
;
|
||
|
||
exp : exp LEQ exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LEQ);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
}
|
||
;
|
||
|
||
exp : exp GEQ exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_GEQ);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
}
|
||
;
|
||
|
||
exp : exp '<' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_LESS);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
}
|
||
;
|
||
|
||
exp : exp '>' exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_GTR);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
}
|
||
;
|
||
|
||
exp : exp ANDAND exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
|
||
;
|
||
|
||
exp : exp XOR exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
|
||
;
|
||
|
||
exp : exp OR exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
|
||
;
|
||
|
||
exp : exp ASSIGN exp
|
||
{ write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
|
||
;
|
||
|
||
exp : TRUEKEYWORD
|
||
{ write_exp_elt_opcode (pstate, OP_BOOL);
|
||
write_exp_elt_longcst (pstate, (LONGEST) $1);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
write_exp_elt_opcode (pstate, OP_BOOL); }
|
||
;
|
||
|
||
exp : FALSEKEYWORD
|
||
{ write_exp_elt_opcode (pstate, OP_BOOL);
|
||
write_exp_elt_longcst (pstate, (LONGEST) $1);
|
||
current_type = parse_type (pstate)->builtin_bool;
|
||
write_exp_elt_opcode (pstate, OP_BOOL); }
|
||
;
|
||
|
||
exp : INT
|
||
{ write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate, $1.type);
|
||
current_type = $1.type;
|
||
write_exp_elt_longcst (pstate, (LONGEST)($1.val));
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
;
|
||
|
||
exp : NAME_OR_INT
|
||
{ YYSTYPE val;
|
||
parse_number (pstate, $1.stoken.ptr,
|
||
$1.stoken.length, 0, &val);
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate, val.typed_val_int.type);
|
||
current_type = val.typed_val_int.type;
|
||
write_exp_elt_longcst (pstate, (LONGEST)
|
||
val.typed_val_int.val);
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
}
|
||
;
|
||
|
||
|
||
exp : FLOAT
|
||
{ write_exp_elt_opcode (pstate, OP_FLOAT);
|
||
write_exp_elt_type (pstate, $1.type);
|
||
current_type = $1.type;
|
||
write_exp_elt_floatcst (pstate, $1.val);
|
||
write_exp_elt_opcode (pstate, OP_FLOAT); }
|
||
;
|
||
|
||
exp : variable
|
||
;
|
||
|
||
exp : DOLLAR_VARIABLE
|
||
/* Already written by write_dollar_variable.
|
||
Handle current_type. */
|
||
{ if (intvar) {
|
||
struct value * val, * mark;
|
||
|
||
mark = value_mark ();
|
||
val = value_of_internalvar (pstate->gdbarch (),
|
||
intvar);
|
||
current_type = value_type (val);
|
||
value_release_to_mark (mark);
|
||
}
|
||
}
|
||
;
|
||
|
||
exp : SIZEOF '(' type ')' %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate,
|
||
parse_type (pstate)->builtin_int);
|
||
current_type = parse_type (pstate)->builtin_int;
|
||
$3 = check_typedef ($3);
|
||
write_exp_elt_longcst (pstate,
|
||
(LONGEST) TYPE_LENGTH ($3));
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
;
|
||
|
||
exp : SIZEOF '(' exp ')' %prec UNARY
|
||
{ write_exp_elt_opcode (pstate, UNOP_SIZEOF);
|
||
current_type = parse_type (pstate)->builtin_int; }
|
||
|
||
exp : STRING
|
||
{ /* C strings are converted into array constants with
|
||
an explicit null byte added at the end. Thus
|
||
the array upper bound is the string length.
|
||
There is no such thing in C as a completely empty
|
||
string. */
|
||
const char *sp = $1.ptr; int count = $1.length;
|
||
|
||
while (count-- > 0)
|
||
{
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate,
|
||
parse_type (pstate)
|
||
->builtin_char);
|
||
write_exp_elt_longcst (pstate,
|
||
(LONGEST) (*sp++));
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
}
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate,
|
||
parse_type (pstate)
|
||
->builtin_char);
|
||
write_exp_elt_longcst (pstate, (LONGEST)'\0');
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_opcode (pstate, OP_ARRAY);
|
||
write_exp_elt_longcst (pstate, (LONGEST) 0);
|
||
write_exp_elt_longcst (pstate,
|
||
(LONGEST) ($1.length));
|
||
write_exp_elt_opcode (pstate, OP_ARRAY); }
|
||
;
|
||
|
||
/* Object pascal */
|
||
exp : THIS
|
||
{
|
||
struct value * this_val;
|
||
struct type * this_type;
|
||
write_exp_elt_opcode (pstate, OP_THIS);
|
||
write_exp_elt_opcode (pstate, OP_THIS);
|
||
/* We need type of this. */
|
||
this_val
|
||
= value_of_this_silent (pstate->language ());
|
||
if (this_val)
|
||
this_type = value_type (this_val);
|
||
else
|
||
this_type = NULL;
|
||
if (this_type)
|
||
{
|
||
if (TYPE_CODE (this_type) == TYPE_CODE_PTR)
|
||
{
|
||
this_type = TYPE_TARGET_TYPE (this_type);
|
||
write_exp_elt_opcode (pstate, UNOP_IND);
|
||
}
|
||
}
|
||
|
||
current_type = this_type;
|
||
}
|
||
;
|
||
|
||
/* end of object pascal. */
|
||
|
||
block : BLOCKNAME
|
||
{
|
||
if ($1.sym.symbol != 0)
|
||
$$ = SYMBOL_BLOCK_VALUE ($1.sym.symbol);
|
||
else
|
||
{
|
||
std::string copy = copy_name ($1.stoken);
|
||
struct symtab *tem =
|
||
lookup_symtab (copy.c_str ());
|
||
if (tem)
|
||
$$ = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (tem),
|
||
STATIC_BLOCK);
|
||
else
|
||
error (_("No file or function \"%s\"."),
|
||
copy.c_str ());
|
||
}
|
||
}
|
||
;
|
||
|
||
block : block COLONCOLON name
|
||
{
|
||
std::string copy = copy_name ($3);
|
||
struct symbol *tem
|
||
= lookup_symbol (copy.c_str (), $1,
|
||
VAR_DOMAIN, NULL).symbol;
|
||
|
||
if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
|
||
error (_("No function \"%s\" in specified context."),
|
||
copy.c_str ());
|
||
$$ = SYMBOL_BLOCK_VALUE (tem); }
|
||
;
|
||
|
||
variable: block COLONCOLON name
|
||
{ struct block_symbol sym;
|
||
|
||
std::string copy = copy_name ($3);
|
||
sym = lookup_symbol (copy.c_str (), $1,
|
||
VAR_DOMAIN, NULL);
|
||
if (sym.symbol == 0)
|
||
error (_("No symbol \"%s\" in specified context."),
|
||
copy.c_str ());
|
||
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
write_exp_elt_block (pstate, sym.block);
|
||
write_exp_elt_sym (pstate, sym.symbol);
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
|
||
;
|
||
|
||
qualified_name: typebase COLONCOLON name
|
||
{
|
||
struct type *type = $1;
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (type) != TYPE_CODE_UNION)
|
||
error (_("`%s' is not defined as an aggregate type."),
|
||
TYPE_NAME (type));
|
||
|
||
write_exp_elt_opcode (pstate, OP_SCOPE);
|
||
write_exp_elt_type (pstate, type);
|
||
write_exp_string (pstate, $3);
|
||
write_exp_elt_opcode (pstate, OP_SCOPE);
|
||
}
|
||
;
|
||
|
||
variable: qualified_name
|
||
| COLONCOLON name
|
||
{
|
||
std::string name = copy_name ($2);
|
||
struct symbol *sym;
|
||
struct bound_minimal_symbol msymbol;
|
||
|
||
sym =
|
||
lookup_symbol (name.c_str (),
|
||
(const struct block *) NULL,
|
||
VAR_DOMAIN, NULL).symbol;
|
||
if (sym)
|
||
{
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
write_exp_elt_block (pstate, NULL);
|
||
write_exp_elt_sym (pstate, sym);
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
break;
|
||
}
|
||
|
||
msymbol
|
||
= lookup_bound_minimal_symbol (name.c_str ());
|
||
if (msymbol.minsym != NULL)
|
||
write_exp_msymbol (pstate, msymbol);
|
||
else if (!have_full_symbols ()
|
||
&& !have_partial_symbols ())
|
||
error (_("No symbol table is loaded. "
|
||
"Use the \"file\" command."));
|
||
else
|
||
error (_("No symbol \"%s\" in current context."),
|
||
name.c_str ());
|
||
}
|
||
;
|
||
|
||
variable: name_not_typename
|
||
{ struct block_symbol sym = $1.sym;
|
||
|
||
if (sym.symbol)
|
||
{
|
||
if (symbol_read_needs_frame (sym.symbol))
|
||
pstate->block_tracker->update (sym);
|
||
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
write_exp_elt_block (pstate, sym.block);
|
||
write_exp_elt_sym (pstate, sym.symbol);
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
current_type = sym.symbol->type; }
|
||
else if ($1.is_a_field_of_this)
|
||
{
|
||
struct value * this_val;
|
||
struct type * this_type;
|
||
/* Object pascal: it hangs off of `this'. Must
|
||
not inadvertently convert from a method call
|
||
to data ref. */
|
||
pstate->block_tracker->update (sym);
|
||
write_exp_elt_opcode (pstate, OP_THIS);
|
||
write_exp_elt_opcode (pstate, OP_THIS);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_PTR);
|
||
write_exp_string (pstate, $1.stoken);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_PTR);
|
||
/* We need type of this. */
|
||
this_val
|
||
= value_of_this_silent (pstate->language ());
|
||
if (this_val)
|
||
this_type = value_type (this_val);
|
||
else
|
||
this_type = NULL;
|
||
if (this_type)
|
||
current_type = lookup_struct_elt_type (
|
||
this_type,
|
||
copy_name ($1.stoken).c_str (), 0);
|
||
else
|
||
current_type = NULL;
|
||
}
|
||
else
|
||
{
|
||
struct bound_minimal_symbol msymbol;
|
||
std::string arg = copy_name ($1.stoken);
|
||
|
||
msymbol =
|
||
lookup_bound_minimal_symbol (arg.c_str ());
|
||
if (msymbol.minsym != NULL)
|
||
write_exp_msymbol (pstate, msymbol);
|
||
else if (!have_full_symbols ()
|
||
&& !have_partial_symbols ())
|
||
error (_("No symbol table is loaded. "
|
||
"Use the \"file\" command."));
|
||
else
|
||
error (_("No symbol \"%s\" in current context."),
|
||
arg.c_str ());
|
||
}
|
||
}
|
||
;
|
||
|
||
|
||
ptype : typebase
|
||
;
|
||
|
||
/* We used to try to recognize more pointer to member types here, but
|
||
that didn't work (shift/reduce conflicts meant that these rules never
|
||
got executed). The problem is that
|
||
int (foo::bar::baz::bizzle)
|
||
is a function type but
|
||
int (foo::bar::baz::bizzle::*)
|
||
is a pointer to member type. Stroustrup loses again! */
|
||
|
||
type : ptype
|
||
;
|
||
|
||
typebase /* Implements (approximately): (type-qualifier)* type-specifier */
|
||
: '^' typebase
|
||
{ $$ = lookup_pointer_type ($2); }
|
||
| TYPENAME
|
||
{ $$ = $1.type; }
|
||
| STRUCT name
|
||
{ $$
|
||
= lookup_struct (copy_name ($2).c_str (),
|
||
pstate->expression_context_block);
|
||
}
|
||
| CLASS name
|
||
{ $$
|
||
= lookup_struct (copy_name ($2).c_str (),
|
||
pstate->expression_context_block);
|
||
}
|
||
/* "const" and "volatile" are curently ignored. A type qualifier
|
||
after the type is handled in the ptype rule. I think these could
|
||
be too. */
|
||
;
|
||
|
||
name : NAME { $$ = $1.stoken; }
|
||
| BLOCKNAME { $$ = $1.stoken; }
|
||
| TYPENAME { $$ = $1.stoken; }
|
||
| NAME_OR_INT { $$ = $1.stoken; }
|
||
;
|
||
|
||
name_not_typename : NAME
|
||
| BLOCKNAME
|
||
/* These would be useful if name_not_typename was useful, but it is just
|
||
a fake for "variable", so these cause reduce/reduce conflicts because
|
||
the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
|
||
=exp) or just an exp. If name_not_typename was ever used in an lvalue
|
||
context where only a name could occur, this might be useful.
|
||
| NAME_OR_INT
|
||
*/
|
||
;
|
||
|
||
%%
|
||
|
||
/* Take care of parsing a number (anything that starts with a digit).
|
||
Set yylval and return the token type; update lexptr.
|
||
LEN is the number of characters in it. */
|
||
|
||
/*** Needs some error checking for the float case ***/
|
||
|
||
static int
|
||
parse_number (struct parser_state *par_state,
|
||
const char *p, int len, int parsed_float, YYSTYPE *putithere)
|
||
{
|
||
/* FIXME: Shouldn't these be unsigned? We don't deal with negative values
|
||
here, and we do kind of silly things like cast to unsigned. */
|
||
LONGEST n = 0;
|
||
LONGEST prevn = 0;
|
||
ULONGEST un;
|
||
|
||
int i = 0;
|
||
int c;
|
||
int base = input_radix;
|
||
int unsigned_p = 0;
|
||
|
||
/* Number of "L" suffixes encountered. */
|
||
int long_p = 0;
|
||
|
||
/* We have found a "L" or "U" suffix. */
|
||
int found_suffix = 0;
|
||
|
||
ULONGEST high_bit;
|
||
struct type *signed_type;
|
||
struct type *unsigned_type;
|
||
|
||
if (parsed_float)
|
||
{
|
||
/* Handle suffixes: 'f' for float, 'l' for long double.
|
||
FIXME: This appears to be an extension -- do we want this? */
|
||
if (len >= 1 && tolower (p[len - 1]) == 'f')
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_type (par_state)->builtin_float;
|
||
len--;
|
||
}
|
||
else if (len >= 1 && tolower (p[len - 1]) == 'l')
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_type (par_state)->builtin_long_double;
|
||
len--;
|
||
}
|
||
/* Default type for floating-point literals is double. */
|
||
else
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_type (par_state)->builtin_double;
|
||
}
|
||
|
||
if (!parse_float (p, len,
|
||
putithere->typed_val_float.type,
|
||
putithere->typed_val_float.val))
|
||
return ERROR;
|
||
return FLOAT;
|
||
}
|
||
|
||
/* Handle base-switching prefixes 0x, 0t, 0d, 0. */
|
||
if (p[0] == '0')
|
||
switch (p[1])
|
||
{
|
||
case 'x':
|
||
case 'X':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 16;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
case 't':
|
||
case 'T':
|
||
case 'd':
|
||
case 'D':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 10;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
base = 8;
|
||
break;
|
||
}
|
||
|
||
while (len-- > 0)
|
||
{
|
||
c = *p++;
|
||
if (c >= 'A' && c <= 'Z')
|
||
c += 'a' - 'A';
|
||
if (c != 'l' && c != 'u')
|
||
n *= base;
|
||
if (c >= '0' && c <= '9')
|
||
{
|
||
if (found_suffix)
|
||
return ERROR;
|
||
n += i = c - '0';
|
||
}
|
||
else
|
||
{
|
||
if (base > 10 && c >= 'a' && c <= 'f')
|
||
{
|
||
if (found_suffix)
|
||
return ERROR;
|
||
n += i = c - 'a' + 10;
|
||
}
|
||
else if (c == 'l')
|
||
{
|
||
++long_p;
|
||
found_suffix = 1;
|
||
}
|
||
else if (c == 'u')
|
||
{
|
||
unsigned_p = 1;
|
||
found_suffix = 1;
|
||
}
|
||
else
|
||
return ERROR; /* Char not a digit */
|
||
}
|
||
if (i >= base)
|
||
return ERROR; /* Invalid digit in this base. */
|
||
|
||
/* Portably test for overflow (only works for nonzero values, so make
|
||
a second check for zero). FIXME: Can't we just make n and prevn
|
||
unsigned and avoid this? */
|
||
if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
|
||
unsigned_p = 1; /* Try something unsigned. */
|
||
|
||
/* Portably test for unsigned overflow.
|
||
FIXME: This check is wrong; for example it doesn't find overflow
|
||
on 0x123456789 when LONGEST is 32 bits. */
|
||
if (c != 'l' && c != 'u' && n != 0)
|
||
{
|
||
if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
|
||
error (_("Numeric constant too large."));
|
||
}
|
||
prevn = n;
|
||
}
|
||
|
||
/* An integer constant is an int, a long, or a long long. An L
|
||
suffix forces it to be long; an LL suffix forces it to be long
|
||
long. If not forced to a larger size, it gets the first type of
|
||
the above that it fits in. To figure out whether it fits, we
|
||
shift it right and see whether anything remains. Note that we
|
||
can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
|
||
operation, because many compilers will warn about such a shift
|
||
(which always produces a zero result). Sometimes gdbarch_int_bit
|
||
or gdbarch_long_bit will be that big, sometimes not. To deal with
|
||
the case where it is we just always shift the value more than
|
||
once, with fewer bits each time. */
|
||
|
||
un = (ULONGEST)n >> 2;
|
||
if (long_p == 0
|
||
&& (un >> (gdbarch_int_bit (par_state->gdbarch ()) - 2)) == 0)
|
||
{
|
||
high_bit
|
||
= ((ULONGEST)1) << (gdbarch_int_bit (par_state->gdbarch ()) - 1);
|
||
|
||
/* A large decimal (not hex or octal) constant (between INT_MAX
|
||
and UINT_MAX) is a long or unsigned long, according to ANSI,
|
||
never an unsigned int, but this code treats it as unsigned
|
||
int. This probably should be fixed. GCC gives a warning on
|
||
such constants. */
|
||
|
||
unsigned_type = parse_type (par_state)->builtin_unsigned_int;
|
||
signed_type = parse_type (par_state)->builtin_int;
|
||
}
|
||
else if (long_p <= 1
|
||
&& (un >> (gdbarch_long_bit (par_state->gdbarch ()) - 2)) == 0)
|
||
{
|
||
high_bit
|
||
= ((ULONGEST)1) << (gdbarch_long_bit (par_state->gdbarch ()) - 1);
|
||
unsigned_type = parse_type (par_state)->builtin_unsigned_long;
|
||
signed_type = parse_type (par_state)->builtin_long;
|
||
}
|
||
else
|
||
{
|
||
int shift;
|
||
if (sizeof (ULONGEST) * HOST_CHAR_BIT
|
||
< gdbarch_long_long_bit (par_state->gdbarch ()))
|
||
/* A long long does not fit in a LONGEST. */
|
||
shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
|
||
else
|
||
shift = (gdbarch_long_long_bit (par_state->gdbarch ()) - 1);
|
||
high_bit = (ULONGEST) 1 << shift;
|
||
unsigned_type = parse_type (par_state)->builtin_unsigned_long_long;
|
||
signed_type = parse_type (par_state)->builtin_long_long;
|
||
}
|
||
|
||
putithere->typed_val_int.val = n;
|
||
|
||
/* If the high bit of the worked out type is set then this number
|
||
has to be unsigned. */
|
||
|
||
if (unsigned_p || (n & high_bit))
|
||
{
|
||
putithere->typed_val_int.type = unsigned_type;
|
||
}
|
||
else
|
||
{
|
||
putithere->typed_val_int.type = signed_type;
|
||
}
|
||
|
||
return INT;
|
||
}
|
||
|
||
|
||
struct type_push
|
||
{
|
||
struct type *stored;
|
||
struct type_push *next;
|
||
};
|
||
|
||
static struct type_push *tp_top = NULL;
|
||
|
||
static void
|
||
push_current_type (void)
|
||
{
|
||
struct type_push *tpnew;
|
||
tpnew = (struct type_push *) malloc (sizeof (struct type_push));
|
||
tpnew->next = tp_top;
|
||
tpnew->stored = current_type;
|
||
current_type = NULL;
|
||
tp_top = tpnew;
|
||
}
|
||
|
||
static void
|
||
pop_current_type (void)
|
||
{
|
||
struct type_push *tp = tp_top;
|
||
if (tp)
|
||
{
|
||
current_type = tp->stored;
|
||
tp_top = tp->next;
|
||
free (tp);
|
||
}
|
||
}
|
||
|
||
struct token
|
||
{
|
||
const char *oper;
|
||
int token;
|
||
enum exp_opcode opcode;
|
||
};
|
||
|
||
static const struct token tokentab3[] =
|
||
{
|
||
{"shr", RSH, BINOP_END},
|
||
{"shl", LSH, BINOP_END},
|
||
{"and", ANDAND, BINOP_END},
|
||
{"div", DIV, BINOP_END},
|
||
{"not", NOT, BINOP_END},
|
||
{"mod", MOD, BINOP_END},
|
||
{"inc", INCREMENT, BINOP_END},
|
||
{"dec", DECREMENT, BINOP_END},
|
||
{"xor", XOR, BINOP_END}
|
||
};
|
||
|
||
static const struct token tokentab2[] =
|
||
{
|
||
{"or", OR, BINOP_END},
|
||
{"<>", NOTEQUAL, BINOP_END},
|
||
{"<=", LEQ, BINOP_END},
|
||
{">=", GEQ, BINOP_END},
|
||
{":=", ASSIGN, BINOP_END},
|
||
{"::", COLONCOLON, BINOP_END} };
|
||
|
||
/* Allocate uppercased var: */
|
||
/* make an uppercased copy of tokstart. */
|
||
static char *
|
||
uptok (const char *tokstart, int namelen)
|
||
{
|
||
int i;
|
||
char *uptokstart = (char *)malloc(namelen+1);
|
||
for (i = 0;i <= namelen;i++)
|
||
{
|
||
if ((tokstart[i]>='a' && tokstart[i]<='z'))
|
||
uptokstart[i] = tokstart[i]-('a'-'A');
|
||
else
|
||
uptokstart[i] = tokstart[i];
|
||
}
|
||
uptokstart[namelen]='\0';
|
||
return uptokstart;
|
||
}
|
||
|
||
/* Read one token, getting characters through lexptr. */
|
||
|
||
static int
|
||
yylex (void)
|
||
{
|
||
int c;
|
||
int namelen;
|
||
const char *tokstart;
|
||
char *uptokstart;
|
||
const char *tokptr;
|
||
int explen, tempbufindex;
|
||
static char *tempbuf;
|
||
static int tempbufsize;
|
||
|
||
retry:
|
||
|
||
pstate->prev_lexptr = pstate->lexptr;
|
||
|
||
tokstart = pstate->lexptr;
|
||
explen = strlen (pstate->lexptr);
|
||
|
||
/* See if it is a special token of length 3. */
|
||
if (explen > 2)
|
||
for (int i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++)
|
||
if (strncasecmp (tokstart, tokentab3[i].oper, 3) == 0
|
||
&& (!isalpha (tokentab3[i].oper[0]) || explen == 3
|
||
|| (!isalpha (tokstart[3])
|
||
&& !isdigit (tokstart[3]) && tokstart[3] != '_')))
|
||
{
|
||
pstate->lexptr += 3;
|
||
yylval.opcode = tokentab3[i].opcode;
|
||
return tokentab3[i].token;
|
||
}
|
||
|
||
/* See if it is a special token of length 2. */
|
||
if (explen > 1)
|
||
for (int i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
|
||
if (strncasecmp (tokstart, tokentab2[i].oper, 2) == 0
|
||
&& (!isalpha (tokentab2[i].oper[0]) || explen == 2
|
||
|| (!isalpha (tokstart[2])
|
||
&& !isdigit (tokstart[2]) && tokstart[2] != '_')))
|
||
{
|
||
pstate->lexptr += 2;
|
||
yylval.opcode = tokentab2[i].opcode;
|
||
return tokentab2[i].token;
|
||
}
|
||
|
||
switch (c = *tokstart)
|
||
{
|
||
case 0:
|
||
if (search_field && pstate->parse_completion)
|
||
return COMPLETE;
|
||
else
|
||
return 0;
|
||
|
||
case ' ':
|
||
case '\t':
|
||
case '\n':
|
||
pstate->lexptr++;
|
||
goto retry;
|
||
|
||
case '\'':
|
||
/* We either have a character constant ('0' or '\177' for example)
|
||
or we have a quoted symbol reference ('foo(int,int)' in object pascal
|
||
for example). */
|
||
pstate->lexptr++;
|
||
c = *pstate->lexptr++;
|
||
if (c == '\\')
|
||
c = parse_escape (pstate->gdbarch (), &pstate->lexptr);
|
||
else if (c == '\'')
|
||
error (_("Empty character constant."));
|
||
|
||
yylval.typed_val_int.val = c;
|
||
yylval.typed_val_int.type = parse_type (pstate)->builtin_char;
|
||
|
||
c = *pstate->lexptr++;
|
||
if (c != '\'')
|
||
{
|
||
namelen = skip_quoted (tokstart) - tokstart;
|
||
if (namelen > 2)
|
||
{
|
||
pstate->lexptr = tokstart + namelen;
|
||
if (pstate->lexptr[-1] != '\'')
|
||
error (_("Unmatched single quote."));
|
||
namelen -= 2;
|
||
tokstart++;
|
||
uptokstart = uptok(tokstart,namelen);
|
||
goto tryname;
|
||
}
|
||
error (_("Invalid character constant."));
|
||
}
|
||
return INT;
|
||
|
||
case '(':
|
||
paren_depth++;
|
||
pstate->lexptr++;
|
||
return c;
|
||
|
||
case ')':
|
||
if (paren_depth == 0)
|
||
return 0;
|
||
paren_depth--;
|
||
pstate->lexptr++;
|
||
return c;
|
||
|
||
case ',':
|
||
if (pstate->comma_terminates && paren_depth == 0)
|
||
return 0;
|
||
pstate->lexptr++;
|
||
return c;
|
||
|
||
case '.':
|
||
/* Might be a floating point number. */
|
||
if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
|
||
{
|
||
goto symbol; /* Nope, must be a symbol. */
|
||
}
|
||
|
||
/* FALL THRU. */
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
{
|
||
/* It's a number. */
|
||
int got_dot = 0, got_e = 0, toktype;
|
||
const char *p = tokstart;
|
||
int hex = input_radix > 10;
|
||
|
||
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
|
||
{
|
||
p += 2;
|
||
hex = 1;
|
||
}
|
||
else if (c == '0' && (p[1]=='t' || p[1]=='T'
|
||
|| p[1]=='d' || p[1]=='D'))
|
||
{
|
||
p += 2;
|
||
hex = 0;
|
||
}
|
||
|
||
for (;; ++p)
|
||
{
|
||
/* This test includes !hex because 'e' is a valid hex digit
|
||
and thus does not indicate a floating point number when
|
||
the radix is hex. */
|
||
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
|
||
got_dot = got_e = 1;
|
||
/* This test does not include !hex, because a '.' always indicates
|
||
a decimal floating point number regardless of the radix. */
|
||
else if (!got_dot && *p == '.')
|
||
got_dot = 1;
|
||
else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
|
||
&& (*p == '-' || *p == '+'))
|
||
/* This is the sign of the exponent, not the end of the
|
||
number. */
|
||
continue;
|
||
/* We will take any letters or digits. parse_number will
|
||
complain if past the radix, or if L or U are not final. */
|
||
else if ((*p < '0' || *p > '9')
|
||
&& ((*p < 'a' || *p > 'z')
|
||
&& (*p < 'A' || *p > 'Z')))
|
||
break;
|
||
}
|
||
toktype = parse_number (pstate, tokstart,
|
||
p - tokstart, got_dot | got_e, &yylval);
|
||
if (toktype == ERROR)
|
||
{
|
||
char *err_copy = (char *) alloca (p - tokstart + 1);
|
||
|
||
memcpy (err_copy, tokstart, p - tokstart);
|
||
err_copy[p - tokstart] = 0;
|
||
error (_("Invalid number \"%s\"."), err_copy);
|
||
}
|
||
pstate->lexptr = p;
|
||
return toktype;
|
||
}
|
||
|
||
case '+':
|
||
case '-':
|
||
case '*':
|
||
case '/':
|
||
case '|':
|
||
case '&':
|
||
case '^':
|
||
case '~':
|
||
case '!':
|
||
case '@':
|
||
case '<':
|
||
case '>':
|
||
case '[':
|
||
case ']':
|
||
case '?':
|
||
case ':':
|
||
case '=':
|
||
case '{':
|
||
case '}':
|
||
symbol:
|
||
pstate->lexptr++;
|
||
return c;
|
||
|
||
case '"':
|
||
|
||
/* Build the gdb internal form of the input string in tempbuf,
|
||
translating any standard C escape forms seen. Note that the
|
||
buffer is null byte terminated *only* for the convenience of
|
||
debugging gdb itself and printing the buffer contents when
|
||
the buffer contains no embedded nulls. Gdb does not depend
|
||
upon the buffer being null byte terminated, it uses the length
|
||
string instead. This allows gdb to handle C strings (as well
|
||
as strings in other languages) with embedded null bytes. */
|
||
|
||
tokptr = ++tokstart;
|
||
tempbufindex = 0;
|
||
|
||
do {
|
||
/* Grow the static temp buffer if necessary, including allocating
|
||
the first one on demand. */
|
||
if (tempbufindex + 1 >= tempbufsize)
|
||
{
|
||
tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
|
||
}
|
||
|
||
switch (*tokptr)
|
||
{
|
||
case '\0':
|
||
case '"':
|
||
/* Do nothing, loop will terminate. */
|
||
break;
|
||
case '\\':
|
||
++tokptr;
|
||
c = parse_escape (pstate->gdbarch (), &tokptr);
|
||
if (c == -1)
|
||
{
|
||
continue;
|
||
}
|
||
tempbuf[tempbufindex++] = c;
|
||
break;
|
||
default:
|
||
tempbuf[tempbufindex++] = *tokptr++;
|
||
break;
|
||
}
|
||
} while ((*tokptr != '"') && (*tokptr != '\0'));
|
||
if (*tokptr++ != '"')
|
||
{
|
||
error (_("Unterminated string in expression."));
|
||
}
|
||
tempbuf[tempbufindex] = '\0'; /* See note above. */
|
||
yylval.sval.ptr = tempbuf;
|
||
yylval.sval.length = tempbufindex;
|
||
pstate->lexptr = tokptr;
|
||
return (STRING);
|
||
}
|
||
|
||
if (!(c == '_' || c == '$'
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
|
||
/* We must have come across a bad character (e.g. ';'). */
|
||
error (_("Invalid character '%c' in expression."), c);
|
||
|
||
/* It's a name. See how long it is. */
|
||
namelen = 0;
|
||
for (c = tokstart[namelen];
|
||
(c == '_' || c == '$' || (c >= '0' && c <= '9')
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
|
||
{
|
||
/* Template parameter lists are part of the name.
|
||
FIXME: This mishandles `print $a<4&&$a>3'. */
|
||
if (c == '<')
|
||
{
|
||
int i = namelen;
|
||
int nesting_level = 1;
|
||
while (tokstart[++i])
|
||
{
|
||
if (tokstart[i] == '<')
|
||
nesting_level++;
|
||
else if (tokstart[i] == '>')
|
||
{
|
||
if (--nesting_level == 0)
|
||
break;
|
||
}
|
||
}
|
||
if (tokstart[i] == '>')
|
||
namelen = i;
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* do NOT uppercase internals because of registers !!! */
|
||
c = tokstart[++namelen];
|
||
}
|
||
|
||
uptokstart = uptok(tokstart,namelen);
|
||
|
||
/* The token "if" terminates the expression and is NOT
|
||
removed from the input stream. */
|
||
if (namelen == 2 && uptokstart[0] == 'I' && uptokstart[1] == 'F')
|
||
{
|
||
free (uptokstart);
|
||
return 0;
|
||
}
|
||
|
||
pstate->lexptr += namelen;
|
||
|
||
tryname:
|
||
|
||
/* Catch specific keywords. Should be done with a data structure. */
|
||
switch (namelen)
|
||
{
|
||
case 6:
|
||
if (strcmp (uptokstart, "OBJECT") == 0)
|
||
{
|
||
free (uptokstart);
|
||
return CLASS;
|
||
}
|
||
if (strcmp (uptokstart, "RECORD") == 0)
|
||
{
|
||
free (uptokstart);
|
||
return STRUCT;
|
||
}
|
||
if (strcmp (uptokstart, "SIZEOF") == 0)
|
||
{
|
||
free (uptokstart);
|
||
return SIZEOF;
|
||
}
|
||
break;
|
||
case 5:
|
||
if (strcmp (uptokstart, "CLASS") == 0)
|
||
{
|
||
free (uptokstart);
|
||
return CLASS;
|
||
}
|
||
if (strcmp (uptokstart, "FALSE") == 0)
|
||
{
|
||
yylval.lval = 0;
|
||
free (uptokstart);
|
||
return FALSEKEYWORD;
|
||
}
|
||
break;
|
||
case 4:
|
||
if (strcmp (uptokstart, "TRUE") == 0)
|
||
{
|
||
yylval.lval = 1;
|
||
free (uptokstart);
|
||
return TRUEKEYWORD;
|
||
}
|
||
if (strcmp (uptokstart, "SELF") == 0)
|
||
{
|
||
/* Here we search for 'this' like
|
||
inserted in FPC stabs debug info. */
|
||
static const char this_name[] = "this";
|
||
|
||
if (lookup_symbol (this_name, pstate->expression_context_block,
|
||
VAR_DOMAIN, NULL).symbol)
|
||
{
|
||
free (uptokstart);
|
||
return THIS;
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
yylval.sval.ptr = tokstart;
|
||
yylval.sval.length = namelen;
|
||
|
||
if (*tokstart == '$')
|
||
{
|
||
char *tmp;
|
||
|
||
/* $ is the normal prefix for pascal hexadecimal values
|
||
but this conflicts with the GDB use for debugger variables
|
||
so in expression to enter hexadecimal values
|
||
we still need to use C syntax with 0xff */
|
||
write_dollar_variable (pstate, yylval.sval);
|
||
tmp = (char *) alloca (namelen + 1);
|
||
memcpy (tmp, tokstart, namelen);
|
||
tmp[namelen] = '\0';
|
||
intvar = lookup_only_internalvar (tmp + 1);
|
||
free (uptokstart);
|
||
return DOLLAR_VARIABLE;
|
||
}
|
||
|
||
/* Use token-type BLOCKNAME for symbols that happen to be defined as
|
||
functions or symtabs. If this is not so, then ...
|
||
Use token-type TYPENAME for symbols that happen to be defined
|
||
currently as names of types; NAME for other symbols.
|
||
The caller is not constrained to care about the distinction. */
|
||
{
|
||
std::string tmp = copy_name (yylval.sval);
|
||
struct symbol *sym;
|
||
struct field_of_this_result is_a_field_of_this;
|
||
int is_a_field = 0;
|
||
int hextype;
|
||
|
||
is_a_field_of_this.type = NULL;
|
||
if (search_field && current_type)
|
||
is_a_field = (lookup_struct_elt_type (current_type,
|
||
tmp.c_str (), 1) != NULL);
|
||
if (is_a_field)
|
||
sym = NULL;
|
||
else
|
||
sym = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
|
||
VAR_DOMAIN, &is_a_field_of_this).symbol;
|
||
/* second chance uppercased (as Free Pascal does). */
|
||
if (!sym && is_a_field_of_this.type == NULL && !is_a_field)
|
||
{
|
||
for (int i = 0; i <= namelen; i++)
|
||
{
|
||
if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
|
||
tmp[i] -= ('a'-'A');
|
||
}
|
||
if (search_field && current_type)
|
||
is_a_field = (lookup_struct_elt_type (current_type,
|
||
tmp.c_str (), 1) != NULL);
|
||
if (is_a_field)
|
||
sym = NULL;
|
||
else
|
||
sym = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
|
||
VAR_DOMAIN, &is_a_field_of_this).symbol;
|
||
}
|
||
/* Third chance Capitalized (as GPC does). */
|
||
if (!sym && is_a_field_of_this.type == NULL && !is_a_field)
|
||
{
|
||
for (int i = 0; i <= namelen; i++)
|
||
{
|
||
if (i == 0)
|
||
{
|
||
if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
|
||
tmp[i] -= ('a'-'A');
|
||
}
|
||
else
|
||
if ((tmp[i] >= 'A' && tmp[i] <= 'Z'))
|
||
tmp[i] -= ('A'-'a');
|
||
}
|
||
if (search_field && current_type)
|
||
is_a_field = (lookup_struct_elt_type (current_type,
|
||
tmp.c_str (), 1) != NULL);
|
||
if (is_a_field)
|
||
sym = NULL;
|
||
else
|
||
sym = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
|
||
VAR_DOMAIN, &is_a_field_of_this).symbol;
|
||
}
|
||
|
||
if (is_a_field || (is_a_field_of_this.type != NULL))
|
||
{
|
||
tempbuf = (char *) realloc (tempbuf, namelen + 1);
|
||
strncpy (tempbuf, tmp.c_str (), namelen);
|
||
tempbuf [namelen] = 0;
|
||
yylval.sval.ptr = tempbuf;
|
||
yylval.sval.length = namelen;
|
||
yylval.ssym.sym.symbol = NULL;
|
||
yylval.ssym.sym.block = NULL;
|
||
free (uptokstart);
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
|
||
if (is_a_field)
|
||
return FIELDNAME;
|
||
else
|
||
return NAME;
|
||
}
|
||
/* Call lookup_symtab, not lookup_partial_symtab, in case there are
|
||
no psymtabs (coff, xcoff, or some future change to blow away the
|
||
psymtabs once once symbols are read). */
|
||
if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
|
||
|| lookup_symtab (tmp.c_str ()))
|
||
{
|
||
yylval.ssym.sym.symbol = sym;
|
||
yylval.ssym.sym.block = NULL;
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
|
||
free (uptokstart);
|
||
return BLOCKNAME;
|
||
}
|
||
if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
||
{
|
||
#if 1
|
||
/* Despite the following flaw, we need to keep this code enabled.
|
||
Because we can get called from check_stub_method, if we don't
|
||
handle nested types then it screws many operations in any
|
||
program which uses nested types. */
|
||
/* In "A::x", if x is a member function of A and there happens
|
||
to be a type (nested or not, since the stabs don't make that
|
||
distinction) named x, then this code incorrectly thinks we
|
||
are dealing with nested types rather than a member function. */
|
||
|
||
const char *p;
|
||
const char *namestart;
|
||
struct symbol *best_sym;
|
||
|
||
/* Look ahead to detect nested types. This probably should be
|
||
done in the grammar, but trying seemed to introduce a lot
|
||
of shift/reduce and reduce/reduce conflicts. It's possible
|
||
that it could be done, though. Or perhaps a non-grammar, but
|
||
less ad hoc, approach would work well. */
|
||
|
||
/* Since we do not currently have any way of distinguishing
|
||
a nested type from a non-nested one (the stabs don't tell
|
||
us whether a type is nested), we just ignore the
|
||
containing type. */
|
||
|
||
p = pstate->lexptr;
|
||
best_sym = sym;
|
||
while (1)
|
||
{
|
||
/* Skip whitespace. */
|
||
while (*p == ' ' || *p == '\t' || *p == '\n')
|
||
++p;
|
||
if (*p == ':' && p[1] == ':')
|
||
{
|
||
/* Skip the `::'. */
|
||
p += 2;
|
||
/* Skip whitespace. */
|
||
while (*p == ' ' || *p == '\t' || *p == '\n')
|
||
++p;
|
||
namestart = p;
|
||
while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
|
||
|| (*p >= 'a' && *p <= 'z')
|
||
|| (*p >= 'A' && *p <= 'Z'))
|
||
++p;
|
||
if (p != namestart)
|
||
{
|
||
struct symbol *cur_sym;
|
||
/* As big as the whole rest of the expression, which is
|
||
at least big enough. */
|
||
char *ncopy
|
||
= (char *) alloca (tmp.size () + strlen (namestart)
|
||
+ 3);
|
||
char *tmp1;
|
||
|
||
tmp1 = ncopy;
|
||
memcpy (tmp1, tmp.c_str (), tmp.size ());
|
||
tmp1 += tmp.size ();
|
||
memcpy (tmp1, "::", 2);
|
||
tmp1 += 2;
|
||
memcpy (tmp1, namestart, p - namestart);
|
||
tmp1[p - namestart] = '\0';
|
||
cur_sym
|
||
= lookup_symbol (ncopy,
|
||
pstate->expression_context_block,
|
||
VAR_DOMAIN, NULL).symbol;
|
||
if (cur_sym)
|
||
{
|
||
if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
|
||
{
|
||
best_sym = cur_sym;
|
||
pstate->lexptr = p;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
yylval.tsym.type = SYMBOL_TYPE (best_sym);
|
||
#else /* not 0 */
|
||
yylval.tsym.type = SYMBOL_TYPE (sym);
|
||
#endif /* not 0 */
|
||
free (uptokstart);
|
||
return TYPENAME;
|
||
}
|
||
yylval.tsym.type
|
||
= language_lookup_primitive_type (pstate->language (),
|
||
pstate->gdbarch (), tmp.c_str ());
|
||
if (yylval.tsym.type != NULL)
|
||
{
|
||
free (uptokstart);
|
||
return TYPENAME;
|
||
}
|
||
|
||
/* Input names that aren't symbols but ARE valid hex numbers,
|
||
when the input radix permits them, can be names or numbers
|
||
depending on the parse. Note we support radixes > 16 here. */
|
||
if (!sym
|
||
&& ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
|
||
|| (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
|
||
{
|
||
YYSTYPE newlval; /* Its value is ignored. */
|
||
hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
|
||
if (hextype == INT)
|
||
{
|
||
yylval.ssym.sym.symbol = sym;
|
||
yylval.ssym.sym.block = NULL;
|
||
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
|
||
free (uptokstart);
|
||
return NAME_OR_INT;
|
||
}
|
||
}
|
||
|
||
free(uptokstart);
|
||
/* Any other kind of symbol. */
|
||
yylval.ssym.sym.symbol = sym;
|
||
yylval.ssym.sym.block = NULL;
|
||
return NAME;
|
||
}
|
||
}
|
||
|
||
int
|
||
pascal_parse (struct parser_state *par_state)
|
||
{
|
||
/* Setting up the parser state. */
|
||
scoped_restore pstate_restore = make_scoped_restore (&pstate);
|
||
gdb_assert (par_state != NULL);
|
||
pstate = par_state;
|
||
paren_depth = 0;
|
||
|
||
return yyparse ();
|
||
}
|
||
|
||
static void
|
||
yyerror (const char *msg)
|
||
{
|
||
if (pstate->prev_lexptr)
|
||
pstate->lexptr = pstate->prev_lexptr;
|
||
|
||
error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
|
||
}
|