mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
459ae909b9
* elf32-hppa.c: Change .hppa_linker_stubs to .PARISC.stubs, likewise for other PA specific sections. (hppa_elf_relocate_unwind_table): Delete unused function. (elf_hppa_howto_table): Completely new table based on 94-02-02 draft PA ELF spec. Change relocation tags appropriately throughout elf32-hppa.c (hppa_elf_gen_reloc_type): Rewrite and simplify based on 94-02-02 spec. (hppa_elf_reloc): Likewise. (hppa_look_for_stubs_in_section): Likewise (ELF_MACHINE_CODE): Change to EM_PARISC. * elf32-hppa.h: Include "elf/hppa.h". Change relocation tags appropriately throughout elf32-hppa.h. (elf32_hppa_reloc_type): New table based on 94-02-02 draft PA ELF spec. (R_HPPA_ABS_CALL, R_HPPA_COMPLEX*, R_HPPA_UNWIND): Delete definitions. * elfcode.h (prep_headers): Use EM_PARISC instead of EM_HPPA. * reloc.c (bfd_reloc_code_real): Delete unused HPPA relocations. * som.h (R_HPPA_ABS_CALL, R_HPPA_COMPLEX): Delete definitions. * libhppa.h (hppa_field_adjust): Avoid adding constant_value into the final value twice for LR and RR field selectors.
2900 lines
92 KiB
C
2900 lines
92 KiB
C
/* BFD back-end for HP PA-RISC ELF files.
|
|
Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc.
|
|
|
|
Written by
|
|
|
|
Center for Software Science
|
|
Department of Computer Science
|
|
University of Utah
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include "bfd.h"
|
|
#include "sysdep.h"
|
|
#include "libbfd.h"
|
|
#include "obstack.h"
|
|
#include "bfdlink.h"
|
|
#include "libelf.h"
|
|
|
|
/* Note there isn't much error handling code in here yet. Unexpected
|
|
conditions are handled by just calling abort. FIXME damnit! */
|
|
|
|
/* ELF32/HPPA relocation support
|
|
|
|
This file contains ELF32/HPPA relocation support as specified
|
|
in the Stratus FTX/Golf Object File Format (SED-1762) dated
|
|
November 19, 1992. */
|
|
|
|
#include "elf32-hppa.h"
|
|
#include "aout/aout64.h"
|
|
#include "hppa_stubs.h"
|
|
|
|
/* The basic stub types supported. If/when shared libraries are
|
|
implemented some form of IMPORT and EXPORT stubs will be needed. */
|
|
typedef enum
|
|
{
|
|
HPPA_STUB_ILLEGAL,
|
|
HPPA_STUB_ARG_RELOC,
|
|
HPPA_STUB_LONG_CALL,
|
|
} hppa_stub_type;
|
|
|
|
/* This is a list of all the stubs for a particular BFD. */
|
|
|
|
typedef struct elf32_hppa_stub_name_list_struct
|
|
{
|
|
/* The symbol associated with this stub. */
|
|
asymbol *sym;
|
|
/* Pointer to chain of all stub chains. */
|
|
struct elf32_hppa_stub_description_struct *stub_desc;
|
|
/* Pointer to the stub contents (eg instructions). */
|
|
int *stub_secp;
|
|
/* Size of this stub? (in what units? FIXME). */
|
|
unsigned size;
|
|
/* Pointer to the next stub entry in the chain. */
|
|
struct elf32_hppa_stub_name_list_struct *next;
|
|
} elf32_hppa_stub_name_list;
|
|
|
|
/* This is a linked list in which each entry describes all the
|
|
linker stubs for a particular bfd. */
|
|
|
|
typedef struct elf32_hppa_stub_description_struct
|
|
{
|
|
/* The next group of stubs. */
|
|
struct elf32_hppa_stub_description_struct *next;
|
|
/* Used to identify this group of stubs as belonging
|
|
to a particular bfd. */
|
|
bfd *this_bfd;
|
|
/* FIXME: The stub section for this group of stubs? Is
|
|
this redundant with stub_listP->sym->section? */
|
|
asection *stub_sec;
|
|
/* FIXME: what the hell is this? */
|
|
unsigned relocs_allocated_cnt;
|
|
/* The current real size of the stubs (in bytes?). */
|
|
unsigned real_size;
|
|
/* How much space we have allocated for stubs (in bytes?). */
|
|
unsigned allocated_size;
|
|
/* Pointer to the first available space for new stubs. */
|
|
int *stub_secp;
|
|
/* Pointer to the beginning of the stubs. FIXME: Why an int *
|
|
above and a char * here? */
|
|
char *stub_contents;
|
|
/* The list of stubs for this bfd. */
|
|
elf32_hppa_stub_name_list *stub_listP;
|
|
/* I guess we just carry this around for fun. */
|
|
struct bfd_link_info *link_info;
|
|
} elf32_hppa_stub_description;
|
|
|
|
/* FIXME. */
|
|
#define ARGUMENTS 0
|
|
#define RETURN_VALUE 1
|
|
|
|
/* The various argument relocations that may be performed.
|
|
Note GRX,GRY really means ARGX,ARGY. */
|
|
typedef enum
|
|
{
|
|
/* No relocation. */
|
|
NO_ARG_RELOC,
|
|
/* Relocate 32 bits from general to FP register. */
|
|
R_TO_FR,
|
|
/* Relocate 64 bits from arg0,arg1 to FParg1. */
|
|
R01_TO_FR,
|
|
/* Relocate 64 bits from arg2,arg3 to FParg3. */
|
|
R23_TO_FR,
|
|
/* Relocate 32 bits from FP to general register. */
|
|
FR_TO_R,
|
|
/* Relocate 64 bits from FParg1 to arg0,arg1. */
|
|
FR_TO_R01,
|
|
/* Relocate 64 bits from FParg3 to arg2,arg3. */
|
|
FR_TO_R23,
|
|
/* Death. */
|
|
ARG_RELOC_ERR,
|
|
} arg_reloc_type;
|
|
|
|
/* Where (what register type) is an argument comming from? */
|
|
typedef enum
|
|
{
|
|
/* Not in a register. */
|
|
AR_NO,
|
|
/* In a general argument register. */
|
|
AR_GR,
|
|
/* In right half of a FP argument register. */
|
|
AR_FR,
|
|
/* In upper (left) half of a FP argument register. */
|
|
AR_FU,
|
|
/* In general argument register pair 0 (arg0, arg1). */
|
|
AR_DBL01,
|
|
/* In general argument register pair 1 (arg2, arg3). */
|
|
AR_DBL23,
|
|
} arg_location;
|
|
|
|
/* What is being relocated (eg which argument or the return value). */
|
|
typedef enum
|
|
{
|
|
ARG0, ARG1, ARG2, ARG3, RETVAL,
|
|
} arg_reloc_location;
|
|
|
|
/* Horizontal represents callee's argument location information, vertical
|
|
represents caller's argument location information. Value at a particular
|
|
X, Y location represents what (if any) argument relocation needs to
|
|
be performed to make caller and callee agree. */
|
|
static CONST arg_reloc_type mismatches[6][6] =
|
|
{
|
|
{NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC,
|
|
NO_ARG_RELOC, NO_ARG_RELOC},
|
|
{NO_ARG_RELOC, NO_ARG_RELOC, R_TO_FR, ARG_RELOC_ERR,
|
|
R01_TO_FR, ARG_RELOC_ERR},
|
|
{NO_ARG_RELOC, FR_TO_R, NO_ARG_RELOC, ARG_RELOC_ERR,
|
|
ARG_RELOC_ERR, ARG_RELOC_ERR},
|
|
{ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR,
|
|
ARG_RELOC_ERR, ARG_RELOC_ERR},
|
|
{NO_ARG_RELOC, FR_TO_R01, NO_ARG_RELOC, ARG_RELOC_ERR,
|
|
NO_ARG_RELOC, ARG_RELOC_ERR},
|
|
{NO_ARG_RELOC, FR_TO_R23, NO_ARG_RELOC, ARG_RELOC_ERR,
|
|
ARG_RELOC_ERR, NO_ARG_RELOC},
|
|
};
|
|
|
|
/* Likewise for the return value. */
|
|
static CONST arg_reloc_type retval_mismatches[6][6] =
|
|
{
|
|
{NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC,
|
|
NO_ARG_RELOC, NO_ARG_RELOC},
|
|
{NO_ARG_RELOC, NO_ARG_RELOC, FR_TO_R, ARG_RELOC_ERR,
|
|
FR_TO_R01, ARG_RELOC_ERR},
|
|
{NO_ARG_RELOC, R_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
|
|
ARG_RELOC_ERR, ARG_RELOC_ERR},
|
|
{ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR,
|
|
ARG_RELOC_ERR, ARG_RELOC_ERR},
|
|
{NO_ARG_RELOC, R01_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
|
|
NO_ARG_RELOC, ARG_RELOC_ERR},
|
|
{NO_ARG_RELOC, R23_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
|
|
ARG_RELOC_ERR, NO_ARG_RELOC},
|
|
};
|
|
|
|
/* Used for index mapping in symbol-extension sections. */
|
|
struct elf32_hppa_symextn_map_struct
|
|
{
|
|
int old_index;
|
|
bfd *bfd;
|
|
asymbol *sym;
|
|
int new_index;
|
|
};
|
|
|
|
static bfd_reloc_status_type hppa_elf_reloc
|
|
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
|
|
|
|
static unsigned long hppa_elf_relocate_insn
|
|
PARAMS ((bfd *, asection *, unsigned long, unsigned long, long,
|
|
long, unsigned long, unsigned long, unsigned long));
|
|
|
|
static long get_symbol_value PARAMS ((asymbol *));
|
|
|
|
static bfd_reloc_status_type hppa_elf_reloc
|
|
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd*, char **));
|
|
|
|
static CONST reloc_howto_type * elf_hppa_reloc_type_lookup
|
|
PARAMS ((bfd *, bfd_reloc_code_real_type));
|
|
|
|
static symext_entryS elf32_hppa_get_sym_extn PARAMS ((bfd *, asymbol *, int));
|
|
|
|
static elf32_hppa_stub_description * find_stubs PARAMS ((bfd *, asection *));
|
|
|
|
static elf32_hppa_stub_description * new_stub
|
|
PARAMS ((bfd *, asection *, struct bfd_link_info *));
|
|
|
|
static arg_reloc_type type_of_mismatch PARAMS ((int, int, int));
|
|
|
|
static elf32_hppa_stub_name_list * find_stub_by_name
|
|
PARAMS ((bfd *, asection *, char *));
|
|
|
|
static elf32_hppa_stub_name_list * add_stub_by_name
|
|
PARAMS ((bfd *, asection *, asymbol *, struct bfd_link_info *));
|
|
|
|
static void hppa_elf_stub_finish PARAMS ((bfd *));
|
|
|
|
static void hppa_elf_stub_reloc
|
|
PARAMS ((elf32_hppa_stub_description *, bfd *, asymbol **, int,
|
|
elf32_hppa_reloc_type));
|
|
|
|
static int hppa_elf_arg_reloc_needed_p
|
|
PARAMS ((bfd *, arelent *, arg_reloc_type [5], symext_entryS));
|
|
|
|
static asymbol * hppa_elf_build_linker_stub
|
|
PARAMS ((bfd *, bfd *, struct bfd_link_info *, arelent *,
|
|
arg_reloc_type [5], int, unsigned *, hppa_stub_type));
|
|
|
|
static void hppa_elf_create_stub_sec
|
|
PARAMS ((bfd *, bfd *, asection **, struct bfd_link_info *));
|
|
|
|
static int hppa_elf_long_branch_needed_p
|
|
PARAMS ((bfd *, asection *, arelent *, asymbol *, unsigned));
|
|
|
|
static boolean hppa_elf_set_section_contents
|
|
PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
|
|
|
|
static void elf_info_to_howto
|
|
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
|
|
|
|
static void elf32_hppa_backend_symbol_processing PARAMS ((bfd *, asymbol *));
|
|
|
|
static boolean elf32_hppa_backend_section_processing
|
|
PARAMS ((bfd *, Elf32_Internal_Shdr *));
|
|
|
|
static boolean elf32_hppa_backend_symbol_table_processing
|
|
PARAMS ((bfd *, elf_symbol_type *, int));
|
|
|
|
static boolean elf32_hppa_backend_section_from_shdr
|
|
PARAMS ((bfd *, Elf32_Internal_Shdr *, char *));
|
|
|
|
static boolean elf32_hppa_backend_fake_sections
|
|
PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
|
|
|
|
static boolean elf32_hppa_backend_section_from_bfd_section
|
|
PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *, int *));
|
|
|
|
static void elf32_hppa_backend_begin_write_processing PARAMS ((bfd *));
|
|
|
|
static void elf32_hppa_backend_final_write_processing PARAMS ((bfd *));
|
|
|
|
static void add_entry_to_symext_chain
|
|
PARAMS ((bfd *, elf_symbol_type *, int, symext_chainS **, symext_chainS **));
|
|
|
|
static void
|
|
elf_hppa_tc_make_sections PARAMS ((bfd *, symext_chainS *));
|
|
|
|
static boolean hppa_elf_is_local_label PARAMS ((bfd *, asymbol *));
|
|
|
|
/* ELF/PA relocation howto entries. */
|
|
|
|
static reloc_howto_type elf_hppa_howto_table[ELF_HOWTO_TABLE_SIZE] =
|
|
{
|
|
{R_PARISC_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_NONE"},
|
|
{R_PARISC_DIR32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR32"},
|
|
{R_PARISC_DIR21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR21L"},
|
|
{R_PARISC_DIR17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17R"},
|
|
{R_PARISC_DIR17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17F"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DIR14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR14R"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PCREL21L, 0, 0, 21, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL21L"},
|
|
{R_PARISC_PCREL17R, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17R"},
|
|
{R_PARISC_PCREL17F, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17F"},
|
|
{R_PARISC_PCREL17C, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17C"},
|
|
{R_PARISC_PCREL14R, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14R"},
|
|
{R_PARISC_PCREL14F, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DPREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DPREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14R"},
|
|
{R_PARISC_DPREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14R"},
|
|
{R_PARISC_DLTREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTIND21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTIND14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14R"},
|
|
{R_PARISC_DLTIND14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14F"},
|
|
|
|
{R_PARISC_SETBASE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_SETBASE"},
|
|
{R_PARISC_BASEREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL32"},
|
|
{R_PARISC_BASEREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL21L"},
|
|
{R_PARISC_BASEREL17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17R"},
|
|
{R_PARISC_BASEREL17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17F"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_BASEREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14R"},
|
|
{R_PARISC_BASEREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_TEXTREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_TEXTREL32"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DATAREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLABEL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL32"},
|
|
{R_PARISC_PLABEL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLABEL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL14R"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLTIND21L, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLTIND14R, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14R"},
|
|
{R_PARISC_PLTIND14F, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14F"},
|
|
|
|
|
|
{R_PARISC_COPY, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_COPY"},
|
|
{R_PARISC_GLOB_DAT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_GLOB_DAT"},
|
|
{R_PARISC_JMP_SLOT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_JMP_SLOT"},
|
|
{R_PARISC_RELATIVE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_RELATIVE"},
|
|
{R_PARISC_STUB_CALL_17, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_STUB_CALL_17"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_dont, NULL, "R_PARISC_UNIMPLEMENTED"},
|
|
};
|
|
|
|
static symext_chainS *symext_rootP;
|
|
static symext_chainS *symext_lastP;
|
|
static int symext_chain_size;
|
|
static long global_value;
|
|
static long GOT_value;
|
|
static asymbol *global_symbol;
|
|
static int global_sym_defined;
|
|
static symext_entryS *symextn_contents;
|
|
static elf32_hppa_stub_description *elf_hppa_stub_rootP;
|
|
static boolean stubs_finished = false;
|
|
static struct elf32_hppa_symextn_map_struct *elf32_hppa_symextn_map;
|
|
static int elf32_hppa_symextn_map_size;
|
|
|
|
static char *linker_stubs = NULL;
|
|
static int linker_stubs_size = 0;
|
|
static int linker_stubs_max_size = 0;
|
|
#define STUB_ALLOC_INCR 100
|
|
#define STUB_SYM_BUFFER_INC 5
|
|
|
|
/* Relocate the given INSN given the various input parameters.
|
|
|
|
FIXME: endianness and sizeof (long) issues abound here. */
|
|
|
|
static unsigned long
|
|
hppa_elf_relocate_insn (abfd, input_sect, insn, address, sym_value,
|
|
r_addend, r_format, r_field, pcrel)
|
|
bfd *abfd;
|
|
asection *input_sect;
|
|
unsigned long insn;
|
|
unsigned long address;
|
|
long sym_value;
|
|
long r_addend;
|
|
unsigned long r_format;
|
|
unsigned long r_field;
|
|
unsigned long pcrel;
|
|
{
|
|
unsigned char opcode = get_opcode (insn);
|
|
long constant_value;
|
|
unsigned arg_reloc;
|
|
|
|
switch (opcode)
|
|
{
|
|
case LDO:
|
|
case LDB:
|
|
case LDH:
|
|
case LDW:
|
|
case LDWM:
|
|
case STB:
|
|
case STH:
|
|
case STW:
|
|
case STWM:
|
|
case COMICLR:
|
|
case SUBI:
|
|
case ADDIT:
|
|
case ADDI:
|
|
case LDIL:
|
|
case ADDIL:
|
|
constant_value = HPPA_R_CONSTANT (r_addend);
|
|
|
|
if (pcrel)
|
|
sym_value -= address;
|
|
|
|
sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
|
|
return hppa_rebuild_insn (abfd, insn, sym_value, r_format);
|
|
|
|
case BL:
|
|
case BE:
|
|
case BLE:
|
|
arg_reloc = HPPA_R_ARG_RELOC (r_addend);
|
|
|
|
/* XXX computing constant_value is not needed??? */
|
|
constant_value = assemble_17 ((insn & 0x001f0000) >> 16,
|
|
(insn & 0x00001ffc) >> 2,
|
|
insn & 1);
|
|
|
|
constant_value = (constant_value << 15) >> 15;
|
|
if (pcrel)
|
|
{
|
|
sym_value -=
|
|
address + input_sect->output_offset
|
|
+ input_sect->output_section->vma;
|
|
sym_value = hppa_field_adjust (sym_value, -8, r_field);
|
|
}
|
|
else
|
|
sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
|
|
|
|
return hppa_rebuild_insn (abfd, insn, sym_value >> 2, r_format);
|
|
|
|
default:
|
|
if (opcode == 0)
|
|
{
|
|
constant_value = HPPA_R_CONSTANT (r_addend);
|
|
|
|
if (pcrel)
|
|
sym_value -= address;
|
|
|
|
return hppa_field_adjust (sym_value, constant_value, r_field);
|
|
}
|
|
else
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Return the relocated value of the given symbol. */
|
|
|
|
static long
|
|
get_symbol_value (symbol)
|
|
asymbol *symbol;
|
|
{
|
|
if (symbol == NULL
|
|
|| symbol->section == &bfd_com_section)
|
|
return 0;
|
|
else
|
|
return symbol->value + symbol->section->output_section->vma
|
|
+ symbol->section->output_offset;
|
|
}
|
|
|
|
/* Return one (or more) BFD relocations which implement the base
|
|
relocation with modifications based on format and field. */
|
|
|
|
elf32_hppa_reloc_type **
|
|
hppa_elf_gen_reloc_type (abfd, base_type, format, field)
|
|
bfd *abfd;
|
|
elf32_hppa_reloc_type base_type;
|
|
int format;
|
|
int field;
|
|
{
|
|
elf32_hppa_reloc_type *finaltype;
|
|
elf32_hppa_reloc_type **final_types;
|
|
|
|
/* Allocate slots for the BFD relocation. */
|
|
final_types = (elf32_hppa_reloc_type **)
|
|
bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type *) * 2);
|
|
BFD_ASSERT (final_types != 0); /* FIXME */
|
|
|
|
/* Allocate space for the relocation itself. */
|
|
finaltype = (elf32_hppa_reloc_type *)
|
|
bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type));
|
|
BFD_ASSERT (finaltype != 0); /* FIXME */
|
|
|
|
/* Some reasonable defaults. */
|
|
final_types[0] = finaltype;
|
|
final_types[1] = NULL;
|
|
|
|
#define final_type finaltype[0]
|
|
|
|
final_type = base_type;
|
|
|
|
/* Just a tangle of nested switch statements to deal with the braindamage
|
|
that a different field selector means a completely different relocation
|
|
for PA ELF. */
|
|
switch (base_type)
|
|
{
|
|
case R_HPPA:
|
|
switch (format)
|
|
{
|
|
case 14:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_DIR14R;
|
|
break;
|
|
case e_rtsel:
|
|
final_type = R_PARISC_DLTREL14R;
|
|
break;
|
|
case e_tsel:
|
|
final_type = R_PARISC_DLTREL14F;
|
|
break;
|
|
case e_rpsel:
|
|
final_type = R_PARISC_PLABEL14R;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 17:
|
|
switch (field)
|
|
{
|
|
case e_fsel:
|
|
final_type = R_PARISC_DIR17F;
|
|
break;
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_DIR17R;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 21:
|
|
switch (field)
|
|
{
|
|
case e_lsel:
|
|
case e_lrsel:
|
|
final_type = R_PARISC_DIR21L;
|
|
break;
|
|
case e_ltsel:
|
|
final_type = R_PARISC_DLTREL21L;
|
|
break;
|
|
case e_lpsel:
|
|
final_type = R_PARISC_PLABEL21L;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 32:
|
|
switch (field)
|
|
{
|
|
case e_fsel:
|
|
final_type = R_PARISC_DIR32;
|
|
break;
|
|
case e_psel:
|
|
final_type = R_PARISC_PLABEL32;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
|
|
case R_HPPA_GOTOFF:
|
|
switch (format)
|
|
{
|
|
case 14:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_DPREL14R;
|
|
break;
|
|
case e_fsel:
|
|
final_type = R_PARISC_DPREL14F;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 21:
|
|
switch (field)
|
|
{
|
|
case e_lrsel:
|
|
case e_lsel:
|
|
final_type = R_PARISC_DPREL21L;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
|
|
case R_HPPA_PCREL_CALL:
|
|
switch (format)
|
|
{
|
|
case 14:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_PCREL14R;
|
|
break;
|
|
case e_fsel:
|
|
final_type = R_PARISC_PCREL14F;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 17:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_PCREL17R;
|
|
break;
|
|
case e_fsel:
|
|
final_type = R_PARISC_PCREL17F;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 21:
|
|
switch (field)
|
|
{
|
|
case e_lsel:
|
|
case e_lrsel:
|
|
final_type = R_PARISC_PCREL21L;
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
|
|
return final_types;
|
|
}
|
|
|
|
#undef final_type
|
|
|
|
|
|
/* Actually perform a relocation. */
|
|
|
|
static bfd_reloc_status_type
|
|
hppa_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
|
|
error_message)
|
|
bfd *abfd;
|
|
arelent *reloc_entry;
|
|
asymbol *symbol_in;
|
|
PTR data;
|
|
asection *input_section;
|
|
bfd *output_bfd;
|
|
char **error_message;
|
|
{
|
|
unsigned long insn;
|
|
long sym_value = 0;
|
|
unsigned long addr = reloc_entry->address;
|
|
bfd_byte *hit_data = addr + (bfd_byte *) data;
|
|
unsigned long r_type = reloc_entry->howto->type;
|
|
unsigned long r_field = e_fsel;
|
|
boolean r_pcrel = reloc_entry->howto->pc_relative;
|
|
unsigned r_format = reloc_entry->howto->bitsize;
|
|
long r_addend = reloc_entry->addend;
|
|
|
|
/* If only performing a partial link, get out early. */
|
|
if (output_bfd)
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
|
|
/* Work around lossage in generic elf code to write relocations.
|
|
(maps different section symbols into the same symbol index). */
|
|
if ((symbol_in->flags & BSF_SECTION_SYM)
|
|
&& symbol_in->section)
|
|
reloc_entry->addend += symbol_in->section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* If performing final link and the symbol we're relocating against
|
|
is undefined, then return an error. */
|
|
if (symbol_in && symbol_in->section == &bfd_und_section)
|
|
return bfd_reloc_undefined;
|
|
|
|
/* Get the final relocated value. */
|
|
sym_value = get_symbol_value (symbol_in);
|
|
|
|
/* Compute the value of $global$.
|
|
FIXME: None of this should be necessary. $global$ is just a
|
|
marker and shouldn't really figure into these computations.
|
|
|
|
Once that's fixed we'll need to teach this backend to change
|
|
DP-relative relocations involving symbols in the text section
|
|
to be simple absolute relocations. */
|
|
if (!global_sym_defined)
|
|
{
|
|
if (global_symbol)
|
|
{
|
|
global_value = (global_symbol->value
|
|
+ global_symbol->section->output_section->vma
|
|
+ global_symbol->section->output_offset);
|
|
GOT_value = global_value;
|
|
global_sym_defined++;
|
|
}
|
|
}
|
|
|
|
/* Get the instruction word. */
|
|
insn = bfd_get_32 (abfd, hit_data);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_NONE:
|
|
break;
|
|
|
|
case R_PARISC_DIR32:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PLABEL32:
|
|
case R_PARISC_PCREL14F:
|
|
r_field = e_fsel;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PLABEL21L:
|
|
r_field = e_lrsel;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PLABEL14R:
|
|
r_field = e_rrsel;
|
|
goto do_basic_type_1;
|
|
|
|
case R_PARISC_DPREL21L:
|
|
r_field = e_lrsel;
|
|
sym_value -= GOT_value;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DPREL14R:
|
|
r_field = e_rrsel;
|
|
sym_value -= GOT_value;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DPREL14F:
|
|
r_field = e_fsel;
|
|
sym_value -= GOT_value;
|
|
goto do_basic_type_1;
|
|
|
|
|
|
do_basic_type_1:
|
|
insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
|
|
sym_value, r_addend, r_format,
|
|
r_field, r_pcrel);
|
|
break;
|
|
|
|
|
|
/* This is a linker internal relocation. */
|
|
case R_PARISC_STUB_CALL_17:
|
|
/* This relocation is for a branch to a long branch stub.
|
|
Change instruction to a BLE,N. It may also be necessary
|
|
to interchange the branch and its delay slot.
|
|
The original instruction stream is
|
|
|
|
bl <foo>,r ; call foo using register r as
|
|
; the return pointer
|
|
XXX ; delay slot instruction
|
|
|
|
The new instruction stream will be:
|
|
|
|
XXX ; delay slot instruction
|
|
ble <foo_stub> ; call the long call stub for foo
|
|
; using r31 as the return pointer
|
|
|
|
This braindamage is necessary because the compiler may put
|
|
an instruction which uses %r31 in the delay slot of the original
|
|
call. By changing the call instruction from a "bl" to a "ble"
|
|
%r31 gets clobbered before the delay slot executes. This
|
|
also means the stub has to play funny games to make sure
|
|
we return to the instruction just after the BLE rather than
|
|
two instructions after the BLE.
|
|
|
|
We do not interchange the branch and delay slot if the delay
|
|
slot was already nullified, or if the instruction in the delay
|
|
slot modifies the return pointer to avoid an unconditional
|
|
jump after the call returns (GCC optimization).
|
|
|
|
None of this horseshit would be necessary if we put the
|
|
stubs between functions and just redirected the "bl" to
|
|
the stub. Live and learn. */
|
|
|
|
/* Is this instruction nullified? (does this ever happen?) */
|
|
if (insn & 2)
|
|
{
|
|
insn = BLE_N_XXX_0_0;
|
|
bfd_put_32 (abfd, insn, hit_data);
|
|
r_type = R_PARISC_DIR17F;
|
|
r_pcrel = 0;
|
|
insn = hppa_elf_relocate_insn (abfd, input_section, insn,
|
|
addr, sym_value, r_addend,
|
|
r_format, r_field, r_pcrel);
|
|
}
|
|
else
|
|
{
|
|
/* So much for the trivial case... */
|
|
unsigned long old_delay_slot_insn = bfd_get_32 (abfd, hit_data + 4);
|
|
unsigned rtn_reg = (insn & 0x03e00000) >> 21;
|
|
|
|
if (get_opcode (old_delay_slot_insn) == LDO)
|
|
{
|
|
unsigned ldo_src_reg = (old_delay_slot_insn & 0x03e00000) >> 21;
|
|
unsigned ldo_target_reg = (old_delay_slot_insn & 0x001f0000) >> 16;
|
|
|
|
/* If the target of the LDO is the same as the return
|
|
register then there is no reordering. We can leave the
|
|
instuction as a non-nullified BLE in this case.
|
|
|
|
FIXME: This test looks wrong. If we had a ble using
|
|
ldo_target_reg as the *source* we'd fuck this up. */
|
|
if (ldo_target_reg == rtn_reg)
|
|
{
|
|
unsigned long new_delay_slot_insn = old_delay_slot_insn;
|
|
|
|
BFD_ASSERT (ldo_src_reg == ldo_target_reg);
|
|
new_delay_slot_insn &= 0xfc00ffff;
|
|
new_delay_slot_insn |= ((31 << 21) | (31 << 16));
|
|
bfd_put_32 (abfd, new_delay_slot_insn, hit_data + 4);
|
|
insn = BLE_XXX_0_0;
|
|
r_type = R_PARISC_DIR17F;
|
|
r_pcrel = 0;
|
|
insn = hppa_elf_relocate_insn (abfd, input_section, insn,
|
|
addr, sym_value, r_addend,
|
|
r_format, r_field, r_pcrel);
|
|
bfd_put_32 (abfd, insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
else if (rtn_reg == 31)
|
|
{
|
|
/* The return register is r31, so this is a millicode
|
|
call. Do not perform any instruction reordering. */
|
|
insn = BLE_XXX_0_0;
|
|
r_type = R_PARISC_DIR17F;
|
|
r_pcrel = 0;
|
|
insn = hppa_elf_relocate_insn (abfd, input_section, insn,
|
|
addr, sym_value,
|
|
r_addend, r_format,
|
|
r_field, r_pcrel);
|
|
bfd_put_32 (abfd, insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
else
|
|
{
|
|
/* Check to see if the delay slot instruction has a
|
|
relocation. If so, we need to change the address
|
|
field of it because the instruction it relocates
|
|
is going to be moved. Oh what a mess. */
|
|
arelent * next_reloc_entry = reloc_entry+1;
|
|
|
|
if (next_reloc_entry->address == reloc_entry->address + 4)
|
|
next_reloc_entry->address -= 4;
|
|
|
|
insn = old_delay_slot_insn;
|
|
bfd_put_32 (abfd, insn, hit_data);
|
|
insn = BLE_N_XXX_0_0;
|
|
bfd_put_32 (abfd, insn, hit_data + 4);
|
|
r_type = R_PARISC_DIR17F;
|
|
r_pcrel = 0;
|
|
insn = hppa_elf_relocate_insn (abfd, input_section, insn,
|
|
addr + 4,
|
|
sym_value, r_addend,
|
|
r_format, r_field, r_pcrel);
|
|
bfd_put_32 (abfd, insn, hit_data + 4);
|
|
return bfd_reloc_ok;
|
|
}
|
|
}
|
|
/* Same comments as above regarding incorrect test. */
|
|
else if (rtn_reg == 31)
|
|
{
|
|
/* The return register is r31, so this is a millicode call.
|
|
Perform no instruction reordering in this case. */
|
|
insn = BLE_XXX_0_0;
|
|
r_type = R_PARISC_DIR17F;
|
|
r_pcrel = 0;
|
|
insn = hppa_elf_relocate_insn (abfd, input_section, insn,
|
|
addr, sym_value,
|
|
r_addend, r_format,
|
|
r_field, r_pcrel);
|
|
bfd_put_32 (abfd, insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
else
|
|
{
|
|
/* Check to see if the delay slot instruction has a
|
|
relocation. If so, we need to change its address
|
|
field because the instruction it relocates is going
|
|
to be moved. */
|
|
arelent * next_reloc_entry = reloc_entry+1;
|
|
|
|
if (next_reloc_entry->address == reloc_entry->address + 4)
|
|
next_reloc_entry->address -= 4;
|
|
|
|
insn = old_delay_slot_insn;
|
|
bfd_put_32 (abfd, insn, hit_data);
|
|
insn = BLE_N_XXX_0_0;
|
|
bfd_put_32 (abfd, insn, hit_data + 4);
|
|
r_type = R_PARISC_DIR17F;
|
|
r_pcrel = 0;
|
|
insn = hppa_elf_relocate_insn (abfd, input_section, insn,
|
|
addr + 4, sym_value,
|
|
r_addend, r_format,
|
|
r_field, r_pcrel);
|
|
bfd_put_32 (abfd, insn, hit_data + 4);
|
|
return bfd_reloc_ok;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Something we don't know how to handle. */
|
|
default:
|
|
*error_message = (char *) "Unrecognized reloc";
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (abfd, insn, hit_data);
|
|
return (bfd_reloc_ok);
|
|
}
|
|
|
|
/* Return the address of the howto table entry to perform the CODE
|
|
relocation for an ARCH machine. */
|
|
|
|
static CONST reloc_howto_type *
|
|
elf_hppa_reloc_type_lookup (abfd, code)
|
|
bfd *abfd;
|
|
bfd_reloc_code_real_type code;
|
|
{
|
|
if ((int) code < (int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
BFD_ASSERT ((int) elf_hppa_howto_table[(int) code].type == (int) code);
|
|
return &elf_hppa_howto_table[(int) code];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return true if SYM represents a local label symbol. */
|
|
|
|
static boolean
|
|
hppa_elf_is_local_label (abfd, sym)
|
|
bfd *abfd;
|
|
asymbol *sym;
|
|
{
|
|
return (sym->name[0] == 'L' && sym->name[1] == '$');
|
|
}
|
|
|
|
/* Do any backend specific processing when beginning to write an object
|
|
file. For PA ELF we need to determine the size of the symbol extension
|
|
section *before* any other output processing happens. */
|
|
|
|
static void
|
|
elf32_hppa_backend_begin_write_processing (abfd)
|
|
bfd *abfd;
|
|
{
|
|
int i;
|
|
asection *symextn_sec;
|
|
|
|
/* Size up the symbol extension section. We can't built it just
|
|
yet as the elf_symbol_map hasn't been built. */
|
|
if (abfd->outsymbols == NULL || symext_chain_size != 0)
|
|
return;
|
|
|
|
/* Look at each symbol, and determine if it will need an entry in
|
|
the symbol extension section. */
|
|
for (i = 0; i < abfd->symcount; i++)
|
|
{
|
|
elf_symbol_type *symbol = (elf_symbol_type *)abfd->outsymbols[i];
|
|
|
|
/* Only functions ever need an entry in the symbol extension
|
|
section. */
|
|
if (!(symbol->symbol.flags & BSF_FUNCTION))
|
|
continue;
|
|
|
|
/* And only if they specify the locations of their arguments. */
|
|
if (symbol->tc_data.hppa_arg_reloc == 0)
|
|
continue;
|
|
|
|
/* Yup. This function symbol needs an entry. */
|
|
symext_chain_size += 2 * sizeof (symext_entryS);
|
|
}
|
|
|
|
/* Now create the section and set its size. We'll fill in the
|
|
contents later. */
|
|
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
|
|
if (symextn_sec == NULL)
|
|
{
|
|
symextn_sec = bfd_make_section (abfd, SYMEXTN_SECTION_NAME);
|
|
bfd_set_section_flags (abfd, symextn_sec,
|
|
SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
|
|
symextn_sec->output_section = symextn_sec;
|
|
symextn_sec->output_offset = 0;
|
|
bfd_set_section_alignment (abfd, symextn_sec, 2);
|
|
bfd_set_section_size (abfd, symextn_sec, symext_chain_size);
|
|
}
|
|
|
|
}
|
|
|
|
/* Perform any processing needed late in the object file writing process.
|
|
For PA ELF we build and set the contents of the symbol extension
|
|
section. */
|
|
|
|
static void
|
|
elf32_hppa_backend_final_write_processing (abfd)
|
|
bfd *abfd;
|
|
{
|
|
asection *symextn_sec;
|
|
int i, *symtab_map = (int *) elf_sym_extra (abfd);
|
|
|
|
/* Now build the symbol extension section. */
|
|
if (symext_chain_size == 0)
|
|
return;
|
|
|
|
/* Look at each symbol, adding the appropriate information to the
|
|
symbol extension section list as necessary. */
|
|
for (i = 0; i < abfd->symcount; i++)
|
|
{
|
|
elf_symbol_type *symbol = (elf_symbol_type *) abfd->outsymbols[i];
|
|
|
|
/* Only functions ever need an entry in the symbol extension
|
|
section. */
|
|
if (!(symbol->symbol.flags & BSF_FUNCTION))
|
|
continue;
|
|
|
|
/* And only if they specify the locations of their arguments. */
|
|
if (symbol->tc_data.hppa_arg_reloc == 0)
|
|
continue;
|
|
|
|
/* Add this symbol's information to the chain. */
|
|
add_entry_to_symext_chain (abfd, symbol, symtab_map[i],
|
|
&symext_rootP, &symext_lastP);
|
|
}
|
|
|
|
/* Now fill in the contents of the symbol extension chain. */
|
|
elf_hppa_tc_make_sections (abfd, symext_rootP);
|
|
|
|
/* And attach that as the section's contents. */
|
|
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
|
|
if (symextn_sec == (asection *) 0)
|
|
abort();
|
|
|
|
symextn_sec->contents = (void *)symextn_contents;
|
|
|
|
bfd_set_section_contents (abfd, symextn_sec, symextn_sec->contents,
|
|
symextn_sec->output_offset, symextn_sec->_raw_size);
|
|
}
|
|
|
|
/* Update the symbol extention chain to include the symbol pointed to
|
|
by SYMBOLP if SYMBOLP is a function symbol. Used internally and by GAS. */
|
|
|
|
static void
|
|
add_entry_to_symext_chain (abfd, symbol, sym_idx, symext_root, symext_last)
|
|
bfd *abfd;
|
|
elf_symbol_type *symbol;
|
|
int sym_idx;
|
|
symext_chainS **symext_root;
|
|
symext_chainS **symext_last;
|
|
{
|
|
symext_chainS *symextP;
|
|
unsigned int arg_reloc = symbol->tc_data.hppa_arg_reloc;
|
|
|
|
/* Allocate memory and initialize this entry. */
|
|
symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
|
|
if (!symextP)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort(); /* FIXME */
|
|
}
|
|
|
|
symextP[0].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_SYMNDX, sym_idx);
|
|
symextP[0].next = &symextP[1];
|
|
|
|
symextP[1].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_ARG_RELOC, arg_reloc);
|
|
symextP[1].next = NULL;
|
|
|
|
/* Now update the chain itself so it can be walked later to build
|
|
the symbol extension section. */
|
|
if (*symext_root == NULL)
|
|
{
|
|
*symext_root = &symextP[0];
|
|
*symext_last = &symextP[1];
|
|
}
|
|
else
|
|
{
|
|
(*symext_last)->next = &symextP[0];
|
|
*symext_last = &symextP[1];
|
|
}
|
|
}
|
|
|
|
/* Build the symbol extension section. Used internally and by GAS. */
|
|
|
|
static void
|
|
elf_hppa_tc_make_sections (abfd, symext_root)
|
|
bfd *abfd;
|
|
symext_chainS *symext_root;
|
|
{
|
|
symext_chainS *symextP;
|
|
int i;
|
|
asection *symextn_sec;
|
|
|
|
/* FIXME: Huh? I don't see what this is supposed to do for us. */
|
|
hppa_elf_stub_finish (abfd);
|
|
|
|
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
|
|
|
|
/* Grab some memory for the contents of the symbol extension section
|
|
itself. */
|
|
symextn_contents = (symext_entryS *) bfd_zalloc (abfd,
|
|
symextn_sec->_raw_size);
|
|
if (!symextn_contents)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort(); /* FIXME */
|
|
}
|
|
|
|
/* Fill in the contents of the symbol extension chain. */
|
|
for (i = 0, symextP = symext_root; symextP; symextP = symextP->next, ++i)
|
|
symextn_contents[i] = symextP->entry;
|
|
|
|
return;
|
|
}
|
|
|
|
/* Return the symbol extension record of type TYPE for the symbol SYM. */
|
|
|
|
static symext_entryS
|
|
elf32_hppa_get_sym_extn (abfd, sym, type)
|
|
bfd *abfd;
|
|
asymbol *sym;
|
|
int type;
|
|
{
|
|
switch (type)
|
|
{
|
|
case PARISC_SXT_SYMNDX:
|
|
case PARISC_SXT_NULL:
|
|
return (symext_entryS) 0;
|
|
case PARISC_SXT_ARG_RELOC:
|
|
{
|
|
elf_symbol_type *esymP = (elf_symbol_type *) sym;
|
|
|
|
return (symext_entryS) esymP->tc_data.hppa_arg_reloc;
|
|
}
|
|
/* This should never happen. */
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/* Search the chain of stub descriptions and locate the stub
|
|
description for this the given section within the given bfd.
|
|
|
|
FIXME: I see yet another wonderful linear linked list search
|
|
here. This is probably bad. */
|
|
|
|
static elf32_hppa_stub_description *
|
|
find_stubs (abfd, stub_sec)
|
|
bfd *abfd;
|
|
asection *stub_sec;
|
|
{
|
|
elf32_hppa_stub_description *stubP;
|
|
|
|
for (stubP = elf_hppa_stub_rootP; stubP; stubP = stubP->next)
|
|
{
|
|
/* Is this the right one? */
|
|
if (stubP->this_bfd == abfd && stubP->stub_sec == stub_sec)
|
|
return stubP;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static elf32_hppa_stub_description *
|
|
new_stub (abfd, stub_sec, link_info)
|
|
bfd *abfd;
|
|
asection *stub_sec;
|
|
struct bfd_link_info *link_info;
|
|
{
|
|
elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
|
|
|
|
/* If we found a list for this bfd, then use it. */
|
|
if (stub)
|
|
return stub;
|
|
|
|
/* Nope, allocate and initialize a new entry in the stub list chain. */
|
|
stub = (elf32_hppa_stub_description *)
|
|
bfd_zalloc (abfd, sizeof (elf32_hppa_stub_description));
|
|
if (stub)
|
|
{
|
|
stub->this_bfd = abfd;
|
|
stub->stub_sec = stub_sec;
|
|
stub->real_size = 0;
|
|
stub->allocated_size = 0;
|
|
stub->stub_contents = NULL;
|
|
stub->stub_secp = NULL;
|
|
stub->link_info = link_info;
|
|
|
|
stub->next = elf_hppa_stub_rootP;
|
|
elf_hppa_stub_rootP = stub;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort(); /* FIXME */
|
|
}
|
|
|
|
return stub;
|
|
}
|
|
|
|
/* Try and locate a stub with the name NAME within the stubs
|
|
associated with ABFD. More linked list searches. */
|
|
|
|
static elf32_hppa_stub_name_list *
|
|
find_stub_by_name (abfd, stub_sec, name)
|
|
bfd *abfd;
|
|
asection *stub_sec;
|
|
char *name;
|
|
{
|
|
/* Find the stubs associated with this bfd. */
|
|
elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
|
|
|
|
/* If found, then we have to walk down them looking for a match. */
|
|
if (stub)
|
|
{
|
|
elf32_hppa_stub_name_list *name_listP;
|
|
|
|
for (name_listP = stub->stub_listP;
|
|
name_listP;
|
|
name_listP = name_listP->next)
|
|
{
|
|
if (!strcmp (name_listP->sym->name, name))
|
|
return name_listP;
|
|
}
|
|
}
|
|
|
|
/* Not found. */
|
|
return 0;
|
|
}
|
|
|
|
/* Add a new stub (SYM) to the list of stubs associated with the given BFD. */
|
|
static elf32_hppa_stub_name_list *
|
|
add_stub_by_name(abfd, stub_sec, sym, link_info)
|
|
bfd *abfd;
|
|
asection *stub_sec;
|
|
asymbol *sym;
|
|
struct bfd_link_info *link_info;
|
|
{
|
|
elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
|
|
elf32_hppa_stub_name_list *stub_entry;
|
|
|
|
/* If no stubs are associated with this bfd, then we have to make
|
|
a chain-of-stubs associated with this bfd. */
|
|
if (!stub)
|
|
stub = new_stub (abfd, stub_sec, link_info);
|
|
|
|
if (stub)
|
|
{
|
|
/* Allocate and initialize an entry in the stub chain. */
|
|
stub_entry = (elf32_hppa_stub_name_list *)
|
|
bfd_zalloc (abfd, sizeof (elf32_hppa_stub_name_list));
|
|
|
|
if (stub_entry)
|
|
{
|
|
stub_entry->size = 0;
|
|
stub_entry->sym = sym;
|
|
stub_entry->stub_desc = stub;
|
|
/* First byte of this stub is the pointer to
|
|
the next available location in the stub buffer. */
|
|
stub_entry->stub_secp = stub->stub_secp;
|
|
/* Add it to the chain. */
|
|
if (stub->stub_listP)
|
|
stub_entry->next = stub->stub_listP;
|
|
else
|
|
stub_entry->next = NULL;
|
|
stub->stub_listP = stub_entry;
|
|
return stub_entry;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort(); /* FIXME */
|
|
}
|
|
}
|
|
/* Death by mis-adventure. */
|
|
abort ();
|
|
return (elf32_hppa_stub_name_list *)NULL;
|
|
}
|
|
|
|
/* For the given caller/callee argument location information and the
|
|
type of relocation (arguments or return value), return the type
|
|
of argument relocation needed to make caller and callee happy. */
|
|
|
|
static arg_reloc_type
|
|
type_of_mismatch (caller_bits, callee_bits, type)
|
|
int caller_bits;
|
|
int callee_bits;
|
|
int type;
|
|
{
|
|
switch (type)
|
|
{
|
|
case ARGUMENTS:
|
|
return mismatches[caller_bits][callee_bits];
|
|
case RETURN_VALUE:
|
|
return retval_mismatches[caller_bits][callee_bits];
|
|
}
|
|
return ARG_RELOC_ERR;
|
|
}
|
|
|
|
/* Extract specific argument location bits for WHICH from the
|
|
the full argument location information in AR. */
|
|
#define EXTRACT_ARBITS(ar, which) ((ar) >> (8 - ((which) * 2))) & 3
|
|
|
|
/* Add the new instruction INSN into the stub area denoted by ENTRY.
|
|
FIXME: Looks like more cases where we assume sizeof (int) ==
|
|
sizeof (insn) which may not be true if building cross tools. */
|
|
#define NEW_INSTRUCTION(entry, insn) \
|
|
{ \
|
|
*((entry)->stub_desc->stub_secp)++ = (insn); \
|
|
(entry)->stub_desc->real_size += sizeof (int); \
|
|
(entry)->size += sizeof(int); \
|
|
bfd_set_section_size((entry)->stub_desc->this_bfd, \
|
|
(entry)->stub_desc->stub_sec, \
|
|
(entry)->stub_desc->real_size); \
|
|
}
|
|
|
|
/* Find the offset of the current stub? Looks more like it
|
|
finds the offset of the last instruction to me. */
|
|
#define CURRENT_STUB_OFFSET(entry) \
|
|
((char *)(entry)->stub_desc->stub_secp \
|
|
- (char *)(entry)->stub_desc->stub_contents - 4)
|
|
|
|
/* All the stubs have already been built, finish up stub stuff
|
|
by applying relocations to the stubs. */
|
|
|
|
static void
|
|
hppa_elf_stub_finish (output_bfd)
|
|
bfd *output_bfd;
|
|
{
|
|
elf32_hppa_stub_description *stub_list = elf_hppa_stub_rootP;
|
|
|
|
/* If the stubs have been finished, then we're already done. */
|
|
if (stubs_finished)
|
|
return;
|
|
|
|
/* Walk down the list of stub lists. */
|
|
for (; stub_list; stub_list = stub_list->next)
|
|
{
|
|
/* If this list has stubs, then do something. */
|
|
if (stub_list->real_size)
|
|
{
|
|
bfd *stub_bfd = stub_list->this_bfd;
|
|
asection *stub_sec = bfd_get_section_by_name (stub_bfd,
|
|
".PARISC.stubs");
|
|
long reloc_size;
|
|
arelent **reloc_vector;
|
|
long reloc_count;
|
|
|
|
/* Some sanity checking. */
|
|
BFD_ASSERT (stub_sec == stub_list->stub_sec);
|
|
BFD_ASSERT (stub_sec);
|
|
|
|
/* For stub sections raw_size == cooked_size. Also update
|
|
reloc_done as we're handling the relocs now. */
|
|
stub_sec->_cooked_size = stub_sec->_raw_size;
|
|
stub_sec->reloc_done = true;
|
|
|
|
/* Make space to hold the relocations for the stub section. */
|
|
reloc_size = bfd_get_reloc_upper_bound (stub_bfd, stub_sec);
|
|
if (reloc_size < 0)
|
|
{
|
|
/* FIXME: Should return an error. */
|
|
abort ();
|
|
}
|
|
reloc_vector = (arelent **) malloc (reloc_size);
|
|
if (reloc_vector == NULL && reloc_size != 0)
|
|
{
|
|
/* FIXME: should be returning an error so the caller can
|
|
clean up */
|
|
abort ();
|
|
}
|
|
|
|
/* If we have relocations, do them. */
|
|
reloc_count = bfd_canonicalize_reloc (stub_bfd, stub_sec,
|
|
reloc_vector,
|
|
output_bfd->outsymbols);
|
|
if (reloc_count < 0)
|
|
{
|
|
/* FIXME: Should return an error. */
|
|
abort ();
|
|
}
|
|
if (reloc_count > 0)
|
|
{
|
|
arelent **parent;
|
|
for (parent = reloc_vector; *parent != NULL; parent++)
|
|
{
|
|
char *err = NULL;
|
|
bfd_reloc_status_type r =
|
|
bfd_perform_relocation (stub_bfd, *parent,
|
|
stub_list->stub_contents,
|
|
stub_sec, (bfd *) NULL, &err);
|
|
|
|
/* If there was an error, tell someone about it. */
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
struct bfd_link_info *link_info = stub_list->link_info;
|
|
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_undefined:
|
|
if (! ((*link_info->callbacks->undefined_symbol)
|
|
(link_info,
|
|
bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
|
|
stub_bfd, stub_sec, (*parent)->address)))
|
|
abort ();
|
|
break;
|
|
case bfd_reloc_dangerous:
|
|
if (! ((*link_info->callbacks->reloc_dangerous)
|
|
(link_info, err, stub_bfd, stub_sec,
|
|
(*parent)->address)))
|
|
abort ();
|
|
break;
|
|
case bfd_reloc_overflow:
|
|
{
|
|
if (! ((*link_info->callbacks->reloc_overflow)
|
|
(link_info,
|
|
bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
|
|
(*parent)->howto->name,
|
|
(*parent)->addend,
|
|
stub_bfd, stub_sec,
|
|
(*parent)->address)))
|
|
abort ();
|
|
}
|
|
break;
|
|
case bfd_reloc_outofrange:
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free (reloc_vector);
|
|
|
|
/* All done with the relocations. Set the final contents
|
|
of the stub section. FIXME: no check of return value! */
|
|
bfd_set_section_contents (output_bfd, stub_sec,
|
|
stub_list->stub_contents,
|
|
0, stub_list->real_size);
|
|
}
|
|
}
|
|
/* All done. */
|
|
stubs_finished = true;
|
|
}
|
|
|
|
/* Allocate a new relocation entry to be used in a linker stub. */
|
|
|
|
static void
|
|
hppa_elf_stub_reloc (stub_desc, output_bfd, target_sym, offset, type)
|
|
elf32_hppa_stub_description *stub_desc;
|
|
bfd *output_bfd;
|
|
asymbol **target_sym;
|
|
int offset;
|
|
elf32_hppa_reloc_type type;
|
|
{
|
|
arelent relent;
|
|
int size;
|
|
Elf_Internal_Shdr *rela_hdr;
|
|
|
|
/* I really don't like the realloc nonsense in here. FIXME. */
|
|
if (stub_desc->relocs_allocated_cnt == stub_desc->stub_sec->reloc_count)
|
|
{
|
|
/* Allocate the first few relocation entries. */
|
|
if (stub_desc->stub_sec->relocation == NULL)
|
|
{
|
|
stub_desc->relocs_allocated_cnt = STUB_RELOC_INCR;
|
|
size = sizeof (arelent) * stub_desc->relocs_allocated_cnt;
|
|
stub_desc->stub_sec->relocation = (arelent *) bfd_zmalloc (size);
|
|
}
|
|
else
|
|
{
|
|
/* We've used all the entries we've already allocated. So get
|
|
some more. */
|
|
stub_desc->relocs_allocated_cnt += STUB_RELOC_INCR;
|
|
size = sizeof (arelent) * stub_desc->relocs_allocated_cnt;
|
|
stub_desc->stub_sec->relocation = (arelent *)
|
|
realloc (stub_desc->stub_sec->relocation, size);
|
|
}
|
|
if (!stub_desc->stub_sec->relocation)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort (); /* FIXME */
|
|
}
|
|
}
|
|
|
|
rela_hdr = &elf_section_data(stub_desc->stub_sec)->rel_hdr;
|
|
rela_hdr->sh_size += sizeof(Elf32_External_Rela);
|
|
|
|
/* Fill in the details. */
|
|
relent.address = offset;
|
|
relent.addend = 0;
|
|
relent.sym_ptr_ptr = target_sym;
|
|
relent.howto = bfd_reloc_type_lookup (stub_desc->this_bfd, type);
|
|
|
|
/* Save it in the array of relocations for the stub section. */
|
|
memcpy (&stub_desc->stub_sec->relocation[stub_desc->stub_sec->reloc_count++],
|
|
&relent, sizeof (arelent));
|
|
}
|
|
|
|
/* Build an argument relocation stub. RTN_ADJUST is a hint that an
|
|
adjust to the return pointer from within the stub itself may be
|
|
needed. */
|
|
|
|
static asymbol *
|
|
hppa_elf_build_linker_stub (abfd, output_bfd, link_info, reloc_entry,
|
|
stub_types, rtn_adjust, data, linker_stub_type)
|
|
bfd *abfd;
|
|
bfd *output_bfd;
|
|
struct bfd_link_info *link_info;
|
|
arelent *reloc_entry;
|
|
arg_reloc_type stub_types[5];
|
|
int rtn_adjust;
|
|
unsigned *data;
|
|
hppa_stub_type linker_stub_type;
|
|
{
|
|
int i;
|
|
boolean milli, dyncall;
|
|
char stub_sym_name[128];
|
|
elf32_hppa_stub_name_list *stub_entry;
|
|
/* Some initialization. */
|
|
unsigned insn = data[0];
|
|
asymbol *stub_sym = NULL;
|
|
asymbol **orig_sym = reloc_entry->sym_ptr_ptr;
|
|
asection *stub_sec = bfd_get_section_by_name (abfd, ".PARISC.stubs");
|
|
elf32_hppa_stub_description *stub_desc = find_stubs (abfd, stub_sec);
|
|
|
|
/* Perform some additional checks on whether we should really do the
|
|
return adjustment. For example, if the instruction is nullified
|
|
or if the delay slot contains an instruction that modifies the return
|
|
pointer, then the branch instructions should not be rearranged
|
|
(rtn_adjust is false). */
|
|
if (insn & 2 || insn == 0)
|
|
rtn_adjust = false;
|
|
else
|
|
{
|
|
unsigned delay_insn = data[1];
|
|
|
|
if (get_opcode (delay_insn) == LDO
|
|
&& (((insn & 0x03e00000) >> 21) == ((delay_insn & 0x001f0000) >> 16)))
|
|
rtn_adjust = false;
|
|
}
|
|
|
|
/* Some special code for long-call stubs. */
|
|
if (linker_stub_type == HPPA_STUB_LONG_CALL)
|
|
{
|
|
|
|
/* Is this a millicode call? If so, the return address
|
|
comes in on r31 rather than r2 (rp) so a slightly
|
|
different code sequence is needed. */
|
|
unsigned rtn_reg = (insn & 0x03e00000) >> 21;
|
|
if (rtn_reg == 31)
|
|
milli = true;
|
|
|
|
/* Dyncall is special because the user code has already
|
|
put the return pointer in %r2 (aka RP). Other millicode
|
|
calls have the return pointer in %r31. */
|
|
if (strcmp ((*orig_sym)->name, "$$dyncall") == 0)
|
|
dyncall = true;
|
|
|
|
/* If we are creating a call from a stub to another stub, then
|
|
never do the instruction reordering. We can tell if we are
|
|
going to be calling one stub from another by the fact that
|
|
the symbol name has '_stub_' (arg. reloc. stub) or '_lb_stub_'
|
|
prepended to the name. Alternatively, the section of the
|
|
symbol will be '.PARISC.stubs'. This is only an issue
|
|
for long-calls; they are the only stubs allowed to call another
|
|
stub. */
|
|
if ((strncmp ((*orig_sym)->name, "_stub_", 6) == 0)
|
|
|| (strncmp ((*orig_sym)->name, "_lb_stub_", 9) == 0))
|
|
{
|
|
BFD_ASSERT (strcmp ((*orig_sym)->section->name, ".PARISC.stubs")
|
|
== 0);
|
|
rtn_adjust = false;
|
|
}
|
|
}
|
|
|
|
/* Create the stub section if necessary. */
|
|
if (!stub_sec)
|
|
{
|
|
BFD_ASSERT (stub_desc == NULL);
|
|
hppa_elf_create_stub_sec (abfd, output_bfd, &stub_sec, link_info);
|
|
stub_desc = new_stub (abfd, stub_sec, link_info);
|
|
}
|
|
|
|
/* Make the stub if we did not find one already. */
|
|
if (!stub_desc)
|
|
stub_desc = new_stub (abfd, stub_sec, link_info);
|
|
|
|
/* Allocate space to write the stub.
|
|
FIXME: Why using realloc?!? */
|
|
if (!stub_desc->stub_contents)
|
|
{
|
|
stub_desc->allocated_size = STUB_BUFFER_INCR;
|
|
stub_desc->stub_contents = (char *) malloc (STUB_BUFFER_INCR);
|
|
}
|
|
else if ((stub_desc->allocated_size - stub_desc->real_size) < STUB_MAX_SIZE)
|
|
{
|
|
stub_desc->allocated_size = stub_desc->allocated_size + STUB_BUFFER_INCR;
|
|
stub_desc->stub_contents = (char *) realloc (stub_desc->stub_contents,
|
|
stub_desc->allocated_size);
|
|
}
|
|
|
|
/* If no memory die. (I seriously doubt the other routines
|
|
are prepared to get a NULL return value). */
|
|
if (!stub_desc->stub_contents)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort ();
|
|
}
|
|
|
|
/* Generate an appropriate name for this stub. */
|
|
if (linker_stub_type == HPPA_STUB_ARG_RELOC)
|
|
sprintf (stub_sym_name,
|
|
"_stub_%s_%02d_%02d_%02d_%02d_%02d_%s",
|
|
reloc_entry->sym_ptr_ptr[0]->name,
|
|
stub_types[0], stub_types[1], stub_types[2],
|
|
stub_types[3], stub_types[4],
|
|
rtn_adjust ? "RA" : "");
|
|
else
|
|
sprintf (stub_sym_name,
|
|
"_lb_stub_%s_%s", reloc_entry->sym_ptr_ptr[0]->name,
|
|
rtn_adjust ? "RA" : "");
|
|
|
|
|
|
stub_desc->stub_secp
|
|
= (int *) (stub_desc->stub_contents + stub_desc->real_size);
|
|
stub_entry = find_stub_by_name (abfd, stub_sec, stub_sym_name);
|
|
|
|
/* See if we already have one by this name. */
|
|
if (stub_entry)
|
|
{
|
|
/* Yes, re-use it. Redirect the original relocation from the
|
|
old symbol (a function symbol) to the stub (the stub will call
|
|
the original function). */
|
|
stub_sym = stub_entry->sym;
|
|
reloc_entry->sym_ptr_ptr = (asymbol **) bfd_zalloc (abfd,
|
|
sizeof (asymbol **));
|
|
if (reloc_entry->sym_ptr_ptr == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort ();
|
|
}
|
|
reloc_entry->sym_ptr_ptr[0] = stub_sym;
|
|
if (linker_stub_type == HPPA_STUB_LONG_CALL
|
|
|| (reloc_entry->howto->type != R_PARISC_PLABEL32
|
|
&& (get_opcode(insn) == BLE
|
|
|| get_opcode (insn) == BE
|
|
|| get_opcode (insn) == BL)))
|
|
reloc_entry->howto = bfd_reloc_type_lookup (abfd, R_PARISC_STUB_CALL_17);
|
|
}
|
|
else
|
|
{
|
|
/* Create a new symbol to point to this stub. */
|
|
stub_sym = bfd_make_empty_symbol (abfd);
|
|
if (!stub_sym)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort ();
|
|
}
|
|
stub_sym->name = bfd_zalloc (abfd, strlen (stub_sym_name) + 1);
|
|
if (!stub_sym->name)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort ();
|
|
}
|
|
strcpy ((char *) stub_sym->name, stub_sym_name);
|
|
stub_sym->value
|
|
= (char *) stub_desc->stub_secp - (char *) stub_desc->stub_contents;
|
|
stub_sym->section = stub_sec;
|
|
stub_sym->flags = BSF_LOCAL | BSF_FUNCTION;
|
|
stub_entry = add_stub_by_name (abfd, stub_sec, stub_sym, link_info);
|
|
|
|
/* Redirect the original relocation from the old symbol (a function)
|
|
to the stub (the stub calls the function). */
|
|
reloc_entry->sym_ptr_ptr = (asymbol **) bfd_zalloc (abfd,
|
|
sizeof (asymbol **));
|
|
if (reloc_entry->sym_ptr_ptr == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort ();
|
|
}
|
|
reloc_entry->sym_ptr_ptr[0] = stub_sym;
|
|
if (linker_stub_type == HPPA_STUB_LONG_CALL
|
|
|| (reloc_entry->howto->type != R_PARISC_PLABEL32
|
|
&& (get_opcode (insn) == BLE
|
|
|| get_opcode (insn) == BE
|
|
|| get_opcode (insn) == BL)))
|
|
reloc_entry->howto = bfd_reloc_type_lookup (abfd, R_PARISC_STUB_CALL_17);
|
|
|
|
/* Now generate the code for the stub. Starting with two
|
|
common instructions.
|
|
|
|
FIXME: Do we still need the SP adjustment?
|
|
Do we still need to muck with space registers? */
|
|
NEW_INSTRUCTION (stub_entry, LDSID_31_1)
|
|
NEW_INSTRUCTION (stub_entry, MTSP_1_SR0)
|
|
|
|
if (linker_stub_type == HPPA_STUB_ARG_RELOC)
|
|
{
|
|
NEW_INSTRUCTION (stub_entry, ADDI_8_SP)
|
|
|
|
/* Examine each argument, generating code to relocate it
|
|
into a different register if necessary. */
|
|
for (i = ARG0; i < ARG3; i++)
|
|
{
|
|
switch (stub_types[i])
|
|
{
|
|
|
|
case NO_ARG_RELOC:
|
|
continue;
|
|
|
|
case R_TO_FR:
|
|
switch (i)
|
|
{
|
|
case ARG0:
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG0_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG0)
|
|
break;
|
|
case ARG1:
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG1_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG1)
|
|
break;
|
|
case ARG2:
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG2_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG2)
|
|
break;
|
|
case ARG3:
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG3_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG3)
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case R01_TO_FR:
|
|
switch (i)
|
|
{
|
|
case ARG0:
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG0_M4SP)
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG1_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, FLDDS_M8SP_FARG1)
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case R23_TO_FR:
|
|
switch (i)
|
|
{
|
|
case ARG2:
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG2_M4SP)
|
|
NEW_INSTRUCTION (stub_entry, STWS_ARG3_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, FLDDS_M8SP_FARG3)
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case FR_TO_R:
|
|
switch (i)
|
|
{
|
|
case ARG0:
|
|
NEW_INSTRUCTION (stub_entry, FSTWS_FARG0_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG0)
|
|
break;
|
|
case ARG1:
|
|
NEW_INSTRUCTION (stub_entry, FSTWS_FARG1_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG1)
|
|
break;
|
|
case ARG2:
|
|
NEW_INSTRUCTION (stub_entry, FSTWS_FARG2_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG2)
|
|
break;
|
|
case ARG3:
|
|
NEW_INSTRUCTION (stub_entry, FSTWS_FARG3_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG3)
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case FR_TO_R01:
|
|
switch (i)
|
|
{
|
|
case ARG0:
|
|
NEW_INSTRUCTION (stub_entry, FSTDS_FARG1_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG0)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M8SP_ARG1)
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case FR_TO_R23:
|
|
switch (i)
|
|
{
|
|
case ARG2:
|
|
NEW_INSTRUCTION (stub_entry, FSTDS_FARG3_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG2)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M8SP_ARG3)
|
|
break;
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Put the stack pointer back. FIXME: Is this still necessary? */
|
|
NEW_INSTRUCTION (stub_entry, ADDI_M8_SP_SP)
|
|
}
|
|
|
|
/* Common code again. Return pointer adjustment and the like. */
|
|
if (!dyncall)
|
|
{
|
|
/* This isn't dyncall. */
|
|
if (!milli)
|
|
{
|
|
/* It's not a millicode call, so get the correct return
|
|
value into %r2 (aka RP). */
|
|
if (rtn_adjust)
|
|
NEW_INSTRUCTION (stub_entry, ADDI_M4_31_RP)
|
|
else
|
|
NEW_INSTRUCTION (stub_entry, COPY_31_2)
|
|
}
|
|
else
|
|
{
|
|
/* It is a millicode call, so get the correct return
|
|
value into %r1?!?. FIXME: Shouldn't this be
|
|
%r31? Yes, and a little re-arrangement of the
|
|
code below would make that possible. */
|
|
if (rtn_adjust)
|
|
NEW_INSTRUCTION (stub_entry, ADDI_M4_31_1)
|
|
else
|
|
NEW_INSTRUCTION (stub_entry, COPY_31_1)
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* This is dyncall, so the code is a little different as the
|
|
return pointer is already in %r2 (aka RP). */
|
|
if (rtn_adjust)
|
|
NEW_INSTRUCTION (stub_entry, ADDI_M4_31_RP)
|
|
}
|
|
|
|
/* Save the return address. */
|
|
if (linker_stub_type == HPPA_STUB_ARG_RELOC)
|
|
NEW_INSTRUCTION (stub_entry, STW_RP_M8SP)
|
|
|
|
/* Long branch to the target function. */
|
|
NEW_INSTRUCTION (stub_entry, LDIL_XXX_31)
|
|
hppa_elf_stub_reloc (stub_entry->stub_desc,
|
|
abfd, orig_sym,
|
|
CURRENT_STUB_OFFSET (stub_entry),
|
|
R_PARISC_DIR21L);
|
|
NEW_INSTRUCTION (stub_entry, BLE_XXX_0_31)
|
|
hppa_elf_stub_reloc (stub_entry->stub_desc,
|
|
abfd, orig_sym,
|
|
CURRENT_STUB_OFFSET (stub_entry),
|
|
R_PARISC_DIR17R);
|
|
|
|
if (linker_stub_type == HPPA_STUB_ARG_RELOC)
|
|
{
|
|
/* In delay slot of long-call, copy %r31 into %r2 so that
|
|
the callee can return in the normal fashion. */
|
|
NEW_INSTRUCTION (stub_entry, COPY_31_2)
|
|
|
|
/* Restore the return address. */
|
|
NEW_INSTRUCTION (stub_entry, LDW_M8SP_RP)
|
|
|
|
/* Generate the code to move the return value around. */
|
|
switch (stub_types[RETVAL])
|
|
{
|
|
case NO_ARG_RELOC:
|
|
break;
|
|
|
|
case R_TO_FR:
|
|
NEW_INSTRUCTION (stub_entry, STWS_RET0_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FRET0)
|
|
break;
|
|
|
|
case FR_TO_R:
|
|
NEW_INSTRUCTION (stub_entry, FSTWS_FRET0_M8SP)
|
|
NEW_INSTRUCTION (stub_entry, LDWS_M4SP_RET0)
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
|
|
/* Return back to the main code stream. */
|
|
NEW_INSTRUCTION (stub_entry, BV_N_0_RP)
|
|
}
|
|
else
|
|
{
|
|
if (!dyncall)
|
|
{
|
|
/* Get return address into %r31. Both variants may be necessary
|
|
(I think) as we could be cascading into another stub. */
|
|
if (!milli)
|
|
NEW_INSTRUCTION (stub_entry, COPY_2_31)
|
|
else
|
|
NEW_INSTRUCTION (stub_entry, COPY_1_31)
|
|
}
|
|
else
|
|
{
|
|
/* Get the return address into %r31 too. Might be necessary
|
|
(I think) as we could be cascading into another stub. */
|
|
NEW_INSTRUCTION (stub_entry, COPY_2_31)
|
|
}
|
|
|
|
/* No need for a return to the main stream. */
|
|
}
|
|
}
|
|
return stub_sym;
|
|
}
|
|
|
|
/* Return nonzero if an argument relocation will be needed to call
|
|
the function (symbol in RELOC_ENTRY) assuming the caller has
|
|
argument relocation bugs CALLER_AR. */
|
|
|
|
static int
|
|
hppa_elf_arg_reloc_needed_p (abfd, reloc_entry, stub_types, caller_ar)
|
|
bfd *abfd;
|
|
arelent *reloc_entry;
|
|
arg_reloc_type stub_types[5];
|
|
symext_entryS caller_ar;
|
|
{
|
|
/* If the symbol is still undefined, then it's impossible to know
|
|
if an argument relocation is needed. */
|
|
if (reloc_entry->sym_ptr_ptr[0]
|
|
&& reloc_entry->sym_ptr_ptr[0]->section != &bfd_und_section)
|
|
{
|
|
symext_entryS callee_ar = elf32_hppa_get_sym_extn (abfd,
|
|
reloc_entry->sym_ptr_ptr[0],
|
|
PARISC_SXT_ARG_RELOC);
|
|
|
|
/* Now examine all the argument and return value location
|
|
information to determine if a relocation stub will be needed. */
|
|
if (caller_ar && callee_ar)
|
|
{
|
|
arg_location caller_loc[5];
|
|
arg_location callee_loc[5];
|
|
|
|
/* Extract the location information for the return value
|
|
and argument registers separately. */
|
|
callee_loc[RETVAL] = EXTRACT_ARBITS (callee_ar, RETVAL);
|
|
caller_loc[RETVAL] = EXTRACT_ARBITS (caller_ar, RETVAL);
|
|
callee_loc[ARG0] = EXTRACT_ARBITS (callee_ar, ARG0);
|
|
caller_loc[ARG0] = EXTRACT_ARBITS (caller_ar, ARG0);
|
|
callee_loc[ARG1] = EXTRACT_ARBITS (callee_ar, ARG1);
|
|
caller_loc[ARG1] = EXTRACT_ARBITS (caller_ar, ARG1);
|
|
callee_loc[ARG2] = EXTRACT_ARBITS (callee_ar, ARG2);
|
|
caller_loc[ARG2] = EXTRACT_ARBITS (caller_ar, ARG2);
|
|
callee_loc[ARG3] = EXTRACT_ARBITS (callee_ar, ARG3);
|
|
caller_loc[ARG3] = EXTRACT_ARBITS (caller_ar, ARG3);
|
|
|
|
/* Check some special combinations. For example, if FU
|
|
appears in ARG1 or ARG3, we can move it to ARG0 or ARG2,
|
|
respectively. (I guess this braindamage is correct? It'd
|
|
take an hour or two of reading PA calling conventions to
|
|
really know). */
|
|
|
|
if (caller_loc[ARG0] == AR_FU || caller_loc[ARG1] == AR_FU)
|
|
{
|
|
caller_loc[ARG0] = AR_DBL01;
|
|
caller_loc[ARG1] = AR_NO;
|
|
}
|
|
if (caller_loc[ARG2] == AR_FU || caller_loc[ARG3] == AR_FU)
|
|
{
|
|
caller_loc[ARG2] = AR_DBL23;
|
|
caller_loc[ARG3] = AR_NO;
|
|
}
|
|
if (callee_loc[ARG0] == AR_FU || callee_loc[ARG1] == AR_FU)
|
|
{
|
|
callee_loc[ARG0] = AR_DBL01;
|
|
callee_loc[ARG1] = AR_NO;
|
|
}
|
|
if (callee_loc[ARG2] == AR_FU || callee_loc[ARG3] == AR_FU)
|
|
{
|
|
callee_loc[ARG2] = AR_DBL23;
|
|
callee_loc[ARG3] = AR_NO;
|
|
}
|
|
|
|
/* Now look up potential mismatches. */
|
|
stub_types[ARG0] = type_of_mismatch (caller_loc[ARG0],
|
|
callee_loc[ARG0],
|
|
ARGUMENTS);
|
|
stub_types[ARG1] = type_of_mismatch (caller_loc[ARG1],
|
|
callee_loc[ARG1],
|
|
ARGUMENTS);
|
|
stub_types[ARG2] = type_of_mismatch (caller_loc[ARG2],
|
|
callee_loc[ARG2],
|
|
ARGUMENTS);
|
|
stub_types[ARG3] = type_of_mismatch (caller_loc[ARG3],
|
|
callee_loc[ARG3],
|
|
ARGUMENTS);
|
|
stub_types[RETVAL] = type_of_mismatch (caller_loc[RETVAL],
|
|
callee_loc[RETVAL],
|
|
RETURN_VALUE);
|
|
|
|
/* If any of the arguments or return value need an argument
|
|
relocation, then we will need an argument relocation stub. */
|
|
if (stub_types[ARG0] != NO_ARG_RELOC
|
|
|| stub_types[ARG1] != NO_ARG_RELOC
|
|
|| stub_types[ARG2] != NO_ARG_RELOC
|
|
|| stub_types[ARG3] != NO_ARG_RELOC
|
|
|| stub_types[RETVAL] != NO_ARG_RELOC)
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Create the linker stub section. */
|
|
|
|
static void
|
|
hppa_elf_create_stub_sec (abfd, output_bfd, secptr, link_info)
|
|
bfd *abfd;
|
|
bfd *output_bfd;
|
|
asection **secptr;
|
|
struct bfd_link_info *link_info;
|
|
{
|
|
asection *output_text_section;
|
|
|
|
output_text_section = bfd_get_section_by_name (output_bfd, ".text");
|
|
*secptr = bfd_make_section (abfd, ".PARISC.stubs");
|
|
bfd_set_section_flags (abfd, *secptr,
|
|
SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
|
| SEC_RELOC | SEC_CODE | SEC_READONLY);
|
|
(*secptr)->output_section = output_text_section->output_section;
|
|
(*secptr)->output_offset = 0;
|
|
|
|
/* Set up the ELF section header for this new section. This
|
|
is basically the same processing as elf_make_sections().
|
|
elf_make_sections is static and therefore not accessable
|
|
here. */
|
|
{
|
|
Elf_Internal_Shdr *this_hdr;
|
|
this_hdr = &elf_section_data ((*secptr))->this_hdr;
|
|
|
|
/* Set the sizes of this section. The contents have already
|
|
been set up ?!? */
|
|
this_hdr->sh_addr = (*secptr)->vma;
|
|
this_hdr->sh_size = (*secptr)->_raw_size;
|
|
|
|
/* Set appropriate flags for sections with relocations. */
|
|
if ((*secptr)->flags & SEC_RELOC)
|
|
{
|
|
Elf_Internal_Shdr *rela_hdr;
|
|
int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
|
|
|
|
rela_hdr = &elf_section_data ((*secptr))->rel_hdr;
|
|
|
|
if (use_rela_p)
|
|
{
|
|
rela_hdr->sh_type = SHT_RELA;
|
|
rela_hdr->sh_entsize = sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
{
|
|
rela_hdr->sh_type = SHT_REL;
|
|
rela_hdr->sh_entsize = sizeof (Elf32_External_Rel);
|
|
}
|
|
rela_hdr->sh_flags = 0;
|
|
rela_hdr->sh_addr = 0;
|
|
rela_hdr->sh_offset = 0;
|
|
rela_hdr->sh_addralign = 0;
|
|
rela_hdr->size = 0;
|
|
}
|
|
|
|
if ((*secptr)->flags & SEC_ALLOC)
|
|
this_hdr->sh_flags |= SHF_ALLOC;
|
|
|
|
if (!((*secptr)->flags & SEC_READONLY))
|
|
this_hdr->sh_flags |= SHF_WRITE;
|
|
|
|
if ((*secptr)->flags & SEC_CODE)
|
|
this_hdr->sh_flags |= SHF_EXECINSTR;
|
|
}
|
|
|
|
bfd_set_section_alignment (abfd, *secptr, 2);
|
|
}
|
|
|
|
/* Return nonzero if a long-call stub will be needed to call the
|
|
function (symbol in RELOC_ENTRY). */
|
|
|
|
static int
|
|
hppa_elf_long_branch_needed_p (abfd, asec, reloc_entry, symbol, insn)
|
|
bfd *abfd;
|
|
asection *asec;
|
|
arelent *reloc_entry;
|
|
asymbol *symbol;
|
|
unsigned insn;
|
|
{
|
|
long sym_value = get_symbol_value (symbol);
|
|
int fmt = reloc_entry->howto->bitsize;
|
|
unsigned char op = get_opcode (insn);
|
|
unsigned raddr;
|
|
|
|
#define too_far(val,num_bits) \
|
|
((int)(val) > (1 << (num_bits)) - 1) || ((int)(val) < (-1 << (num_bits)))
|
|
|
|
switch (op)
|
|
{
|
|
case BL:
|
|
raddr =
|
|
reloc_entry->address + asec->output_offset + asec->output_section->vma;
|
|
/* If the symbol and raddr (relocated addr?) are too far away from
|
|
each other, then a long-call stub will be needed. */
|
|
if (too_far (sym_value - raddr, fmt + 1))
|
|
return 1;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Search the given section and determine if linker stubs will be
|
|
needed for any calls within that section.
|
|
|
|
Return any new stub symbols created.
|
|
|
|
Used out of hppaelf.em in the linker. */
|
|
|
|
asymbol *
|
|
hppa_look_for_stubs_in_section (stub_bfd, abfd, output_bfd, asec,
|
|
new_sym_cnt, link_info)
|
|
bfd *stub_bfd;
|
|
bfd *abfd;
|
|
bfd *output_bfd;
|
|
asection *asec;
|
|
int *new_sym_cnt;
|
|
struct bfd_link_info *link_info;
|
|
{
|
|
int i;
|
|
arg_reloc_type stub_types[5];
|
|
asymbol *new_syms = NULL;
|
|
int new_cnt = 0;
|
|
int new_max = 0;
|
|
arelent **reloc_vector = NULL;
|
|
|
|
/* Relocations are in different places depending on whether this is
|
|
an output section or an input section. Also, the relocations are
|
|
in different forms. Sigh. Luckily, we have bfd_canonicalize_reloc()
|
|
to straighten this out for us . */
|
|
if (asec->reloc_count > 0)
|
|
{
|
|
reloc_vector
|
|
= (arelent **) malloc (asec->reloc_count * (sizeof (arelent *) + 1));
|
|
if (reloc_vector == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
goto error_return;
|
|
}
|
|
|
|
/* Make sure the canonical symbols are hanging around in a convient
|
|
location. */
|
|
if (bfd_get_outsymbols (abfd) == NULL)
|
|
{
|
|
long symsize;
|
|
long symcount;
|
|
|
|
symsize = bfd_get_symtab_upper_bound (abfd);
|
|
if (symsize < 0)
|
|
goto error_return;
|
|
abfd->outsymbols = (asymbol **) bfd_alloc (abfd, symsize);
|
|
if (!abfd->outsymbols && symsize != 0)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
goto error_return;
|
|
}
|
|
symcount = bfd_canonicalize_symtab (abfd, abfd->outsymbols);
|
|
if (symcount < 0)
|
|
goto error_return;
|
|
abfd->symcount = symcount;
|
|
}
|
|
|
|
/* Now get the relocations. */
|
|
if (bfd_canonicalize_reloc (abfd, asec, reloc_vector,
|
|
bfd_get_outsymbols (abfd)) < 0)
|
|
goto error_return;
|
|
|
|
/* Examine each relocation entry in this section. */
|
|
for (i = 0; i < asec->reloc_count; i++)
|
|
{
|
|
arelent *rle = reloc_vector[i];
|
|
|
|
switch (rle->howto->type)
|
|
{
|
|
/* Any call could need argument relocation stubs, and
|
|
some may need long-call stubs. */
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL14F:
|
|
{
|
|
symext_entryS caller_ar
|
|
= (symext_entryS) HPPA_R_ARG_RELOC (rle->addend);
|
|
unsigned insn[2];
|
|
|
|
/* We'll need this for the long-call checks. */
|
|
bfd_get_section_contents (abfd, asec, insn, rle->address,
|
|
sizeof(insn));
|
|
|
|
/* See if this call needs an argument relocation stub. */
|
|
if (hppa_elf_arg_reloc_needed_p (abfd, rle, stub_types,
|
|
caller_ar))
|
|
{
|
|
/* Generate a stub and keep track of the new symbol. */
|
|
asymbol *r;
|
|
|
|
if (new_cnt == new_max)
|
|
{
|
|
new_max += STUB_SYM_BUFFER_INC;
|
|
new_syms = (asymbol *)
|
|
realloc (new_syms, new_max * sizeof (asymbol));
|
|
if (new_syms == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
/* Build the argument relocation stub. */
|
|
r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
|
|
link_info, rle,
|
|
stub_types, true, insn,
|
|
HPPA_STUB_ARG_RELOC);
|
|
new_syms[new_cnt++] = *r;
|
|
}
|
|
|
|
/* See if this call needs a long-call stub. */
|
|
if (hppa_elf_long_branch_needed_p (abfd, asec, rle,
|
|
rle->sym_ptr_ptr[0],
|
|
insn[0]))
|
|
{
|
|
/* Generate a stub and keep track of the new symbol. */
|
|
asymbol *r;
|
|
|
|
if (new_cnt == new_max)
|
|
{
|
|
new_max += STUB_SYM_BUFFER_INC;
|
|
new_syms = (asymbol *)
|
|
realloc (new_syms, (new_max * sizeof (asymbol)));
|
|
if (! new_syms)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
/* Build the long-call stub. */
|
|
r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
|
|
link_info, rle,
|
|
NULL, true, insn,
|
|
HPPA_STUB_LONG_CALL);
|
|
new_syms[new_cnt++] = *r;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* PLABELs may need argument relocation stubs. */
|
|
case R_PARISC_PLABEL32:
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL14R:
|
|
{
|
|
/* On a plabel relocation, assume the arguments of the
|
|
caller are set up in general registers (indirect
|
|
calls only use general registers.
|
|
NOTE: 0x155 = ARGW0=GR,ARGW1=GR,ARGW2=GR,RETVAL=GR. */
|
|
symext_entryS caller_ar = (symext_entryS) 0x155;
|
|
unsigned insn[2];
|
|
|
|
/* Do we really need this? */
|
|
bfd_get_section_contents (abfd, asec, insn, rle->address,
|
|
sizeof(insn));
|
|
|
|
/* See if this call needs an argument relocation stub. */
|
|
if (hppa_elf_arg_reloc_needed_p (abfd, rle, stub_types,
|
|
caller_ar))
|
|
{
|
|
/* Generate a plabel stub and keep track of the
|
|
new symbol. */
|
|
asymbol *r;
|
|
int rtn_adjust;
|
|
|
|
if (new_cnt == new_max)
|
|
{
|
|
new_max += STUB_SYM_BUFFER_INC;
|
|
new_syms = (asymbol *) realloc (new_syms, new_max
|
|
* sizeof (asymbol));
|
|
}
|
|
|
|
/* Determine whether a return adjustment
|
|
(see the relocation code for relocation type
|
|
R_PARISC_STUB_CALL_17) is possible. Basically,
|
|
determine whether we are looking at a branch or not. */
|
|
if (rle->howto->type == R_PARISC_PLABEL32)
|
|
rtn_adjust = false;
|
|
else
|
|
{
|
|
switch (get_opcode(insn[0]))
|
|
{
|
|
case BLE:
|
|
case BE:
|
|
rtn_adjust = true;
|
|
break;
|
|
default:
|
|
rtn_adjust = false;
|
|
}
|
|
}
|
|
|
|
/* Build the argument relocation stub. */
|
|
r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
|
|
link_info, rle, stub_types,
|
|
rtn_adjust, insn,
|
|
HPPA_STUB_ARG_RELOC);
|
|
new_syms[new_cnt++] = *r;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (reloc_vector != NULL)
|
|
free (reloc_vector);
|
|
/* Return the new symbols and update the counters. */
|
|
*new_sym_cnt = new_cnt;
|
|
return new_syms;
|
|
|
|
error_return:
|
|
if (reloc_vector != NULL)
|
|
free (reloc_vector);
|
|
/* FIXME: This is bogus. We should be returning NULL. But do the callers
|
|
check for that? */
|
|
abort ();
|
|
}
|
|
|
|
/* Set the contents of a particular section at a particular location. */
|
|
|
|
static boolean
|
|
hppa_elf_set_section_contents (abfd, section, location, offset, count)
|
|
bfd *abfd;
|
|
sec_ptr section;
|
|
PTR location;
|
|
file_ptr offset;
|
|
bfd_size_type count;
|
|
{
|
|
/* Linker stubs are handled a little differently. */
|
|
if (! strcmp (section->name, ".PARISC.stubs"))
|
|
{
|
|
if (linker_stubs_max_size < offset + count)
|
|
{
|
|
linker_stubs_max_size = offset + count + STUB_ALLOC_INCR;
|
|
linker_stubs = (char *)realloc (linker_stubs, linker_stubs_max_size);
|
|
if (! linker_stubs)
|
|
abort ();
|
|
}
|
|
|
|
if (offset + count > linker_stubs_size)
|
|
linker_stubs_size = offset + count;
|
|
|
|
/* Set the contents. */
|
|
memcpy(linker_stubs + offset, location, count);
|
|
return (true);
|
|
}
|
|
/* Ignore write requests for the symbol extension section until we've
|
|
had the chance to rebuild it ourselves. */
|
|
else if (! strcmp (section->name, ".PARISC.symextn") && !symext_chain_size)
|
|
return true;
|
|
else
|
|
return bfd_elf32_set_section_contents (abfd, section, location,
|
|
offset, count);
|
|
}
|
|
|
|
/* Get the contents of the given section.
|
|
|
|
This is special for PA ELF because some sections (such as linker stubs)
|
|
may reside in memory rather than on disk, or in the case of the symbol
|
|
extension section, the contents may need to be generated from other
|
|
information contained in the BFD. */
|
|
|
|
boolean
|
|
hppa_elf_get_section_contents (abfd, section, location, offset, count)
|
|
bfd *abfd;
|
|
sec_ptr section;
|
|
PTR location;
|
|
file_ptr offset;
|
|
bfd_size_type count;
|
|
{
|
|
/* If this is the linker stub section, then its contents are contained
|
|
in memory rather than on disk. FIXME. Is that always right? What
|
|
about the case where a final executable is read in and a user tries
|
|
to get the contents of this section? In that case the contents would
|
|
be on disk like everything else. */
|
|
if (strcmp (section->name, ".PARISC.stubs") == 0)
|
|
{
|
|
elf32_hppa_stub_description *stub_desc = find_stubs (abfd, section);
|
|
|
|
if (count == 0)
|
|
return true;
|
|
|
|
/* Sanity check our arguments. */
|
|
if ((bfd_size_type) (offset + count) > section->_raw_size
|
|
|| (bfd_size_type) (offset + count) > stub_desc->real_size)
|
|
return (false);
|
|
|
|
memcpy (location, stub_desc->stub_contents + offset, count);
|
|
return (true);
|
|
}
|
|
else
|
|
/* It's not the linker stub section, use the generic routines. */
|
|
return _bfd_generic_get_section_contents (abfd, section, location,
|
|
offset, count);
|
|
}
|
|
|
|
/* Translate from an elf into field into a howto relocation pointer. */
|
|
|
|
static void
|
|
elf_info_to_howto (abfd, cache_ptr, dst)
|
|
bfd *abfd;
|
|
arelent *cache_ptr;
|
|
Elf32_Internal_Rela *dst;
|
|
{
|
|
BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_PARISC_UNIMPLEMENTED);
|
|
cache_ptr->howto = &elf_hppa_howto_table[ELF32_R_TYPE (dst->r_info)];
|
|
}
|
|
|
|
/* Do PA ELF specific processing for symbols. Needed to find the
|
|
value of $global$. */
|
|
|
|
static void
|
|
elf32_hppa_backend_symbol_processing (abfd, sym)
|
|
bfd *abfd;
|
|
asymbol *sym;
|
|
{
|
|
/* Is this a definition of $global$? If so, keep it because it will be
|
|
needed if any relocations are performed. */
|
|
if (!strcmp (sym->name, "$global$")
|
|
&& sym->section != &bfd_und_section)
|
|
{
|
|
global_symbol = sym;
|
|
}
|
|
}
|
|
|
|
/* Do some PA ELF specific work after reading in the symbol table.
|
|
In particular attach the argument relocation from the
|
|
symbol extension section to the appropriate symbols. */
|
|
static boolean
|
|
elf32_hppa_backend_symbol_table_processing (abfd, esyms,symcnt)
|
|
bfd *abfd;
|
|
elf_symbol_type *esyms;
|
|
int symcnt;
|
|
{
|
|
Elf32_Internal_Shdr *symextn_hdr =
|
|
bfd_elf_find_section (abfd, SYMEXTN_SECTION_NAME);
|
|
int i, current_sym_idx = 0;
|
|
|
|
/* If no symbol extension existed, then all symbol extension information
|
|
is assumed to be zero. */
|
|
if (symextn_hdr == NULL)
|
|
{
|
|
for (i = 0; i < symcnt; i++)
|
|
esyms[i].tc_data.hppa_arg_reloc = 0;
|
|
return (true);
|
|
}
|
|
|
|
/* Allocate a buffer of the appropriate size for the symextn section. */
|
|
symextn_hdr->contents = bfd_zalloc(abfd,symextn_hdr->sh_size);
|
|
if (!symextn_hdr->contents)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return false;
|
|
}
|
|
symextn_hdr->size = symextn_hdr->sh_size;
|
|
|
|
/* Read in the symextn section. */
|
|
if (bfd_seek (abfd, symextn_hdr->sh_offset, SEEK_SET) == -1)
|
|
return false;
|
|
if (bfd_read ((PTR) symextn_hdr->contents, 1, symextn_hdr->size, abfd)
|
|
!= symextn_hdr->size)
|
|
return false;
|
|
|
|
/* Parse entries in the symbol extension section, updating the symtab
|
|
entries as we go */
|
|
for (i = 0; i < symextn_hdr->size / sizeof(symext_entryS); i++)
|
|
{
|
|
symext_entryS *seP = ((symext_entryS *)symextn_hdr->contents) + i;
|
|
int se_value = ELF32_PARISC_SX_VAL (*seP);
|
|
int se_type = ELF32_PARISC_SX_TYPE (*seP);
|
|
|
|
switch (se_type)
|
|
{
|
|
case PARISC_SXT_NULL:
|
|
break;
|
|
|
|
case PARISC_SXT_SYMNDX:
|
|
if (se_value >= symcnt)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return (false);
|
|
}
|
|
current_sym_idx = se_value - 1;
|
|
break;
|
|
|
|
case PARISC_SXT_ARG_RELOC:
|
|
esyms[current_sym_idx].tc_data.hppa_arg_reloc = se_value;
|
|
break;
|
|
|
|
default:
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return (false);
|
|
}
|
|
}
|
|
return (true);
|
|
}
|
|
|
|
/* Perform on PA ELF specific processing once a section has been
|
|
read in. In particular keep the symbol indexes correct for
|
|
the symbol extension information. */
|
|
|
|
static boolean
|
|
elf32_hppa_backend_section_processing (abfd, secthdr)
|
|
bfd *abfd;
|
|
Elf32_Internal_Shdr *secthdr;
|
|
{
|
|
int i, j, k;
|
|
|
|
if (secthdr->sh_type == SHT_PARISC_SYMEXTN)
|
|
{
|
|
for (i = 0; i < secthdr->size / sizeof (symext_entryS); i++)
|
|
{
|
|
symext_entryS *seP = ((symext_entryS *)secthdr->contents) + i;
|
|
int se_value = ELF32_PARISC_SX_VAL (*seP);
|
|
int se_type = ELF32_PARISC_SX_TYPE (*seP);
|
|
|
|
switch (se_type)
|
|
{
|
|
case PARISC_SXT_NULL:
|
|
break;
|
|
|
|
case PARISC_SXT_SYMNDX:
|
|
for (j = 0; j < abfd->symcount; j++)
|
|
{
|
|
/* Locate the map entry for this symbol and modify the
|
|
symbol extension section symbol index entry to reflect
|
|
the new symbol table index. */
|
|
for (k = 0; k < elf32_hppa_symextn_map_size; k++)
|
|
{
|
|
if (elf32_hppa_symextn_map[k].old_index == se_value
|
|
&& elf32_hppa_symextn_map[k].bfd
|
|
== abfd->outsymbols[j]->the_bfd
|
|
&& elf32_hppa_symextn_map[k].sym
|
|
== abfd->outsymbols[j])
|
|
{
|
|
bfd_put_32(abfd,
|
|
ELF32_PARISC_SX_WORD (PARISC_SXT_SYMNDX, j),
|
|
(char *)seP);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PARISC_SXT_ARG_RELOC:
|
|
break;
|
|
|
|
default:
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return (false);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* What does this really do? Just determine if there is an appropriate
|
|
mapping from ELF section headers to backend sections? More symbol
|
|
extension braindamage. */
|
|
|
|
static boolean
|
|
elf32_hppa_backend_section_from_shdr (abfd, hdr, name)
|
|
bfd *abfd;
|
|
Elf32_Internal_Shdr *hdr;
|
|
char *name;
|
|
{
|
|
asection *newsect;
|
|
|
|
if (hdr->sh_type == SHT_PARISC_SYMEXTN)
|
|
{
|
|
BFD_ASSERT (strcmp (name, ".PARISC.symextn") == 0);
|
|
|
|
/* Bits that get saved. This one is real. */
|
|
if (!hdr->rawdata)
|
|
{
|
|
newsect = bfd_make_section (abfd, name);
|
|
if (newsect != NULL)
|
|
{
|
|
newsect->vma = hdr->sh_addr;
|
|
newsect->_raw_size = hdr->sh_size;
|
|
newsect->filepos = hdr->sh_offset;
|
|
newsect->flags |= SEC_HAS_CONTENTS;
|
|
newsect->alignment_power = hdr->sh_addralign;
|
|
|
|
if (hdr->sh_flags & SHF_ALLOC)
|
|
{
|
|
newsect->flags |= SEC_ALLOC;
|
|
newsect->flags |= SEC_LOAD;
|
|
}
|
|
|
|
if (!(hdr->sh_flags & SHF_WRITE))
|
|
newsect->flags |= SEC_READONLY;
|
|
|
|
if (hdr->sh_flags & SHF_EXECINSTR)
|
|
newsect->flags |= SEC_CODE;
|
|
else
|
|
newsect->flags |= SEC_DATA;
|
|
|
|
hdr->rawdata = (void *) newsect;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return true if the given section is a fake section. */
|
|
|
|
static boolean
|
|
elf32_hppa_backend_fake_sections (abfd, secthdr, asect)
|
|
bfd *abfd;
|
|
Elf_Internal_Shdr *secthdr;
|
|
asection *asect;
|
|
{
|
|
|
|
if (strcmp(asect->name, ".PARISC.symextn") == 0)
|
|
{
|
|
secthdr->sh_type = SHT_PARISC_SYMEXTN;
|
|
secthdr->sh_flags = 0;
|
|
secthdr->sh_info = elf_section_data(asect)->rel_hdr.sh_link;
|
|
secthdr->sh_link = elf_onesymtab(abfd);
|
|
return true;
|
|
}
|
|
|
|
if (!strcmp (asect->name, ".PARISC.unwind"))
|
|
{
|
|
secthdr->sh_type = SHT_PROGBITS;
|
|
/* Unwind descriptors are not part of the program memory image. */
|
|
secthdr->sh_flags = 0;
|
|
secthdr->sh_info = 0;
|
|
secthdr->sh_link = 0;
|
|
secthdr->sh_entsize = 16;
|
|
return true;
|
|
}
|
|
|
|
/* @@ Should this be CPU specific?? KR */
|
|
if (!strcmp (asect->name, ".stabstr"))
|
|
{
|
|
secthdr->sh_type = SHT_STRTAB;
|
|
secthdr->sh_flags = 0;
|
|
secthdr->sh_info = 0;
|
|
secthdr->sh_link = 0;
|
|
secthdr->sh_entsize = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if there is a mapping from bfd section into a
|
|
backend section. */
|
|
|
|
static boolean
|
|
elf32_hppa_backend_section_from_bfd_section (abfd, hdr, asect, ignored)
|
|
bfd *abfd;
|
|
Elf32_Internal_Shdr *hdr;
|
|
asection *asect;
|
|
int *ignored;
|
|
{
|
|
if (hdr->sh_type == SHT_PARISC_SYMEXTN)
|
|
{
|
|
if (hdr->rawdata)
|
|
{
|
|
if (((struct sec *) (hdr->rawdata)) == asect)
|
|
{
|
|
BFD_ASSERT (strcmp (asect->name, ".PARISC.symextn") == 0);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
else if (hdr->sh_type == SHT_STRTAB)
|
|
{
|
|
if (hdr->rawdata)
|
|
{
|
|
if (((struct sec *) (hdr->rawdata)) == asect)
|
|
{
|
|
BFD_ASSERT (strcmp (asect->name, ".stabstr") == 0);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
|
#define elf_backend_section_from_bfd_section elf32_hppa_backend_section_from_bfd_section
|
|
|
|
#define elf_backend_symbol_processing elf32_hppa_backend_symbol_processing
|
|
#define elf_backend_symbol_table_processing elf32_hppa_backend_symbol_table_processing
|
|
|
|
#define bfd_elf32_get_section_contents hppa_elf_get_section_contents
|
|
#define bfd_elf32_set_section_contents hppa_elf_set_section_contents
|
|
#define bfd_elf32_bfd_is_local_label hppa_elf_is_local_label
|
|
|
|
#define elf_backend_section_processing elf32_hppa_backend_section_processing
|
|
|
|
#define elf_backend_section_from_shdr elf32_hppa_backend_section_from_shdr
|
|
#define elf_backend_fake_sections elf32_hppa_backend_fake_sections
|
|
#define elf_backend_begin_write_processing \
|
|
elf32_hppa_backend_begin_write_processing
|
|
#define elf_backend_final_write_processing \
|
|
elf32_hppa_backend_final_write_processing
|
|
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_vec
|
|
#define TARGET_BIG_NAME "elf32-hppa"
|
|
#define ELF_ARCH bfd_arch_hppa
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
|
|
#include "elf32-target.h"
|