binutils-gdb/gdbserver/i387-fp.cc
Simon Marchi 18d2988e5d gdb, gdbserver, gdbsupport: remove includes of early headers
Now that defs.h, server.h and common-defs.h are included via the
`-include` option, it is no longer necessary for source files to include
them.  Remove all the inclusions of these files I could find.  Update
the generation scripts where relevant.

Change-Id: Ia026cff269c1b7ae7386dd3619bc9bb6a5332837
Approved-By: Pedro Alves <pedro@palves.net>
2024-03-26 21:13:22 -04:00

953 lines
26 KiB
C++

/* i387-specific utility functions, for the remote server for GDB.
Copyright (C) 2000-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "i387-fp.h"
#include "gdbsupport/x86-xstate.h"
#include "nat/x86-xstate.h"
/* Default to SSE. */
static unsigned long long x86_xcr0 = X86_XSTATE_SSE_MASK;
static const int num_mpx_bnd_registers = 4;
static const int num_mpx_cfg_registers = 2;
static const int num_avx512_k_registers = 8;
static const int num_pkeys_registers = 1;
static x86_xsave_layout xsave_layout;
/* Note: These functions preserve the reserved bits in control registers.
However, gdbserver promptly throws away that information. */
/* These structs should have the proper sizes and alignment on both
i386 and x86-64 machines. */
struct i387_fsave
{
/* All these are only sixteen bits, plus padding, except for fop (which
is only eleven bits), and fooff / fioff (which are 32 bits each). */
unsigned short fctrl;
unsigned short pad1;
unsigned short fstat;
unsigned short pad2;
unsigned short ftag;
unsigned short pad3;
unsigned int fioff;
unsigned short fiseg;
unsigned short fop;
unsigned int fooff;
unsigned short foseg;
unsigned short pad4;
/* Space for eight 80-bit FP values. */
unsigned char st_space[80];
};
struct i387_fxsave
{
/* All these are only sixteen bits, plus padding, except for fop (which
is only eleven bits), and fooff / fioff (which are 32 bits each). */
unsigned short fctrl;
unsigned short fstat;
unsigned short ftag;
unsigned short fop;
unsigned int fioff;
unsigned short fiseg;
unsigned short pad1;
unsigned int fooff;
unsigned short foseg;
unsigned short pad12;
unsigned int mxcsr;
unsigned int pad3;
/* Space for eight 80-bit FP values in 128-bit spaces. */
unsigned char st_space[128];
/* Space for eight 128-bit XMM values, or 16 on x86-64. */
unsigned char xmm_space[256];
};
static_assert (sizeof(i387_fxsave) == 416);
struct i387_xsave : public i387_fxsave
{
unsigned char reserved1[48];
/* The extended control register 0 (the XFEATURE_ENABLED_MASK
register). */
unsigned long long xcr0;
unsigned char reserved2[40];
/* The XSTATE_BV bit vector. */
unsigned long long xstate_bv;
/* The XCOMP_BV bit vector. */
unsigned long long xcomp_bv;
unsigned char reserved3[48];
/* Byte 576. End of registers with fixed position in XSAVE.
The position of other XSAVE registers will be calculated
from the appropriate CPUID calls. */
private:
/* Base address of XSAVE data as an unsigned char *. Used to derive
pointers to XSAVE state components in the extended state
area. */
unsigned char *xsave ()
{ return reinterpret_cast<unsigned char *> (this); }
public:
/* Memory address of eight upper 128-bit YMM values, or 16 on x86-64. */
unsigned char *ymmh_space ()
{ return xsave () + xsave_layout.avx_offset; }
/* Memory address of 4 bound registers values of 128 bits. */
unsigned char *bndregs_space ()
{ return xsave () + xsave_layout.bndregs_offset; }
/* Memory address of 2 MPX configuration registers of 64 bits
plus reserved space. */
unsigned char *bndcfg_space ()
{ return xsave () + xsave_layout.bndcfg_offset; }
/* Memory address of 8 OpMask register values of 64 bits. */
unsigned char *k_space ()
{ return xsave () + xsave_layout.k_offset; }
/* Memory address of 16 256-bit zmm0-15. */
unsigned char *zmmh_space ()
{ return xsave () + xsave_layout.zmm_h_offset; }
/* Memory address of 16 512-bit zmm16-31 values. */
unsigned char *zmm16_space ()
{ return xsave () + xsave_layout.zmm_offset; }
/* Memory address of 1 32-bit PKRU register. The HW XSTATE size for this
feature is actually 64 bits, but WRPKRU/RDPKRU instructions ignore upper
32 bits. */
unsigned char *pkru_space ()
{ return xsave () + xsave_layout.pkru_offset; }
};
static_assert (sizeof(i387_xsave) == 576);
void
i387_cache_to_fsave (struct regcache *regcache, void *buf)
{
struct i387_fsave *fp = (struct i387_fsave *) buf;
int i;
int st0_regnum = find_regno (regcache->tdesc, "st0");
unsigned long val2;
for (i = 0; i < 8; i++)
collect_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 10);
fp->fioff = regcache_raw_get_unsigned_by_name (regcache, "fioff");
fp->fooff = regcache_raw_get_unsigned_by_name (regcache, "fooff");
/* This one's 11 bits... */
val2 = regcache_raw_get_unsigned_by_name (regcache, "fop");
fp->fop = (val2 & 0x7FF) | (fp->fop & 0xF800);
/* Some registers are 16-bit. */
fp->fctrl = regcache_raw_get_unsigned_by_name (regcache, "fctrl");
fp->fstat = regcache_raw_get_unsigned_by_name (regcache, "fstat");
fp->ftag = regcache_raw_get_unsigned_by_name (regcache, "ftag");
fp->fiseg = regcache_raw_get_unsigned_by_name (regcache, "fiseg");
fp->foseg = regcache_raw_get_unsigned_by_name (regcache, "foseg");
}
void
i387_fsave_to_cache (struct regcache *regcache, const void *buf)
{
struct i387_fsave *fp = (struct i387_fsave *) buf;
int i;
int st0_regnum = find_regno (regcache->tdesc, "st0");
unsigned long val;
for (i = 0; i < 8; i++)
supply_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 10);
supply_register_by_name (regcache, "fioff", &fp->fioff);
supply_register_by_name (regcache, "fooff", &fp->fooff);
/* Some registers are 16-bit. */
val = fp->fctrl & 0xFFFF;
supply_register_by_name (regcache, "fctrl", &val);
val = fp->fstat & 0xFFFF;
supply_register_by_name (regcache, "fstat", &val);
val = fp->ftag & 0xFFFF;
supply_register_by_name (regcache, "ftag", &val);
val = fp->fiseg & 0xFFFF;
supply_register_by_name (regcache, "fiseg", &val);
val = fp->foseg & 0xFFFF;
supply_register_by_name (regcache, "foseg", &val);
/* fop has only 11 valid bits. */
val = (fp->fop) & 0x7FF;
supply_register_by_name (regcache, "fop", &val);
}
void
i387_cache_to_fxsave (struct regcache *regcache, void *buf)
{
struct i387_fxsave *fp = (struct i387_fxsave *) buf;
int i;
int st0_regnum = find_regno (regcache->tdesc, "st0");
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
unsigned long val, val2;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = register_size (regcache->tdesc, 0) == 8 ? 16 : 8;
for (i = 0; i < 8; i++)
collect_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 16);
for (i = 0; i < num_xmm_registers; i++)
collect_register (regcache, i + xmm0_regnum,
((char *) &fp->xmm_space[0]) + i * 16);
fp->fioff = regcache_raw_get_unsigned_by_name (regcache, "fioff");
fp->fooff = regcache_raw_get_unsigned_by_name (regcache, "fooff");
fp->mxcsr = regcache_raw_get_unsigned_by_name (regcache, "mxcsr");
/* This one's 11 bits... */
val2 = regcache_raw_get_unsigned_by_name (regcache, "fop");
fp->fop = (val2 & 0x7FF) | (fp->fop & 0xF800);
/* Some registers are 16-bit. */
fp->fctrl = regcache_raw_get_unsigned_by_name (regcache, "fctrl");
fp->fstat = regcache_raw_get_unsigned_by_name (regcache, "fstat");
/* Convert to the simplifed tag form stored in fxsave data. */
val = regcache_raw_get_unsigned_by_name (regcache, "ftag");
val2 = 0;
for (i = 7; i >= 0; i--)
{
int tag = (val >> (i * 2)) & 3;
if (tag != 3)
val2 |= (1 << i);
}
fp->ftag = val2;
fp->fiseg = regcache_raw_get_unsigned_by_name (regcache, "fiseg");
fp->foseg = regcache_raw_get_unsigned_by_name (regcache, "foseg");
}
void
i387_cache_to_xsave (struct regcache *regcache, void *buf)
{
struct i387_xsave *fp = (struct i387_xsave *) buf;
bool amd64 = register_size (regcache->tdesc, 0) == 8;
int i;
unsigned long val, val2;
unsigned long long xstate_bv = 0;
unsigned long long clear_bv = 0;
char raw[64];
unsigned char *p;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = amd64 ? 16 : 8;
/* AVX512 adds 16 extra ZMM regs in Amd64 mode, but none in I386 mode.*/
int num_zmm_high_registers = amd64 ? 16 : 0;
/* The supported bits in `xstat_bv' are 8 bytes. Clear part in
vector registers if its bit in xstat_bv is zero. */
clear_bv = (~fp->xstate_bv) & x86_xcr0;
/* Clear part in x87 and vector registers if its bit in xstat_bv is
zero. */
if (clear_bv)
{
if ((clear_bv & X86_XSTATE_X87))
{
for (i = 0; i < 8; i++)
memset (((char *) &fp->st_space[0]) + i * 16, 0, 10);
fp->fioff = 0;
fp->fooff = 0;
fp->fctrl = I387_FCTRL_INIT_VAL;
fp->fstat = 0;
fp->ftag = 0;
fp->fiseg = 0;
fp->foseg = 0;
fp->fop = 0;
}
if ((clear_bv & X86_XSTATE_SSE))
for (i = 0; i < num_xmm_registers; i++)
memset (((char *) &fp->xmm_space[0]) + i * 16, 0, 16);
if ((clear_bv & X86_XSTATE_AVX))
for (i = 0; i < num_xmm_registers; i++)
memset (fp->ymmh_space () + i * 16, 0, 16);
if ((clear_bv & X86_XSTATE_SSE) && (clear_bv & X86_XSTATE_AVX))
memset (((char *) &fp->mxcsr), 0, 4);
if ((clear_bv & X86_XSTATE_BNDREGS))
for (i = 0; i < num_mpx_bnd_registers; i++)
memset (fp->bndregs_space () + i * 16, 0, 16);
if ((clear_bv & X86_XSTATE_BNDCFG))
for (i = 0; i < num_mpx_cfg_registers; i++)
memset (fp->bndcfg_space () + i * 8, 0, 8);
if ((clear_bv & X86_XSTATE_K))
for (i = 0; i < num_avx512_k_registers; i++)
memset (fp->k_space () + i * 8, 0, 8);
if ((clear_bv & X86_XSTATE_ZMM_H))
for (i = 0; i < num_xmm_registers; i++)
memset (fp->zmmh_space () + i * 32, 0, 32);
if ((clear_bv & X86_XSTATE_ZMM))
for (i = 0; i < num_zmm_high_registers; i++)
memset (fp->zmm16_space () + i * 64, 0, 64);
if ((clear_bv & X86_XSTATE_PKRU))
for (i = 0; i < num_pkeys_registers; i++)
memset (fp->pkru_space () + i * 4, 0, 4);
}
/* Check if any x87 registers are changed. */
if ((x86_xcr0 & X86_XSTATE_X87))
{
int st0_regnum = find_regno (regcache->tdesc, "st0");
for (i = 0; i < 8; i++)
{
collect_register (regcache, i + st0_regnum, raw);
p = fp->st_space + i * 16;
if (memcmp (raw, p, 10))
{
xstate_bv |= X86_XSTATE_X87;
memcpy (p, raw, 10);
}
}
}
/* Check if any SSE registers are changed. */
if ((x86_xcr0 & X86_XSTATE_SSE))
{
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
for (i = 0; i < num_xmm_registers; i++)
{
collect_register (regcache, i + xmm0_regnum, raw);
p = fp->xmm_space + i * 16;
if (memcmp (raw, p, 16))
{
xstate_bv |= X86_XSTATE_SSE;
memcpy (p, raw, 16);
}
}
}
/* Check if any AVX registers are changed. */
if ((x86_xcr0 & X86_XSTATE_AVX))
{
int ymm0h_regnum = find_regno (regcache->tdesc, "ymm0h");
for (i = 0; i < num_xmm_registers; i++)
{
collect_register (regcache, i + ymm0h_regnum, raw);
p = fp->ymmh_space () + i * 16;
if (memcmp (raw, p, 16))
{
xstate_bv |= X86_XSTATE_AVX;
memcpy (p, raw, 16);
}
}
}
/* Check if any bound register has changed. */
if ((x86_xcr0 & X86_XSTATE_BNDREGS))
{
int bnd0r_regnum = find_regno (regcache->tdesc, "bnd0raw");
for (i = 0; i < num_mpx_bnd_registers; i++)
{
collect_register (regcache, i + bnd0r_regnum, raw);
p = fp->bndregs_space () + i * 16;
if (memcmp (raw, p, 16))
{
xstate_bv |= X86_XSTATE_BNDREGS;
memcpy (p, raw, 16);
}
}
}
/* Check if any status register has changed. */
if ((x86_xcr0 & X86_XSTATE_BNDCFG))
{
int bndcfg_regnum = find_regno (regcache->tdesc, "bndcfgu");
for (i = 0; i < num_mpx_cfg_registers; i++)
{
collect_register (regcache, i + bndcfg_regnum, raw);
p = fp->bndcfg_space () + i * 8;
if (memcmp (raw, p, 8))
{
xstate_bv |= X86_XSTATE_BNDCFG;
memcpy (p, raw, 8);
}
}
}
/* Check if any K registers are changed. */
if ((x86_xcr0 & X86_XSTATE_K))
{
int k0_regnum = find_regno (regcache->tdesc, "k0");
for (i = 0; i < num_avx512_k_registers; i++)
{
collect_register (regcache, i + k0_regnum, raw);
p = fp->k_space () + i * 8;
if (memcmp (raw, p, 8) != 0)
{
xstate_bv |= X86_XSTATE_K;
memcpy (p, raw, 8);
}
}
}
/* Check if any of ZMM0H-ZMM15H registers are changed. */
if ((x86_xcr0 & X86_XSTATE_ZMM_H))
{
int zmm0h_regnum = find_regno (regcache->tdesc, "zmm0h");
for (i = 0; i < num_xmm_registers; i++)
{
collect_register (regcache, i + zmm0h_regnum, raw);
p = fp->zmmh_space () + i * 32;
if (memcmp (raw, p, 32) != 0)
{
xstate_bv |= X86_XSTATE_ZMM_H;
memcpy (p, raw, 32);
}
}
}
/* Check if any of ZMM16-ZMM31 registers are changed. */
if ((x86_xcr0 & X86_XSTATE_ZMM) && num_zmm_high_registers != 0)
{
int zmm16h_regnum = find_regno (regcache->tdesc, "zmm16h");
int ymm16h_regnum = find_regno (regcache->tdesc, "ymm16h");
int xmm16_regnum = find_regno (regcache->tdesc, "xmm16");
for (i = 0; i < num_zmm_high_registers; i++)
{
p = fp->zmm16_space () + i * 64;
/* ZMMH sub-register. */
collect_register (regcache, i + zmm16h_regnum, raw);
if (memcmp (raw, p + 32, 32) != 0)
{
xstate_bv |= X86_XSTATE_ZMM;
memcpy (p + 32, raw, 32);
}
/* YMMH sub-register. */
collect_register (regcache, i + ymm16h_regnum, raw);
if (memcmp (raw, p + 16, 16) != 0)
{
xstate_bv |= X86_XSTATE_ZMM;
memcpy (p + 16, raw, 16);
}
/* XMM sub-register. */
collect_register (regcache, i + xmm16_regnum, raw);
if (memcmp (raw, p, 16) != 0)
{
xstate_bv |= X86_XSTATE_ZMM;
memcpy (p, raw, 16);
}
}
}
/* Check if any PKEYS registers are changed. */
if ((x86_xcr0 & X86_XSTATE_PKRU))
{
int pkru_regnum = find_regno (regcache->tdesc, "pkru");
for (i = 0; i < num_pkeys_registers; i++)
{
collect_register (regcache, i + pkru_regnum, raw);
p = fp->pkru_space () + i * 4;
if (memcmp (raw, p, 4) != 0)
{
xstate_bv |= X86_XSTATE_PKRU;
memcpy (p, raw, 4);
}
}
}
if ((x86_xcr0 & X86_XSTATE_SSE) || (x86_xcr0 & X86_XSTATE_AVX))
{
collect_register_by_name (regcache, "mxcsr", raw);
if (memcmp (raw, &fp->mxcsr, 4) != 0)
{
if (((fp->xstate_bv | xstate_bv)
& (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0)
xstate_bv |= X86_XSTATE_SSE;
memcpy (&fp->mxcsr, raw, 4);
}
}
if (x86_xcr0 & X86_XSTATE_X87)
{
collect_register_by_name (regcache, "fioff", raw);
if (memcmp (raw, &fp->fioff, 4) != 0)
{
xstate_bv |= X86_XSTATE_X87;
memcpy (&fp->fioff, raw, 4);
}
collect_register_by_name (regcache, "fooff", raw);
if (memcmp (raw, &fp->fooff, 4) != 0)
{
xstate_bv |= X86_XSTATE_X87;
memcpy (&fp->fooff, raw, 4);
}
/* This one's 11 bits... */
val2 = regcache_raw_get_unsigned_by_name (regcache, "fop");
val2 = (val2 & 0x7FF) | (fp->fop & 0xF800);
if (fp->fop != val2)
{
xstate_bv |= X86_XSTATE_X87;
fp->fop = val2;
}
/* Some registers are 16-bit. */
val = regcache_raw_get_unsigned_by_name (regcache, "fctrl");
if (fp->fctrl != val)
{
xstate_bv |= X86_XSTATE_X87;
fp->fctrl = val;
}
val = regcache_raw_get_unsigned_by_name (regcache, "fstat");
if (fp->fstat != val)
{
xstate_bv |= X86_XSTATE_X87;
fp->fstat = val;
}
/* Convert to the simplifed tag form stored in fxsave data. */
val = regcache_raw_get_unsigned_by_name (regcache, "ftag");
val2 = 0;
for (i = 7; i >= 0; i--)
{
int tag = (val >> (i * 2)) & 3;
if (tag != 3)
val2 |= (1 << i);
}
if (fp->ftag != val2)
{
xstate_bv |= X86_XSTATE_X87;
fp->ftag = val2;
}
val = regcache_raw_get_unsigned_by_name (regcache, "fiseg");
if (fp->fiseg != val)
{
xstate_bv |= X86_XSTATE_X87;
fp->fiseg = val;
}
val = regcache_raw_get_unsigned_by_name (regcache, "foseg");
if (fp->foseg != val)
{
xstate_bv |= X86_XSTATE_X87;
fp->foseg = val;
}
}
/* Update the corresponding bits in xstate_bv if any SSE/AVX
registers are changed. */
fp->xstate_bv |= xstate_bv;
}
static int
i387_ftag (struct i387_fxsave *fp, int regno)
{
unsigned char *raw = &fp->st_space[regno * 16];
unsigned int exponent;
unsigned long fraction[2];
int integer;
integer = raw[7] & 0x80;
exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
| (raw[5] << 8) | raw[4]);
if (exponent == 0x7fff)
{
/* Special. */
return (2);
}
else if (exponent == 0x0000)
{
if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
{
/* Zero. */
return (1);
}
else
{
/* Special. */
return (2);
}
}
else
{
if (integer)
{
/* Valid. */
return (0);
}
else
{
/* Special. */
return (2);
}
}
}
void
i387_fxsave_to_cache (struct regcache *regcache, const void *buf)
{
struct i387_fxsave *fp = (struct i387_fxsave *) buf;
int i, top;
int st0_regnum = find_regno (regcache->tdesc, "st0");
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
unsigned long val;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = register_size (regcache->tdesc, 0) == 8 ? 16 : 8;
for (i = 0; i < 8; i++)
supply_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 16);
for (i = 0; i < num_xmm_registers; i++)
supply_register (regcache, i + xmm0_regnum,
((char *) &fp->xmm_space[0]) + i * 16);
supply_register_by_name (regcache, "fioff", &fp->fioff);
supply_register_by_name (regcache, "fooff", &fp->fooff);
supply_register_by_name (regcache, "mxcsr", &fp->mxcsr);
/* Some registers are 16-bit. */
val = fp->fctrl & 0xFFFF;
supply_register_by_name (regcache, "fctrl", &val);
val = fp->fstat & 0xFFFF;
supply_register_by_name (regcache, "fstat", &val);
/* Generate the form of ftag data that GDB expects. */
top = (fp->fstat >> 11) & 0x7;
val = 0;
for (i = 7; i >= 0; i--)
{
int tag;
if (fp->ftag & (1 << i))
tag = i387_ftag (fp, (i + 8 - top) % 8);
else
tag = 3;
val |= tag << (2 * i);
}
supply_register_by_name (regcache, "ftag", &val);
val = fp->fiseg & 0xFFFF;
supply_register_by_name (regcache, "fiseg", &val);
val = fp->foseg & 0xFFFF;
supply_register_by_name (regcache, "foseg", &val);
val = (fp->fop) & 0x7FF;
supply_register_by_name (regcache, "fop", &val);
}
void
i387_xsave_to_cache (struct regcache *regcache, const void *buf)
{
struct i387_xsave *fp = (struct i387_xsave *) buf;
bool amd64 = register_size (regcache->tdesc, 0) == 8;
int i, top;
unsigned long val;
unsigned long long clear_bv;
unsigned char *p;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = amd64 ? 16 : 8;
/* AVX512 adds 16 extra ZMM regs in Amd64 mode, but none in I386 mode.*/
int num_zmm_high_registers = amd64 ? 16 : 0;
/* The supported bits in `xstat_bv' are 8 bytes. Clear part in
vector registers if its bit in xstat_bv is zero. */
clear_bv = (~fp->xstate_bv) & x86_xcr0;
/* Check if any x87 registers are changed. */
if ((x86_xcr0 & X86_XSTATE_X87) != 0)
{
int st0_regnum = find_regno (regcache->tdesc, "st0");
if ((clear_bv & X86_XSTATE_X87) != 0)
{
for (i = 0; i < 8; i++)
supply_register_zeroed (regcache, i + st0_regnum);
}
else
{
p = (gdb_byte *) &fp->st_space[0];
for (i = 0; i < 8; i++)
supply_register (regcache, i + st0_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_SSE) != 0)
{
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
if ((clear_bv & X86_XSTATE_SSE))
{
for (i = 0; i < num_xmm_registers; i++)
supply_register_zeroed (regcache, i + xmm0_regnum);
}
else
{
p = (gdb_byte *) &fp->xmm_space[0];
for (i = 0; i < num_xmm_registers; i++)
supply_register (regcache, i + xmm0_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_AVX) != 0)
{
int ymm0h_regnum = find_regno (regcache->tdesc, "ymm0h");
if ((clear_bv & X86_XSTATE_AVX) != 0)
{
for (i = 0; i < num_xmm_registers; i++)
supply_register_zeroed (regcache, i + ymm0h_regnum);
}
else
{
p = fp->ymmh_space ();
for (i = 0; i < num_xmm_registers; i++)
supply_register (regcache, i + ymm0h_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_BNDREGS))
{
int bnd0r_regnum = find_regno (regcache->tdesc, "bnd0raw");
if ((clear_bv & X86_XSTATE_BNDREGS) != 0)
{
for (i = 0; i < num_mpx_bnd_registers; i++)
supply_register_zeroed (regcache, i + bnd0r_regnum);
}
else
{
p = fp->bndregs_space ();
for (i = 0; i < num_mpx_bnd_registers; i++)
supply_register (regcache, i + bnd0r_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_BNDCFG))
{
int bndcfg_regnum = find_regno (regcache->tdesc, "bndcfgu");
if ((clear_bv & X86_XSTATE_BNDCFG) != 0)
{
for (i = 0; i < num_mpx_cfg_registers; i++)
supply_register_zeroed (regcache, i + bndcfg_regnum);
}
else
{
p = fp->bndcfg_space ();
for (i = 0; i < num_mpx_cfg_registers; i++)
supply_register (regcache, i + bndcfg_regnum, p + i * 8);
}
}
if ((x86_xcr0 & X86_XSTATE_K) != 0)
{
int k0_regnum = find_regno (regcache->tdesc, "k0");
if ((clear_bv & X86_XSTATE_K) != 0)
{
for (i = 0; i < num_avx512_k_registers; i++)
supply_register_zeroed (regcache, i + k0_regnum);
}
else
{
p = fp->k_space ();
for (i = 0; i < num_avx512_k_registers; i++)
supply_register (regcache, i + k0_regnum, p + i * 8);
}
}
if ((x86_xcr0 & X86_XSTATE_ZMM_H) != 0)
{
int zmm0h_regnum = find_regno (regcache->tdesc, "zmm0h");
if ((clear_bv & X86_XSTATE_ZMM_H) != 0)
{
for (i = 0; i < num_xmm_registers; i++)
supply_register_zeroed (regcache, i + zmm0h_regnum);
}
else
{
p = fp->zmmh_space ();
for (i = 0; i < num_xmm_registers; i++)
supply_register (regcache, i + zmm0h_regnum, p + i * 32);
}
}
if ((x86_xcr0 & X86_XSTATE_ZMM) != 0 && num_zmm_high_registers != 0)
{
int zmm16h_regnum = find_regno (regcache->tdesc, "zmm16h");
int ymm16h_regnum = find_regno (regcache->tdesc, "ymm16h");
int xmm16_regnum = find_regno (regcache->tdesc, "xmm16");
if ((clear_bv & X86_XSTATE_ZMM) != 0)
{
for (i = 0; i < num_zmm_high_registers; i++)
{
supply_register_zeroed (regcache, i + zmm16h_regnum);
supply_register_zeroed (regcache, i + ymm16h_regnum);
supply_register_zeroed (regcache, i + xmm16_regnum);
}
}
else
{
p = fp->zmm16_space ();
for (i = 0; i < num_zmm_high_registers; i++)
{
supply_register (regcache, i + zmm16h_regnum, p + 32 + i * 64);
supply_register (regcache, i + ymm16h_regnum, p + 16 + i * 64);
supply_register (regcache, i + xmm16_regnum, p + i * 64);
}
}
}
if ((x86_xcr0 & X86_XSTATE_PKRU) != 0)
{
int pkru_regnum = find_regno (regcache->tdesc, "pkru");
if ((clear_bv & X86_XSTATE_PKRU) != 0)
{
for (i = 0; i < num_pkeys_registers; i++)
supply_register_zeroed (regcache, i + pkru_regnum);
}
else
{
p = fp->pkru_space ();
for (i = 0; i < num_pkeys_registers; i++)
supply_register (regcache, i + pkru_regnum, p + i * 4);
}
}
if ((clear_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX))
== (X86_XSTATE_SSE | X86_XSTATE_AVX))
{
unsigned int default_mxcsr = I387_MXCSR_INIT_VAL;
supply_register_by_name (regcache, "mxcsr", &default_mxcsr);
}
else
supply_register_by_name (regcache, "mxcsr", &fp->mxcsr);
if ((clear_bv & X86_XSTATE_X87) != 0)
{
supply_register_by_name_zeroed (regcache, "fioff");
supply_register_by_name_zeroed (regcache, "fooff");
val = I387_FCTRL_INIT_VAL;
supply_register_by_name (regcache, "fctrl", &val);
supply_register_by_name_zeroed (regcache, "fstat");
val = 0xFFFF;
supply_register_by_name (regcache, "ftag", &val);
supply_register_by_name_zeroed (regcache, "fiseg");
supply_register_by_name_zeroed (regcache, "foseg");
supply_register_by_name_zeroed (regcache, "fop");
}
else
{
supply_register_by_name (regcache, "fioff", &fp->fioff);
supply_register_by_name (regcache, "fooff", &fp->fooff);
/* Some registers are 16-bit. */
val = fp->fctrl & 0xFFFF;
supply_register_by_name (regcache, "fctrl", &val);
val = fp->fstat & 0xFFFF;
supply_register_by_name (regcache, "fstat", &val);
/* Generate the form of ftag data that GDB expects. */
top = (fp->fstat >> 11) & 0x7;
val = 0;
for (i = 7; i >= 0; i--)
{
int tag;
if (fp->ftag & (1 << i))
tag = i387_ftag (fp, (i + 8 - top) % 8);
else
tag = 3;
val |= tag << (2 * i);
}
supply_register_by_name (regcache, "ftag", &val);
val = fp->fiseg & 0xFFFF;
supply_register_by_name (regcache, "fiseg", &val);
val = fp->foseg & 0xFFFF;
supply_register_by_name (regcache, "foseg", &val);
val = (fp->fop) & 0x7FF;
supply_register_by_name (regcache, "fop", &val);
}
}
/* See i387-fp.h. */
void
i387_set_xsave_mask (uint64_t xcr0, int len)
{
x86_xcr0 = xcr0;
xsave_layout = x86_fetch_xsave_layout (xcr0, len);
}