mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
eb7892c401
Add wrapper_symbol to bfd_link_hash_entry and set it to true for wrapper symbol. Set wrap_status to wrapper if wrapper_symbol is true in LTO. Note: Calling unwrap_hash_lookup to check for the wrapper symbol works only when there is a definition for the wrapped symbol since references to the wrapped symbol have been redirected to the wrapper symbol. bfd/ PR ld/31956 * linker.c (bfd_wrapped_link_hash_lookup): Set wrapper_symbol for wrapper symbol. include/ PR ld/31956 * bfdlink.h (bfd_link_hash_entry): Add wrapper_symbol. ld/ PR ld/31956 * plugin.c (get_symbols): Set wrap_status to wrapper if wrapper_symbol is set. * testsuite/ld-plugin/lto.exp: Run PR ld/31956 tests. * testsuite/ld-plugin/pr31956a.c: New file. * testsuite/ld-plugin/pr31956b.c: Likewise. Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
3561 lines
104 KiB
C
3561 lines
104 KiB
C
/* linker.c -- BFD linker routines
|
||
Copyright (C) 1993-2024 Free Software Foundation, Inc.
|
||
Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "libbfd.h"
|
||
#include "bfdlink.h"
|
||
#include "genlink.h"
|
||
|
||
/*
|
||
SECTION
|
||
Linker Functions
|
||
|
||
@cindex Linker
|
||
The linker uses three special entry points in the BFD target
|
||
vector. It is not necessary to write special routines for
|
||
these entry points when creating a new BFD back end, since
|
||
generic versions are provided. However, writing them can
|
||
speed up linking and make it use significantly less runtime
|
||
memory.
|
||
|
||
The first routine creates a hash table used by the other
|
||
routines. The second routine adds the symbols from an object
|
||
file to the hash table. The third routine takes all the
|
||
object files and links them together to create the output
|
||
file. These routines are designed so that the linker proper
|
||
does not need to know anything about the symbols in the object
|
||
files that it is linking. The linker merely arranges the
|
||
sections as directed by the linker script and lets BFD handle
|
||
the details of symbols and relocs.
|
||
|
||
The second routine and third routines are passed a pointer to
|
||
a <<struct bfd_link_info>> structure (defined in
|
||
<<bfdlink.h>>) which holds information relevant to the link,
|
||
including the linker hash table (which was created by the
|
||
first routine) and a set of callback functions to the linker
|
||
proper.
|
||
|
||
The generic linker routines are in <<linker.c>>, and use the
|
||
header file <<genlink.h>>. As of this writing, the only back
|
||
ends which have implemented versions of these routines are
|
||
a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
|
||
routines are used as examples throughout this section.
|
||
|
||
@menu
|
||
@* Creating a Linker Hash Table::
|
||
@* Adding Symbols to the Hash Table::
|
||
@* Performing the Final Link::
|
||
@end menu
|
||
|
||
INODE
|
||
Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
|
||
SUBSECTION
|
||
Creating a linker hash table
|
||
|
||
@cindex _bfd_link_hash_table_create in target vector
|
||
@cindex target vector (_bfd_link_hash_table_create)
|
||
The linker routines must create a hash table, which must be
|
||
derived from <<struct bfd_link_hash_table>> described in
|
||
<<bfdlink.c>>. @xref{Hash Tables}, for information on how to
|
||
create a derived hash table. This entry point is called using
|
||
the target vector of the linker output file.
|
||
|
||
The <<_bfd_link_hash_table_create>> entry point must allocate
|
||
and initialize an instance of the desired hash table. If the
|
||
back end does not require any additional information to be
|
||
stored with the entries in the hash table, the entry point may
|
||
simply create a <<struct bfd_link_hash_table>>. Most likely,
|
||
however, some additional information will be needed.
|
||
|
||
For example, with each entry in the hash table the a.out
|
||
linker keeps the index the symbol has in the final output file
|
||
(this index number is used so that when doing a relocatable
|
||
link the symbol index used in the output file can be quickly
|
||
filled in when copying over a reloc). The a.out linker code
|
||
defines the required structures and functions for a hash table
|
||
derived from <<struct bfd_link_hash_table>>. The a.out linker
|
||
hash table is created by the function
|
||
<<NAME(aout,link_hash_table_create)>>; it simply allocates
|
||
space for the hash table, initializes it, and returns a
|
||
pointer to it.
|
||
|
||
When writing the linker routines for a new back end, you will
|
||
generally not know exactly which fields will be required until
|
||
you have finished. You should simply create a new hash table
|
||
which defines no additional fields, and then simply add fields
|
||
as they become necessary.
|
||
|
||
INODE
|
||
Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
|
||
SUBSECTION
|
||
Adding symbols to the hash table
|
||
|
||
@cindex _bfd_link_add_symbols in target vector
|
||
@cindex target vector (_bfd_link_add_symbols)
|
||
The linker proper will call the <<_bfd_link_add_symbols>>
|
||
entry point for each object file or archive which is to be
|
||
linked (typically these are the files named on the command
|
||
line, but some may also come from the linker script). The
|
||
entry point is responsible for examining the file. For an
|
||
object file, BFD must add any relevant symbol information to
|
||
the hash table. For an archive, BFD must determine which
|
||
elements of the archive should be used and adding them to the
|
||
link.
|
||
|
||
The a.out version of this entry point is
|
||
<<NAME(aout,link_add_symbols)>>.
|
||
|
||
@menu
|
||
@* Differing file formats::
|
||
@* Adding symbols from an object file::
|
||
@* Adding symbols from an archive::
|
||
@end menu
|
||
|
||
INODE
|
||
Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
|
||
SUBSUBSECTION
|
||
Differing file formats
|
||
|
||
Normally all the files involved in a link will be of the same
|
||
format, but it is also possible to link together different
|
||
format object files, and the back end must support that. The
|
||
<<_bfd_link_add_symbols>> entry point is called via the target
|
||
vector of the file to be added. This has an important
|
||
consequence: the function may not assume that the hash table
|
||
is the type created by the corresponding
|
||
<<_bfd_link_hash_table_create>> vector. All the
|
||
<<_bfd_link_add_symbols>> function can assume about the hash
|
||
table is that it is derived from <<struct
|
||
bfd_link_hash_table>>.
|
||
|
||
Sometimes the <<_bfd_link_add_symbols>> function must store
|
||
some information in the hash table entry to be used by the
|
||
<<_bfd_final_link>> function. In such a case the output bfd
|
||
xvec must be checked to make sure that the hash table was
|
||
created by an object file of the same format.
|
||
|
||
The <<_bfd_final_link>> routine must be prepared to handle a
|
||
hash entry without any extra information added by the
|
||
<<_bfd_link_add_symbols>> function. A hash entry without
|
||
extra information will also occur when the linker script
|
||
directs the linker to create a symbol. Note that, regardless
|
||
of how a hash table entry is added, all the fields will be
|
||
initialized to some sort of null value by the hash table entry
|
||
initialization function.
|
||
|
||
See <<ecoff_link_add_externals>> for an example of how to
|
||
check the output bfd before saving information (in this
|
||
case, the ECOFF external symbol debugging information) in a
|
||
hash table entry.
|
||
|
||
INODE
|
||
Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
|
||
SUBSUBSECTION
|
||
Adding symbols from an object file
|
||
|
||
When the <<_bfd_link_add_symbols>> routine is passed an object
|
||
file, it must add all externally visible symbols in that
|
||
object file to the hash table. The actual work of adding the
|
||
symbol to the hash table is normally handled by the function
|
||
<<_bfd_generic_link_add_one_symbol>>. The
|
||
<<_bfd_link_add_symbols>> routine is responsible for reading
|
||
all the symbols from the object file and passing the correct
|
||
information to <<_bfd_generic_link_add_one_symbol>>.
|
||
|
||
The <<_bfd_link_add_symbols>> routine should not use
|
||
<<bfd_canonicalize_symtab>> to read the symbols. The point of
|
||
providing this routine is to avoid the overhead of converting
|
||
the symbols into generic <<asymbol>> structures.
|
||
|
||
@findex _bfd_generic_link_add_one_symbol
|
||
<<_bfd_generic_link_add_one_symbol>> handles the details of
|
||
combining common symbols, warning about multiple definitions,
|
||
and so forth. It takes arguments which describe the symbol to
|
||
add, notably symbol flags, a section, and an offset. The
|
||
symbol flags include such things as <<BSF_WEAK>> or
|
||
<<BSF_INDIRECT>>. The section is a section in the object
|
||
file, or something like <<bfd_und_section_ptr>> for an undefined
|
||
symbol or <<bfd_com_section_ptr>> for a common symbol.
|
||
|
||
If the <<_bfd_final_link>> routine is also going to need to
|
||
read the symbol information, the <<_bfd_link_add_symbols>>
|
||
routine should save it somewhere attached to the object file
|
||
BFD. However, the information should only be saved if the
|
||
<<keep_memory>> field of the <<info>> argument is TRUE, so
|
||
that the <<-no-keep-memory>> linker switch is effective.
|
||
|
||
The a.out function which adds symbols from an object file is
|
||
<<aout_link_add_object_symbols>>, and most of the interesting
|
||
work is in <<aout_link_add_symbols>>. The latter saves
|
||
pointers to the hash tables entries created by
|
||
<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
|
||
so that the <<_bfd_final_link>> routine does not have to call
|
||
the hash table lookup routine to locate the entry.
|
||
|
||
INODE
|
||
Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
|
||
SUBSUBSECTION
|
||
Adding symbols from an archive
|
||
|
||
When the <<_bfd_link_add_symbols>> routine is passed an
|
||
archive, it must look through the symbols defined by the
|
||
archive and decide which elements of the archive should be
|
||
included in the link. For each such element it must call the
|
||
<<add_archive_element>> linker callback, and it must add the
|
||
symbols from the object file to the linker hash table. (The
|
||
callback may in fact indicate that a replacement BFD should be
|
||
used, in which case the symbols from that BFD should be added
|
||
to the linker hash table instead.)
|
||
|
||
@findex _bfd_generic_link_add_archive_symbols
|
||
In most cases the work of looking through the symbols in the
|
||
archive should be done by the
|
||
<<_bfd_generic_link_add_archive_symbols>> function.
|
||
<<_bfd_generic_link_add_archive_symbols>> is passed a function
|
||
to call to make the final decision about adding an archive
|
||
element to the link and to do the actual work of adding the
|
||
symbols to the linker hash table. If the element is to
|
||
be included, the <<add_archive_element>> linker callback
|
||
routine must be called with the element as an argument, and
|
||
the element's symbols must be added to the linker hash table
|
||
just as though the element had itself been passed to the
|
||
<<_bfd_link_add_symbols>> function.
|
||
|
||
When the a.out <<_bfd_link_add_symbols>> function receives an
|
||
archive, it calls <<_bfd_generic_link_add_archive_symbols>>
|
||
passing <<aout_link_check_archive_element>> as the function
|
||
argument. <<aout_link_check_archive_element>> calls
|
||
<<aout_link_check_ar_symbols>>. If the latter decides to add
|
||
the element (an element is only added if it provides a real,
|
||
non-common, definition for a previously undefined or common
|
||
symbol) it calls the <<add_archive_element>> callback and then
|
||
<<aout_link_check_archive_element>> calls
|
||
<<aout_link_add_symbols>> to actually add the symbols to the
|
||
linker hash table - possibly those of a substitute BFD, if the
|
||
<<add_archive_element>> callback avails itself of that option.
|
||
|
||
The ECOFF back end is unusual in that it does not normally
|
||
call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
|
||
archives already contain a hash table of symbols. The ECOFF
|
||
back end searches the archive itself to avoid the overhead of
|
||
creating a new hash table.
|
||
|
||
INODE
|
||
Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
|
||
SUBSECTION
|
||
Performing the final link
|
||
|
||
@cindex _bfd_link_final_link in target vector
|
||
@cindex target vector (_bfd_final_link)
|
||
When all the input files have been processed, the linker calls
|
||
the <<_bfd_final_link>> entry point of the output BFD. This
|
||
routine is responsible for producing the final output file,
|
||
which has several aspects. It must relocate the contents of
|
||
the input sections and copy the data into the output sections.
|
||
It must build an output symbol table including any local
|
||
symbols from the input files and the global symbols from the
|
||
hash table. When producing relocatable output, it must
|
||
modify the input relocs and write them into the output file.
|
||
There may also be object format dependent work to be done.
|
||
|
||
The linker will also call the <<write_object_contents>> entry
|
||
point when the BFD is closed. The two entry points must work
|
||
together in order to produce the correct output file.
|
||
|
||
The details of how this works are inevitably dependent upon
|
||
the specific object file format. The a.out
|
||
<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
|
||
|
||
@menu
|
||
@* Information provided by the linker::
|
||
@* Relocating the section contents::
|
||
@* Writing the symbol table::
|
||
@end menu
|
||
|
||
INODE
|
||
Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
|
||
SUBSUBSECTION
|
||
Information provided by the linker
|
||
|
||
Before the linker calls the <<_bfd_final_link>> entry point,
|
||
it sets up some data structures for the function to use.
|
||
|
||
The <<input_bfds>> field of the <<bfd_link_info>> structure
|
||
will point to a list of all the input files included in the
|
||
link. These files are linked through the <<link.next>> field
|
||
of the <<bfd>> structure.
|
||
|
||
Each section in the output file will have a list of
|
||
<<link_order>> structures attached to the <<map_head.link_order>>
|
||
field (the <<link_order>> structure is defined in
|
||
<<bfdlink.h>>). These structures describe how to create the
|
||
contents of the output section in terms of the contents of
|
||
various input sections, fill constants, and, eventually, other
|
||
types of information. They also describe relocs that must be
|
||
created by the BFD backend, but do not correspond to any input
|
||
file; this is used to support -Ur, which builds constructors
|
||
while generating a relocatable object file.
|
||
|
||
INODE
|
||
Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
|
||
SUBSUBSECTION
|
||
Relocating the section contents
|
||
|
||
The <<_bfd_final_link>> function should look through the
|
||
<<link_order>> structures attached to each section of the
|
||
output file. Each <<link_order>> structure should either be
|
||
handled specially, or it should be passed to the function
|
||
<<_bfd_default_link_order>> which will do the right thing
|
||
(<<_bfd_default_link_order>> is defined in <<linker.c>>).
|
||
|
||
For efficiency, a <<link_order>> of type
|
||
<<bfd_indirect_link_order>> whose associated section belongs
|
||
to a BFD of the same format as the output BFD must be handled
|
||
specially. This type of <<link_order>> describes part of an
|
||
output section in terms of a section belonging to one of the
|
||
input files. The <<_bfd_final_link>> function should read the
|
||
contents of the section and any associated relocs, apply the
|
||
relocs to the section contents, and write out the modified
|
||
section contents. If performing a relocatable link, the
|
||
relocs themselves must also be modified and written out.
|
||
|
||
@findex _bfd_relocate_contents
|
||
@findex _bfd_final_link_relocate
|
||
The functions <<_bfd_relocate_contents>> and
|
||
<<_bfd_final_link_relocate>> provide some general support for
|
||
performing the actual relocations, notably overflow checking.
|
||
Their arguments include information about the symbol the
|
||
relocation is against and a <<reloc_howto_type>> argument
|
||
which describes the relocation to perform. These functions
|
||
are defined in <<reloc.c>>.
|
||
|
||
The a.out function which handles reading, relocating, and
|
||
writing section contents is <<aout_link_input_section>>. The
|
||
actual relocation is done in <<aout_link_input_section_std>>
|
||
and <<aout_link_input_section_ext>>.
|
||
|
||
INODE
|
||
Writing the symbol table, , Relocating the section contents, Performing the Final Link
|
||
SUBSUBSECTION
|
||
Writing the symbol table
|
||
|
||
The <<_bfd_final_link>> function must gather all the symbols
|
||
in the input files and write them out. It must also write out
|
||
all the symbols in the global hash table. This must be
|
||
controlled by the <<strip>> and <<discard>> fields of the
|
||
<<bfd_link_info>> structure.
|
||
|
||
The local symbols of the input files will not have been
|
||
entered into the linker hash table. The <<_bfd_final_link>>
|
||
routine must consider each input file and include the symbols
|
||
in the output file. It may be convenient to do this when
|
||
looking through the <<link_order>> structures, or it may be
|
||
done by stepping through the <<input_bfds>> list.
|
||
|
||
The <<_bfd_final_link>> routine must also traverse the global
|
||
hash table to gather all the externally visible symbols. It
|
||
is possible that most of the externally visible symbols may be
|
||
written out when considering the symbols of each input file,
|
||
but it is still necessary to traverse the hash table since the
|
||
linker script may have defined some symbols that are not in
|
||
any of the input files.
|
||
|
||
The <<strip>> field of the <<bfd_link_info>> structure
|
||
controls which symbols are written out. The possible values
|
||
are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
|
||
then the <<keep_hash>> field of the <<bfd_link_info>>
|
||
structure is a hash table of symbols to keep; each symbol
|
||
should be looked up in this hash table, and only symbols which
|
||
are present should be included in the output file.
|
||
|
||
If the <<strip>> field of the <<bfd_link_info>> structure
|
||
permits local symbols to be written out, the <<discard>> field
|
||
is used to further controls which local symbols are included
|
||
in the output file. If the value is <<discard_l>>, then all
|
||
local symbols which begin with a certain prefix are discarded;
|
||
this is controlled by the <<bfd_is_local_label_name>> entry point.
|
||
|
||
The a.out backend handles symbols by calling
|
||
<<aout_link_write_symbols>> on each input BFD and then
|
||
traversing the global hash table with the function
|
||
<<aout_link_write_other_symbol>>. It builds a string table
|
||
while writing out the symbols, which is written to the output
|
||
file at the end of <<NAME(aout,final_link)>>.
|
||
*/
|
||
|
||
static bool generic_link_add_object_symbols
|
||
(bfd *, struct bfd_link_info *);
|
||
static bool generic_link_check_archive_element
|
||
(bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
|
||
bool *);
|
||
static bool generic_link_add_symbol_list
|
||
(bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
|
||
static bool generic_add_output_symbol
|
||
(bfd *, size_t *psymalloc, asymbol *);
|
||
static bool default_data_link_order
|
||
(bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
|
||
static bool default_indirect_link_order
|
||
(bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
|
||
bool);
|
||
|
||
/* The link hash table structure is defined in bfdlink.h. It provides
|
||
a base hash table which the backend specific hash tables are built
|
||
upon. */
|
||
|
||
/* Routine to create an entry in the link hash table. */
|
||
|
||
struct bfd_hash_entry *
|
||
_bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = (struct bfd_hash_entry *)
|
||
bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = bfd_hash_newfunc (entry, table, string);
|
||
if (entry)
|
||
{
|
||
struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
|
||
|
||
/* Initialize the local fields. */
|
||
memset ((char *) &h->root + sizeof (h->root), 0,
|
||
sizeof (*h) - sizeof (h->root));
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Initialize a link hash table. The BFD argument is the one
|
||
responsible for creating this table. */
|
||
|
||
bool
|
||
_bfd_link_hash_table_init
|
||
(struct bfd_link_hash_table *table,
|
||
bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
|
||
struct bfd_hash_table *,
|
||
const char *),
|
||
unsigned int entsize)
|
||
{
|
||
bool ret;
|
||
|
||
BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
|
||
table->undefs = NULL;
|
||
table->undefs_tail = NULL;
|
||
table->type = bfd_link_generic_hash_table;
|
||
|
||
ret = bfd_hash_table_init (&table->table, newfunc, entsize);
|
||
if (ret)
|
||
{
|
||
/* Arrange for destruction of this hash table on closing ABFD. */
|
||
table->hash_table_free = _bfd_generic_link_hash_table_free;
|
||
abfd->link.hash = table;
|
||
abfd->is_linker_output = true;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Look up a symbol in a link hash table. If follow is TRUE, we
|
||
follow bfd_link_hash_indirect and bfd_link_hash_warning links to
|
||
the real symbol.
|
||
|
||
.{* Return TRUE if the symbol described by a linker hash entry H
|
||
. is going to be absolute. Linker-script defined symbols can be
|
||
. converted from absolute to section-relative ones late in the
|
||
. link. Use this macro to correctly determine whether the symbol
|
||
. will actually end up absolute in output. *}
|
||
.#define bfd_is_abs_symbol(H) \
|
||
. (((H)->type == bfd_link_hash_defined \
|
||
. || (H)->type == bfd_link_hash_defweak) \
|
||
. && bfd_is_abs_section ((H)->u.def.section) \
|
||
. && !(H)->rel_from_abs)
|
||
.
|
||
*/
|
||
|
||
struct bfd_link_hash_entry *
|
||
bfd_link_hash_lookup (struct bfd_link_hash_table *table,
|
||
const char *string,
|
||
bool create,
|
||
bool copy,
|
||
bool follow)
|
||
{
|
||
struct bfd_link_hash_entry *ret;
|
||
|
||
if (table == NULL || string == NULL)
|
||
return NULL;
|
||
|
||
ret = ((struct bfd_link_hash_entry *)
|
||
bfd_hash_lookup (&table->table, string, create, copy));
|
||
|
||
if (follow && ret != NULL)
|
||
{
|
||
while (ret->type == bfd_link_hash_indirect
|
||
|| ret->type == bfd_link_hash_warning)
|
||
ret = ret->u.i.link;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Look up a symbol in the main linker hash table if the symbol might
|
||
be wrapped. This should only be used for references to an
|
||
undefined symbol, not for definitions of a symbol. */
|
||
|
||
struct bfd_link_hash_entry *
|
||
bfd_wrapped_link_hash_lookup (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
const char *string,
|
||
bool create,
|
||
bool copy,
|
||
bool follow)
|
||
{
|
||
size_t amt;
|
||
|
||
if (info->wrap_hash != NULL)
|
||
{
|
||
const char *l;
|
||
char prefix = '\0';
|
||
|
||
l = string;
|
||
if (*l
|
||
&& (*l == bfd_get_symbol_leading_char (abfd)
|
||
|| *l == info->wrap_char))
|
||
{
|
||
prefix = *l;
|
||
++l;
|
||
}
|
||
|
||
#undef WRAP
|
||
#define WRAP "__wrap_"
|
||
|
||
if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
|
||
{
|
||
char *n;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
/* This symbol is being wrapped. We want to replace all
|
||
references to SYM with references to __wrap_SYM. */
|
||
|
||
amt = strlen (l) + sizeof WRAP + 1;
|
||
n = (char *) bfd_malloc (amt);
|
||
if (n == NULL)
|
||
return NULL;
|
||
|
||
n[0] = prefix;
|
||
n[1] = '\0';
|
||
strcat (n, WRAP);
|
||
strcat (n, l);
|
||
h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
|
||
if (h != NULL)
|
||
h->wrapper_symbol = true;
|
||
free (n);
|
||
return h;
|
||
}
|
||
|
||
#undef REAL
|
||
#define REAL "__real_"
|
||
|
||
if (*l == '_'
|
||
&& startswith (l, REAL)
|
||
&& bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
|
||
false, false) != NULL)
|
||
{
|
||
char *n;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
/* This is a reference to __real_SYM, where SYM is being
|
||
wrapped. We want to replace all references to __real_SYM
|
||
with references to SYM. */
|
||
|
||
amt = strlen (l + sizeof REAL - 1) + 2;
|
||
n = (char *) bfd_malloc (amt);
|
||
if (n == NULL)
|
||
return NULL;
|
||
|
||
n[0] = prefix;
|
||
n[1] = '\0';
|
||
strcat (n, l + sizeof REAL - 1);
|
||
h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
|
||
if (h != NULL)
|
||
h->ref_real = 1;
|
||
free (n);
|
||
return h;
|
||
}
|
||
|
||
#undef REAL
|
||
}
|
||
|
||
return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
|
||
}
|
||
|
||
/* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
|
||
and the remainder is found in wrap_hash, return the real symbol. */
|
||
|
||
struct bfd_link_hash_entry *
|
||
unwrap_hash_lookup (struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
struct bfd_link_hash_entry *h)
|
||
{
|
||
const char *l = h->root.string;
|
||
|
||
if (*l
|
||
&& (*l == bfd_get_symbol_leading_char (input_bfd)
|
||
|| *l == info->wrap_char))
|
||
++l;
|
||
|
||
if (startswith (l, WRAP))
|
||
{
|
||
l += sizeof WRAP - 1;
|
||
|
||
if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
|
||
{
|
||
char save = 0;
|
||
if (l - (sizeof WRAP - 1) != h->root.string)
|
||
{
|
||
--l;
|
||
save = *l;
|
||
*(char *) l = *h->root.string;
|
||
}
|
||
h = bfd_link_hash_lookup (info->hash, l, false, false, false);
|
||
if (save)
|
||
*(char *) l = save;
|
||
}
|
||
}
|
||
return h;
|
||
}
|
||
#undef WRAP
|
||
|
||
/* Traverse a generic link hash table. Differs from bfd_hash_traverse
|
||
in the treatment of warning symbols. When warning symbols are
|
||
created they replace the real symbol, so you don't get to see the
|
||
real symbol in a bfd_hash_traverse. This traversal calls func with
|
||
the real symbol. */
|
||
|
||
void
|
||
bfd_link_hash_traverse
|
||
(struct bfd_link_hash_table *htab,
|
||
bool (*func) (struct bfd_link_hash_entry *, void *),
|
||
void *info)
|
||
{
|
||
unsigned int i;
|
||
|
||
htab->table.frozen = 1;
|
||
for (i = 0; i < htab->table.size; i++)
|
||
{
|
||
struct bfd_link_hash_entry *p;
|
||
|
||
p = (struct bfd_link_hash_entry *) htab->table.table[i];
|
||
for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
|
||
if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
|
||
goto out;
|
||
}
|
||
out:
|
||
htab->table.frozen = 0;
|
||
}
|
||
|
||
/* Add a symbol to the linker hash table undefs list. */
|
||
|
||
void
|
||
bfd_link_add_undef (struct bfd_link_hash_table *table,
|
||
struct bfd_link_hash_entry *h)
|
||
{
|
||
BFD_ASSERT (h->u.undef.next == NULL);
|
||
if (table->undefs_tail != NULL)
|
||
table->undefs_tail->u.undef.next = h;
|
||
if (table->undefs == NULL)
|
||
table->undefs = h;
|
||
table->undefs_tail = h;
|
||
}
|
||
|
||
/* The undefs list was designed so that in normal use we don't need to
|
||
remove entries. However, if symbols on the list are changed from
|
||
bfd_link_hash_undefined to either bfd_link_hash_undefweak or
|
||
bfd_link_hash_new for some reason, then they must be removed from the
|
||
list. Failure to do so might result in the linker attempting to add
|
||
the symbol to the list again at a later stage. */
|
||
|
||
void
|
||
bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
|
||
{
|
||
struct bfd_link_hash_entry **pun;
|
||
|
||
pun = &table->undefs;
|
||
while (*pun != NULL)
|
||
{
|
||
struct bfd_link_hash_entry *h = *pun;
|
||
|
||
if (h->type == bfd_link_hash_new
|
||
|| h->type == bfd_link_hash_undefweak)
|
||
{
|
||
*pun = h->u.undef.next;
|
||
h->u.undef.next = NULL;
|
||
if (h == table->undefs_tail)
|
||
{
|
||
if (pun == &table->undefs)
|
||
table->undefs_tail = NULL;
|
||
else
|
||
/* pun points at an u.undef.next field. Go back to
|
||
the start of the link_hash_entry. */
|
||
table->undefs_tail = (struct bfd_link_hash_entry *)
|
||
((char *) pun - ((char *) &h->u.undef.next - (char *) h));
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
pun = &h->u.undef.next;
|
||
}
|
||
}
|
||
|
||
/* Routine to create an entry in a generic link hash table. */
|
||
|
||
struct bfd_hash_entry *
|
||
_bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = (struct bfd_hash_entry *)
|
||
bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = _bfd_link_hash_newfunc (entry, table, string);
|
||
if (entry)
|
||
{
|
||
struct generic_link_hash_entry *ret;
|
||
|
||
/* Set local fields. */
|
||
ret = (struct generic_link_hash_entry *) entry;
|
||
ret->written = false;
|
||
ret->sym = NULL;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Create a generic link hash table. */
|
||
|
||
struct bfd_link_hash_table *
|
||
_bfd_generic_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct generic_link_hash_table *ret;
|
||
size_t amt = sizeof (struct generic_link_hash_table);
|
||
|
||
ret = (struct generic_link_hash_table *) bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
if (! _bfd_link_hash_table_init (&ret->root, abfd,
|
||
_bfd_generic_link_hash_newfunc,
|
||
sizeof (struct generic_link_hash_entry)))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
return &ret->root;
|
||
}
|
||
|
||
void
|
||
_bfd_generic_link_hash_table_free (bfd *obfd)
|
||
{
|
||
struct generic_link_hash_table *ret;
|
||
|
||
BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
|
||
ret = (struct generic_link_hash_table *) obfd->link.hash;
|
||
bfd_hash_table_free (&ret->root.table);
|
||
free (ret);
|
||
obfd->link.hash = NULL;
|
||
obfd->is_linker_output = false;
|
||
}
|
||
|
||
/* Grab the symbols for an object file when doing a generic link. We
|
||
store the symbols in the outsymbols field. We need to keep them
|
||
around for the entire link to ensure that we only read them once.
|
||
If we read them multiple times, we might wind up with relocs and
|
||
the hash table pointing to different instances of the symbol
|
||
structure. */
|
||
|
||
bool
|
||
bfd_generic_link_read_symbols (bfd *abfd)
|
||
{
|
||
if (bfd_get_outsymbols (abfd) == NULL)
|
||
{
|
||
long symsize;
|
||
long symcount;
|
||
|
||
symsize = bfd_get_symtab_upper_bound (abfd);
|
||
if (symsize < 0)
|
||
return false;
|
||
abfd->outsymbols = bfd_alloc (abfd, symsize);
|
||
if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
|
||
return false;
|
||
symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
|
||
if (symcount < 0)
|
||
return false;
|
||
abfd->symcount = symcount;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Indicate that we are only retrieving symbol values from this
|
||
section. We want the symbols to act as though the values in the
|
||
file are absolute. */
|
||
|
||
void
|
||
_bfd_generic_link_just_syms (asection *sec,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
|
||
sec->output_section = bfd_abs_section_ptr;
|
||
sec->output_offset = sec->vma;
|
||
}
|
||
|
||
/* Copy the symbol type and other attributes for a linker script
|
||
assignment from HSRC to HDEST.
|
||
The default implementation does nothing. */
|
||
void
|
||
_bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
|
||
struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
/* Generic function to add symbols from an object file to the
|
||
global hash table. */
|
||
|
||
bool
|
||
_bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
bool ret;
|
||
|
||
switch (bfd_get_format (abfd))
|
||
{
|
||
case bfd_object:
|
||
ret = generic_link_add_object_symbols (abfd, info);
|
||
break;
|
||
case bfd_archive:
|
||
ret = (_bfd_generic_link_add_archive_symbols
|
||
(abfd, info, generic_link_check_archive_element));
|
||
break;
|
||
default:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
ret = false;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Add symbols from an object file to the global hash table. */
|
||
|
||
static bool
|
||
generic_link_add_object_symbols (bfd *abfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
bfd_size_type symcount;
|
||
struct bfd_symbol **outsyms;
|
||
|
||
if (!bfd_generic_link_read_symbols (abfd))
|
||
return false;
|
||
symcount = _bfd_generic_link_get_symcount (abfd);
|
||
outsyms = _bfd_generic_link_get_symbols (abfd);
|
||
return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
|
||
}
|
||
|
||
/* Generic function to add symbols from an archive file to the global
|
||
hash file. This function presumes that the archive symbol table
|
||
has already been read in (this is normally done by the
|
||
bfd_check_format entry point). It looks through the archive symbol
|
||
table for symbols that are undefined or common in the linker global
|
||
symbol hash table. When one is found, the CHECKFN argument is used
|
||
to see if an object file should be included. This allows targets
|
||
to customize common symbol behaviour. CHECKFN should set *PNEEDED
|
||
to TRUE if the object file should be included, and must also call
|
||
the bfd_link_info add_archive_element callback function and handle
|
||
adding the symbols to the global hash table. CHECKFN must notice
|
||
if the callback indicates a substitute BFD, and arrange to add
|
||
those symbols instead if it does so. CHECKFN should only return
|
||
FALSE if some sort of error occurs. */
|
||
|
||
bool
|
||
_bfd_generic_link_add_archive_symbols
|
||
(bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bool (*checkfn) (bfd *, struct bfd_link_info *,
|
||
struct bfd_link_hash_entry *, const char *, bool *))
|
||
{
|
||
bool loop;
|
||
bfd_size_type amt;
|
||
unsigned char *included;
|
||
|
||
if (! bfd_has_map (abfd))
|
||
{
|
||
/* An empty archive is a special case. */
|
||
if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
|
||
return true;
|
||
bfd_set_error (bfd_error_no_armap);
|
||
return false;
|
||
}
|
||
|
||
amt = bfd_ardata (abfd)->symdef_count;
|
||
if (amt == 0)
|
||
return true;
|
||
amt *= sizeof (*included);
|
||
included = (unsigned char *) bfd_zmalloc (amt);
|
||
if (included == NULL)
|
||
return false;
|
||
|
||
do
|
||
{
|
||
carsym *arsyms;
|
||
carsym *arsym_end;
|
||
carsym *arsym;
|
||
unsigned int indx;
|
||
file_ptr last_ar_offset = -1;
|
||
bool needed = false;
|
||
bfd *element = NULL;
|
||
|
||
loop = false;
|
||
arsyms = bfd_ardata (abfd)->symdefs;
|
||
arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
|
||
for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
struct bfd_link_hash_entry *undefs_tail;
|
||
|
||
if (included[indx])
|
||
continue;
|
||
if (needed && arsym->file_offset == last_ar_offset)
|
||
{
|
||
included[indx] = 1;
|
||
continue;
|
||
}
|
||
|
||
if (arsym->name == NULL)
|
||
goto error_return;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, arsym->name,
|
||
false, false, true);
|
||
|
||
if (h == NULL
|
||
&& info->pei386_auto_import
|
||
&& startswith (arsym->name, "__imp_"))
|
||
h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
|
||
false, false, true);
|
||
if (h == NULL)
|
||
continue;
|
||
|
||
if (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common)
|
||
{
|
||
if (h->type != bfd_link_hash_undefweak)
|
||
/* Symbol must be defined. Don't check it again. */
|
||
included[indx] = 1;
|
||
continue;
|
||
}
|
||
|
||
if (last_ar_offset != arsym->file_offset)
|
||
{
|
||
last_ar_offset = arsym->file_offset;
|
||
element = _bfd_get_elt_at_filepos (abfd, last_ar_offset,
|
||
info);
|
||
if (element == NULL
|
||
|| !bfd_check_format (element, bfd_object))
|
||
goto error_return;
|
||
}
|
||
|
||
undefs_tail = info->hash->undefs_tail;
|
||
|
||
/* CHECKFN will see if this element should be included, and
|
||
go ahead and include it if appropriate. */
|
||
if (! (*checkfn) (element, info, h, arsym->name, &needed))
|
||
goto error_return;
|
||
|
||
if (needed)
|
||
{
|
||
unsigned int mark;
|
||
|
||
/* Look backward to mark all symbols from this object file
|
||
which we have already seen in this pass. */
|
||
mark = indx;
|
||
do
|
||
{
|
||
included[mark] = 1;
|
||
if (mark == 0)
|
||
break;
|
||
--mark;
|
||
}
|
||
while (arsyms[mark].file_offset == last_ar_offset);
|
||
|
||
if (undefs_tail != info->hash->undefs_tail)
|
||
loop = true;
|
||
}
|
||
}
|
||
} while (loop);
|
||
|
||
free (included);
|
||
return true;
|
||
|
||
error_return:
|
||
free (included);
|
||
return false;
|
||
}
|
||
|
||
/* See if we should include an archive element. */
|
||
|
||
static bool
|
||
generic_link_check_archive_element (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
struct bfd_link_hash_entry *h,
|
||
const char *name ATTRIBUTE_UNUSED,
|
||
bool *pneeded)
|
||
{
|
||
asymbol **pp, **ppend;
|
||
|
||
*pneeded = false;
|
||
|
||
if (!bfd_generic_link_read_symbols (abfd))
|
||
return false;
|
||
|
||
pp = _bfd_generic_link_get_symbols (abfd);
|
||
ppend = pp + _bfd_generic_link_get_symcount (abfd);
|
||
for (; pp < ppend; pp++)
|
||
{
|
||
asymbol *p;
|
||
|
||
p = *pp;
|
||
|
||
/* We are only interested in globally visible symbols. */
|
||
if (! bfd_is_com_section (p->section)
|
||
&& (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
|
||
continue;
|
||
|
||
/* We are only interested if we know something about this
|
||
symbol, and it is undefined or common. An undefined weak
|
||
symbol (type bfd_link_hash_undefweak) is not considered to be
|
||
a reference when pulling files out of an archive. See the
|
||
SVR4 ABI, p. 4-27. */
|
||
h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
|
||
false, true);
|
||
if (h == NULL
|
||
|| (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common))
|
||
continue;
|
||
|
||
/* P is a symbol we are looking for. */
|
||
|
||
if (! bfd_is_com_section (p->section)
|
||
|| (h->type == bfd_link_hash_undefined
|
||
&& h->u.undef.abfd == NULL))
|
||
{
|
||
/* P is not a common symbol, or an undefined reference was
|
||
created from outside BFD such as from a linker -u option.
|
||
This object file defines the symbol, so pull it in. */
|
||
*pneeded = true;
|
||
if (!(*info->callbacks
|
||
->add_archive_element) (info, abfd, bfd_asymbol_name (p),
|
||
&abfd))
|
||
return false;
|
||
/* Potentially, the add_archive_element hook may have set a
|
||
substitute BFD for us. */
|
||
return bfd_link_add_symbols (abfd, info);
|
||
}
|
||
|
||
/* P is a common symbol. */
|
||
|
||
if (h->type == bfd_link_hash_undefined)
|
||
{
|
||
bfd *symbfd;
|
||
bfd_vma size;
|
||
unsigned int power;
|
||
|
||
/* Turn the symbol into a common symbol but do not link in
|
||
the object file. This is how a.out works. Object
|
||
formats that require different semantics must implement
|
||
this function differently. This symbol is already on the
|
||
undefs list. We add the section to a common section
|
||
attached to symbfd to ensure that it is in a BFD which
|
||
will be linked in. */
|
||
symbfd = h->u.undef.abfd;
|
||
h->type = bfd_link_hash_common;
|
||
h->u.c.p = (struct bfd_link_hash_common_entry *)
|
||
bfd_hash_allocate (&info->hash->table,
|
||
sizeof (struct bfd_link_hash_common_entry));
|
||
if (h->u.c.p == NULL)
|
||
return false;
|
||
|
||
size = bfd_asymbol_value (p);
|
||
h->u.c.size = size;
|
||
|
||
power = bfd_log2 (size);
|
||
if (power > 4)
|
||
power = 4;
|
||
h->u.c.p->alignment_power = power;
|
||
|
||
if (p->section == bfd_com_section_ptr)
|
||
h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
|
||
else
|
||
h->u.c.p->section = bfd_make_section_old_way (symbfd,
|
||
p->section->name);
|
||
h->u.c.p->section->flags |= SEC_ALLOC;
|
||
}
|
||
else
|
||
{
|
||
/* Adjust the size of the common symbol if necessary. This
|
||
is how a.out works. Object formats that require
|
||
different semantics must implement this function
|
||
differently. */
|
||
if (bfd_asymbol_value (p) > h->u.c.size)
|
||
h->u.c.size = bfd_asymbol_value (p);
|
||
}
|
||
}
|
||
|
||
/* This archive element is not needed. */
|
||
return true;
|
||
}
|
||
|
||
/* Add the symbols from an object file to the global hash table. ABFD
|
||
is the object file. INFO is the linker information. SYMBOL_COUNT
|
||
is the number of symbols. SYMBOLS is the list of symbols. */
|
||
|
||
static bool
|
||
generic_link_add_symbol_list (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_size_type symbol_count,
|
||
asymbol **symbols)
|
||
{
|
||
asymbol **pp, **ppend;
|
||
|
||
pp = symbols;
|
||
ppend = symbols + symbol_count;
|
||
for (; pp < ppend; pp++)
|
||
{
|
||
asymbol *p;
|
||
|
||
p = *pp;
|
||
|
||
if ((p->flags & (BSF_INDIRECT
|
||
| BSF_WARNING
|
||
| BSF_GLOBAL
|
||
| BSF_CONSTRUCTOR
|
||
| BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_asymbol_section (p))
|
||
|| bfd_is_com_section (bfd_asymbol_section (p))
|
||
|| bfd_is_ind_section (bfd_asymbol_section (p)))
|
||
{
|
||
const char *name;
|
||
const char *string;
|
||
struct generic_link_hash_entry *h;
|
||
struct bfd_link_hash_entry *bh;
|
||
|
||
string = name = bfd_asymbol_name (p);
|
||
if (((p->flags & BSF_INDIRECT) != 0
|
||
|| bfd_is_ind_section (p->section))
|
||
&& pp + 1 < ppend)
|
||
{
|
||
pp++;
|
||
string = bfd_asymbol_name (*pp);
|
||
}
|
||
else if ((p->flags & BSF_WARNING) != 0
|
||
&& pp + 1 < ppend)
|
||
{
|
||
/* The name of P is actually the warning string, and the
|
||
next symbol is the one to warn about. */
|
||
pp++;
|
||
name = bfd_asymbol_name (*pp);
|
||
}
|
||
|
||
bh = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, name, p->flags, bfd_asymbol_section (p),
|
||
p->value, string, false, false, &bh)))
|
||
return false;
|
||
h = (struct generic_link_hash_entry *) bh;
|
||
|
||
/* If this is a constructor symbol, and the linker didn't do
|
||
anything with it, then we want to just pass the symbol
|
||
through to the output file. This will happen when
|
||
linking with -r. */
|
||
if ((p->flags & BSF_CONSTRUCTOR) != 0
|
||
&& (h == NULL || h->root.type == bfd_link_hash_new))
|
||
{
|
||
p->udata.p = NULL;
|
||
continue;
|
||
}
|
||
|
||
/* Save the BFD symbol so that we don't lose any backend
|
||
specific information that may be attached to it. We only
|
||
want this one if it gives more information than the
|
||
existing one; we don't want to replace a defined symbol
|
||
with an undefined one. This routine may be called with a
|
||
hash table other than the generic hash table, so we only
|
||
do this if we are certain that the hash table is a
|
||
generic one. */
|
||
if (info->output_bfd->xvec == abfd->xvec)
|
||
{
|
||
if (h->sym == NULL
|
||
|| (! bfd_is_und_section (bfd_asymbol_section (p))
|
||
&& (! bfd_is_com_section (bfd_asymbol_section (p))
|
||
|| bfd_is_und_section (bfd_asymbol_section (h->sym)))))
|
||
{
|
||
h->sym = p;
|
||
/* BSF_OLD_COMMON is a hack to support COFF reloc
|
||
reading, and it should go away when the COFF
|
||
linker is switched to the new version. */
|
||
if (bfd_is_com_section (bfd_asymbol_section (p)))
|
||
p->flags |= BSF_OLD_COMMON;
|
||
}
|
||
}
|
||
|
||
/* Store a back pointer from the symbol to the hash
|
||
table entry for the benefit of relaxation code until
|
||
it gets rewritten to not use asymbol structures.
|
||
Setting this is also used to check whether these
|
||
symbols were set up by the generic linker. */
|
||
p->udata.p = h;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* We use a state table to deal with adding symbols from an object
|
||
file. The first index into the state table describes the symbol
|
||
from the object file. The second index into the state table is the
|
||
type of the symbol in the hash table. */
|
||
|
||
/* The symbol from the object file is turned into one of these row
|
||
values. */
|
||
|
||
enum link_row
|
||
{
|
||
UNDEF_ROW, /* Undefined. */
|
||
UNDEFW_ROW, /* Weak undefined. */
|
||
DEF_ROW, /* Defined. */
|
||
DEFW_ROW, /* Weak defined. */
|
||
COMMON_ROW, /* Common. */
|
||
INDR_ROW, /* Indirect. */
|
||
WARN_ROW, /* Warning. */
|
||
SET_ROW /* Member of set. */
|
||
};
|
||
|
||
/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
|
||
#undef FAIL
|
||
|
||
/* The actions to take in the state table. */
|
||
|
||
enum link_action
|
||
{
|
||
FAIL, /* Abort. */
|
||
UND, /* Mark symbol undefined. */
|
||
WEAK, /* Mark symbol weak undefined. */
|
||
DEF, /* Mark symbol defined. */
|
||
DEFW, /* Mark symbol weak defined. */
|
||
COM, /* Mark symbol common. */
|
||
REF, /* Mark defined symbol referenced. */
|
||
CREF, /* Possibly warn about common reference to defined symbol. */
|
||
CDEF, /* Define existing common symbol. */
|
||
NOACT, /* No action. */
|
||
BIG, /* Mark symbol common using largest size. */
|
||
MDEF, /* Multiple definition error. */
|
||
MIND, /* Multiple indirect symbols. */
|
||
IND, /* Make indirect symbol. */
|
||
CIND, /* Make indirect symbol from existing common symbol. */
|
||
SET, /* Add value to set. */
|
||
MWARN, /* Make warning symbol. */
|
||
WARN, /* Warn if referenced, else MWARN. */
|
||
CYCLE, /* Repeat with symbol pointed to. */
|
||
REFC, /* Mark indirect symbol referenced and then CYCLE. */
|
||
WARNC /* Issue warning and then CYCLE. */
|
||
};
|
||
|
||
/* The state table itself. The first index is a link_row and the
|
||
second index is a bfd_link_hash_type. */
|
||
|
||
static const enum link_action link_action[8][8] =
|
||
{
|
||
/* current\prev new undef undefw def defw com indr warn */
|
||
/* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
|
||
/* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
|
||
/* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MIND, CYCLE },
|
||
/* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
|
||
/* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
|
||
/* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
|
||
/* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
|
||
/* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
|
||
};
|
||
|
||
/* Most of the entries in the LINK_ACTION table are straightforward,
|
||
but a few are somewhat subtle.
|
||
|
||
A reference to an indirect symbol (UNDEF_ROW/indr or
|
||
UNDEFW_ROW/indr) is counted as a reference both to the indirect
|
||
symbol and to the symbol the indirect symbol points to.
|
||
|
||
A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
|
||
causes the warning to be issued.
|
||
|
||
A common definition of an indirect symbol (COMMON_ROW/indr) is
|
||
treated as a multiple definition error. Likewise for an indirect
|
||
definition of a common symbol (INDR_ROW/com).
|
||
|
||
An indirect definition of a warning (INDR_ROW/warn) does not cause
|
||
the warning to be issued.
|
||
|
||
If a warning is created for an indirect symbol (WARN_ROW/indr) no
|
||
warning is created for the symbol the indirect symbol points to.
|
||
|
||
Adding an entry to a set does not count as a reference to a set,
|
||
and no warning is issued (SET_ROW/warn). */
|
||
|
||
/* Return the BFD in which a hash entry has been defined, if known. */
|
||
|
||
static bfd *
|
||
hash_entry_bfd (struct bfd_link_hash_entry *h)
|
||
{
|
||
while (h->type == bfd_link_hash_warning)
|
||
h = h->u.i.link;
|
||
switch (h->type)
|
||
{
|
||
default:
|
||
return NULL;
|
||
case bfd_link_hash_undefined:
|
||
case bfd_link_hash_undefweak:
|
||
return h->u.undef.abfd;
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
return h->u.def.section->owner;
|
||
case bfd_link_hash_common:
|
||
return h->u.c.p->section->owner;
|
||
}
|
||
/*NOTREACHED*/
|
||
}
|
||
|
||
/* Add a symbol to the global hash table.
|
||
ABFD is the BFD the symbol comes from.
|
||
NAME is the name of the symbol.
|
||
FLAGS is the BSF_* bits associated with the symbol.
|
||
SECTION is the section in which the symbol is defined; this may be
|
||
bfd_und_section_ptr or bfd_com_section_ptr.
|
||
VALUE is the value of the symbol, relative to the section.
|
||
STRING is used for either an indirect symbol, in which case it is
|
||
the name of the symbol to indirect to, or a warning symbol, in
|
||
which case it is the warning string.
|
||
COPY is TRUE if NAME or STRING must be copied into locally
|
||
allocated memory if they need to be saved.
|
||
COLLECT is TRUE if we should automatically collect gcc constructor
|
||
or destructor names as collect2 does.
|
||
HASHP, if not NULL, is a place to store the created hash table
|
||
entry; if *HASHP is not NULL, the caller has already looked up
|
||
the hash table entry, and stored it in *HASHP. */
|
||
|
||
bool
|
||
_bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
|
||
bfd *abfd,
|
||
const char *name,
|
||
flagword flags,
|
||
asection *section,
|
||
bfd_vma value,
|
||
const char *string,
|
||
bool copy,
|
||
bool collect,
|
||
struct bfd_link_hash_entry **hashp)
|
||
{
|
||
enum link_row row;
|
||
struct bfd_link_hash_entry *h;
|
||
struct bfd_link_hash_entry *inh = NULL;
|
||
bool cycle;
|
||
|
||
BFD_ASSERT (section != NULL);
|
||
|
||
if (bfd_is_ind_section (section)
|
||
|| (flags & BSF_INDIRECT) != 0)
|
||
{
|
||
row = INDR_ROW;
|
||
/* Create the indirect symbol here. This is for the benefit of
|
||
the plugin "notice" function.
|
||
STRING is the name of the symbol we want to indirect to. */
|
||
inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
|
||
copy, false);
|
||
if (inh == NULL)
|
||
return false;
|
||
}
|
||
else if ((flags & BSF_WARNING) != 0)
|
||
row = WARN_ROW;
|
||
else if ((flags & BSF_CONSTRUCTOR) != 0)
|
||
row = SET_ROW;
|
||
else if (bfd_is_und_section (section))
|
||
{
|
||
if ((flags & BSF_WEAK) != 0)
|
||
row = UNDEFW_ROW;
|
||
else
|
||
row = UNDEF_ROW;
|
||
}
|
||
else if ((flags & BSF_WEAK) != 0)
|
||
row = DEFW_ROW;
|
||
else if (bfd_is_com_section (section))
|
||
{
|
||
row = COMMON_ROW;
|
||
if (!bfd_link_relocatable (info)
|
||
&& name != NULL
|
||
&& name[0] == '_'
|
||
&& name[1] == '_'
|
||
&& strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
|
||
_bfd_error_handler
|
||
(_("%pB: plugin needed to handle lto object"), abfd);
|
||
}
|
||
else
|
||
row = DEF_ROW;
|
||
|
||
if (hashp != NULL && *hashp != NULL)
|
||
h = *hashp;
|
||
else
|
||
{
|
||
if (row == UNDEF_ROW || row == UNDEFW_ROW)
|
||
h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
|
||
else
|
||
h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
|
||
if (h == NULL)
|
||
{
|
||
if (hashp != NULL)
|
||
*hashp = NULL;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (info->notice_all
|
||
|| (info->notice_hash != NULL
|
||
&& bfd_hash_lookup (info->notice_hash, name, false, false) != NULL))
|
||
{
|
||
if (! (*info->callbacks->notice) (info, h, inh,
|
||
abfd, section, value, flags))
|
||
return false;
|
||
}
|
||
|
||
if (hashp != NULL)
|
||
*hashp = h;
|
||
|
||
do
|
||
{
|
||
enum link_action action;
|
||
int prev;
|
||
|
||
prev = h->type;
|
||
/* Treat symbols defined by early linker script pass as undefined. */
|
||
if (h->ldscript_def)
|
||
prev = bfd_link_hash_undefined;
|
||
cycle = false;
|
||
action = link_action[(int) row][prev];
|
||
switch (action)
|
||
{
|
||
case FAIL:
|
||
abort ();
|
||
|
||
case NOACT:
|
||
/* Do nothing. */
|
||
break;
|
||
|
||
case UND:
|
||
/* Make a new undefined symbol. */
|
||
h->type = bfd_link_hash_undefined;
|
||
h->u.undef.abfd = abfd;
|
||
bfd_link_add_undef (info->hash, h);
|
||
break;
|
||
|
||
case WEAK:
|
||
/* Make a new weak undefined symbol. */
|
||
h->type = bfd_link_hash_undefweak;
|
||
h->u.undef.abfd = abfd;
|
||
break;
|
||
|
||
case CDEF:
|
||
/* We have found a definition for a symbol which was
|
||
previously common. */
|
||
BFD_ASSERT (h->type == bfd_link_hash_common);
|
||
(*info->callbacks->multiple_common) (info, h, abfd,
|
||
bfd_link_hash_defined, 0);
|
||
/* Fall through. */
|
||
case DEF:
|
||
case DEFW:
|
||
{
|
||
enum bfd_link_hash_type oldtype;
|
||
|
||
/* Define a symbol. */
|
||
oldtype = h->type;
|
||
if (action == DEFW)
|
||
h->type = bfd_link_hash_defweak;
|
||
else
|
||
h->type = bfd_link_hash_defined;
|
||
h->u.def.section = section;
|
||
h->u.def.value = value;
|
||
h->linker_def = 0;
|
||
h->ldscript_def = 0;
|
||
|
||
/* If we have been asked to, we act like collect2 and
|
||
identify all functions that might be global
|
||
constructors and destructors and pass them up in a
|
||
callback. We only do this for certain object file
|
||
types, since many object file types can handle this
|
||
automatically. */
|
||
if (collect && name[0] == '_')
|
||
{
|
||
const char *s;
|
||
|
||
/* A constructor or destructor name starts like this:
|
||
_+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
|
||
the second are the same character (we accept any
|
||
character there, in case a new object file format
|
||
comes along with even worse naming restrictions). */
|
||
|
||
#define CONS_PREFIX "GLOBAL_"
|
||
#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
|
||
|
||
s = name + 1;
|
||
while (*s == '_')
|
||
++s;
|
||
if (s[0] == 'G' && startswith (s, CONS_PREFIX))
|
||
{
|
||
char c;
|
||
|
||
c = s[CONS_PREFIX_LEN + 1];
|
||
if ((c == 'I' || c == 'D')
|
||
&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
|
||
{
|
||
/* If this is a definition of a symbol which
|
||
was previously weakly defined, we are in
|
||
trouble. We have already added a
|
||
constructor entry for the weak defined
|
||
symbol, and now we are trying to add one
|
||
for the new symbol. Fortunately, this case
|
||
should never arise in practice. */
|
||
if (oldtype == bfd_link_hash_defweak)
|
||
abort ();
|
||
|
||
(*info->callbacks->constructor) (info, c == 'I',
|
||
h->root.string, abfd,
|
||
section, value);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
case COM:
|
||
/* We have found a common definition for a symbol. */
|
||
if (h->type == bfd_link_hash_new)
|
||
bfd_link_add_undef (info->hash, h);
|
||
h->type = bfd_link_hash_common;
|
||
h->u.c.p = (struct bfd_link_hash_common_entry *)
|
||
bfd_hash_allocate (&info->hash->table,
|
||
sizeof (struct bfd_link_hash_common_entry));
|
||
if (h->u.c.p == NULL)
|
||
return false;
|
||
|
||
h->u.c.size = value;
|
||
|
||
/* Select a default alignment based on the size. This may
|
||
be overridden by the caller. */
|
||
{
|
||
unsigned int power;
|
||
|
||
power = bfd_log2 (value);
|
||
if (power > 4)
|
||
power = 4;
|
||
h->u.c.p->alignment_power = power;
|
||
}
|
||
|
||
/* The section of a common symbol is only used if the common
|
||
symbol is actually allocated. It basically provides a
|
||
hook for the linker script to decide which output section
|
||
the common symbols should be put in. In most cases, the
|
||
section of a common symbol will be bfd_com_section_ptr,
|
||
the code here will choose a common symbol section named
|
||
"COMMON", and the linker script will contain *(COMMON) in
|
||
the appropriate place. A few targets use separate common
|
||
sections for small symbols, and they require special
|
||
handling. */
|
||
if (section == bfd_com_section_ptr)
|
||
{
|
||
h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
|
||
h->u.c.p->section->flags |= SEC_ALLOC;
|
||
}
|
||
else if (section->owner != abfd)
|
||
{
|
||
h->u.c.p->section = bfd_make_section_old_way (abfd,
|
||
section->name);
|
||
h->u.c.p->section->flags |= SEC_ALLOC;
|
||
}
|
||
else
|
||
h->u.c.p->section = section;
|
||
h->linker_def = 0;
|
||
h->ldscript_def = 0;
|
||
break;
|
||
|
||
case REF:
|
||
/* A reference to a defined symbol. */
|
||
if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
|
||
h->u.undef.next = h;
|
||
break;
|
||
|
||
case BIG:
|
||
/* We have found a common definition for a symbol which
|
||
already had a common definition. Use the maximum of the
|
||
two sizes, and use the section required by the larger symbol. */
|
||
BFD_ASSERT (h->type == bfd_link_hash_common);
|
||
(*info->callbacks->multiple_common) (info, h, abfd,
|
||
bfd_link_hash_common, value);
|
||
if (value > h->u.c.size)
|
||
{
|
||
unsigned int power;
|
||
|
||
h->u.c.size = value;
|
||
|
||
/* Select a default alignment based on the size. This may
|
||
be overridden by the caller. */
|
||
power = bfd_log2 (value);
|
||
if (power > 4)
|
||
power = 4;
|
||
h->u.c.p->alignment_power = power;
|
||
|
||
/* Some systems have special treatment for small commons,
|
||
hence we want to select the section used by the larger
|
||
symbol. This makes sure the symbol does not go in a
|
||
small common section if it is now too large. */
|
||
if (section == bfd_com_section_ptr)
|
||
{
|
||
h->u.c.p->section
|
||
= bfd_make_section_old_way (abfd, "COMMON");
|
||
h->u.c.p->section->flags |= SEC_ALLOC;
|
||
}
|
||
else if (section->owner != abfd)
|
||
{
|
||
h->u.c.p->section
|
||
= bfd_make_section_old_way (abfd, section->name);
|
||
h->u.c.p->section->flags |= SEC_ALLOC;
|
||
}
|
||
else
|
||
h->u.c.p->section = section;
|
||
}
|
||
break;
|
||
|
||
case CREF:
|
||
/* We have found a common definition for a symbol which
|
||
was already defined. */
|
||
(*info->callbacks->multiple_common) (info, h, abfd,
|
||
bfd_link_hash_common, value);
|
||
break;
|
||
|
||
case MIND:
|
||
/* Multiple indirect symbols. This is OK if they both point
|
||
to the same symbol. */
|
||
if (h->u.i.link == inh)
|
||
break;
|
||
if (h->u.i.link->type == bfd_link_hash_defweak)
|
||
{
|
||
/* It is also OK to redefine a symbol that indirects to
|
||
a weak definition. So for sym@ver -> sym@@ver where
|
||
sym@@ver is weak and we have a new strong sym@ver,
|
||
redefine sym@@ver. Of course if there exists
|
||
sym -> sym@@ver then this also redefines sym. */
|
||
h = h->u.i.link;
|
||
cycle = true;
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case MDEF:
|
||
/* Handle a multiple definition. */
|
||
(*info->callbacks->multiple_definition) (info, h,
|
||
abfd, section, value);
|
||
break;
|
||
|
||
case CIND:
|
||
/* Create an indirect symbol from an existing common symbol. */
|
||
BFD_ASSERT (h->type == bfd_link_hash_common);
|
||
(*info->callbacks->multiple_common) (info, h, abfd,
|
||
bfd_link_hash_indirect, 0);
|
||
/* Fall through. */
|
||
case IND:
|
||
if (inh->type == bfd_link_hash_indirect
|
||
&& inh->u.i.link == h)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: indirect symbol `%s' to `%s' is a loop"),
|
||
abfd, name, string);
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return false;
|
||
}
|
||
if (inh->type == bfd_link_hash_new)
|
||
{
|
||
inh->type = bfd_link_hash_undefined;
|
||
inh->u.undef.abfd = abfd;
|
||
bfd_link_add_undef (info->hash, inh);
|
||
}
|
||
|
||
/* If the indirect symbol has been referenced, we need to
|
||
push the reference down to the symbol we are referencing. */
|
||
if (h->type != bfd_link_hash_new)
|
||
{
|
||
/* ??? If inh->type == bfd_link_hash_undefweak this
|
||
converts inh to bfd_link_hash_undefined. */
|
||
row = UNDEF_ROW;
|
||
cycle = true;
|
||
}
|
||
|
||
h->type = bfd_link_hash_indirect;
|
||
h->u.i.link = inh;
|
||
/* Not setting h = h->u.i.link here means that when cycle is
|
||
set above we'll always go to REFC, and then cycle again
|
||
to the indirected symbol. This means that any successful
|
||
change of an existing symbol to indirect counts as a
|
||
reference. ??? That may not be correct when the existing
|
||
symbol was defweak. */
|
||
break;
|
||
|
||
case SET:
|
||
/* Add an entry to a set. */
|
||
(*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
|
||
abfd, section, value);
|
||
break;
|
||
|
||
case WARNC:
|
||
/* Issue a warning and cycle, except when the reference is
|
||
in LTO IR. */
|
||
if (h->u.i.warning != NULL
|
||
&& (abfd->flags & BFD_PLUGIN) == 0)
|
||
{
|
||
(*info->callbacks->warning) (info, h->u.i.warning,
|
||
h->root.string, abfd, NULL, 0);
|
||
/* Only issue a warning once. */
|
||
h->u.i.warning = NULL;
|
||
}
|
||
/* Fall through. */
|
||
case CYCLE:
|
||
/* Try again with the referenced symbol. */
|
||
h = h->u.i.link;
|
||
cycle = true;
|
||
break;
|
||
|
||
case REFC:
|
||
/* A reference to an indirect symbol. */
|
||
if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
|
||
h->u.undef.next = h;
|
||
h = h->u.i.link;
|
||
cycle = true;
|
||
break;
|
||
|
||
case WARN:
|
||
/* Warn if this symbol has been referenced already from non-IR,
|
||
otherwise add a warning. */
|
||
if ((!info->lto_plugin_active
|
||
&& (h->u.undef.next != NULL || info->hash->undefs_tail == h))
|
||
|| h->non_ir_ref_regular
|
||
|| h->non_ir_ref_dynamic)
|
||
{
|
||
(*info->callbacks->warning) (info, string, h->root.string,
|
||
hash_entry_bfd (h), NULL, 0);
|
||
/* PR 31067: If garbage collection is enabled then the
|
||
referenced symbol may actually be discarded later on.
|
||
This could be very confusing to the user. So give them
|
||
a hint as to what might be happening. */
|
||
if (info->gc_sections)
|
||
(*info->callbacks->info)
|
||
(_("%P: %pB: note: the message above does not take linker garbage collection into account\n"),
|
||
hash_entry_bfd (h));
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case MWARN:
|
||
/* Make a warning symbol. */
|
||
{
|
||
struct bfd_link_hash_entry *sub;
|
||
|
||
/* STRING is the warning to give. */
|
||
sub = ((struct bfd_link_hash_entry *)
|
||
((*info->hash->table.newfunc)
|
||
(NULL, &info->hash->table, h->root.string)));
|
||
if (sub == NULL)
|
||
return false;
|
||
*sub = *h;
|
||
sub->type = bfd_link_hash_warning;
|
||
sub->u.i.link = h;
|
||
if (! copy)
|
||
sub->u.i.warning = string;
|
||
else
|
||
{
|
||
char *w;
|
||
size_t len = strlen (string) + 1;
|
||
|
||
w = (char *) bfd_hash_allocate (&info->hash->table, len);
|
||
if (w == NULL)
|
||
return false;
|
||
memcpy (w, string, len);
|
||
sub->u.i.warning = w;
|
||
}
|
||
|
||
bfd_hash_replace (&info->hash->table,
|
||
(struct bfd_hash_entry *) h,
|
||
(struct bfd_hash_entry *) sub);
|
||
if (hashp != NULL)
|
||
*hashp = sub;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
while (cycle);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Generic final link routine. */
|
||
|
||
bool
|
||
_bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
bfd *sub;
|
||
asection *o;
|
||
struct bfd_link_order *p;
|
||
size_t outsymalloc;
|
||
struct generic_write_global_symbol_info wginfo;
|
||
|
||
abfd->outsymbols = NULL;
|
||
abfd->symcount = 0;
|
||
outsymalloc = 0;
|
||
|
||
/* Mark all sections which will be included in the output file. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
if (p->type == bfd_indirect_link_order)
|
||
p->u.indirect.section->linker_mark = true;
|
||
|
||
/* Build the output symbol table. */
|
||
for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
|
||
if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
|
||
return false;
|
||
|
||
/* Accumulate the global symbols. */
|
||
wginfo.info = info;
|
||
wginfo.output_bfd = abfd;
|
||
wginfo.psymalloc = &outsymalloc;
|
||
_bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
|
||
_bfd_generic_link_write_global_symbol,
|
||
&wginfo);
|
||
|
||
/* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
|
||
shouldn't really need one, since we have SYMCOUNT, but some old
|
||
code still expects one. */
|
||
if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
|
||
return false;
|
||
|
||
if (bfd_link_relocatable (info))
|
||
{
|
||
/* Allocate space for the output relocs for each section. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
o->reloc_count = 0;
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
++o->reloc_count;
|
||
else if (p->type == bfd_indirect_link_order)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
long relsize;
|
||
arelent **relocs;
|
||
asymbol **symbols;
|
||
long reloc_count;
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
relsize = bfd_get_reloc_upper_bound (input_bfd,
|
||
input_section);
|
||
if (relsize < 0)
|
||
return false;
|
||
relocs = (arelent **) bfd_malloc (relsize);
|
||
if (!relocs && relsize != 0)
|
||
return false;
|
||
symbols = _bfd_generic_link_get_symbols (input_bfd);
|
||
reloc_count = bfd_canonicalize_reloc (input_bfd,
|
||
input_section,
|
||
relocs,
|
||
symbols);
|
||
free (relocs);
|
||
if (reloc_count < 0)
|
||
return false;
|
||
BFD_ASSERT ((unsigned long) reloc_count
|
||
== input_section->reloc_count);
|
||
o->reloc_count += reloc_count;
|
||
}
|
||
}
|
||
if (o->reloc_count > 0)
|
||
{
|
||
bfd_size_type amt;
|
||
|
||
amt = o->reloc_count;
|
||
amt *= sizeof (arelent *);
|
||
o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
|
||
if (!o->orelocation)
|
||
return false;
|
||
o->flags |= SEC_RELOC;
|
||
/* Reset the count so that it can be used as an index
|
||
when putting in the output relocs. */
|
||
o->reloc_count = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle all the link order information for the sections. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
switch (p->type)
|
||
{
|
||
case bfd_section_reloc_link_order:
|
||
case bfd_symbol_reloc_link_order:
|
||
if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
|
||
return false;
|
||
break;
|
||
case bfd_indirect_link_order:
|
||
if (! default_indirect_link_order (abfd, info, o, p, true))
|
||
return false;
|
||
break;
|
||
default:
|
||
if (! _bfd_default_link_order (abfd, info, o, p))
|
||
return false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Add an output symbol to the output BFD. */
|
||
|
||
static bool
|
||
generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
|
||
{
|
||
if (bfd_get_symcount (output_bfd) >= *psymalloc)
|
||
{
|
||
asymbol **newsyms;
|
||
bfd_size_type amt;
|
||
|
||
if (*psymalloc == 0)
|
||
*psymalloc = 124;
|
||
else
|
||
*psymalloc *= 2;
|
||
amt = *psymalloc;
|
||
amt *= sizeof (asymbol *);
|
||
newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
|
||
if (newsyms == NULL)
|
||
return false;
|
||
output_bfd->outsymbols = newsyms;
|
||
}
|
||
|
||
output_bfd->outsymbols[output_bfd->symcount] = sym;
|
||
if (sym != NULL)
|
||
++output_bfd->symcount;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Handle the symbols for an input BFD. */
|
||
|
||
bool
|
||
_bfd_generic_link_output_symbols (bfd *output_bfd,
|
||
bfd *input_bfd,
|
||
struct bfd_link_info *info,
|
||
size_t *psymalloc)
|
||
{
|
||
asymbol **sym_ptr;
|
||
asymbol **sym_end;
|
||
|
||
if (!bfd_generic_link_read_symbols (input_bfd))
|
||
return false;
|
||
|
||
/* Create a filename symbol if we are supposed to. */
|
||
if (info->create_object_symbols_section != NULL)
|
||
{
|
||
asection *sec;
|
||
|
||
for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (sec->output_section == info->create_object_symbols_section)
|
||
{
|
||
asymbol *newsym;
|
||
|
||
newsym = bfd_make_empty_symbol (input_bfd);
|
||
if (!newsym)
|
||
return false;
|
||
newsym->name = bfd_get_filename (input_bfd);
|
||
newsym->value = 0;
|
||
newsym->flags = BSF_LOCAL | BSF_FILE;
|
||
newsym->section = sec;
|
||
|
||
if (! generic_add_output_symbol (output_bfd, psymalloc,
|
||
newsym))
|
||
return false;
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Adjust the values of the globally visible symbols, and write out
|
||
local symbols. */
|
||
sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
|
||
sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
|
||
for (; sym_ptr < sym_end; sym_ptr++)
|
||
{
|
||
asymbol *sym;
|
||
struct generic_link_hash_entry *h;
|
||
bool output;
|
||
|
||
h = NULL;
|
||
sym = *sym_ptr;
|
||
if ((sym->flags & (BSF_INDIRECT
|
||
| BSF_WARNING
|
||
| BSF_GLOBAL
|
||
| BSF_CONSTRUCTOR
|
||
| BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_asymbol_section (sym))
|
||
|| bfd_is_com_section (bfd_asymbol_section (sym))
|
||
|| bfd_is_ind_section (bfd_asymbol_section (sym)))
|
||
{
|
||
if (sym->udata.p != NULL)
|
||
h = (struct generic_link_hash_entry *) sym->udata.p;
|
||
else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
|
||
{
|
||
/* This case normally means that the main linker code
|
||
deliberately ignored this constructor symbol. We
|
||
should just pass it through. This will screw up if
|
||
the constructor symbol is from a different,
|
||
non-generic, object file format, but the case will
|
||
only arise when linking with -r, which will probably
|
||
fail anyhow, since there will be no way to represent
|
||
the relocs in the output format being used. */
|
||
h = NULL;
|
||
}
|
||
else if (bfd_is_und_section (bfd_asymbol_section (sym)))
|
||
h = ((struct generic_link_hash_entry *)
|
||
bfd_wrapped_link_hash_lookup (output_bfd, info,
|
||
bfd_asymbol_name (sym),
|
||
false, false, true));
|
||
else
|
||
h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
|
||
bfd_asymbol_name (sym),
|
||
false, false, true);
|
||
|
||
if (h != NULL)
|
||
{
|
||
/* Force all references to this symbol to point to
|
||
the same area in memory. It is possible that
|
||
this routine will be called with a hash table
|
||
other than a generic hash table, so we double
|
||
check that. */
|
||
if (info->output_bfd->xvec == input_bfd->xvec)
|
||
{
|
||
if (h->sym != NULL)
|
||
*sym_ptr = sym = h->sym;
|
||
}
|
||
|
||
switch (h->root.type)
|
||
{
|
||
default:
|
||
case bfd_link_hash_new:
|
||
abort ();
|
||
case bfd_link_hash_undefined:
|
||
break;
|
||
case bfd_link_hash_undefweak:
|
||
sym->flags |= BSF_WEAK;
|
||
break;
|
||
case bfd_link_hash_indirect:
|
||
h = (struct generic_link_hash_entry *) h->root.u.i.link;
|
||
/* fall through */
|
||
case bfd_link_hash_defined:
|
||
sym->flags |= BSF_GLOBAL;
|
||
sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
|
||
sym->value = h->root.u.def.value;
|
||
sym->section = h->root.u.def.section;
|
||
break;
|
||
case bfd_link_hash_defweak:
|
||
sym->flags |= BSF_WEAK;
|
||
sym->flags &=~ BSF_CONSTRUCTOR;
|
||
sym->value = h->root.u.def.value;
|
||
sym->section = h->root.u.def.section;
|
||
break;
|
||
case bfd_link_hash_common:
|
||
sym->value = h->root.u.c.size;
|
||
sym->flags |= BSF_GLOBAL;
|
||
if (! bfd_is_com_section (sym->section))
|
||
{
|
||
BFD_ASSERT (bfd_is_und_section (sym->section));
|
||
sym->section = bfd_com_section_ptr;
|
||
}
|
||
/* We do not set the section of the symbol to
|
||
h->root.u.c.p->section. That value was saved so
|
||
that we would know where to allocate the symbol
|
||
if it was defined. In this case the type is
|
||
still bfd_link_hash_common, so we did not define
|
||
it, so we do not want to use that section. */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if ((sym->flags & BSF_KEEP) == 0
|
||
&& (info->strip == strip_all
|
||
|| (info->strip == strip_some
|
||
&& bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
|
||
false, false) == NULL)))
|
||
output = false;
|
||
else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
|
||
{
|
||
/* If this symbol is marked as occurring now, rather
|
||
than at the end, output it now. This is used for
|
||
COFF C_EXT FCN symbols. FIXME: There must be a
|
||
better way. */
|
||
if (bfd_asymbol_bfd (sym) == input_bfd
|
||
&& (sym->flags & BSF_NOT_AT_END) != 0)
|
||
output = true;
|
||
else
|
||
output = false;
|
||
}
|
||
else if ((sym->flags & BSF_KEEP) != 0)
|
||
output = true;
|
||
else if (bfd_is_ind_section (sym->section))
|
||
output = false;
|
||
else if ((sym->flags & BSF_DEBUGGING) != 0)
|
||
{
|
||
if (info->strip == strip_none)
|
||
output = true;
|
||
else
|
||
output = false;
|
||
}
|
||
else if (bfd_is_und_section (sym->section)
|
||
|| bfd_is_com_section (sym->section))
|
||
output = false;
|
||
else if ((sym->flags & BSF_LOCAL) != 0)
|
||
{
|
||
if ((sym->flags & BSF_WARNING) != 0)
|
||
output = false;
|
||
else
|
||
{
|
||
switch (info->discard)
|
||
{
|
||
default:
|
||
case discard_all:
|
||
output = false;
|
||
break;
|
||
case discard_sec_merge:
|
||
output = true;
|
||
if (bfd_link_relocatable (info)
|
||
|| ! (sym->section->flags & SEC_MERGE))
|
||
break;
|
||
/* FALLTHROUGH */
|
||
case discard_l:
|
||
if (bfd_is_local_label (input_bfd, sym))
|
||
output = false;
|
||
else
|
||
output = true;
|
||
break;
|
||
case discard_none:
|
||
output = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else if ((sym->flags & BSF_CONSTRUCTOR))
|
||
{
|
||
if (info->strip != strip_all)
|
||
output = true;
|
||
else
|
||
output = false;
|
||
}
|
||
else if (sym->flags == 0
|
||
&& (sym->section->owner->flags & BFD_PLUGIN) != 0)
|
||
/* LTO doesn't set symbol information. We get here with the
|
||
generic linker for a symbol that was "common" but no longer
|
||
needs to be global. */
|
||
output = false;
|
||
else
|
||
abort ();
|
||
|
||
/* If this symbol is in a section which is not being included
|
||
in the output file, then we don't want to output the
|
||
symbol. */
|
||
if (!bfd_is_abs_section (sym->section)
|
||
&& bfd_section_removed_from_list (output_bfd,
|
||
sym->section->output_section))
|
||
output = false;
|
||
|
||
if (output)
|
||
{
|
||
if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
|
||
return false;
|
||
if (h != NULL)
|
||
h->written = true;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Set the section and value of a generic BFD symbol based on a linker
|
||
hash table entry. */
|
||
|
||
static void
|
||
set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
|
||
{
|
||
switch (h->type)
|
||
{
|
||
default:
|
||
abort ();
|
||
break;
|
||
case bfd_link_hash_new:
|
||
/* This can happen when a constructor symbol is seen but we are
|
||
not building constructors. */
|
||
if (sym->section != NULL)
|
||
{
|
||
BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
|
||
}
|
||
else
|
||
{
|
||
sym->flags |= BSF_CONSTRUCTOR;
|
||
sym->section = bfd_abs_section_ptr;
|
||
sym->value = 0;
|
||
}
|
||
break;
|
||
case bfd_link_hash_undefined:
|
||
sym->section = bfd_und_section_ptr;
|
||
sym->value = 0;
|
||
break;
|
||
case bfd_link_hash_undefweak:
|
||
sym->section = bfd_und_section_ptr;
|
||
sym->value = 0;
|
||
sym->flags |= BSF_WEAK;
|
||
break;
|
||
case bfd_link_hash_defined:
|
||
sym->section = h->u.def.section;
|
||
sym->value = h->u.def.value;
|
||
break;
|
||
case bfd_link_hash_defweak:
|
||
sym->flags |= BSF_WEAK;
|
||
sym->section = h->u.def.section;
|
||
sym->value = h->u.def.value;
|
||
break;
|
||
case bfd_link_hash_common:
|
||
sym->value = h->u.c.size;
|
||
if (sym->section == NULL)
|
||
sym->section = bfd_com_section_ptr;
|
||
else if (! bfd_is_com_section (sym->section))
|
||
{
|
||
BFD_ASSERT (bfd_is_und_section (sym->section));
|
||
sym->section = bfd_com_section_ptr;
|
||
}
|
||
/* Do not set the section; see _bfd_generic_link_output_symbols. */
|
||
break;
|
||
case bfd_link_hash_indirect:
|
||
case bfd_link_hash_warning:
|
||
/* FIXME: What should we do here? */
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Write out a global symbol, if it hasn't already been written out.
|
||
This is called for each symbol in the hash table. */
|
||
|
||
bool
|
||
_bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
|
||
void *data)
|
||
{
|
||
struct generic_write_global_symbol_info *wginfo =
|
||
(struct generic_write_global_symbol_info *) data;
|
||
asymbol *sym;
|
||
|
||
if (h->written)
|
||
return true;
|
||
|
||
h->written = true;
|
||
|
||
if (wginfo->info->strip == strip_all
|
||
|| (wginfo->info->strip == strip_some
|
||
&& bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
|
||
false, false) == NULL))
|
||
return true;
|
||
|
||
if (h->sym != NULL)
|
||
sym = h->sym;
|
||
else
|
||
{
|
||
sym = bfd_make_empty_symbol (wginfo->output_bfd);
|
||
if (!sym)
|
||
return false;
|
||
sym->name = h->root.root.string;
|
||
sym->flags = 0;
|
||
}
|
||
|
||
set_symbol_from_hash (sym, &h->root);
|
||
|
||
sym->flags |= BSF_GLOBAL;
|
||
|
||
if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
|
||
sym))
|
||
{
|
||
/* FIXME: No way to return failure. */
|
||
abort ();
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create a relocation. */
|
||
|
||
bool
|
||
_bfd_generic_reloc_link_order (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
struct bfd_link_order *link_order)
|
||
{
|
||
arelent *r;
|
||
|
||
if (! bfd_link_relocatable (info))
|
||
abort ();
|
||
if (sec->orelocation == NULL)
|
||
abort ();
|
||
|
||
r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
|
||
if (r == NULL)
|
||
return false;
|
||
|
||
r->address = link_order->offset;
|
||
r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
|
||
if (r->howto == 0)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
|
||
/* Get the symbol to use for the relocation. */
|
||
if (link_order->type == bfd_section_reloc_link_order)
|
||
r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
|
||
else
|
||
{
|
||
struct generic_link_hash_entry *h;
|
||
|
||
h = ((struct generic_link_hash_entry *)
|
||
bfd_wrapped_link_hash_lookup (abfd, info,
|
||
link_order->u.reloc.p->u.name,
|
||
false, false, true));
|
||
if (h == NULL
|
||
|| ! h->written)
|
||
{
|
||
(*info->callbacks->unattached_reloc)
|
||
(info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
r->sym_ptr_ptr = &h->sym;
|
||
}
|
||
|
||
/* If this is an inplace reloc, write the addend to the object file.
|
||
Otherwise, store it in the reloc addend. */
|
||
if (! r->howto->partial_inplace)
|
||
r->addend = link_order->u.reloc.p->addend;
|
||
else
|
||
{
|
||
bfd_size_type size;
|
||
bfd_reloc_status_type rstat;
|
||
bfd_byte *buf;
|
||
bool ok;
|
||
file_ptr loc;
|
||
|
||
size = bfd_get_reloc_size (r->howto);
|
||
buf = (bfd_byte *) bfd_zmalloc (size);
|
||
if (buf == NULL && size != 0)
|
||
return false;
|
||
rstat = _bfd_relocate_contents (r->howto, abfd,
|
||
(bfd_vma) link_order->u.reloc.p->addend,
|
||
buf);
|
||
switch (rstat)
|
||
{
|
||
case bfd_reloc_ok:
|
||
break;
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
(*info->callbacks->reloc_overflow)
|
||
(info, NULL,
|
||
(link_order->type == bfd_section_reloc_link_order
|
||
? bfd_section_name (link_order->u.reloc.p->u.section)
|
||
: link_order->u.reloc.p->u.name),
|
||
r->howto->name, link_order->u.reloc.p->addend,
|
||
NULL, NULL, 0);
|
||
break;
|
||
}
|
||
loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
|
||
ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
|
||
free (buf);
|
||
if (! ok)
|
||
return false;
|
||
|
||
r->addend = 0;
|
||
}
|
||
|
||
sec->orelocation[sec->reloc_count] = r;
|
||
++sec->reloc_count;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Allocate a new link_order for a section. */
|
||
|
||
struct bfd_link_order *
|
||
bfd_new_link_order (bfd *abfd, asection *section)
|
||
{
|
||
size_t amt = sizeof (struct bfd_link_order);
|
||
struct bfd_link_order *new_lo;
|
||
|
||
new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
|
||
if (!new_lo)
|
||
return NULL;
|
||
|
||
new_lo->type = bfd_undefined_link_order;
|
||
|
||
if (section->map_tail.link_order != NULL)
|
||
section->map_tail.link_order->next = new_lo;
|
||
else
|
||
section->map_head.link_order = new_lo;
|
||
section->map_tail.link_order = new_lo;
|
||
|
||
return new_lo;
|
||
}
|
||
|
||
/* Default link order processing routine. Note that we can not handle
|
||
the reloc_link_order types here, since they depend upon the details
|
||
of how the particular backends generates relocs. */
|
||
|
||
bool
|
||
_bfd_default_link_order (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
struct bfd_link_order *link_order)
|
||
{
|
||
switch (link_order->type)
|
||
{
|
||
case bfd_undefined_link_order:
|
||
case bfd_section_reloc_link_order:
|
||
case bfd_symbol_reloc_link_order:
|
||
default:
|
||
abort ();
|
||
case bfd_indirect_link_order:
|
||
return default_indirect_link_order (abfd, info, sec, link_order,
|
||
false);
|
||
case bfd_data_link_order:
|
||
return default_data_link_order (abfd, info, sec, link_order);
|
||
}
|
||
}
|
||
|
||
/* Default routine to handle a bfd_data_link_order. */
|
||
|
||
static bool
|
||
default_data_link_order (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
struct bfd_link_order *link_order)
|
||
{
|
||
bfd_size_type size;
|
||
size_t fill_size;
|
||
bfd_byte *fill;
|
||
file_ptr loc;
|
||
bool result;
|
||
|
||
BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
|
||
|
||
size = link_order->size;
|
||
if (size == 0)
|
||
return true;
|
||
|
||
fill = link_order->u.data.contents;
|
||
fill_size = link_order->u.data.size;
|
||
if (fill_size == 0)
|
||
{
|
||
fill = abfd->arch_info->fill (size, info->big_endian,
|
||
(sec->flags & SEC_CODE) != 0);
|
||
if (fill == NULL)
|
||
return false;
|
||
}
|
||
else if (fill_size < size)
|
||
{
|
||
bfd_byte *p;
|
||
fill = (bfd_byte *) bfd_malloc (size);
|
||
if (fill == NULL)
|
||
return false;
|
||
p = fill;
|
||
if (fill_size == 1)
|
||
memset (p, (int) link_order->u.data.contents[0], (size_t) size);
|
||
else
|
||
{
|
||
do
|
||
{
|
||
memcpy (p, link_order->u.data.contents, fill_size);
|
||
p += fill_size;
|
||
size -= fill_size;
|
||
}
|
||
while (size >= fill_size);
|
||
if (size != 0)
|
||
memcpy (p, link_order->u.data.contents, (size_t) size);
|
||
size = link_order->size;
|
||
}
|
||
}
|
||
|
||
loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
|
||
result = bfd_set_section_contents (abfd, sec, fill, loc, size);
|
||
|
||
if (fill != link_order->u.data.contents)
|
||
free (fill);
|
||
return result;
|
||
}
|
||
|
||
/* Default routine to handle a bfd_indirect_link_order. */
|
||
|
||
static bool
|
||
default_indirect_link_order (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
asection *output_section,
|
||
struct bfd_link_order *link_order,
|
||
bool generic_linker)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
bfd_byte *alloced = NULL;
|
||
bfd_byte *new_contents;
|
||
file_ptr loc;
|
||
|
||
BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
|
||
|
||
input_section = link_order->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
if (input_section->size == 0)
|
||
return true;
|
||
|
||
BFD_ASSERT (input_section->output_section == output_section);
|
||
BFD_ASSERT (input_section->output_offset == link_order->offset);
|
||
BFD_ASSERT (input_section->size == link_order->size);
|
||
|
||
if (bfd_link_relocatable (info)
|
||
&& input_section->reloc_count > 0
|
||
&& output_section->orelocation == NULL)
|
||
{
|
||
/* Space has not been allocated for the output relocations.
|
||
This can happen when we are called by a specific backend
|
||
because somebody is attempting to link together different
|
||
types of object files. Handling this case correctly is
|
||
difficult, and sometimes impossible. */
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("attempt to do relocatable link with %s input and %s output"),
|
||
bfd_get_target (input_bfd), bfd_get_target (output_bfd));
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return false;
|
||
}
|
||
|
||
if (! generic_linker)
|
||
{
|
||
asymbol **sympp;
|
||
asymbol **symppend;
|
||
|
||
/* Get the canonical symbols. The generic linker will always
|
||
have retrieved them by this point, but we are being called by
|
||
a specific linker, presumably because we are linking
|
||
different types of object files together. */
|
||
if (!bfd_generic_link_read_symbols (input_bfd))
|
||
return false;
|
||
|
||
/* Since we have been called by a specific linker, rather than
|
||
the generic linker, the values of the symbols will not be
|
||
right. They will be the values as seen in the input file,
|
||
not the values of the final link. We need to fix them up
|
||
before we can relocate the section. */
|
||
sympp = _bfd_generic_link_get_symbols (input_bfd);
|
||
symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
|
||
for (; sympp < symppend; sympp++)
|
||
{
|
||
asymbol *sym;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
sym = *sympp;
|
||
|
||
if ((sym->flags & (BSF_INDIRECT
|
||
| BSF_WARNING
|
||
| BSF_GLOBAL
|
||
| BSF_CONSTRUCTOR
|
||
| BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_asymbol_section (sym))
|
||
|| bfd_is_com_section (bfd_asymbol_section (sym))
|
||
|| bfd_is_ind_section (bfd_asymbol_section (sym)))
|
||
{
|
||
/* sym->udata may have been set by
|
||
generic_link_add_symbol_list. */
|
||
if (sym->udata.p != NULL)
|
||
h = (struct bfd_link_hash_entry *) sym->udata.p;
|
||
else if (bfd_is_und_section (bfd_asymbol_section (sym)))
|
||
h = bfd_wrapped_link_hash_lookup (output_bfd, info,
|
||
bfd_asymbol_name (sym),
|
||
false, false, true);
|
||
else
|
||
h = bfd_link_hash_lookup (info->hash,
|
||
bfd_asymbol_name (sym),
|
||
false, false, true);
|
||
if (h != NULL)
|
||
set_symbol_from_hash (sym, h);
|
||
}
|
||
}
|
||
}
|
||
|
||
if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
|
||
&& input_section->size != 0)
|
||
{
|
||
/* Group section contents are set by bfd_elf_set_group_contents. */
|
||
if (!output_bfd->output_has_begun)
|
||
{
|
||
/* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
|
||
if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
|
||
goto error_return;
|
||
}
|
||
new_contents = output_section->contents;
|
||
BFD_ASSERT (new_contents != NULL);
|
||
BFD_ASSERT (input_section->output_offset == 0);
|
||
}
|
||
else
|
||
{
|
||
/* Get and relocate the section contents. */
|
||
new_contents = (bfd_get_relocated_section_contents
|
||
(output_bfd, info, link_order, NULL,
|
||
bfd_link_relocatable (info),
|
||
_bfd_generic_link_get_symbols (input_bfd)));
|
||
alloced = new_contents;
|
||
if (!new_contents)
|
||
goto error_return;
|
||
}
|
||
|
||
/* Output the section contents. */
|
||
loc = (input_section->output_offset
|
||
* bfd_octets_per_byte (output_bfd, output_section));
|
||
if (! bfd_set_section_contents (output_bfd, output_section,
|
||
new_contents, loc, input_section->size))
|
||
goto error_return;
|
||
|
||
free (alloced);
|
||
return true;
|
||
|
||
error_return:
|
||
free (alloced);
|
||
return false;
|
||
}
|
||
|
||
/* A little routine to count the number of relocs in a link_order
|
||
list. */
|
||
|
||
unsigned int
|
||
_bfd_count_link_order_relocs (struct bfd_link_order *link_order)
|
||
{
|
||
register unsigned int c;
|
||
register struct bfd_link_order *l;
|
||
|
||
c = 0;
|
||
for (l = link_order; l != NULL; l = l->next)
|
||
{
|
||
if (l->type == bfd_section_reloc_link_order
|
||
|| l->type == bfd_symbol_reloc_link_order)
|
||
++c;
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_link_split_section
|
||
|
||
SYNOPSIS
|
||
bool bfd_link_split_section (bfd *abfd, asection *sec);
|
||
|
||
DESCRIPTION
|
||
Return nonzero if @var{sec} should be split during a
|
||
reloceatable or final link.
|
||
|
||
.#define bfd_link_split_section(abfd, sec) \
|
||
. BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
|
||
.
|
||
|
||
*/
|
||
|
||
bool
|
||
_bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec ATTRIBUTE_UNUSED)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_section_already_linked
|
||
|
||
SYNOPSIS
|
||
bool bfd_section_already_linked (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *info);
|
||
|
||
DESCRIPTION
|
||
Check if @var{data} has been already linked during a reloceatable
|
||
or final link. Return TRUE if it has.
|
||
|
||
.#define bfd_section_already_linked(abfd, sec, info) \
|
||
. BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
|
||
.
|
||
|
||
*/
|
||
|
||
/* Sections marked with the SEC_LINK_ONCE flag should only be linked
|
||
once into the output. This routine checks each section, and
|
||
arrange to discard it if a section of the same name has already
|
||
been linked. This code assumes that all relevant sections have the
|
||
SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
|
||
section name. bfd_section_already_linked is called via
|
||
bfd_map_over_sections. */
|
||
|
||
/* The hash table. */
|
||
|
||
static struct bfd_hash_table _bfd_section_already_linked_table;
|
||
|
||
/* Support routines for the hash table used by section_already_linked,
|
||
initialize the table, traverse, lookup, fill in an entry and remove
|
||
the table. */
|
||
|
||
void
|
||
bfd_section_already_linked_table_traverse
|
||
(bool (*func) (struct bfd_section_already_linked_hash_entry *, void *),
|
||
void *info)
|
||
{
|
||
bfd_hash_traverse (&_bfd_section_already_linked_table,
|
||
(bool (*) (struct bfd_hash_entry *, void *)) func,
|
||
info);
|
||
}
|
||
|
||
struct bfd_section_already_linked_hash_entry *
|
||
bfd_section_already_linked_table_lookup (const char *name)
|
||
{
|
||
return ((struct bfd_section_already_linked_hash_entry *)
|
||
bfd_hash_lookup (&_bfd_section_already_linked_table, name,
|
||
true, false));
|
||
}
|
||
|
||
bool
|
||
bfd_section_already_linked_table_insert
|
||
(struct bfd_section_already_linked_hash_entry *already_linked_list,
|
||
asection *sec)
|
||
{
|
||
struct bfd_section_already_linked *l;
|
||
|
||
/* Allocate the memory from the same obstack as the hash table is
|
||
kept in. */
|
||
l = (struct bfd_section_already_linked *)
|
||
bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
|
||
if (l == NULL)
|
||
return false;
|
||
l->sec = sec;
|
||
l->next = already_linked_list->entry;
|
||
already_linked_list->entry = l;
|
||
return true;
|
||
}
|
||
|
||
static struct bfd_hash_entry *
|
||
already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
|
||
struct bfd_hash_table *table,
|
||
const char *string ATTRIBUTE_UNUSED)
|
||
{
|
||
struct bfd_section_already_linked_hash_entry *ret =
|
||
(struct bfd_section_already_linked_hash_entry *)
|
||
bfd_hash_allocate (table, sizeof *ret);
|
||
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
ret->entry = NULL;
|
||
|
||
return &ret->root;
|
||
}
|
||
|
||
bool
|
||
bfd_section_already_linked_table_init (void)
|
||
{
|
||
return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
|
||
already_linked_newfunc,
|
||
sizeof (struct bfd_section_already_linked_hash_entry),
|
||
42);
|
||
}
|
||
|
||
void
|
||
bfd_section_already_linked_table_free (void)
|
||
{
|
||
bfd_hash_table_free (&_bfd_section_already_linked_table);
|
||
}
|
||
|
||
/* Report warnings as appropriate for duplicate section SEC.
|
||
Return FALSE if we decide to keep SEC after all. */
|
||
|
||
bool
|
||
_bfd_handle_already_linked (asection *sec,
|
||
struct bfd_section_already_linked *l,
|
||
struct bfd_link_info *info)
|
||
{
|
||
switch (sec->flags & SEC_LINK_DUPLICATES)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case SEC_LINK_DUPLICATES_DISCARD:
|
||
/* If we found an LTO IR match for this comdat group on
|
||
the first pass, replace it with the LTO output on the
|
||
second pass. We can't simply choose real object
|
||
files over IR because the first pass may contain a
|
||
mix of LTO and normal objects and we must keep the
|
||
first match, be it IR or real. */
|
||
if (sec->owner->lto_output
|
||
&& (l->sec->owner->flags & BFD_PLUGIN) != 0)
|
||
{
|
||
l->sec = sec;
|
||
return false;
|
||
}
|
||
break;
|
||
|
||
case SEC_LINK_DUPLICATES_ONE_ONLY:
|
||
info->callbacks->einfo
|
||
/* xgettext:c-format */
|
||
(_("%pB: ignoring duplicate section `%pA'\n"),
|
||
sec->owner, sec);
|
||
break;
|
||
|
||
case SEC_LINK_DUPLICATES_SAME_SIZE:
|
||
if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
|
||
;
|
||
else if (sec->size != l->sec->size)
|
||
info->callbacks->einfo
|
||
/* xgettext:c-format */
|
||
(_("%pB: duplicate section `%pA' has different size\n"),
|
||
sec->owner, sec);
|
||
break;
|
||
|
||
case SEC_LINK_DUPLICATES_SAME_CONTENTS:
|
||
if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
|
||
;
|
||
else if (sec->size != l->sec->size)
|
||
info->callbacks->einfo
|
||
/* xgettext:c-format */
|
||
(_("%pB: duplicate section `%pA' has different size\n"),
|
||
sec->owner, sec);
|
||
else if (sec->size != 0)
|
||
{
|
||
bfd_byte *sec_contents, *l_sec_contents;
|
||
|
||
if ((sec->flags & SEC_HAS_CONTENTS) == 0
|
||
&& (l->sec->flags & SEC_HAS_CONTENTS) == 0)
|
||
;
|
||
else if ((sec->flags & SEC_HAS_CONTENTS) == 0
|
||
|| !bfd_malloc_and_get_section (sec->owner, sec,
|
||
&sec_contents))
|
||
info->callbacks->einfo
|
||
/* xgettext:c-format */
|
||
(_("%pB: could not read contents of section `%pA'\n"),
|
||
sec->owner, sec);
|
||
else if ((l->sec->flags & SEC_HAS_CONTENTS) == 0
|
||
|| !bfd_malloc_and_get_section (l->sec->owner, l->sec,
|
||
&l_sec_contents))
|
||
{
|
||
info->callbacks->einfo
|
||
/* xgettext:c-format */
|
||
(_("%pB: could not read contents of section `%pA'\n"),
|
||
l->sec->owner, l->sec);
|
||
free (sec_contents);
|
||
}
|
||
else
|
||
{
|
||
if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
|
||
info->callbacks->einfo
|
||
/* xgettext:c-format */
|
||
(_("%pB: duplicate section `%pA' has different contents\n"),
|
||
sec->owner, sec);
|
||
free (l_sec_contents);
|
||
free (sec_contents);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Set the output_section field so that lang_add_section
|
||
does not create a lang_input_section structure for this
|
||
section. Since there might be a symbol in the section
|
||
being discarded, we must retain a pointer to the section
|
||
which we are really going to use. */
|
||
sec->output_section = bfd_abs_section_ptr;
|
||
sec->kept_section = l->sec;
|
||
return true;
|
||
}
|
||
|
||
/* This is used on non-ELF inputs. */
|
||
|
||
bool
|
||
_bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec,
|
||
struct bfd_link_info *info)
|
||
{
|
||
const char *name;
|
||
struct bfd_section_already_linked *l;
|
||
struct bfd_section_already_linked_hash_entry *already_linked_list;
|
||
|
||
if ((sec->flags & SEC_LINK_ONCE) == 0)
|
||
return false;
|
||
|
||
/* The generic linker doesn't handle section groups. */
|
||
if ((sec->flags & SEC_GROUP) != 0)
|
||
return false;
|
||
|
||
/* FIXME: When doing a relocatable link, we may have trouble
|
||
copying relocations in other sections that refer to local symbols
|
||
in the section being discarded. Those relocations will have to
|
||
be converted somehow; as of this writing I'm not sure that any of
|
||
the backends handle that correctly.
|
||
|
||
It is tempting to instead not discard link once sections when
|
||
doing a relocatable link (technically, they should be discarded
|
||
whenever we are building constructors). However, that fails,
|
||
because the linker winds up combining all the link once sections
|
||
into a single large link once section, which defeats the purpose
|
||
of having link once sections in the first place. */
|
||
|
||
name = bfd_section_name (sec);
|
||
|
||
already_linked_list = bfd_section_already_linked_table_lookup (name);
|
||
|
||
l = already_linked_list->entry;
|
||
if (l != NULL)
|
||
{
|
||
/* The section has already been linked. See if we should
|
||
issue a warning. */
|
||
return _bfd_handle_already_linked (sec, l, info);
|
||
}
|
||
|
||
/* This is the first section with this name. Record it. */
|
||
if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
|
||
info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
|
||
return false;
|
||
}
|
||
|
||
/* Choose a neighbouring section to S in OBFD that will be output, or
|
||
the absolute section if ADDR is out of bounds of the neighbours. */
|
||
|
||
asection *
|
||
_bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
|
||
{
|
||
asection *next, *prev, *best;
|
||
|
||
/* Find preceding kept section. */
|
||
for (prev = s->prev; prev != NULL; prev = prev->prev)
|
||
if ((prev->flags & SEC_EXCLUDE) == 0
|
||
&& !bfd_section_removed_from_list (obfd, prev))
|
||
break;
|
||
|
||
/* Find following kept section. Start at prev->next because
|
||
other sections may have been added after S was removed. */
|
||
if (s->prev != NULL)
|
||
next = s->prev->next;
|
||
else
|
||
next = s->owner->sections;
|
||
for (; next != NULL; next = next->next)
|
||
if ((next->flags & SEC_EXCLUDE) == 0
|
||
&& !bfd_section_removed_from_list (obfd, next))
|
||
break;
|
||
|
||
/* Choose better of two sections, based on flags. The idea
|
||
is to choose a section that will be in the same segment
|
||
as S would have been if it was kept. */
|
||
best = next;
|
||
if (prev == NULL)
|
||
{
|
||
if (next == NULL)
|
||
best = bfd_abs_section_ptr;
|
||
}
|
||
else if (next == NULL)
|
||
best = prev;
|
||
else if (((prev->flags ^ next->flags)
|
||
& (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
|
||
{
|
||
if (((next->flags ^ s->flags)
|
||
& (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
|
||
/* We prefer to choose a loaded section. Section S
|
||
doesn't have SEC_LOAD set (it being excluded, that
|
||
part of the flag processing didn't happen) so we
|
||
can't compare that flag to those of NEXT and PREV. */
|
||
|| ((prev->flags & SEC_LOAD) != 0
|
||
&& (next->flags & SEC_LOAD) == 0))
|
||
best = prev;
|
||
}
|
||
else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
|
||
{
|
||
if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
|
||
best = prev;
|
||
}
|
||
else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
|
||
{
|
||
if (((next->flags ^ s->flags) & SEC_CODE) != 0)
|
||
best = prev;
|
||
}
|
||
else
|
||
{
|
||
/* Flags we care about are the same. Prefer the following
|
||
section if that will result in a positive valued sym. */
|
||
if (addr < next->vma)
|
||
best = prev;
|
||
}
|
||
|
||
return best;
|
||
}
|
||
|
||
/* Convert symbols in excluded output sections to use a kept section. */
|
||
|
||
static bool
|
||
fix_syms (struct bfd_link_hash_entry *h, void *data)
|
||
{
|
||
bfd *obfd = (bfd *) data;
|
||
|
||
if (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak)
|
||
{
|
||
asection *s = h->u.def.section;
|
||
if (s != NULL
|
||
&& s->output_section != NULL
|
||
&& (s->output_section->flags & SEC_EXCLUDE) != 0
|
||
&& bfd_section_removed_from_list (obfd, s->output_section))
|
||
{
|
||
asection *op;
|
||
|
||
h->u.def.value += s->output_offset + s->output_section->vma;
|
||
op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
|
||
h->u.def.value -= op->vma;
|
||
h->u.def.section = op;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void
|
||
_bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
|
||
{
|
||
bfd_link_hash_traverse (info->hash, fix_syms, obfd);
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_generic_define_common_symbol
|
||
|
||
SYNOPSIS
|
||
bool bfd_generic_define_common_symbol
|
||
(bfd *output_bfd, struct bfd_link_info *info,
|
||
struct bfd_link_hash_entry *h);
|
||
|
||
DESCRIPTION
|
||
Convert common symbol @var{h} into a defined symbol.
|
||
Return TRUE on success and FALSE on failure.
|
||
|
||
.#define bfd_define_common_symbol(output_bfd, info, h) \
|
||
. BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
|
||
.
|
||
*/
|
||
|
||
bool
|
||
bfd_generic_define_common_symbol (bfd *output_bfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
struct bfd_link_hash_entry *h)
|
||
{
|
||
unsigned int power_of_two;
|
||
bfd_vma alignment, size;
|
||
asection *section;
|
||
|
||
BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
|
||
|
||
size = h->u.c.size;
|
||
power_of_two = h->u.c.p->alignment_power;
|
||
section = h->u.c.p->section;
|
||
|
||
/* Increase the size of the section to align the common symbol.
|
||
The alignment must be a power of two. But if the section does
|
||
not have any alignment requirement then do not increase the
|
||
alignment unnecessarily. */
|
||
if (power_of_two)
|
||
alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
|
||
else
|
||
alignment = 1;
|
||
BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
|
||
section->size += alignment - 1;
|
||
section->size &= -alignment;
|
||
|
||
/* Adjust the section's overall alignment if necessary. */
|
||
if (power_of_two > section->alignment_power)
|
||
section->alignment_power = power_of_two;
|
||
|
||
/* Change the symbol from common to defined. */
|
||
h->type = bfd_link_hash_defined;
|
||
h->u.def.section = section;
|
||
h->u.def.value = section->size;
|
||
|
||
/* Increase the size of the section. */
|
||
section->size += size;
|
||
|
||
/* Make sure the section is allocated in memory, and make sure that
|
||
it is no longer a common section. */
|
||
section->flags |= SEC_ALLOC;
|
||
section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
|
||
return true;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
_bfd_generic_link_hide_symbol
|
||
|
||
SYNOPSIS
|
||
void _bfd_generic_link_hide_symbol
|
||
(bfd *output_bfd, struct bfd_link_info *info,
|
||
struct bfd_link_hash_entry *h);
|
||
|
||
DESCRIPTION
|
||
Hide symbol @var{h}.
|
||
This is an internal function. It should not be called from
|
||
outside the BFD library.
|
||
|
||
.#define bfd_link_hide_symbol(output_bfd, info, h) \
|
||
. BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
|
||
.
|
||
*/
|
||
|
||
void
|
||
_bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_generic_define_start_stop
|
||
|
||
SYNOPSIS
|
||
struct bfd_link_hash_entry *bfd_generic_define_start_stop
|
||
(struct bfd_link_info *info,
|
||
const char *symbol, asection *sec);
|
||
|
||
DESCRIPTION
|
||
Define a __start, __stop, .startof. or .sizeof. symbol.
|
||
Return the symbol or NULL if no such undefined symbol exists.
|
||
|
||
.#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
|
||
. BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
|
||
.
|
||
*/
|
||
|
||
struct bfd_link_hash_entry *
|
||
bfd_generic_define_start_stop (struct bfd_link_info *info,
|
||
const char *symbol, asection *sec)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, symbol, false, false, true);
|
||
if (h != NULL
|
||
&& !h->ldscript_def
|
||
&& (h->type == bfd_link_hash_undefined
|
||
|| h->type == bfd_link_hash_undefweak))
|
||
{
|
||
h->type = bfd_link_hash_defined;
|
||
h->u.def.section = sec;
|
||
h->u.def.value = 0;
|
||
return h;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_find_version_for_sym
|
||
|
||
SYNOPSIS
|
||
struct bfd_elf_version_tree * bfd_find_version_for_sym
|
||
(struct bfd_elf_version_tree *verdefs,
|
||
const char *sym_name, bool *hide);
|
||
|
||
DESCRIPTION
|
||
Search an elf version script tree for symbol versioning
|
||
info and export / don't-export status for a given symbol.
|
||
Return non-NULL on success and NULL on failure; also sets
|
||
the output @samp{hide} boolean parameter.
|
||
|
||
*/
|
||
|
||
struct bfd_elf_version_tree *
|
||
bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
|
||
const char *sym_name,
|
||
bool *hide)
|
||
{
|
||
struct bfd_elf_version_tree *t;
|
||
struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
|
||
struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
|
||
|
||
local_ver = NULL;
|
||
global_ver = NULL;
|
||
star_local_ver = NULL;
|
||
star_global_ver = NULL;
|
||
exist_ver = NULL;
|
||
for (t = verdefs; t != NULL; t = t->next)
|
||
{
|
||
if (t->globals.list != NULL)
|
||
{
|
||
struct bfd_elf_version_expr *d = NULL;
|
||
|
||
while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
|
||
{
|
||
if (d->literal || strcmp (d->pattern, "*") != 0)
|
||
global_ver = t;
|
||
else
|
||
star_global_ver = t;
|
||
if (d->symver)
|
||
exist_ver = t;
|
||
d->script = 1;
|
||
/* If the match is a wildcard pattern, keep looking for
|
||
a more explicit, perhaps even local, match. */
|
||
if (d->literal)
|
||
break;
|
||
}
|
||
|
||
if (d != NULL)
|
||
break;
|
||
}
|
||
|
||
if (t->locals.list != NULL)
|
||
{
|
||
struct bfd_elf_version_expr *d = NULL;
|
||
|
||
while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
|
||
{
|
||
if (d->literal || strcmp (d->pattern, "*") != 0)
|
||
local_ver = t;
|
||
else
|
||
star_local_ver = t;
|
||
/* If the match is a wildcard pattern, keep looking for
|
||
a more explicit, perhaps even global, match. */
|
||
if (d->literal)
|
||
{
|
||
/* An exact match overrides a global wildcard. */
|
||
global_ver = NULL;
|
||
star_global_ver = NULL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (d != NULL)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (global_ver == NULL && local_ver == NULL)
|
||
global_ver = star_global_ver;
|
||
|
||
if (global_ver != NULL)
|
||
{
|
||
/* If we already have a versioned symbol that matches the
|
||
node for this symbol, then we don't want to create a
|
||
duplicate from the unversioned symbol. Instead hide the
|
||
unversioned symbol. */
|
||
*hide = exist_ver == global_ver;
|
||
return global_ver;
|
||
}
|
||
|
||
if (local_ver == NULL)
|
||
local_ver = star_local_ver;
|
||
|
||
if (local_ver != NULL)
|
||
{
|
||
*hide = true;
|
||
return local_ver;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_hide_sym_by_version
|
||
|
||
SYNOPSIS
|
||
bool bfd_hide_sym_by_version
|
||
(struct bfd_elf_version_tree *verdefs, const char *sym_name);
|
||
|
||
DESCRIPTION
|
||
Search an elf version script tree for symbol versioning
|
||
info for a given symbol. Return TRUE if the symbol is hidden.
|
||
|
||
*/
|
||
|
||
bool
|
||
bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
|
||
const char *sym_name)
|
||
{
|
||
bool hidden = false;
|
||
bfd_find_version_for_sym (verdefs, sym_name, &hidden);
|
||
return hidden;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_link_check_relocs
|
||
|
||
SYNOPSIS
|
||
bool bfd_link_check_relocs
|
||
(bfd *abfd, struct bfd_link_info *info);
|
||
|
||
DESCRIPTION
|
||
Checks the relocs in ABFD for validity.
|
||
Does not execute the relocs.
|
||
Return TRUE if everything is OK, FALSE otherwise.
|
||
This is the external entry point to this code.
|
||
*/
|
||
|
||
bool
|
||
bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
_bfd_generic_link_check_relocs
|
||
|
||
SYNOPSIS
|
||
bool _bfd_generic_link_check_relocs
|
||
(bfd *abfd, struct bfd_link_info *info);
|
||
|
||
DESCRIPTION
|
||
Stub function for targets that do not implement reloc checking.
|
||
Return TRUE.
|
||
This is an internal function. It should not be called from
|
||
outside the BFD library.
|
||
*/
|
||
|
||
bool
|
||
_bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_merge_private_bfd_data
|
||
|
||
SYNOPSIS
|
||
bool bfd_merge_private_bfd_data
|
||
(bfd *ibfd, struct bfd_link_info *info);
|
||
|
||
DESCRIPTION
|
||
Merge private BFD information from the BFD @var{ibfd} to the
|
||
the output file BFD when linking. Return <<TRUE>> on success,
|
||
<<FALSE>> on error. Possible error returns are:
|
||
|
||
o <<bfd_error_no_memory>> -
|
||
Not enough memory exists to create private data for @var{obfd}.
|
||
|
||
.#define bfd_merge_private_bfd_data(ibfd, info) \
|
||
. BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
|
||
. (ibfd, info))
|
||
.
|
||
*/
|
||
|
||
/*
|
||
INTERNAL_FUNCTION
|
||
_bfd_generic_verify_endian_match
|
||
|
||
SYNOPSIS
|
||
bool _bfd_generic_verify_endian_match
|
||
(bfd *ibfd, struct bfd_link_info *info);
|
||
|
||
DESCRIPTION
|
||
Can be used from / for bfd_merge_private_bfd_data to check that
|
||
endianness matches between input and output file. Returns
|
||
TRUE for a match, otherwise returns FALSE and emits an error.
|
||
*/
|
||
|
||
bool
|
||
_bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
|
||
{
|
||
bfd *obfd = info->output_bfd;
|
||
|
||
if (ibfd->xvec->byteorder != obfd->xvec->byteorder
|
||
&& ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
|
||
&& obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
if (bfd_big_endian (ibfd))
|
||
_bfd_error_handler (_("%pB: compiled for a big endian system "
|
||
"and target is little endian"), ibfd);
|
||
else
|
||
_bfd_error_handler (_("%pB: compiled for a little endian system "
|
||
"and target is big endian"), ibfd);
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
int
|
||
_bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
bool
|
||
_bfd_nolink_bfd_relax_section (bfd *abfd,
|
||
asection *section ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
|
||
bool *again ATTRIBUTE_UNUSED)
|
||
{
|
||
return _bfd_bool_bfd_false_error (abfd);
|
||
}
|
||
|
||
bfd_byte *
|
||
_bfd_nolink_bfd_get_relocated_section_contents
|
||
(bfd *abfd,
|
||
struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
|
||
struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
|
||
bfd_byte *data ATTRIBUTE_UNUSED,
|
||
bool relocatable ATTRIBUTE_UNUSED,
|
||
asymbol **symbols ATTRIBUTE_UNUSED)
|
||
{
|
||
return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
|
||
}
|
||
|
||
bool
|
||
_bfd_nolink_bfd_lookup_section_flags
|
||
(struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
struct flag_info *flaginfo ATTRIBUTE_UNUSED,
|
||
asection *section)
|
||
{
|
||
return _bfd_bool_bfd_false_error (section->owner);
|
||
}
|
||
|
||
bool
|
||
_bfd_nolink_bfd_is_group_section (bfd *abfd,
|
||
const asection *sec ATTRIBUTE_UNUSED)
|
||
{
|
||
return _bfd_bool_bfd_false_error (abfd);
|
||
}
|
||
|
||
const char *
|
||
_bfd_nolink_bfd_group_name (bfd *abfd,
|
||
const asection *sec ATTRIBUTE_UNUSED)
|
||
{
|
||
return _bfd_ptr_bfd_null_error (abfd);
|
||
}
|
||
|
||
bool
|
||
_bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
|
||
{
|
||
return _bfd_bool_bfd_false_error (abfd);
|
||
}
|
||
|
||
struct bfd_link_hash_table *
|
||
_bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
|
||
{
|
||
return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
|
||
}
|
||
|
||
void
|
||
_bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
void
|
||
_bfd_nolink_bfd_copy_link_hash_symbol_type
|
||
(bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
|
||
struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
bool
|
||
_bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
|
||
{
|
||
return _bfd_bool_bfd_false_error (abfd);
|
||
}
|
||
|
||
bool
|
||
_bfd_nolink_section_already_linked (bfd *abfd,
|
||
asection *sec ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
return _bfd_bool_bfd_false_error (abfd);
|
||
}
|
||
|
||
bool
|
||
_bfd_nolink_bfd_define_common_symbol
|
||
(bfd *abfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
|
||
{
|
||
return _bfd_bool_bfd_false_error (abfd);
|
||
}
|
||
|
||
struct bfd_link_hash_entry *
|
||
_bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
const char *name ATTRIBUTE_UNUSED,
|
||
asection *sec)
|
||
{
|
||
return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
|
||
}
|