binutils-gdb/libctf/ctf-link.c
Nick Alcock ae41200ba8 libctf, include, binutils, gdb: rename CTF-opening functions
The functions that return ctf_dict_t's given a ctf_archive_t and a name
are very clumsily named.  It sounds like they return *archives*, not
dictionaries, and the names are very long and clunky.  Why do we
have a ctf_arc_open_by_name when it opens a dictionary, not an archive,
and when there is no way to open a dictionary in any other way?  The
answer is purely internal: the function is located in ctf-archive.c,
and everything in there was called ctf_arc_*, and there is another
way to open a dict (by offset in the archive), that is internal to
ctf-archive.c and that nothing else can call.

This is clearly bad naming. The internal organization of the source tree
should not dictate public API names!

So rename things (keeping the old, bad names for compatibility), and
adjust all users.  You now open a dict using ctf_dict_open, and
open it giving ELF sections via ctf_dict_open_sections.

binutils/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* objdump.c (dump_ctf): Use ctf_dict_open, not
	ctf_arc_open_by_name.
	* readelf.c (dump_section_as_ctf): Likewise.

gdb/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctfread.c (elfctf_build_psymtabs): Use ctf_dict_open, not
	ctf_arc_open_by_name.

include/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-api.h (ctf_arc_open_by_name): Rename to...
	(ctf_dict_open): ... this, keeping compatibility function.
	(ctf_arc_open_by_name_sections): Rename to...
	(ctf_dict_open_sections): ... this, keeping compatibility function.

libctf/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-archive.c (ctf_arc_open_by_offset): Rename to...
	(ctf_dict_open_by_offset): ... this.  Adjust callers.
	(ctf_arc_open_by_name_internal): Rename to...
	(ctf_dict_open_internal): ... this.  Adjust callers.
	(ctf_arc_open_by_name_sections): Rename to...
	(ctf_dict_open_sections): ... this, keeping compatibility function.
	(ctf_arc_open_by_name): Rename to...
	(ctf_dict_open): ... this, keeping compatibility function.
	* libctf.ver: New functions added.
	* ctf-link.c (ctf_link_one_input_archive): Adjusted accordingly.
	(ctf_link_deduplicating_open_inputs): Likewise.
2020-11-20 13:34:05 +00:00

1833 lines
53 KiB
C

/* CTF linking.
Copyright (C) 2019-2020 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <string.h>
#if defined (PIC)
#pragma weak ctf_open
#endif
/* Type tracking machinery. */
/* Record the correspondence between a source and ctf_add_type()-added
destination type: both types are translated into parent type IDs if need be,
so they relate to the actual dictionary they are in. Outside controlled
circumstances (like linking) it is probably not useful to do more than
compare these pointers, since there is nothing stopping the user closing the
source dict whenever they want to.
Our OOM handling here is just to not do anything, because this is called deep
enough in the call stack that doing anything useful is painfully difficult:
the worst consequence if we do OOM is a bit of type duplication anyway. */
void
ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type,
ctf_dict_t *dst_fp, ctf_id_t dst_type)
{
if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
src_fp = src_fp->ctf_parent;
src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent)
dst_fp = dst_fp->ctf_parent;
dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type);
/* This dynhash is a bit tricky: it has a multivalued (structural) key, so we
need to use the sized-hash machinery to generate key hashing and equality
functions. */
if (dst_fp->ctf_link_type_mapping == NULL)
{
ctf_hash_fun f = ctf_hash_type_key;
ctf_hash_eq_fun e = ctf_hash_eq_type_key;
if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free,
NULL)) == NULL)
return;
}
ctf_link_type_key_t *key;
key = calloc (1, sizeof (struct ctf_link_type_key));
if (!key)
return;
key->cltk_fp = src_fp;
key->cltk_idx = src_type;
/* No OOM checking needed, because if this doesn't work the worst we'll do is
add a few more duplicate types (which will probably run out of memory
anyway). */
ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key,
(void *) (uintptr_t) dst_type);
}
/* Look up a type mapping: return 0 if none. The DST_FP is modified to point to
the parent if need be. The ID returned is from the dst_fp's perspective. */
ctf_id_t
ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp)
{
ctf_link_type_key_t key;
ctf_dict_t *target_fp = *dst_fp;
ctf_id_t dst_type = 0;
if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
src_fp = src_fp->ctf_parent;
src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
key.cltk_fp = src_fp;
key.cltk_idx = src_type;
if (target_fp->ctf_link_type_mapping)
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
&key);
if (dst_type != 0)
{
dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
target_fp->ctf_parent != NULL);
*dst_fp = target_fp;
return dst_type;
}
if (target_fp->ctf_parent)
target_fp = target_fp->ctf_parent;
else
return 0;
if (target_fp->ctf_link_type_mapping)
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
&key);
if (dst_type)
dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
target_fp->ctf_parent != NULL);
*dst_fp = target_fp;
return dst_type;
}
/* Linker machinery.
CTF linking consists of adding CTF archives full of content to be merged into
this one to the current file (which must be writable) by calling
ctf_link_add_ctf(). Once this is done, a call to ctf_link() will merge the
type tables together, generating new CTF files as needed, with this one as a
parent, to contain types from the inputs which conflict.
ctf_link_add_strtab() takes a callback which provides string/offset pairs to
be added to the external symbol table and deduplicated from all CTF string
tables in the output link; ctf_link_shuffle_syms() takes a callback which
provides symtab entries in ascending order, and shuffles the function and
data sections to match; and ctf_link_write() emits a CTF file (if there are
no conflicts requiring per-compilation-unit sub-CTF files) or CTF archives
(otherwise) and returns it, suitable for addition in the .ctf section of the
output. */
/* Return the name of the compilation unit this CTF dict or its parent applies
to, or a non-null string otherwise: prefer the parent. Used in debugging
output. Sometimes used for outputs too. */
const char *
ctf_link_input_name (ctf_dict_t *fp)
{
if (fp->ctf_parent && fp->ctf_parent->ctf_cuname)
return fp->ctf_parent->ctf_cuname;
else if (fp->ctf_cuname)
return fp->ctf_cuname;
else
return "(unnamed)";
}
/* The linker inputs look like this. clin_fp is used for short-circuited
CU-mapped links that can entirely avoid the first link phase in some
situations in favour of just passing on the contained ctf_dict_t: it is
always the sole ctf_dict_t inside the corresponding clin_arc. If set, it
gets assigned directly to the final link inputs and freed from there, so it
never gets explicitly freed in the ctf_link_input. */
typedef struct ctf_link_input
{
const char *clin_filename;
ctf_archive_t *clin_arc;
ctf_dict_t *clin_fp;
int n;
} ctf_link_input_t;
static void
ctf_link_input_close (void *input)
{
ctf_link_input_t *i = (ctf_link_input_t *) input;
if (i->clin_arc)
ctf_arc_close (i->clin_arc);
free (i);
}
/* Like ctf_link_add_ctf, below, but with no error-checking, so it can be called
in the middle of an ongoing link. */
static int
ctf_link_add_ctf_internal (ctf_dict_t *fp, ctf_archive_t *ctf,
ctf_dict_t *fp_input, const char *name)
{
ctf_link_input_t *input = NULL;
char *dupname = NULL;
if ((input = calloc (1, sizeof (ctf_link_input_t))) == NULL)
goto oom;
if ((dupname = strdup (name)) == NULL)
goto oom;
input->clin_arc = ctf;
input->clin_fp = fp_input;
input->clin_filename = dupname;
input->n = ctf_dynhash_elements (fp->ctf_link_inputs);
if (ctf_dynhash_insert (fp->ctf_link_inputs, dupname, input) < 0)
goto oom;
return 0;
oom:
free (input);
free (dupname);
return ctf_set_errno (fp, ENOMEM);
}
/* Add a file, memory buffer, or unopened file (by name) to a link.
You can call this with:
CTF and NAME: link the passed ctf_archive_t, with the given NAME.
NAME alone: open NAME as a CTF file when needed.
BUF and NAME: open the BUF (of length N) as CTF, with the given NAME. (Not
yet implemented.)
Passed in CTF args are owned by the dictionary and will be freed by it.
The BUF arg is *not* owned by the dictionary, and the user should not free
its referent until the link is done.
The order of calls to this function influences the order of types in the
final link output, but otherwise is not important.
Private for now, but may in time become public once support for BUF is
implemented. */
static int
ctf_link_add (ctf_dict_t *fp, ctf_archive_t *ctf, const char *name,
void *buf _libctf_unused_, size_t n _libctf_unused_)
{
if (buf)
return (ctf_set_errno (fp, ECTF_NOTYET));
if (!((ctf && name && !buf)
|| (name && !buf && !ctf)
|| (buf && name && !ctf)))
return (ctf_set_errno (fp, EINVAL));
/* We can only lazily open files if libctf.so is in use rather than
libctf-nobfd.so. This is a little tricky: in shared libraries, we can use
a weak symbol so that -lctf -lctf-nobfd works, but in static libraries we
must distinguish between the two libraries explicitly. */
#if defined (PIC)
if (!buf && !ctf && name && !ctf_open)
return (ctf_set_errno (fp, ECTF_NEEDSBFD));
#elif NOBFD
if (!buf && !ctf && name)
return (ctf_set_errno (fp, ECTF_NEEDSBFD));
#endif
if (fp->ctf_link_outputs)
return (ctf_set_errno (fp, ECTF_LINKADDEDLATE));
if (fp->ctf_link_inputs == NULL)
fp->ctf_link_inputs = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string, free,
ctf_link_input_close);
if (fp->ctf_link_inputs == NULL)
return (ctf_set_errno (fp, ENOMEM));
return ctf_link_add_ctf_internal (fp, ctf, NULL, name);
}
/* Add an opened CTF archive or unopened file (by name) to a link.
If CTF is NULL and NAME is non-null, an unopened file is meant:
otherwise, the specified archive is assumed to have the given NAME.
Passed in CTF args are owned by the dictionary and will be freed by it.
The order of calls to this function influences the order of types in the
final link output, but otherwise is not important. */
int
ctf_link_add_ctf (ctf_dict_t *fp, ctf_archive_t *ctf, const char *name)
{
return ctf_link_add (fp, ctf, name, NULL, 0);
}
/* Return a per-CU output CTF dictionary suitable for the given CU, creating and
interning it if need be. */
static ctf_dict_t *
ctf_create_per_cu (ctf_dict_t *fp, const char *filename, const char *cuname)
{
ctf_dict_t *cu_fp;
const char *ctf_name = NULL;
char *dynname = NULL;
/* First, check the mapping table and translate the per-CU name we use
accordingly. We check both the input filename and the CU name. Only if
neither are set do we fall back to the input filename as the per-CU
dictionary name. We prefer the filename because this is easier for likely
callers to determine. */
if (fp->ctf_link_in_cu_mapping)
{
if (((ctf_name = ctf_dynhash_lookup (fp->ctf_link_in_cu_mapping,
filename)) == NULL) &&
((ctf_name = ctf_dynhash_lookup (fp->ctf_link_in_cu_mapping,
cuname)) == NULL))
ctf_name = filename;
}
if (ctf_name == NULL)
ctf_name = filename;
if ((cu_fp = ctf_dynhash_lookup (fp->ctf_link_outputs, ctf_name)) == NULL)
{
int err;
if ((cu_fp = ctf_create (&err)) == NULL)
{
ctf_err_warn (fp, 0, err, _("cannot create per-CU CTF archive for "
"CU %s from input file %s"),
cuname, filename);
ctf_set_errno (fp, err);
return NULL;
}
if ((dynname = strdup (ctf_name)) == NULL)
goto oom;
if (ctf_dynhash_insert (fp->ctf_link_outputs, dynname, cu_fp) < 0)
goto oom;
ctf_import_unref (cu_fp, fp);
ctf_cuname_set (cu_fp, cuname);
ctf_parent_name_set (cu_fp, _CTF_SECTION);
}
return cu_fp;
oom:
free (dynname);
ctf_dict_close (cu_fp);
ctf_set_errno (fp, ENOMEM);
return NULL;
}
/* Add a mapping directing that the CU named FROM should have its
conflicting/non-duplicate types (depending on link mode) go into a dict
named TO. Many FROMs can share a TO.
We forcibly add a dict named TO in every case, even though it may well
wind up empty, because clients that use this facility usually expect to find
every TO dict present, even if empty, and malfunction otherwise. */
int
ctf_link_add_cu_mapping (ctf_dict_t *fp, const char *from, const char *to)
{
int err;
char *f = NULL, *t = NULL;
ctf_dynhash_t *one_out;
if (fp->ctf_link_in_cu_mapping == NULL)
fp->ctf_link_in_cu_mapping = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string, free,
free);
if (fp->ctf_link_in_cu_mapping == NULL)
goto oom;
if (fp->ctf_link_out_cu_mapping == NULL)
fp->ctf_link_out_cu_mapping = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string, free,
(ctf_hash_free_fun)
ctf_dynhash_destroy);
if (fp->ctf_link_out_cu_mapping == NULL)
goto oom;
f = strdup (from);
t = strdup (to);
if (!f || !t)
goto oom;
/* Track both in a list from FROM to TO and in a list from TO to a list of
FROM. The former is used to create TUs with the mapped-to name at need:
the latter is used in deduplicating links to pull in all input CUs
corresponding to a single output CU. */
if ((err = ctf_dynhash_insert (fp->ctf_link_in_cu_mapping, f, t)) < 0)
{
ctf_set_errno (fp, err);
goto oom_noerrno;
}
/* f and t are now owned by the in_cu_mapping: reallocate them. */
f = strdup (from);
t = strdup (to);
if (!f || !t)
goto oom;
if ((one_out = ctf_dynhash_lookup (fp->ctf_link_out_cu_mapping, t)) == NULL)
{
if ((one_out = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
free, NULL)) == NULL)
goto oom;
if ((err = ctf_dynhash_insert (fp->ctf_link_out_cu_mapping,
t, one_out)) < 0)
{
ctf_dynhash_destroy (one_out);
ctf_set_errno (fp, err);
goto oom_noerrno;
}
}
else
free (t);
if (ctf_dynhash_insert (one_out, f, NULL) < 0)
{
ctf_set_errno (fp, err);
goto oom_noerrno;
}
return 0;
oom:
ctf_set_errno (fp, errno);
oom_noerrno:
free (f);
free (t);
return -1;
}
/* Set a function which is called to transform the names of archive members.
This is useful for applying regular transformations to many names, where
ctf_link_add_cu_mapping applies arbitrarily irregular changes to single
names. The member name changer is applied at ctf_link_write time, so it
cannot conflate multiple CUs into one the way ctf_link_add_cu_mapping can.
The changer function accepts a name and should return a new
dynamically-allocated name, or NULL if the name should be left unchanged. */
void
ctf_link_set_memb_name_changer (ctf_dict_t *fp,
ctf_link_memb_name_changer_f *changer,
void *arg)
{
fp->ctf_link_memb_name_changer = changer;
fp->ctf_link_memb_name_changer_arg = arg;
}
typedef struct ctf_link_in_member_cb_arg
{
/* The shared output dictionary. */
ctf_dict_t *out_fp;
/* The filename of the input file, and an fp to each dictionary in that file
in turn. */
const char *in_file_name;
ctf_dict_t *in_fp;
/* The CU name of the dict being processed. */
const char *cu_name;
int in_input_cu_file;
/* The parent dictionary in the input, and whether it's been processed yet.
Not needed by ctf_link_one_type / ctf_link_one_variable, only by higher
layers. */
ctf_dict_t *in_fp_parent;
int done_parent;
/* If true, this is the CU-mapped portion of a deduplicating link: no child
dictionaries should be created. */
int cu_mapped;
} ctf_link_in_member_cb_arg_t;
/* Link one type into the link. We rely on ctf_add_type() to detect
duplicates. This is not terribly reliable yet (unnmamed types will be
mindlessly duplicated), but will improve shortly. */
static int
ctf_link_one_type (ctf_id_t type, int isroot _libctf_unused_, void *arg_)
{
ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_;
ctf_dict_t *per_cu_out_fp;
int err;
if (arg->in_fp->ctf_link_flags != CTF_LINK_SHARE_UNCONFLICTED)
{
ctf_err_warn (arg->out_fp, 0, ECTF_NOTYET,
_("share-duplicated mode not yet implemented"));
return ctf_set_errno (arg->out_fp, ECTF_NOTYET);
}
/* Simply call ctf_add_type: if it reports a conflict and we're adding to the
main CTF file, add to the per-CU archive member instead, creating it if
necessary. If we got this type from a per-CU archive member, add it
straight back to the corresponding member in the output. */
if (!arg->in_input_cu_file)
{
if (ctf_add_type (arg->out_fp, arg->in_fp, type) != CTF_ERR)
return 0;
err = ctf_errno (arg->out_fp);
if (err != ECTF_CONFLICT)
{
if (err != ECTF_NONREPRESENTABLE)
ctf_err_warn (arg->out_fp, 1, 0,
_("cannot link type %lx from input file %s, CU %s "
"into output link"), type, arg->cu_name,
arg->in_file_name);
/* We must ignore this problem or we end up losing future types, then
trying to link the variables in, then exploding. Better to link as
much as possible. */
return 0;
}
ctf_set_errno (arg->out_fp, 0);
}
if ((per_cu_out_fp = ctf_create_per_cu (arg->out_fp, arg->in_file_name,
arg->cu_name)) == NULL)
return -1; /* Errno is set for us. */
if (ctf_add_type (per_cu_out_fp, arg->in_fp, type) != CTF_ERR)
return 0;
err = ctf_errno (per_cu_out_fp);
if (err != ECTF_NONREPRESENTABLE)
ctf_err_warn (arg->out_fp, 1, 0,
_("cannot link type %lx from input file %s, CU %s "
"into output per-CU CTF archive member %s: %s: skipped"),
type, ctf_link_input_name (arg->in_fp), arg->in_file_name,
ctf_link_input_name (per_cu_out_fp), ctf_errmsg (err));
if (err == ECTF_CONFLICT)
/* Conflicts are possible at this stage only if a non-ld user has combined
multiple TUs into a single output dictionary. Even in this case we do not
want to stop the link or propagate the error. */
ctf_set_errno (arg->out_fp, 0);
return 0; /* As above: do not lose types. */
}
/* Set a function which is used to filter out unwanted variables from the link. */
int
ctf_link_set_variable_filter (ctf_dict_t *fp, ctf_link_variable_filter_f *filter,
void *arg)
{
fp->ctf_link_variable_filter = filter;
fp->ctf_link_variable_filter_arg = arg;
return 0;
}
/* Check if we can safely add a variable with the given type to this dict. */
static int
check_variable (const char *name, ctf_dict_t *fp, ctf_id_t type,
ctf_dvdef_t **out_dvd)
{
ctf_dvdef_t *dvd;
dvd = ctf_dynhash_lookup (fp->ctf_dvhash, name);
*out_dvd = dvd;
if (!dvd)
return 1;
if (dvd->dvd_type != type)
{
/* Variable here. Wrong type: cannot add. Just skip it, because there is
no way to express this in CTF. Don't even warn: this case is too
common. (This might be the parent, in which case we'll try adding in
the child first, and only then give up.) */
ctf_dprintf ("Inexpressible duplicate variable %s skipped.\n", name);
}
return 0; /* Already exists. */
}
/* Link one variable in. */
static int
ctf_link_one_variable (const char *name, ctf_id_t type, void *arg_)
{
ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_;
ctf_dict_t *per_cu_out_fp;
ctf_id_t dst_type = 0;
ctf_dict_t *check_fp;
ctf_dvdef_t *dvd;
/* See if this variable is filtered out. */
if (arg->out_fp->ctf_link_variable_filter)
{
void *farg = arg->out_fp->ctf_link_variable_filter_arg;
if (arg->out_fp->ctf_link_variable_filter (arg->in_fp, name, type, farg))
return 0;
}
/* In unconflicted link mode, if this type is mapped to a type in the parent
dict, we want to try to add to that first: if it reports a duplicate,
or if the type is in a child already, add straight to the child. */
check_fp = arg->out_fp;
dst_type = ctf_type_mapping (arg->in_fp, type, &check_fp);
if (dst_type != 0)
{
if (check_fp == arg->out_fp)
{
if (check_variable (name, check_fp, dst_type, &dvd))
{
/* No variable here: we can add it. */
if (ctf_add_variable (check_fp, name, dst_type) < 0)
return (ctf_set_errno (arg->out_fp, ctf_errno (check_fp)));
return 0;
}
/* Already present? Nothing to do. */
if (dvd && dvd->dvd_type == dst_type)
return 0;
}
}
/* Can't add to the parent due to a name clash, or because it references a
type only present in the child. Try adding to the child, creating if need
be. If we can't do that, skip it. Don't add to a child if we're doing a
CU-mapped link, since that has only one output. */
if (arg->cu_mapped)
{
ctf_dprintf ("Variable %s in input file %s depends on a type %lx hidden "
"due to conflicts: skipped.\n", name, arg->in_file_name,
type);
return 0;
}
if ((per_cu_out_fp = ctf_create_per_cu (arg->out_fp, arg->in_file_name,
arg->cu_name)) == NULL)
return -1; /* Errno is set for us. */
/* If the type was not found, check for it in the child too. */
if (dst_type == 0)
{
check_fp = per_cu_out_fp;
dst_type = ctf_type_mapping (arg->in_fp, type, &check_fp);
if (dst_type == 0)
{
ctf_err_warn (arg->out_fp, 1, 0,
_("type %lx for variable %s in input file %s "
"not found: skipped"), type, name,
arg->in_file_name);
/* Do not terminate the link: just skip the variable. */
return 0;
}
}
if (check_variable (name, per_cu_out_fp, dst_type, &dvd))
if (ctf_add_variable (per_cu_out_fp, name, dst_type) < 0)
return (ctf_set_errno (arg->out_fp, ctf_errno (per_cu_out_fp)));
return 0;
}
/* Merge every type (and optionally, variable) in this archive member into the
link, so we can relink things that have already had ld run on them. We use
the archive member name, sans any leading '.ctf.', as the CU name for
ambiguous types if there is one and it's not the default: otherwise, we use
the name of the input file. */
static int
ctf_link_one_input_archive_member (ctf_dict_t *in_fp, const char *name, void *arg_)
{
ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_;
int err = 0;
if (strcmp (name, _CTF_SECTION) == 0)
{
/* This file is the default member of this archive, and has already been
explicitly processed.
In the default sharing mode of CTF_LINK_SHARE_UNCONFLICTED, it does no
harm to rescan an existing shared repo again: all the types will just
end up in the same place. But in CTF_LINK_SHARE_DUPLICATED mode, this
causes the system to erroneously conclude that all types are duplicated
and should be shared, even if they are not. */
if (arg->done_parent)
return 0;
}
else
{
/* Get ambiguous types from our parent. */
ctf_import (in_fp, arg->in_fp_parent);
arg->in_input_cu_file = 1;
}
arg->cu_name = name;
if (strncmp (arg->cu_name, ".ctf.", strlen (".ctf.")) == 0)
arg->cu_name += strlen (".ctf.");
arg->in_fp = in_fp;
if ((err = ctf_type_iter_all (in_fp, ctf_link_one_type, arg)) > -1)
if (!(in_fp->ctf_link_flags & CTF_LINK_OMIT_VARIABLES_SECTION))
err = ctf_variable_iter (in_fp, ctf_link_one_variable, arg);
arg->in_input_cu_file = 0;
if (err < 0)
return -1; /* Errno is set for us. */
return 0;
}
/* Dump the unnecessary link type mapping after one input file is processed. */
static void
empty_link_type_mapping (void *key _libctf_unused_, void *value,
void *arg _libctf_unused_)
{
ctf_dict_t *fp = (ctf_dict_t *) value;
if (fp->ctf_link_type_mapping)
ctf_dynhash_empty (fp->ctf_link_type_mapping);
}
/* Lazily open a CTF archive for linking, if not already open.
Returns the number of files contained within the opened archive (0 for none),
or -1 on error, as usual. */
static ssize_t
ctf_link_lazy_open (ctf_dict_t *fp, ctf_link_input_t *input)
{
size_t count;
int err;
if (input->clin_arc)
return ctf_archive_count (input->clin_arc);
if (input->clin_fp)
return 1;
/* See ctf_link_add_ctf. */
#if defined (PIC) || !NOBFD
input->clin_arc = ctf_open (input->clin_filename, NULL, &err);
#else
ctf_err_warn (fp, 0, ECTF_NEEDSBFD, _("cannot open %s lazily"),
input->clin_filename);
ctf_set_errno (fp, ECTF_NEEDSBFD);
return -1;
#endif
/* Having no CTF sections is not an error. We just don't need to do
anything. */
if (!input->clin_arc)
{
if (err == ECTF_NOCTFDATA)
return 0;
ctf_err_warn (fp, 0, err, _("opening CTF %s failed"),
input->clin_filename);
ctf_set_errno (fp, err);
return -1;
}
if ((count = ctf_archive_count (input->clin_arc)) == 0)
ctf_arc_close (input->clin_arc);
return (ssize_t) count;
}
/* Close an input, as a ctf_dynhash_iter iterator. */
static void
ctf_link_close_one_input_archive (void *key _libctf_unused_, void *value,
void *arg _libctf_unused_)
{
ctf_link_input_t *input = (ctf_link_input_t *) value;
if (input->clin_arc)
ctf_arc_close (input->clin_arc);
input->clin_arc = NULL;
}
/* Link one input file's types into the output file. */
static void
ctf_link_one_input_archive (void *key, void *value, void *arg_)
{
const char *file_name = (const char *) key;
ctf_link_input_t *input = (ctf_link_input_t *)value;
ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_;
int err = 0;
if (!input->clin_arc)
{
err = ctf_link_lazy_open (arg->out_fp, input);
if (err == 0) /* Just no CTF. */
return;
if (err < 0)
return; /* errno is set for us. */
}
arg->in_file_name = file_name;
arg->done_parent = 0;
if ((arg->in_fp_parent = ctf_dict_open (input->clin_arc,
NULL, &err)) == NULL)
if (err != ECTF_ARNNAME)
{
ctf_err_warn (arg->out_fp, 1, 0,
_("cannot open main archive member in input file %s "
"in the link: skipping: %s"), arg->in_file_name,
ctf_errmsg (err));
goto out;
}
if (ctf_link_one_input_archive_member (arg->in_fp_parent,
_CTF_SECTION, arg) < 0)
{
ctf_dict_close (arg->in_fp_parent);
goto out;
}
arg->done_parent = 1;
if (ctf_archive_iter (input->clin_arc, ctf_link_one_input_archive_member,
arg) < 0)
ctf_err_warn (arg->out_fp, 0, 0, _("cannot traverse archive in input file "
"%s: link cannot continue"),
arg->in_file_name);
else
{
/* The only error indication to the caller is the errno: so ensure that it
is zero if there was no actual error from the caller. */
ctf_set_errno (arg->out_fp, 0);
}
ctf_dict_close (arg->in_fp_parent);
out:
ctf_link_close_one_input_archive (key, value, NULL);
}
typedef struct link_sort_inputs_cb_arg
{
int is_cu_mapped;
ctf_dict_t *fp;
} link_sort_inputs_cb_arg_t;
/* Sort the inputs by N (the link order). For CU-mapped links, this is a
mapping of input to output name, not a mapping of input name to input
ctf_link_input_t: compensate accordingly. */
static int
ctf_link_sort_inputs (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
void *arg)
{
ctf_link_input_t *input_1;
ctf_link_input_t *input_2;
link_sort_inputs_cb_arg_t *cu_mapped = (link_sort_inputs_cb_arg_t *) arg;
if (!cu_mapped || !cu_mapped->is_cu_mapped)
{
input_1 = (ctf_link_input_t *) one->hkv_value;
input_2 = (ctf_link_input_t *) two->hkv_value;
}
else
{
const char *name_1 = (const char *) one->hkv_key;
const char *name_2 = (const char *) two->hkv_key;
input_1 = ctf_dynhash_lookup (cu_mapped->fp->ctf_link_inputs, name_1);
input_2 = ctf_dynhash_lookup (cu_mapped->fp->ctf_link_inputs, name_2);
/* There is no guarantee that CU-mappings actually have corresponding
inputs: the relative ordering in that case is unimportant. */
if (!input_1)
return -1;
if (!input_2)
return 1;
}
if (input_1->n < input_2->n)
return -1;
else if (input_1->n > input_2->n)
return 1;
else
return 0;
}
/* Count the number of input dicts in the ctf_link_inputs, or that subset of the
ctf_link_inputs given by CU_NAMES if set. Return the number of input dicts,
and optionally the name and ctf_link_input_t of the single input archive if
only one exists (no matter how many dicts it contains). */
static ssize_t
ctf_link_deduplicating_count_inputs (ctf_dict_t *fp, ctf_dynhash_t *cu_names,
ctf_link_input_t **only_one_input)
{
ctf_dynhash_t *inputs = fp->ctf_link_inputs;
ctf_next_t *i = NULL;
void *name, *input;
ctf_link_input_t *one_input = NULL;
const char *one_name = NULL;
ssize_t count = 0, narcs = 0;
int err;
if (cu_names)
inputs = cu_names;
while ((err = ctf_dynhash_next (inputs, &i, &name, &input)) == 0)
{
ssize_t one_count;
one_name = (const char *) name;
/* If we are processing CU names, get the real input. */
if (cu_names)
one_input = ctf_dynhash_lookup (fp->ctf_link_inputs, one_name);
else
one_input = (ctf_link_input_t *) input;
if (!one_input)
continue;
one_count = ctf_link_lazy_open (fp, one_input);
if (one_count < 0)
{
ctf_next_destroy (i);
return -1; /* errno is set for us. */
}
count += one_count;
narcs++;
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (fp, 0, err, _("iteration error counting deduplicating "
"CTF link inputs"));
ctf_set_errno (fp, err);
return -1;
}
if (!count)
return 0;
if (narcs == 1)
{
if (only_one_input)
*only_one_input = one_input;
}
else if (only_one_input)
*only_one_input = NULL;
return count;
}
/* Allocate and populate an inputs array big enough for a given set of inputs:
either a specific set of CU names (those from that set found in the
ctf_link_inputs), or the entire ctf_link_inputs (if cu_names is not set).
The number of inputs (from ctf_link_deduplicating_count_inputs, above) is
passed in NINPUTS: an array of uint32_t containing parent pointers
(corresponding to those members of the inputs that have parents) is allocated
and returned in PARENTS.
The inputs are *archives*, not files: the archive can have multiple members
if it is the result of a previous incremental link. We want to add every one
in turn, including the shared parent. (The dedup machinery knows that a type
used by a single dictionary and its parent should not be shared in
CTF_LINK_SHARE_DUPLICATED mode.)
If no inputs exist that correspond to these CUs, return NULL with the errno
set to ECTF_NOCTFDATA. */
static ctf_dict_t **
ctf_link_deduplicating_open_inputs (ctf_dict_t *fp, ctf_dynhash_t *cu_names,
ssize_t ninputs, uint32_t **parents)
{
ctf_dynhash_t *inputs = fp->ctf_link_inputs;
ctf_next_t *i = NULL;
void *name, *input;
link_sort_inputs_cb_arg_t sort_arg;
ctf_dict_t **dedup_inputs = NULL;
ctf_dict_t **walk;
uint32_t *parents_ = NULL;
int err;
if (cu_names)
inputs = cu_names;
if ((dedup_inputs = calloc (ninputs, sizeof (ctf_dict_t *))) == NULL)
goto oom;
if ((parents_ = calloc (ninputs, sizeof (uint32_t))) == NULL)
goto oom;
walk = dedup_inputs;
/* Counting done: push every input into the array, in the order they were
passed to ctf_link_add_ctf (and ultimately ld). */
sort_arg.is_cu_mapped = (cu_names != NULL);
sort_arg.fp = fp;
while ((err = ctf_dynhash_next_sorted (inputs, &i, &name, &input,
ctf_link_sort_inputs, &sort_arg)) == 0)
{
const char *one_name = (const char *) name;
ctf_link_input_t *one_input;
ctf_dict_t *one_fp;
ctf_dict_t *parent_fp = NULL;
uint32_t parent_i;
ctf_next_t *j = NULL;
/* If we are processing CU names, get the real input. All the inputs
will have been opened, if they contained any CTF at all. */
if (cu_names)
one_input = ctf_dynhash_lookup (fp->ctf_link_inputs, one_name);
else
one_input = (ctf_link_input_t *) input;
if (!one_input || (!one_input->clin_arc && !one_input->clin_fp))
continue;
/* Short-circuit: if clin_fp is set, just use it. */
if (one_input->clin_fp)
{
parents_[walk - dedup_inputs] = walk - dedup_inputs;
*walk = one_input->clin_fp;
walk++;
continue;
}
/* Get and insert the parent archive (if any), if this archive has
multiple members. We assume, as elsewhere, that the parent is named
_CTF_SECTION. */
if ((parent_fp = ctf_dict_open (one_input->clin_arc, _CTF_SECTION,
&err)) == NULL)
{
if (err != ECTF_NOMEMBNAM)
{
ctf_next_destroy (i);
ctf_set_errno (fp, err);
goto err;
}
}
else
{
*walk = parent_fp;
parent_i = walk - dedup_inputs;
walk++;
}
/* We disregard the input archive name: either it is the parent (which we
already have), or we want to put everything into one TU sharing the
cuname anyway (if this is a CU-mapped link), or this is the final phase
of a relink with CU-mapping off (i.e. ld -r) in which case the cuname
is correctly set regardless. */
while ((one_fp = ctf_archive_next (one_input->clin_arc, &j, NULL,
1, &err)) != NULL)
{
if (one_fp->ctf_flags & LCTF_CHILD)
{
/* The contents of the parents array for elements not
corresponding to children is undefined. If there is no parent
(itself a sign of a likely linker bug or corrupt input), we set
it to itself. */
ctf_import (one_fp, parent_fp);
if (parent_fp)
parents_[walk - dedup_inputs] = parent_i;
else
parents_[walk - dedup_inputs] = walk - dedup_inputs;
}
*walk = one_fp;
walk++;
}
if (err != ECTF_NEXT_END)
{
ctf_next_destroy (i);
goto iterr;
}
}
if (err != ECTF_NEXT_END)
goto iterr;
*parents = parents_;
return dedup_inputs;
oom:
err = ENOMEM;
iterr:
ctf_set_errno (fp, err);
err:
free (dedup_inputs);
free (parents_);
ctf_err_warn (fp, 0, 0, _("error in deduplicating CTF link "
"input allocation"));
return NULL;
}
/* Close INPUTS that have already been linked, first the passed array, and then
that subset of the ctf_link_inputs archives they came from cited by the
CU_NAMES. If CU_NAMES is not specified, close all the ctf_link_inputs in one
go, leaving it empty. */
static int
ctf_link_deduplicating_close_inputs (ctf_dict_t *fp, ctf_dynhash_t *cu_names,
ctf_dict_t **inputs, ssize_t ninputs)
{
ctf_next_t *it = NULL;
void *name;
int err;
ssize_t i;
/* This is the inverse of ctf_link_deduplicating_open_inputs: so first, close
all the individual input dicts, opened by the archive iterator. */
for (i = 0; i < ninputs; i++)
ctf_dict_close (inputs[i]);
/* Now close the archives they are part of. */
if (cu_names)
{
while ((err = ctf_dynhash_next (cu_names, &it, &name, NULL)) == 0)
{
/* Remove the input from the linker inputs, if it exists, which also
closes it. */
ctf_dynhash_remove (fp->ctf_link_inputs, (const char *) name);
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (fp, 0, err, _("iteration error in deduplicating link "
"input freeing"));
ctf_set_errno (fp, err);
}
}
else
ctf_dynhash_empty (fp->ctf_link_inputs);
return 0;
}
/* Do a deduplicating link of all variables in the inputs. */
static int
ctf_link_deduplicating_variables (ctf_dict_t *fp, ctf_dict_t **inputs,
size_t ninputs, int cu_mapped)
{
ctf_link_in_member_cb_arg_t arg;
size_t i;
arg.cu_mapped = cu_mapped;
arg.out_fp = fp;
arg.in_input_cu_file = 0;
for (i = 0; i < ninputs; i++)
{
arg.in_fp = inputs[i];
if (ctf_cuname (inputs[i]) != NULL)
arg.in_file_name = ctf_cuname (inputs[i]);
else
arg.in_file_name = "unnamed-CU";
arg.cu_name = arg.in_file_name;
if (ctf_variable_iter (arg.in_fp, ctf_link_one_variable, &arg) < 0)
return ctf_set_errno (fp, ctf_errno (arg.in_fp));
/* Outputs > 0 are per-CU. */
arg.in_input_cu_file = 1;
}
return 0;
}
/* Do the per-CU part of a deduplicating link. */
static int
ctf_link_deduplicating_per_cu (ctf_dict_t *fp)
{
ctf_next_t *i = NULL;
int err;
void *out_cu;
void *in_cus;
/* Links with a per-CU mapping in force get a first pass of deduplication,
dedupping the inputs for a given CU mapping into the output for that
mapping. The outputs from this process get fed back into the final pass
that is carried out even for non-CU links. */
while ((err = ctf_dynhash_next (fp->ctf_link_out_cu_mapping, &i, &out_cu,
&in_cus)) == 0)
{
const char *out_name = (const char *) out_cu;
ctf_dynhash_t *in = (ctf_dynhash_t *) in_cus;
ctf_dict_t *out = NULL;
ctf_dict_t **inputs;
ctf_dict_t **outputs;
ctf_archive_t *in_arc;
ssize_t ninputs;
ctf_link_input_t *only_input;
uint32_t noutputs;
uint32_t *parents;
if ((ninputs = ctf_link_deduplicating_count_inputs (fp, in,
&only_input)) == -1)
goto err_open_inputs;
/* CU mapping with no inputs? Skip. */
if (ninputs == 0)
continue;
if (labs ((long int) ninputs) > 0xfffffffe)
{
ctf_err_warn (fp, 0, EFBIG, _("too many inputs in deduplicating "
"link: %li"), (long int) ninputs);
ctf_set_errno (fp, EFBIG);
goto err_open_inputs;
}
/* Short-circuit: a cu-mapped link with only one input archive with
unconflicting contents is a do-nothing, and we can just leave the input
in place: we do have to change the cuname, though, so we unwrap it,
change the cuname, then stuff it back in the linker input again, via
the clin_fp short-circuit member. ctf_link_deduplicating_open_inputs
will spot this member and jam it straight into the next link phase,
ignoring the corresponding archive. */
if (only_input && ninputs == 1)
{
ctf_next_t *ai = NULL;
int err;
/* We can abuse an archive iterator to get the only member cheaply, no
matter what its name. */
only_input->clin_fp = ctf_archive_next (only_input->clin_arc,
&ai, NULL, 0, &err);
if (!only_input->clin_fp)
{
ctf_err_warn (fp, 0, err, _("cannot open archive %s in "
"CU-mapped CTF link"),
only_input->clin_filename);
ctf_set_errno (fp, err);
goto err_open_inputs;
}
ctf_next_destroy (ai);
if (strcmp (only_input->clin_filename, out_name) != 0)
{
/* Renaming. We need to add a new input, then null out the
clin_arc and clin_fp of the old one to stop it being
auto-closed on removal. The new input needs its cuname changed
to out_name, which is doable only because the cuname is a
dynamic property which can be changed even in readonly
dicts. */
ctf_cuname_set (only_input->clin_fp, out_name);
if (ctf_link_add_ctf_internal (fp, only_input->clin_arc,
only_input->clin_fp,
out_name) < 0)
{
ctf_err_warn (fp, 0, 0, _("cannot add intermediate files "
"to link"));
goto err_open_inputs;
}
only_input->clin_arc = NULL;
only_input->clin_fp = NULL;
ctf_dynhash_remove (fp->ctf_link_inputs,
only_input->clin_filename);
}
continue;
}
/* This is a real CU many-to-one mapping: we must dedup the inputs into
a new output to be used in the final link phase. */
if ((inputs = ctf_link_deduplicating_open_inputs (fp, in, ninputs,
&parents)) == NULL)
{
ctf_next_destroy (i);
goto err_inputs;
}
if ((out = ctf_create (&err)) == NULL)
{
ctf_err_warn (fp, 0, err, _("cannot create per-CU CTF archive "
"for %s"),
out_name);
ctf_set_errno (fp, err);
goto err_inputs;
}
/* Share the atoms table to reduce memory usage. */
out->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
/* No ctf_imports at this stage: this per-CU dictionary has no parents.
Parent/child deduplication happens in the link's final pass. However,
the cuname *is* important, as it is propagated into the final
dictionary. */
ctf_cuname_set (out, out_name);
if (ctf_dedup (out, inputs, ninputs, parents, 1) < 0)
{
ctf_set_errno (fp, ctf_errno (out));
ctf_err_warn (fp, 0, 0, _("CU-mapped deduplication failed for %s"),
out_name);
goto err_inputs;
}
if ((outputs = ctf_dedup_emit (out, inputs, ninputs, parents,
&noutputs, 1)) == NULL)
{
ctf_set_errno (fp, ctf_errno (out));
ctf_err_warn (fp, 0, 0, _("CU-mapped deduplicating link type emission "
"failed for %s"), out_name);
goto err_inputs;
}
if (!ctf_assert (fp, noutputs == 1))
goto err_inputs_outputs;
if (!(fp->ctf_link_flags & CTF_LINK_OMIT_VARIABLES_SECTION)
&& ctf_link_deduplicating_variables (out, inputs, ninputs, 1) < 0)
{
ctf_set_errno (fp, ctf_errno (out));
ctf_err_warn (fp, 0, 0, _("CU-mapped deduplicating link variable "
"emission failed for %s"), out_name);
goto err_inputs_outputs;
}
if (ctf_link_deduplicating_close_inputs (fp, in, inputs, ninputs) < 0)
{
free (inputs);
free (parents);
goto err_outputs;
}
free (inputs);
free (parents);
/* Splice any errors or warnings created during this link back into the
dict that the caller knows about. */
ctf_list_splice (&fp->ctf_errs_warnings, &outputs[0]->ctf_errs_warnings);
/* This output now becomes an input to the next link phase, with a name
equal to the CU name. We have to wrap it in an archive wrapper
first. */
if ((in_arc = ctf_new_archive_internal (0, 0, NULL, outputs[0], NULL,
NULL, &err)) == NULL)
{
ctf_set_errno (fp, err);
goto err_outputs;
}
if (ctf_link_add_ctf_internal (fp, in_arc, NULL,
ctf_cuname (outputs[0])) < 0)
{
ctf_err_warn (fp, 0, 0, _("cannot add intermediate files to link"));
goto err_outputs;
}
ctf_dict_close (out);
free (outputs);
continue;
err_inputs_outputs:
ctf_list_splice (&fp->ctf_errs_warnings, &outputs[0]->ctf_errs_warnings);
ctf_dict_close (outputs[0]);
free (outputs);
err_inputs:
ctf_link_deduplicating_close_inputs (fp, in, inputs, ninputs);
ctf_dict_close (out);
free (inputs);
free (parents);
err_open_inputs:
ctf_next_destroy (i);
return -1;
err_outputs:
ctf_list_splice (&fp->ctf_errs_warnings, &outputs[0]->ctf_errs_warnings);
ctf_dict_close (outputs[0]);
free (outputs);
ctf_next_destroy (i);
return -1; /* Errno is set for us. */
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (fp, 0, err, _("iteration error in CU-mapped deduplicating "
"link"));
return ctf_set_errno (fp, err);
}
return 0;
}
/* Do a deduplicating link using the ctf-dedup machinery. */
static void
ctf_link_deduplicating (ctf_dict_t *fp)
{
size_t i;
ctf_dict_t **inputs, **outputs = NULL;
ssize_t ninputs;
uint32_t noutputs;
uint32_t *parents;
if (ctf_dedup_atoms_init (fp) < 0)
{
ctf_err_warn (fp, 0, 0, _("allocating CTF dedup atoms table"));
return; /* Errno is set for us. */
}
if (fp->ctf_link_out_cu_mapping
&& (ctf_link_deduplicating_per_cu (fp) < 0))
return; /* Errno is set for us. */
if ((ninputs = ctf_link_deduplicating_count_inputs (fp, NULL, NULL)) < 0)
return; /* Errno is set for us. */
if ((inputs = ctf_link_deduplicating_open_inputs (fp, NULL, ninputs,
&parents)) == NULL)
return; /* Errno is set for us. */
if (ninputs == 1 && ctf_cuname (inputs[0]) != NULL)
ctf_cuname_set (fp, ctf_cuname (inputs[0]));
if (ctf_dedup (fp, inputs, ninputs, parents, 0) < 0)
{
ctf_err_warn (fp, 0, 0, _("deduplication failed for %s"),
ctf_link_input_name (fp));
goto err;
}
if ((outputs = ctf_dedup_emit (fp, inputs, ninputs, parents, &noutputs,
0)) == NULL)
{
ctf_err_warn (fp, 0, 0, _("deduplicating link type emission failed "
"for %s"), ctf_link_input_name (fp));
goto err;
}
if (!ctf_assert (fp, outputs[0] == fp))
goto err;
for (i = 0; i < noutputs; i++)
{
char *dynname;
/* We already have access to this one. Close the duplicate. */
if (i == 0)
{
ctf_dict_close (outputs[0]);
continue;
}
if ((dynname = strdup (ctf_cuname (outputs[i]))) == NULL)
goto oom_one_output;
if (ctf_dynhash_insert (fp->ctf_link_outputs, dynname, outputs[i]) < 0)
goto oom_one_output;
continue;
oom_one_output:
ctf_set_errno (fp, ENOMEM);
ctf_err_warn (fp, 0, 0, _("out of memory allocating link outputs"));
free (dynname);
for (; i < noutputs; i++)
ctf_dict_close (outputs[i]);
goto err;
}
if (!(fp->ctf_link_flags & CTF_LINK_OMIT_VARIABLES_SECTION)
&& ctf_link_deduplicating_variables (fp, inputs, ninputs, 0) < 0)
{
ctf_err_warn (fp, 0, 0, _("deduplicating link variable emission failed for "
"%s"), ctf_link_input_name (fp));
for (i = 1; i < noutputs; i++)
ctf_dict_close (outputs[i]);
goto err;
}
/* Now close all the inputs, including per-CU intermediates. */
if (ctf_link_deduplicating_close_inputs (fp, NULL, inputs, ninputs) < 0)
return; /* errno is set for us. */
ninputs = 0; /* Prevent double-close. */
ctf_set_errno (fp, 0);
/* Fall through. */
err:
for (i = 0; i < (size_t) ninputs; i++)
ctf_dict_close (inputs[i]);
free (inputs);
free (parents);
free (outputs);
return;
}
/* Merge types and variable sections in all files added to the link
together. All the added files are closed. */
int
ctf_link (ctf_dict_t *fp, int flags)
{
ctf_link_in_member_cb_arg_t arg;
ctf_next_t *i = NULL;
int err;
memset (&arg, 0, sizeof (struct ctf_link_in_member_cb_arg));
arg.out_fp = fp;
fp->ctf_link_flags = flags;
if (fp->ctf_link_inputs == NULL)
return 0; /* Nothing to do. */
if (fp->ctf_link_outputs == NULL)
fp->ctf_link_outputs = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string, free,
(ctf_hash_free_fun)
ctf_dict_close);
if (fp->ctf_link_outputs == NULL)
return ctf_set_errno (fp, ENOMEM);
/* Create empty CUs if requested. We do not currently claim that multiple
links in succession with CTF_LINK_EMPTY_CU_MAPPINGS set in some calls and
not set in others will do anything especially sensible. */
if (fp->ctf_link_out_cu_mapping && (flags & CTF_LINK_EMPTY_CU_MAPPINGS))
{
void *v;
while ((err = ctf_dynhash_next (fp->ctf_link_out_cu_mapping, &i, &v,
NULL)) == 0)
{
const char *to = (const char *) v;
if (ctf_create_per_cu (fp, to, to) == NULL)
{
ctf_next_destroy (i);
return -1; /* Errno is set for us. */
}
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (fp, 1, err, _("iteration error creating empty CUs"));
ctf_set_errno (fp, err);
return -1;
}
}
if ((flags & CTF_LINK_NONDEDUP) || (getenv ("LD_NO_CTF_DEDUP")))
ctf_dynhash_iter (fp->ctf_link_inputs, ctf_link_one_input_archive,
&arg);
else
ctf_link_deduplicating (fp);
/* Discard the now-unnecessary mapping table data from all the outputs. */
if (fp->ctf_link_type_mapping)
ctf_dynhash_empty (fp->ctf_link_type_mapping);
ctf_dynhash_iter (fp->ctf_link_outputs, empty_link_type_mapping, NULL);
if ((ctf_errno (fp) != 0) && (ctf_errno (fp) != ECTF_NOCTFDATA))
return -1;
return 0;
}
typedef struct ctf_link_out_string_cb_arg
{
const char *str;
uint32_t offset;
int err;
} ctf_link_out_string_cb_arg_t;
/* Intern a string in the string table of an output per-CU CTF file. */
static void
ctf_link_intern_extern_string (void *key _libctf_unused_, void *value,
void *arg_)
{
ctf_dict_t *fp = (ctf_dict_t *) value;
ctf_link_out_string_cb_arg_t *arg = (ctf_link_out_string_cb_arg_t *) arg_;
fp->ctf_flags |= LCTF_DIRTY;
if (!ctf_str_add_external (fp, arg->str, arg->offset))
arg->err = ENOMEM;
}
/* Repeatedly call ADD_STRING to acquire strings from the external string table,
adding them to the atoms table for this CU and all subsidiary CUs.
If ctf_link() is also called, it must be called first if you want the new CTF
files ctf_link() can create to get their strings dedupped against the ELF
strtab properly. */
int
ctf_link_add_strtab (ctf_dict_t *fp, ctf_link_strtab_string_f *add_string,
void *arg)
{
const char *str;
uint32_t offset;
int err = 0;
while ((str = add_string (&offset, arg)) != NULL)
{
ctf_link_out_string_cb_arg_t iter_arg = { str, offset, 0 };
fp->ctf_flags |= LCTF_DIRTY;
if (!ctf_str_add_external (fp, str, offset))
err = ENOMEM;
ctf_dynhash_iter (fp->ctf_link_outputs, ctf_link_intern_extern_string,
&iter_arg);
if (iter_arg.err)
err = iter_arg.err;
}
return -err;
}
/* Not yet implemented. */
int
ctf_link_shuffle_syms (ctf_dict_t *fp _libctf_unused_,
ctf_link_iter_symbol_f *add_sym _libctf_unused_,
void *arg _libctf_unused_)
{
return 0;
}
typedef struct ctf_name_list_accum_cb_arg
{
char **names;
ctf_dict_t *fp;
ctf_dict_t **files;
size_t i;
char **dynames;
size_t ndynames;
} ctf_name_list_accum_cb_arg_t;
/* Accumulate the names and a count of the names in the link output hash. */
static void
ctf_accumulate_archive_names (void *key, void *value, void *arg_)
{
const char *name = (const char *) key;
ctf_dict_t *fp = (ctf_dict_t *) value;
char **names;
ctf_dict_t **files;
ctf_name_list_accum_cb_arg_t *arg = (ctf_name_list_accum_cb_arg_t *) arg_;
if ((names = realloc (arg->names, sizeof (char *) * ++(arg->i))) == NULL)
{
(arg->i)--;
ctf_set_errno (arg->fp, ENOMEM);
return;
}
if ((files = realloc (arg->files, sizeof (ctf_dict_t *) * arg->i)) == NULL)
{
(arg->i)--;
ctf_set_errno (arg->fp, ENOMEM);
return;
}
/* Allow the caller to get in and modify the name at the last minute. If the
caller *does* modify the name, we have to stash away the new name the
caller returned so we can free it later on. (The original name is the key
of the ctf_link_outputs hash and is freed by the dynhash machinery.) */
if (fp->ctf_link_memb_name_changer)
{
char **dynames;
char *dyname;
void *nc_arg = fp->ctf_link_memb_name_changer_arg;
dyname = fp->ctf_link_memb_name_changer (fp, name, nc_arg);
if (dyname != NULL)
{
if ((dynames = realloc (arg->dynames,
sizeof (char *) * ++(arg->ndynames))) == NULL)
{
(arg->ndynames)--;
ctf_set_errno (arg->fp, ENOMEM);
return;
}
arg->dynames = dynames;
name = (const char *) dyname;
}
}
arg->names = names;
arg->names[(arg->i) - 1] = (char *) name;
arg->files = files;
arg->files[(arg->i) - 1] = fp;
}
/* Change the name of the parent CTF section, if the name transformer has got to
it. */
static void
ctf_change_parent_name (void *key _libctf_unused_, void *value, void *arg)
{
ctf_dict_t *fp = (ctf_dict_t *) value;
const char *name = (const char *) arg;
ctf_parent_name_set (fp, name);
}
/* Write out a CTF archive (if there are per-CU CTF files) or a CTF file
(otherwise) into a new dynamically-allocated string, and return it.
Members with sizes above THRESHOLD are compressed. */
unsigned char *
ctf_link_write (ctf_dict_t *fp, size_t *size, size_t threshold)
{
ctf_name_list_accum_cb_arg_t arg;
char **names;
char *transformed_name = NULL;
ctf_dict_t **files;
FILE *f = NULL;
int err;
long fsize;
const char *errloc;
unsigned char *buf = NULL;
memset (&arg, 0, sizeof (ctf_name_list_accum_cb_arg_t));
arg.fp = fp;
if (fp->ctf_link_outputs)
{
ctf_dynhash_iter (fp->ctf_link_outputs, ctf_accumulate_archive_names, &arg);
if (ctf_errno (fp) < 0)
{
errloc = "hash creation";
goto err;
}
}
/* No extra outputs? Just write a simple ctf_dict_t. */
if (arg.i == 0)
return ctf_write_mem (fp, size, threshold);
/* Writing an archive. Stick ourselves (the shared repository, parent of all
other archives) on the front of it with the default name. */
if ((names = realloc (arg.names, sizeof (char *) * (arg.i + 1))) == NULL)
{
errloc = "name reallocation";
goto err_no;
}
arg.names = names;
memmove (&(arg.names[1]), arg.names, sizeof (char *) * (arg.i));
arg.names[0] = (char *) _CTF_SECTION;
if (fp->ctf_link_memb_name_changer)
{
void *nc_arg = fp->ctf_link_memb_name_changer_arg;
transformed_name = fp->ctf_link_memb_name_changer (fp, _CTF_SECTION,
nc_arg);
if (transformed_name != NULL)
{
arg.names[0] = transformed_name;
ctf_dynhash_iter (fp->ctf_link_outputs, ctf_change_parent_name,
transformed_name);
}
}
if ((files = realloc (arg.files,
sizeof (struct ctf_dict *) * (arg.i + 1))) == NULL)
{
errloc = "ctf_dict reallocation";
goto err_no;
}
arg.files = files;
memmove (&(arg.files[1]), arg.files, sizeof (ctf_dict_t *) * (arg.i));
arg.files[0] = fp;
if ((f = tmpfile ()) == NULL)
{
errloc = "tempfile creation";
goto err_no;
}
if ((err = ctf_arc_write_fd (fileno (f), arg.files, arg.i + 1,
(const char **) arg.names,
threshold)) < 0)
{
errloc = "archive writing";
ctf_set_errno (fp, err);
goto err;
}
if (fseek (f, 0, SEEK_END) < 0)
{
errloc = "seeking to end";
goto err_no;
}
if ((fsize = ftell (f)) < 0)
{
errloc = "filesize determination";
goto err_no;
}
if (fseek (f, 0, SEEK_SET) < 0)
{
errloc = "filepos resetting";
goto err_no;
}
if ((buf = malloc (fsize)) == NULL)
{
errloc = "CTF archive buffer allocation";
goto err_no;
}
while (!feof (f) && fread (buf, fsize, 1, f) == 0)
if (ferror (f))
{
errloc = "reading archive from temporary file";
goto err_no;
}
*size = fsize;
free (arg.names);
free (arg.files);
free (transformed_name);
if (arg.ndynames)
{
size_t i;
for (i = 0; i < arg.ndynames; i++)
free (arg.dynames[i]);
free (arg.dynames);
}
fclose (f);
return buf;
err_no:
ctf_set_errno (fp, errno);
err:
free (buf);
if (f)
fclose (f);
free (arg.names);
free (arg.files);
free (transformed_name);
if (arg.ndynames)
{
size_t i;
for (i = 0; i < arg.ndynames; i++)
free (arg.dynames[i]);
free (arg.dynames);
}
ctf_err_warn (fp, 0, 0, _("cannot write archive in link: %s failure"),
errloc);
return NULL;
}