binutils-gdb/gdb/printcmd.c
Andrew Cagney e2ad119d2f * printcmd.c (print_scalar_formatted): Move masking of 'a' address
from here.
(print_address_numeric): To here.
* TODO: Update.
2000-07-11 08:51:59 +00:00

2700 lines
73 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Print values for GNU debugger GDB.
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1993, 1994, 1995,
1998, 2000 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdb_string.h"
#include "frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "language.h"
#include "expression.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "breakpoint.h"
#include "demangle.h"
#include "valprint.h"
#include "annotate.h"
#include "symfile.h" /* for overlay functions */
#include "objfiles.h" /* ditto */
#ifdef UI_OUT
#include "ui-out.h"
#endif
extern int asm_demangle; /* Whether to demangle syms in asm printouts */
extern int addressprint; /* Whether to print hex addresses in HLL " */
struct format_data
{
int count;
char format;
char size;
};
/* Last specified output format. */
static char last_format = 'x';
/* Last specified examination size. 'b', 'h', 'w' or `q'. */
static char last_size = 'w';
/* Default address to examine next. */
static CORE_ADDR next_address;
/* Default section to examine next. */
static asection *next_section;
/* Last address examined. */
static CORE_ADDR last_examine_address;
/* Contents of last address examined.
This is not valid past the end of the `x' command! */
static value_ptr last_examine_value;
/* Largest offset between a symbolic value and an address, that will be
printed as `0x1234 <symbol+offset>'. */
static unsigned int max_symbolic_offset = UINT_MAX;
/* Append the source filename and linenumber of the symbol when
printing a symbolic value as `<symbol at filename:linenum>' if set. */
static int print_symbol_filename = 0;
/* Number of auto-display expression currently being displayed.
So that we can disable it if we get an error or a signal within it.
-1 when not doing one. */
int current_display_number;
/* Flag to low-level print routines that this value is being printed
in an epoch window. We'd like to pass this as a parameter, but
every routine would need to take it. Perhaps we can encapsulate
this in the I/O stream once we have GNU stdio. */
int inspect_it = 0;
struct display
{
/* Chain link to next auto-display item. */
struct display *next;
/* Expression to be evaluated and displayed. */
struct expression *exp;
/* Item number of this auto-display item. */
int number;
/* Display format specified. */
struct format_data format;
/* Innermost block required by this expression when evaluated */
struct block *block;
/* Status of this display (enabled or disabled) */
enum enable status;
};
/* Chain of expressions whose values should be displayed
automatically each time the program stops. */
static struct display *display_chain;
static int display_number;
/* Prototypes for exported functions. */
void output_command (char *, int);
void _initialize_printcmd (void);
/* Prototypes for local functions. */
static void delete_display (int);
static void enable_display (char *, int);
static void disable_display_command (char *, int);
static void disassemble_command (char *, int);
static void printf_command (char *, int);
static void print_frame_nameless_args (struct frame_info *, long,
int, int, struct ui_file *);
static void display_info (char *, int);
static void do_one_display (struct display *);
static void undisplay_command (char *, int);
static void free_display (struct display *);
static void display_command (char *, int);
void x_command (char *, int);
static void address_info (char *, int);
static void set_command (char *, int);
static void call_command (char *, int);
static void inspect_command (char *, int);
static void print_command (char *, int);
static void print_command_1 (char *, int, int);
static void validate_format (struct format_data, char *);
static void do_examine (struct format_data, CORE_ADDR addr,
asection * section);
static void print_formatted (value_ptr, int, int, struct ui_file *);
static struct format_data decode_format (char **, int, int);
static int print_insn (CORE_ADDR, struct ui_file *);
static void sym_info (char *, int);
/* Decode a format specification. *STRING_PTR should point to it.
OFORMAT and OSIZE are used as defaults for the format and size
if none are given in the format specification.
If OSIZE is zero, then the size field of the returned value
should be set only if a size is explicitly specified by the
user.
The structure returned describes all the data
found in the specification. In addition, *STRING_PTR is advanced
past the specification and past all whitespace following it. */
static struct format_data
decode_format (string_ptr, oformat, osize)
char **string_ptr;
int oformat;
int osize;
{
struct format_data val;
register char *p = *string_ptr;
val.format = '?';
val.size = '?';
val.count = 1;
if (*p >= '0' && *p <= '9')
val.count = atoi (p);
while (*p >= '0' && *p <= '9')
p++;
/* Now process size or format letters that follow. */
while (1)
{
if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
val.size = *p++;
else if (*p >= 'a' && *p <= 'z')
val.format = *p++;
else
break;
}
while (*p == ' ' || *p == '\t')
p++;
*string_ptr = p;
/* Set defaults for format and size if not specified. */
if (val.format == '?')
{
if (val.size == '?')
{
/* Neither has been specified. */
val.format = oformat;
val.size = osize;
}
else
/* If a size is specified, any format makes a reasonable
default except 'i'. */
val.format = oformat == 'i' ? 'x' : oformat;
}
else if (val.size == '?')
switch (val.format)
{
case 'a':
case 's':
/* Pick the appropriate size for an address. */
if (TARGET_PTR_BIT == 64)
val.size = osize ? 'g' : osize;
else if (TARGET_PTR_BIT == 32)
val.size = osize ? 'w' : osize;
else if (TARGET_PTR_BIT == 16)
val.size = osize ? 'h' : osize;
else
/* Bad value for TARGET_PTR_BIT */
abort ();
break;
case 'f':
/* Floating point has to be word or giantword. */
if (osize == 'w' || osize == 'g')
val.size = osize;
else
/* Default it to giantword if the last used size is not
appropriate. */
val.size = osize ? 'g' : osize;
break;
case 'c':
/* Characters default to one byte. */
val.size = osize ? 'b' : osize;
break;
default:
/* The default is the size most recently specified. */
val.size = osize;
}
return val;
}
/* Print value VAL on stream according to FORMAT, a letter or 0.
Do not end with a newline.
0 means print VAL according to its own type.
SIZE is the letter for the size of datum being printed.
This is used to pad hex numbers so they line up. */
static void
print_formatted (val, format, size, stream)
register value_ptr val;
register int format;
int size;
struct ui_file *stream;
{
struct type *type = check_typedef (VALUE_TYPE (val));
int len = TYPE_LENGTH (type);
if (VALUE_LVAL (val) == lval_memory)
{
next_address = VALUE_ADDRESS (val) + len;
next_section = VALUE_BFD_SECTION (val);
}
switch (format)
{
case 's':
/* FIXME: Need to handle wchar_t's here... */
next_address = VALUE_ADDRESS (val)
+ val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
next_section = VALUE_BFD_SECTION (val);
break;
case 'i':
/* The old comment says
"Force output out, print_insn not using _filtered".
I'm not completely sure what that means, I suspect most print_insn
now do use _filtered, so I guess it's obsolete.
--Yes, it does filter now, and so this is obsolete. -JB */
/* We often wrap here if there are long symbolic names. */
wrap_here (" ");
next_address = VALUE_ADDRESS (val)
+ print_insn (VALUE_ADDRESS (val), stream);
next_section = VALUE_BFD_SECTION (val);
break;
default:
if (format == 0
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|| TYPE_CODE (type) == TYPE_CODE_STRING
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
/* If format is 0, use the 'natural' format for
* that type of value. If the type is non-scalar,
* we have to use language rules to print it as
* a series of scalars.
*/
value_print (val, stream, format, Val_pretty_default);
else
/* User specified format, so don't look to the
* the type to tell us what to do.
*/
print_scalar_formatted (VALUE_CONTENTS (val), type,
format, size, stream);
}
}
/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
according to letters FORMAT and SIZE on STREAM.
FORMAT may not be zero. Formats s and i are not supported at this level.
This is how the elements of an array or structure are printed
with a format. */
void
print_scalar_formatted (valaddr, type, format, size, stream)
char *valaddr;
struct type *type;
int format;
int size;
struct ui_file *stream;
{
LONGEST val_long;
unsigned int len = TYPE_LENGTH (type);
if (len > sizeof (LONGEST)
&& (format == 't'
|| format == 'c'
|| format == 'o'
|| format == 'u'
|| format == 'd'
|| format == 'x'))
{
if (!TYPE_UNSIGNED (type)
|| !extract_long_unsigned_integer (valaddr, len, &val_long))
{
/* We can't print it normally, but we can print it in hex.
Printing it in the wrong radix is more useful than saying
"use /x, you dummy". */
/* FIXME: we could also do octal or binary if that was the
desired format. */
/* FIXME: we should be using the size field to give us a
minimum field width to print. */
if (format == 'o')
print_octal_chars (stream, valaddr, len);
else if (format == 'd')
print_decimal_chars (stream, valaddr, len);
else if (format == 't')
print_binary_chars (stream, valaddr, len);
else
/* replace with call to print_hex_chars? Looks
like val_print_type_code_int is redoing
work. - edie */
val_print_type_code_int (type, valaddr, stream);
return;
}
/* If we get here, extract_long_unsigned_integer set val_long. */
}
else if (format != 'f')
val_long = unpack_long (type, valaddr);
/* If we are printing it as unsigned, truncate it in case it is actually
a negative signed value (e.g. "print/u (short)-1" should print 65535
(if shorts are 16 bits) instead of 4294967295). */
if (format != 'd')
{
if (len < sizeof (LONGEST))
val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
}
switch (format)
{
case 'x':
if (!size)
{
/* no size specified, like in print. Print varying # of digits. */
print_longest (stream, 'x', 1, val_long);
}
else
switch (size)
{
case 'b':
case 'h':
case 'w':
case 'g':
print_longest (stream, size, 1, val_long);
break;
default:
error ("Undefined output size \"%c\".", size);
}
break;
case 'd':
print_longest (stream, 'd', 1, val_long);
break;
case 'u':
print_longest (stream, 'u', 0, val_long);
break;
case 'o':
if (val_long)
print_longest (stream, 'o', 1, val_long);
else
fprintf_filtered (stream, "0");
break;
case 'a':
{
CORE_ADDR addr = unpack_pointer (type, valaddr);
print_address (addr, stream);
}
break;
case 'c':
value_print (value_from_longest (builtin_type_true_char, val_long),
stream, 0, Val_pretty_default);
break;
case 'f':
if (len == sizeof (float))
type = builtin_type_float;
else if (len == sizeof (double))
type = builtin_type_double;
print_floating (valaddr, type, stream);
break;
case 0:
abort ();
case 't':
/* Binary; 't' stands for "two". */
{
char bits[8 * (sizeof val_long) + 1];
char buf[8 * (sizeof val_long) + 32];
char *cp = bits;
int width;
if (!size)
width = 8 * (sizeof val_long);
else
switch (size)
{
case 'b':
width = 8;
break;
case 'h':
width = 16;
break;
case 'w':
width = 32;
break;
case 'g':
width = 64;
break;
default:
error ("Undefined output size \"%c\".", size);
}
bits[width] = '\0';
while (width-- > 0)
{
bits[width] = (val_long & 1) ? '1' : '0';
val_long >>= 1;
}
if (!size)
{
while (*cp && *cp == '0')
cp++;
if (*cp == '\0')
cp--;
}
strcpy (buf, local_binary_format_prefix ());
strcat (buf, cp);
strcat (buf, local_binary_format_suffix ());
fprintf_filtered (stream, buf);
}
break;
default:
error ("Undefined output format \"%c\".", format);
}
}
/* Specify default address for `x' command.
`info lines' uses this. */
void
set_next_address (addr)
CORE_ADDR addr;
{
next_address = addr;
/* Make address available to the user as $_. */
set_internalvar (lookup_internalvar ("_"),
value_from_pointer (lookup_pointer_type (builtin_type_void),
addr));
}
/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
after LEADIN. Print nothing if no symbolic name is found nearby.
Optionally also print source file and line number, if available.
DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
or to interpret it as a possible C++ name and convert it back to source
form. However note that DO_DEMANGLE can be overridden by the specific
settings of the demangle and asm_demangle variables. */
void
print_address_symbolic (addr, stream, do_demangle, leadin)
CORE_ADDR addr;
struct ui_file *stream;
int do_demangle;
char *leadin;
{
char *name = NULL;
char *filename = NULL;
int unmapped = 0;
int offset = 0;
int line = 0;
/* throw away both name and filename */
struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
make_cleanup (free_current_contents, &filename);
if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
{
do_cleanups (cleanup_chain);
return;
}
fputs_filtered (leadin, stream);
if (unmapped)
fputs_filtered ("<*", stream);
else
fputs_filtered ("<", stream);
fputs_filtered (name, stream);
if (offset != 0)
fprintf_filtered (stream, "+%u", (unsigned int) offset);
/* Append source filename and line number if desired. Give specific
line # of this addr, if we have it; else line # of the nearest symbol. */
if (print_symbol_filename && filename != NULL)
{
if (line != -1)
fprintf_filtered (stream, " at %s:%d", filename, line);
else
fprintf_filtered (stream, " in %s", filename);
}
if (unmapped)
fputs_filtered ("*>", stream);
else
fputs_filtered (">", stream);
do_cleanups (cleanup_chain);
}
/* Given an address ADDR return all the elements needed to print the
address in a symbolic form. NAME can be mangled or not depending
on DO_DEMANGLE (and also on the asm_demangle global variable,
manipulated via ''set print asm-demangle''). Return 0 in case of
success, when all the info in the OUT paramters is valid. Return 1
otherwise. */
int
build_address_symbolic (CORE_ADDR addr, /* IN */
int do_demangle, /* IN */
char **name, /* OUT */
int *offset, /* OUT */
char **filename, /* OUT */
int *line, /* OUT */
int *unmapped) /* OUT */
{
struct minimal_symbol *msymbol;
struct symbol *symbol;
struct symtab *symtab = 0;
CORE_ADDR name_location = 0;
asection *section = 0;
char *name_temp = "";
/* Let's say it is unmapped. */
*unmapped = 0;
/* Determine if the address is in an overlay, and whether it is
mapped. */
if (overlay_debugging)
{
section = find_pc_overlay (addr);
if (pc_in_unmapped_range (addr, section))
{
*unmapped = 1;
addr = overlay_mapped_address (addr, section);
}
}
/* On some targets, add in extra "flag" bits to PC for
disassembly. This should ensure that "rounding errors" in
symbol addresses that are masked for disassembly favour the
the correct symbol. */
#ifdef GDB_TARGET_UNMASK_DISAS_PC
addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
#endif
/* First try to find the address in the symbol table, then
in the minsyms. Take the closest one. */
/* This is defective in the sense that it only finds text symbols. So
really this is kind of pointless--we should make sure that the
minimal symbols have everything we need (by changing that we could
save some memory, but for many debug format--ELF/DWARF or
anything/stabs--it would be inconvenient to eliminate those minimal
symbols anyway). */
msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
symbol = find_pc_sect_function (addr, section);
if (symbol)
{
name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
if (do_demangle)
name_temp = SYMBOL_SOURCE_NAME (symbol);
else
name_temp = SYMBOL_LINKAGE_NAME (symbol);
}
if (msymbol != NULL)
{
if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
{
/* The msymbol is closer to the address than the symbol;
use the msymbol instead. */
symbol = 0;
symtab = 0;
name_location = SYMBOL_VALUE_ADDRESS (msymbol);
if (do_demangle)
name_temp = SYMBOL_SOURCE_NAME (msymbol);
else
name_temp = SYMBOL_LINKAGE_NAME (msymbol);
}
}
if (symbol == NULL && msymbol == NULL)
return 1;
/* On some targets, mask out extra "flag" bits from PC for handsome
disassembly. */
#ifdef GDB_TARGET_MASK_DISAS_PC
name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
addr = GDB_TARGET_MASK_DISAS_PC (addr);
#endif
/* If the nearest symbol is too far away, don't print anything symbolic. */
/* For when CORE_ADDR is larger than unsigned int, we do math in
CORE_ADDR. But when we detect unsigned wraparound in the
CORE_ADDR math, we ignore this test and print the offset,
because addr+max_symbolic_offset has wrapped through the end
of the address space back to the beginning, giving bogus comparison. */
if (addr > name_location + max_symbolic_offset
&& name_location + max_symbolic_offset > name_location)
return 1;
*offset = addr - name_location;
*name = xstrdup (name_temp);
if (print_symbol_filename)
{
struct symtab_and_line sal;
sal = find_pc_sect_line (addr, section, 0);
if (sal.symtab)
{
*filename = xstrdup (sal.symtab->filename);
*line = sal.line;
}
else if (symtab && symbol && symbol->line)
{
*filename = xstrdup (symtab->filename);
*line = symbol->line;
}
else if (symtab)
{
*filename = xstrdup (symtab->filename);
*line = -1;
}
}
return 0;
}
/* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
print_longest. */
void
print_address_numeric (addr, use_local, stream)
CORE_ADDR addr;
int use_local;
struct ui_file *stream;
{
/* Truncate address to the size of a target pointer, avoiding shifts
larger or equal than the width of a CORE_ADDR. The local
variable PTR_BIT stops the compiler reporting a shift overflow
when it won't occure. */
/* NOTE: This assumes that the significant address information is
kept in the least significant bits of ADDR - the upper bits were
either zero or sign extended. Should ADDRESS_TO_POINTER() or
some ADDRESS_TO_PRINTABLE() be used to do the conversion? */
int ptr_bit = TARGET_PTR_BIT;
if (ptr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
addr &= ((CORE_ADDR) 1 << ptr_bit) - 1;
print_longest (stream, 'x', use_local, (ULONGEST) addr);
}
/* Print address ADDR symbolically on STREAM.
First print it as a number. Then perhaps print
<SYMBOL + OFFSET> after the number. */
void
print_address (addr, stream)
CORE_ADDR addr;
struct ui_file *stream;
{
print_address_numeric (addr, 1, stream);
print_address_symbolic (addr, stream, asm_demangle, " ");
}
/* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
controls whether to print the symbolic name "raw" or demangled.
Global setting "addressprint" controls whether to print hex address
or not. */
void
print_address_demangle (addr, stream, do_demangle)
CORE_ADDR addr;
struct ui_file *stream;
int do_demangle;
{
if (addr == 0)
{
fprintf_filtered (stream, "0");
}
else if (addressprint)
{
print_address_numeric (addr, 1, stream);
print_address_symbolic (addr, stream, do_demangle, " ");
}
else
{
print_address_symbolic (addr, stream, do_demangle, "");
}
}
/* These are the types that $__ will get after an examine command of one
of these sizes. */
static struct type *examine_i_type;
static struct type *examine_b_type;
static struct type *examine_h_type;
static struct type *examine_w_type;
static struct type *examine_g_type;
/* Examine data at address ADDR in format FMT.
Fetch it from memory and print on gdb_stdout. */
static void
do_examine (fmt, addr, sect)
struct format_data fmt;
CORE_ADDR addr;
asection *sect;
{
register char format = 0;
register char size;
register int count = 1;
struct type *val_type = NULL;
register int i;
register int maxelts;
format = fmt.format;
size = fmt.size;
count = fmt.count;
next_address = addr;
next_section = sect;
/* String or instruction format implies fetch single bytes
regardless of the specified size. */
if (format == 's' || format == 'i')
size = 'b';
if (format == 'i')
val_type = examine_i_type;
else if (size == 'b')
val_type = examine_b_type;
else if (size == 'h')
val_type = examine_h_type;
else if (size == 'w')
val_type = examine_w_type;
else if (size == 'g')
val_type = examine_g_type;
maxelts = 8;
if (size == 'w')
maxelts = 4;
if (size == 'g')
maxelts = 2;
if (format == 's' || format == 'i')
maxelts = 1;
/* Print as many objects as specified in COUNT, at most maxelts per line,
with the address of the next one at the start of each line. */
while (count > 0)
{
QUIT;
print_address (next_address, gdb_stdout);
printf_filtered (":");
for (i = maxelts;
i > 0 && count > 0;
i--, count--)
{
printf_filtered ("\t");
/* Note that print_formatted sets next_address for the next
object. */
last_examine_address = next_address;
if (last_examine_value)
value_free (last_examine_value);
/* The value to be displayed is not fetched greedily.
Instead, to avoid the posibility of a fetched value not
being used, its retreval is delayed until the print code
uses it. When examining an instruction stream, the
disassembler will perform its own memory fetch using just
the address stored in LAST_EXAMINE_VALUE. FIXME: Should
the disassembler be modified so that LAST_EXAMINE_VALUE
is left with the byte sequence from the last complete
instruction fetched from memory? */
last_examine_value = value_at_lazy (val_type, next_address, sect);
if (last_examine_value)
release_value (last_examine_value);
print_formatted (last_examine_value, format, size, gdb_stdout);
}
printf_filtered ("\n");
gdb_flush (gdb_stdout);
}
}
static void
validate_format (fmt, cmdname)
struct format_data fmt;
char *cmdname;
{
if (fmt.size != 0)
error ("Size letters are meaningless in \"%s\" command.", cmdname);
if (fmt.count != 1)
error ("Item count other than 1 is meaningless in \"%s\" command.",
cmdname);
if (fmt.format == 'i' || fmt.format == 's')
error ("Format letter \"%c\" is meaningless in \"%s\" command.",
fmt.format, cmdname);
}
/* Evaluate string EXP as an expression in the current language and
print the resulting value. EXP may contain a format specifier as the
first argument ("/x myvar" for example, to print myvar in hex).
*/
static void
print_command_1 (exp, inspect, voidprint)
char *exp;
int inspect;
int voidprint;
{
struct expression *expr;
register struct cleanup *old_chain = 0;
register char format = 0;
register value_ptr val;
struct format_data fmt;
int cleanup = 0;
/* Pass inspect flag to the rest of the print routines in a global (sigh). */
inspect_it = inspect;
if (exp && *exp == '/')
{
exp++;
fmt = decode_format (&exp, last_format, 0);
validate_format (fmt, "print");
last_format = format = fmt.format;
}
else
{
fmt.count = 1;
fmt.format = 0;
fmt.size = 0;
}
if (exp && *exp)
{
struct type *type;
expr = parse_expression (exp);
old_chain = make_cleanup (free_current_contents, &expr);
cleanup = 1;
val = evaluate_expression (expr);
/* C++: figure out what type we actually want to print it as. */
type = VALUE_TYPE (val);
if (objectprint
&& (TYPE_CODE (type) == TYPE_CODE_PTR
|| TYPE_CODE (type) == TYPE_CODE_REF)
&& (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
{
value_ptr v;
v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
if (v != 0)
{
val = v;
type = VALUE_TYPE (val);
}
}
}
else
val = access_value_history (0);
if (voidprint || (val && VALUE_TYPE (val) &&
TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
{
int histindex = record_latest_value (val);
if (histindex >= 0)
annotate_value_history_begin (histindex, VALUE_TYPE (val));
else
annotate_value_begin (VALUE_TYPE (val));
if (inspect)
printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
else if (histindex >= 0)
printf_filtered ("$%d = ", histindex);
if (histindex >= 0)
annotate_value_history_value ();
print_formatted (val, format, fmt.size, gdb_stdout);
printf_filtered ("\n");
if (histindex >= 0)
annotate_value_history_end ();
else
annotate_value_end ();
if (inspect)
printf_unfiltered ("\") )\030");
}
if (cleanup)
do_cleanups (old_chain);
inspect_it = 0; /* Reset print routines to normal */
}
/* ARGSUSED */
static void
print_command (exp, from_tty)
char *exp;
int from_tty;
{
print_command_1 (exp, 0, 1);
}
/* Same as print, except in epoch, it gets its own window */
/* ARGSUSED */
static void
inspect_command (exp, from_tty)
char *exp;
int from_tty;
{
extern int epoch_interface;
print_command_1 (exp, epoch_interface, 1);
}
/* Same as print, except it doesn't print void results. */
/* ARGSUSED */
static void
call_command (exp, from_tty)
char *exp;
int from_tty;
{
print_command_1 (exp, 0, 0);
}
/* ARGSUSED */
void
output_command (exp, from_tty)
char *exp;
int from_tty;
{
struct expression *expr;
register struct cleanup *old_chain;
register char format = 0;
register value_ptr val;
struct format_data fmt;
if (exp && *exp == '/')
{
exp++;
fmt = decode_format (&exp, 0, 0);
validate_format (fmt, "output");
format = fmt.format;
}
expr = parse_expression (exp);
old_chain = make_cleanup (free_current_contents, &expr);
val = evaluate_expression (expr);
annotate_value_begin (VALUE_TYPE (val));
print_formatted (val, format, fmt.size, gdb_stdout);
annotate_value_end ();
wrap_here ("");
gdb_flush (gdb_stdout);
do_cleanups (old_chain);
}
/* ARGSUSED */
static void
set_command (exp, from_tty)
char *exp;
int from_tty;
{
struct expression *expr = parse_expression (exp);
register struct cleanup *old_chain =
make_cleanup (free_current_contents, &expr);
evaluate_expression (expr);
do_cleanups (old_chain);
}
/* ARGSUSED */
static void
sym_info (arg, from_tty)
char *arg;
int from_tty;
{
struct minimal_symbol *msymbol;
struct objfile *objfile;
struct obj_section *osect;
asection *sect;
CORE_ADDR addr, sect_addr;
int matches = 0;
unsigned int offset;
if (!arg)
error_no_arg ("address");
addr = parse_and_eval_address (arg);
ALL_OBJSECTIONS (objfile, osect)
{
sect = osect->the_bfd_section;
sect_addr = overlay_mapped_address (addr, sect);
if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
(msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
{
matches = 1;
offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
if (offset)
printf_filtered ("%s + %u in ",
SYMBOL_SOURCE_NAME (msymbol), offset);
else
printf_filtered ("%s in ",
SYMBOL_SOURCE_NAME (msymbol));
if (pc_in_unmapped_range (addr, sect))
printf_filtered ("load address range of ");
if (section_is_overlay (sect))
printf_filtered ("%s overlay ",
section_is_mapped (sect) ? "mapped" : "unmapped");
printf_filtered ("section %s", sect->name);
printf_filtered ("\n");
}
}
if (matches == 0)
printf_filtered ("No symbol matches %s.\n", arg);
}
/* ARGSUSED */
static void
address_info (exp, from_tty)
char *exp;
int from_tty;
{
register struct symbol *sym;
register struct minimal_symbol *msymbol;
register long val;
register long basereg;
asection *section;
CORE_ADDR load_addr;
int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
if exp is a field of `this'. */
if (exp == 0)
error ("Argument required.");
sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
&is_a_field_of_this, (struct symtab **) NULL);
if (sym == NULL)
{
if (is_a_field_of_this)
{
printf_filtered ("Symbol \"");
fprintf_symbol_filtered (gdb_stdout, exp,
current_language->la_language, DMGL_ANSI);
printf_filtered ("\" is a field of the local class variable `this'\n");
return;
}
msymbol = lookup_minimal_symbol (exp, NULL, NULL);
if (msymbol != NULL)
{
load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
printf_filtered ("Symbol \"");
fprintf_symbol_filtered (gdb_stdout, exp,
current_language->la_language, DMGL_ANSI);
printf_filtered ("\" is at ");
print_address_numeric (load_addr, 1, gdb_stdout);
printf_filtered (" in a file compiled without debugging");
section = SYMBOL_BFD_SECTION (msymbol);
if (section_is_overlay (section))
{
load_addr = overlay_unmapped_address (load_addr, section);
printf_filtered (",\n -- loaded at ");
print_address_numeric (load_addr, 1, gdb_stdout);
printf_filtered (" in overlay section %s", section->name);
}
printf_filtered (".\n");
}
else
error ("No symbol \"%s\" in current context.", exp);
return;
}
printf_filtered ("Symbol \"");
fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
current_language->la_language, DMGL_ANSI);
printf_filtered ("\" is ");
val = SYMBOL_VALUE (sym);
basereg = SYMBOL_BASEREG (sym);
section = SYMBOL_BFD_SECTION (sym);
switch (SYMBOL_CLASS (sym))
{
case LOC_CONST:
case LOC_CONST_BYTES:
printf_filtered ("constant");
break;
case LOC_LABEL:
printf_filtered ("a label at address ");
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1, gdb_stdout);
if (section_is_overlay (section))
{
load_addr = overlay_unmapped_address (load_addr, section);
printf_filtered (",\n -- loaded at ");
print_address_numeric (load_addr, 1, gdb_stdout);
printf_filtered (" in overlay section %s", section->name);
}
break;
case LOC_REGISTER:
printf_filtered ("a variable in register %s", REGISTER_NAME (val));
break;
case LOC_STATIC:
printf_filtered ("static storage at address ");
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1, gdb_stdout);
if (section_is_overlay (section))
{
load_addr = overlay_unmapped_address (load_addr, section);
printf_filtered (",\n -- loaded at ");
print_address_numeric (load_addr, 1, gdb_stdout);
printf_filtered (" in overlay section %s", section->name);
}
break;
case LOC_INDIRECT:
printf_filtered ("external global (indirect addressing), at address *(");
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1, gdb_stdout);
printf_filtered (")");
if (section_is_overlay (section))
{
load_addr = overlay_unmapped_address (load_addr, section);
printf_filtered (",\n -- loaded at ");
print_address_numeric (load_addr, 1, gdb_stdout);
printf_filtered (" in overlay section %s", section->name);
}
break;
case LOC_REGPARM:
printf_filtered ("an argument in register %s", REGISTER_NAME (val));
break;
case LOC_REGPARM_ADDR:
printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
break;
case LOC_ARG:
printf_filtered ("an argument at offset %ld", val);
break;
case LOC_LOCAL_ARG:
printf_filtered ("an argument at frame offset %ld", val);
break;
case LOC_LOCAL:
printf_filtered ("a local variable at frame offset %ld", val);
break;
case LOC_REF_ARG:
printf_filtered ("a reference argument at offset %ld", val);
break;
case LOC_BASEREG:
printf_filtered ("a variable at offset %ld from register %s",
val, REGISTER_NAME (basereg));
break;
case LOC_BASEREG_ARG:
printf_filtered ("an argument at offset %ld from register %s",
val, REGISTER_NAME (basereg));
break;
case LOC_TYPEDEF:
printf_filtered ("a typedef");
break;
case LOC_BLOCK:
printf_filtered ("a function at address ");
#ifdef GDB_TARGET_MASK_DISAS_PC
print_address_numeric
(load_addr = GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1, gdb_stdout);
#else
print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1, gdb_stdout);
#endif
if (section_is_overlay (section))
{
load_addr = overlay_unmapped_address (load_addr, section);
printf_filtered (",\n -- loaded at ");
print_address_numeric (load_addr, 1, gdb_stdout);
printf_filtered (" in overlay section %s", section->name);
}
break;
case LOC_UNRESOLVED:
{
struct minimal_symbol *msym;
msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
if (msym == NULL)
printf_filtered ("unresolved");
else
{
section = SYMBOL_BFD_SECTION (msym);
printf_filtered ("static storage at address ");
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1, gdb_stdout);
if (section_is_overlay (section))
{
load_addr = overlay_unmapped_address (load_addr, section);
printf_filtered (",\n -- loaded at ");
print_address_numeric (load_addr, 1, gdb_stdout);
printf_filtered (" in overlay section %s", section->name);
}
}
}
break;
case LOC_THREAD_LOCAL_STATIC:
printf_filtered (
"a thread-local variable at offset %ld from the thread base register %s",
val, REGISTER_NAME (basereg));
break;
case LOC_OPTIMIZED_OUT:
printf_filtered ("optimized out");
break;
default:
printf_filtered ("of unknown (botched) type");
break;
}
printf_filtered (".\n");
}
void
x_command (exp, from_tty)
char *exp;
int from_tty;
{
struct expression *expr;
struct format_data fmt;
struct cleanup *old_chain;
struct value *val;
fmt.format = last_format;
fmt.size = last_size;
fmt.count = 1;
if (exp && *exp == '/')
{
exp++;
fmt = decode_format (&exp, last_format, last_size);
}
/* If we have an expression, evaluate it and use it as the address. */
if (exp != 0 && *exp != 0)
{
expr = parse_expression (exp);
/* Cause expression not to be there any more
if this command is repeated with Newline.
But don't clobber a user-defined command's definition. */
if (from_tty)
*exp = 0;
old_chain = make_cleanup (free_current_contents, &expr);
val = evaluate_expression (expr);
if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
val = value_ind (val);
/* In rvalue contexts, such as this, functions are coerced into
pointers to functions. This makes "x/i main" work. */
if ( /* last_format == 'i'
&& */ TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
&& VALUE_LVAL (val) == lval_memory)
next_address = VALUE_ADDRESS (val);
else
next_address = value_as_pointer (val);
if (VALUE_BFD_SECTION (val))
next_section = VALUE_BFD_SECTION (val);
do_cleanups (old_chain);
}
do_examine (fmt, next_address, next_section);
/* If the examine succeeds, we remember its size and format for next time. */
last_size = fmt.size;
last_format = fmt.format;
/* Set a couple of internal variables if appropriate. */
if (last_examine_value)
{
/* Make last address examined available to the user as $_. Use
the correct pointer type. */
struct type *pointer_type
= lookup_pointer_type (VALUE_TYPE (last_examine_value));
set_internalvar (lookup_internalvar ("_"),
value_from_pointer (pointer_type,
last_examine_address));
/* Make contents of last address examined available to the user as $__. */
/* If the last value has not been fetched from memory then don't
fetch it now - instead mark it by voiding the $__ variable. */
if (VALUE_LAZY (last_examine_value))
set_internalvar (lookup_internalvar ("__"),
allocate_value (builtin_type_void));
else
set_internalvar (lookup_internalvar ("__"), last_examine_value);
}
}
/* Add an expression to the auto-display chain.
Specify the expression. */
static void
display_command (exp, from_tty)
char *exp;
int from_tty;
{
struct format_data fmt;
register struct expression *expr;
register struct display *new;
int display_it = 1;
#if defined(TUI)
if (tui_version && *exp == '$')
display_it = ((TuiStatus) tuiDo (
(TuiOpaqueFuncPtr) tui_vSetLayoutTo, exp) == TUI_FAILURE);
#endif
if (display_it)
{
if (exp == 0)
{
do_displays ();
return;
}
if (*exp == '/')
{
exp++;
fmt = decode_format (&exp, 0, 0);
if (fmt.size && fmt.format == 0)
fmt.format = 'x';
if (fmt.format == 'i' || fmt.format == 's')
fmt.size = 'b';
}
else
{
fmt.format = 0;
fmt.size = 0;
fmt.count = 0;
}
innermost_block = 0;
expr = parse_expression (exp);
new = (struct display *) xmalloc (sizeof (struct display));
new->exp = expr;
new->block = innermost_block;
new->next = display_chain;
new->number = ++display_number;
new->format = fmt;
new->status = enabled;
display_chain = new;
if (from_tty && target_has_execution)
do_one_display (new);
dont_repeat ();
}
}
static void
free_display (d)
struct display *d;
{
free ((PTR) d->exp);
free ((PTR) d);
}
/* Clear out the display_chain.
Done when new symtabs are loaded, since this invalidates
the types stored in many expressions. */
void
clear_displays ()
{
register struct display *d;
while ((d = display_chain) != NULL)
{
free ((PTR) d->exp);
display_chain = d->next;
free ((PTR) d);
}
}
/* Delete the auto-display number NUM. */
static void
delete_display (num)
int num;
{
register struct display *d1, *d;
if (!display_chain)
error ("No display number %d.", num);
if (display_chain->number == num)
{
d1 = display_chain;
display_chain = d1->next;
free_display (d1);
}
else
for (d = display_chain;; d = d->next)
{
if (d->next == 0)
error ("No display number %d.", num);
if (d->next->number == num)
{
d1 = d->next;
d->next = d1->next;
free_display (d1);
break;
}
}
}
/* Delete some values from the auto-display chain.
Specify the element numbers. */
static void
undisplay_command (args, from_tty)
char *args;
int from_tty;
{
register char *p = args;
register char *p1;
register int num;
if (args == 0)
{
if (query ("Delete all auto-display expressions? "))
clear_displays ();
dont_repeat ();
return;
}
while (*p)
{
p1 = p;
while (*p1 >= '0' && *p1 <= '9')
p1++;
if (*p1 && *p1 != ' ' && *p1 != '\t')
error ("Arguments must be display numbers.");
num = atoi (p);
delete_display (num);
p = p1;
while (*p == ' ' || *p == '\t')
p++;
}
dont_repeat ();
}
/* Display a single auto-display.
Do nothing if the display cannot be printed in the current context,
or if the display is disabled. */
static void
do_one_display (d)
struct display *d;
{
int within_current_scope;
if (d->status == disabled)
return;
if (d->block)
within_current_scope = contained_in (get_selected_block (), d->block);
else
within_current_scope = 1;
if (!within_current_scope)
return;
current_display_number = d->number;
annotate_display_begin ();
printf_filtered ("%d", d->number);
annotate_display_number_end ();
printf_filtered (": ");
if (d->format.size)
{
CORE_ADDR addr;
value_ptr val;
annotate_display_format ();
printf_filtered ("x/");
if (d->format.count != 1)
printf_filtered ("%d", d->format.count);
printf_filtered ("%c", d->format.format);
if (d->format.format != 'i' && d->format.format != 's')
printf_filtered ("%c", d->format.size);
printf_filtered (" ");
annotate_display_expression ();
print_expression (d->exp, gdb_stdout);
annotate_display_expression_end ();
if (d->format.count != 1)
printf_filtered ("\n");
else
printf_filtered (" ");
val = evaluate_expression (d->exp);
addr = value_as_pointer (val);
if (d->format.format == 'i')
addr = ADDR_BITS_REMOVE (addr);
annotate_display_value ();
do_examine (d->format, addr, VALUE_BFD_SECTION (val));
}
else
{
annotate_display_format ();
if (d->format.format)
printf_filtered ("/%c ", d->format.format);
annotate_display_expression ();
print_expression (d->exp, gdb_stdout);
annotate_display_expression_end ();
printf_filtered (" = ");
annotate_display_expression ();
print_formatted (evaluate_expression (d->exp),
d->format.format, d->format.size, gdb_stdout);
printf_filtered ("\n");
}
annotate_display_end ();
gdb_flush (gdb_stdout);
current_display_number = -1;
}
/* Display all of the values on the auto-display chain which can be
evaluated in the current scope. */
void
do_displays ()
{
register struct display *d;
for (d = display_chain; d; d = d->next)
do_one_display (d);
}
/* Delete the auto-display which we were in the process of displaying.
This is done when there is an error or a signal. */
void
disable_display (num)
int num;
{
register struct display *d;
for (d = display_chain; d; d = d->next)
if (d->number == num)
{
d->status = disabled;
return;
}
printf_unfiltered ("No display number %d.\n", num);
}
void
disable_current_display ()
{
if (current_display_number >= 0)
{
disable_display (current_display_number);
fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
current_display_number);
}
current_display_number = -1;
}
static void
display_info (ignore, from_tty)
char *ignore;
int from_tty;
{
register struct display *d;
if (!display_chain)
printf_unfiltered ("There are no auto-display expressions now.\n");
else
printf_filtered ("Auto-display expressions now in effect:\n\
Num Enb Expression\n");
for (d = display_chain; d; d = d->next)
{
printf_filtered ("%d: %c ", d->number, "ny"[(int) d->status]);
if (d->format.size)
printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
d->format.format);
else if (d->format.format)
printf_filtered ("/%c ", d->format.format);
print_expression (d->exp, gdb_stdout);
if (d->block && !contained_in (get_selected_block (), d->block))
printf_filtered (" (cannot be evaluated in the current context)");
printf_filtered ("\n");
gdb_flush (gdb_stdout);
}
}
static void
enable_display (args, from_tty)
char *args;
int from_tty;
{
register char *p = args;
register char *p1;
register int num;
register struct display *d;
if (p == 0)
{
for (d = display_chain; d; d = d->next)
d->status = enabled;
}
else
while (*p)
{
p1 = p;
while (*p1 >= '0' && *p1 <= '9')
p1++;
if (*p1 && *p1 != ' ' && *p1 != '\t')
error ("Arguments must be display numbers.");
num = atoi (p);
for (d = display_chain; d; d = d->next)
if (d->number == num)
{
d->status = enabled;
goto win;
}
printf_unfiltered ("No display number %d.\n", num);
win:
p = p1;
while (*p == ' ' || *p == '\t')
p++;
}
}
/* ARGSUSED */
static void
disable_display_command (args, from_tty)
char *args;
int from_tty;
{
register char *p = args;
register char *p1;
register struct display *d;
if (p == 0)
{
for (d = display_chain; d; d = d->next)
d->status = disabled;
}
else
while (*p)
{
p1 = p;
while (*p1 >= '0' && *p1 <= '9')
p1++;
if (*p1 && *p1 != ' ' && *p1 != '\t')
error ("Arguments must be display numbers.");
disable_display (atoi (p));
p = p1;
while (*p == ' ' || *p == '\t')
p++;
}
}
/* Print the value in stack frame FRAME of a variable
specified by a struct symbol. */
void
print_variable_value (var, frame, stream)
struct symbol *var;
struct frame_info *frame;
struct ui_file *stream;
{
value_ptr val = read_var_value (var, frame);
value_print (val, stream, 0, Val_pretty_default);
}
/* Print the arguments of a stack frame, given the function FUNC
running in that frame (as a symbol), the info on the frame,
and the number of args according to the stack frame (or -1 if unknown). */
/* References here and elsewhere to "number of args according to the
stack frame" appear in all cases to refer to "number of ints of args
according to the stack frame". At least for VAX, i386, isi. */
void
print_frame_args (func, fi, num, stream)
struct symbol *func;
struct frame_info *fi;
int num;
struct ui_file *stream;
{
struct block *b = NULL;
int nsyms = 0;
int first = 1;
register int i;
register struct symbol *sym;
register value_ptr val;
/* Offset of next stack argument beyond the one we have seen that is
at the highest offset.
-1 if we haven't come to a stack argument yet. */
long highest_offset = -1;
int arg_size;
/* Number of ints of arguments that we have printed so far. */
int args_printed = 0;
#ifdef UI_OUT
struct cleanup *old_chain;
struct ui_stream *stb;
stb = ui_out_stream_new (uiout);
old_chain = make_cleanup_ui_out_stream_delete (stb);
#endif /* UI_OUT */
if (func)
{
b = SYMBOL_BLOCK_VALUE (func);
nsyms = BLOCK_NSYMS (b);
}
for (i = 0; i < nsyms; i++)
{
QUIT;
sym = BLOCK_SYM (b, i);
/* Keep track of the highest stack argument offset seen, and
skip over any kinds of symbols we don't care about. */
switch (SYMBOL_CLASS (sym))
{
case LOC_ARG:
case LOC_REF_ARG:
{
long current_offset = SYMBOL_VALUE (sym);
arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
/* Compute address of next argument by adding the size of
this argument and rounding to an int boundary. */
current_offset =
((current_offset + arg_size + sizeof (int) - 1)
& ~(sizeof (int) - 1));
/* If this is the highest offset seen yet, set highest_offset. */
if (highest_offset == -1
|| (current_offset > highest_offset))
highest_offset = current_offset;
/* Add the number of ints we're about to print to args_printed. */
args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
}
/* We care about types of symbols, but don't need to keep track of
stack offsets in them. */
case LOC_REGPARM:
case LOC_REGPARM_ADDR:
case LOC_LOCAL_ARG:
case LOC_BASEREG_ARG:
break;
/* Other types of symbols we just skip over. */
default:
continue;
}
/* We have to look up the symbol because arguments can have
two entries (one a parameter, one a local) and the one we
want is the local, which lookup_symbol will find for us.
This includes gcc1 (not gcc2) on the sparc when passing a
small structure and gcc2 when the argument type is float
and it is passed as a double and converted to float by
the prologue (in the latter case the type of the LOC_ARG
symbol is double and the type of the LOC_LOCAL symbol is
float). */
/* But if the parameter name is null, don't try it.
Null parameter names occur on the RS/6000, for traceback tables.
FIXME, should we even print them? */
if (*SYMBOL_NAME (sym))
{
struct symbol *nsym;
nsym = lookup_symbol
(SYMBOL_NAME (sym),
b, VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
{
/* There is a LOC_ARG/LOC_REGISTER pair. This means that
it was passed on the stack and loaded into a register,
or passed in a register and stored in a stack slot.
GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
Reasons for using the LOC_ARG:
(1) because find_saved_registers may be slow for remote
debugging,
(2) because registers are often re-used and stack slots
rarely (never?) are. Therefore using the stack slot is
much less likely to print garbage.
Reasons why we might want to use the LOC_REGISTER:
(1) So that the backtrace prints the same value as
"print foo". I see no compelling reason why this needs
to be the case; having the backtrace print the value which
was passed in, and "print foo" print the value as modified
within the called function, makes perfect sense to me.
Additional note: It might be nice if "info args" displayed
both values.
One more note: There is a case with sparc structure passing
where we need to use the LOC_REGISTER, but this is dealt with
by creating a single LOC_REGPARM in symbol reading. */
/* Leave sym (the LOC_ARG) alone. */
;
}
else
sym = nsym;
}
#ifdef UI_OUT
/* Print the current arg. */
if (!first)
ui_out_text (uiout, ", ");
ui_out_wrap_hint (uiout, " ");
annotate_arg_begin ();
ui_out_list_begin (uiout, NULL);
fprintf_symbol_filtered (stb->stream, SYMBOL_SOURCE_NAME (sym),
SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
ui_out_field_stream (uiout, "name", stb);
annotate_arg_name_end ();
ui_out_text (uiout, "=");
#else
/* Print the current arg. */
if (!first)
fprintf_filtered (stream, ", ");
wrap_here (" ");
annotate_arg_begin ();
fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
annotate_arg_name_end ();
fputs_filtered ("=", stream);
#endif
/* Avoid value_print because it will deref ref parameters. We just
want to print their addresses. Print ??? for args whose address
we do not know. We pass 2 as "recurse" to val_print because our
standard indentation here is 4 spaces, and val_print indents
2 for each recurse. */
val = read_var_value (sym, fi);
annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
if (val)
{
if (GDB_TARGET_IS_D10V
&& SYMBOL_CLASS (sym) == LOC_REGPARM && TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_PTR)
TYPE_LENGTH (VALUE_TYPE (val)) = 2;
#ifdef UI_OUT
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
VALUE_ADDRESS (val),
stb->stream, 0, 0, 2, Val_no_prettyprint);
ui_out_field_stream (uiout, "value", stb);
}
else
ui_out_text (uiout, "???");
ui_out_list_end (uiout);
#else
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
VALUE_ADDRESS (val),
stream, 0, 0, 2, Val_no_prettyprint);
}
else
fputs_filtered ("???", stream);
#endif
annotate_arg_end ();
first = 0;
}
/* Don't print nameless args in situations where we don't know
enough about the stack to find them. */
if (num != -1)
{
long start;
if (highest_offset == -1)
start = FRAME_ARGS_SKIP;
else
start = highest_offset;
print_frame_nameless_args (fi, start, num - args_printed,
first, stream);
}
#ifdef UI_OUT
do_cleanups (old_chain);
#endif /* no UI_OUT */
}
/* Print nameless args on STREAM.
FI is the frameinfo for this frame, START is the offset
of the first nameless arg, and NUM is the number of nameless args to
print. FIRST is nonzero if this is the first argument (not just
the first nameless arg). */
static void
print_frame_nameless_args (fi, start, num, first, stream)
struct frame_info *fi;
long start;
int num;
int first;
struct ui_file *stream;
{
int i;
CORE_ADDR argsaddr;
long arg_value;
for (i = 0; i < num; i++)
{
QUIT;
#ifdef NAMELESS_ARG_VALUE
NAMELESS_ARG_VALUE (fi, start, &arg_value);
#else
argsaddr = FRAME_ARGS_ADDRESS (fi);
if (!argsaddr)
return;
arg_value = read_memory_integer (argsaddr + start, sizeof (int));
#endif
if (!first)
fprintf_filtered (stream, ", ");
#ifdef PRINT_NAMELESS_INTEGER
PRINT_NAMELESS_INTEGER (stream, arg_value);
#else
#ifdef PRINT_TYPELESS_INTEGER
PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
#else
fprintf_filtered (stream, "%ld", arg_value);
#endif /* PRINT_TYPELESS_INTEGER */
#endif /* PRINT_NAMELESS_INTEGER */
first = 0;
start += sizeof (int);
}
}
/* ARGSUSED */
static void
printf_command (arg, from_tty)
char *arg;
int from_tty;
{
register char *f = NULL;
register char *s = arg;
char *string = NULL;
value_ptr *val_args;
char *substrings;
char *current_substring;
int nargs = 0;
int allocated_args = 20;
struct cleanup *old_cleanups;
val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
old_cleanups = make_cleanup (free_current_contents, &val_args);
if (s == 0)
error_no_arg ("format-control string and values to print");
/* Skip white space before format string */
while (*s == ' ' || *s == '\t')
s++;
/* A format string should follow, enveloped in double quotes */
if (*s++ != '"')
error ("Bad format string, missing '\"'.");
/* Parse the format-control string and copy it into the string STRING,
processing some kinds of escape sequence. */
f = string = (char *) alloca (strlen (s) + 1);
while (*s != '"')
{
int c = *s++;
switch (c)
{
case '\0':
error ("Bad format string, non-terminated '\"'.");
case '\\':
switch (c = *s++)
{
case '\\':
*f++ = '\\';
break;
case 'a':
#ifdef __STDC__
*f++ = '\a';
#else
*f++ = '\007'; /* Bell */
#endif
break;
case 'b':
*f++ = '\b';
break;
case 'f':
*f++ = '\f';
break;
case 'n':
*f++ = '\n';
break;
case 'r':
*f++ = '\r';
break;
case 't':
*f++ = '\t';
break;
case 'v':
*f++ = '\v';
break;
case '"':
*f++ = '"';
break;
default:
/* ??? TODO: handle other escape sequences */
error ("Unrecognized escape character \\%c in format string.",
c);
}
break;
default:
*f++ = c;
}
}
/* Skip over " and following space and comma. */
s++;
*f++ = '\0';
while (*s == ' ' || *s == '\t')
s++;
if (*s != ',' && *s != 0)
error ("Invalid argument syntax");
if (*s == ',')
s++;
while (*s == ' ' || *s == '\t')
s++;
/* Need extra space for the '\0's. Doubling the size is sufficient. */
substrings = alloca (strlen (string) * 2);
current_substring = substrings;
{
/* Now scan the string for %-specs and see what kinds of args they want.
argclass[I] classifies the %-specs so we can give printf_filtered
something of the right size. */
enum argclass
{
no_arg, int_arg, string_arg, double_arg, long_long_arg
};
enum argclass *argclass;
enum argclass this_argclass;
char *last_arg;
int nargs_wanted;
int lcount;
int i;
argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
nargs_wanted = 0;
f = string;
last_arg = string;
while (*f)
if (*f++ == '%')
{
lcount = 0;
while (strchr ("0123456789.hlL-+ #", *f))
{
if (*f == 'l' || *f == 'L')
lcount++;
f++;
}
switch (*f)
{
case 's':
this_argclass = string_arg;
break;
case 'e':
case 'f':
case 'g':
this_argclass = double_arg;
break;
case '*':
error ("`*' not supported for precision or width in printf");
case 'n':
error ("Format specifier `n' not supported in printf");
case '%':
this_argclass = no_arg;
break;
default:
if (lcount > 1)
this_argclass = long_long_arg;
else
this_argclass = int_arg;
break;
}
f++;
if (this_argclass != no_arg)
{
strncpy (current_substring, last_arg, f - last_arg);
current_substring += f - last_arg;
*current_substring++ = '\0';
last_arg = f;
argclass[nargs_wanted++] = this_argclass;
}
}
/* Now, parse all arguments and evaluate them.
Store the VALUEs in VAL_ARGS. */
while (*s != '\0')
{
char *s1;
if (nargs == allocated_args)
val_args = (value_ptr *) xrealloc ((char *) val_args,
(allocated_args *= 2)
* sizeof (value_ptr));
s1 = s;
val_args[nargs] = parse_to_comma_and_eval (&s1);
/* If format string wants a float, unchecked-convert the value to
floating point of the same size */
if (argclass[nargs] == double_arg)
{
struct type *type = VALUE_TYPE (val_args[nargs]);
if (TYPE_LENGTH (type) == sizeof (float))
VALUE_TYPE (val_args[nargs]) = builtin_type_float;
if (TYPE_LENGTH (type) == sizeof (double))
VALUE_TYPE (val_args[nargs]) = builtin_type_double;
}
nargs++;
s = s1;
if (*s == ',')
s++;
}
if (nargs != nargs_wanted)
error ("Wrong number of arguments for specified format-string");
/* Now actually print them. */
current_substring = substrings;
for (i = 0; i < nargs; i++)
{
switch (argclass[i])
{
case string_arg:
{
char *str;
CORE_ADDR tem;
int j;
tem = value_as_pointer (val_args[i]);
/* This is a %s argument. Find the length of the string. */
for (j = 0;; j++)
{
char c;
QUIT;
read_memory (tem + j, &c, 1);
if (c == 0)
break;
}
/* Copy the string contents into a string inside GDB. */
str = (char *) alloca (j + 1);
read_memory (tem, str, j);
str[j] = 0;
printf_filtered (current_substring, str);
}
break;
case double_arg:
{
double val = value_as_double (val_args[i]);
printf_filtered (current_substring, val);
break;
}
case long_long_arg:
#if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
{
long long val = value_as_long (val_args[i]);
printf_filtered (current_substring, val);
break;
}
#else
error ("long long not supported in printf");
#endif
case int_arg:
{
/* FIXME: there should be separate int_arg and long_arg. */
long val = value_as_long (val_args[i]);
printf_filtered (current_substring, val);
break;
}
default: /* purecov: deadcode */
error ("internal error in printf_command"); /* purecov: deadcode */
}
/* Skip to the next substring. */
current_substring += strlen (current_substring) + 1;
}
/* Print the portion of the format string after the last argument. */
printf_filtered (last_arg);
}
do_cleanups (old_cleanups);
}
/* Dump a specified section of assembly code. With no command line
arguments, this command will dump the assembly code for the
function surrounding the pc value in the selected frame. With one
argument, it will dump the assembly code surrounding that pc value.
Two arguments are interpeted as bounds within which to dump
assembly. */
/* ARGSUSED */
static void
disassemble_command (arg, from_tty)
char *arg;
int from_tty;
{
CORE_ADDR low, high;
char *name;
CORE_ADDR pc, pc_masked;
char *space_index;
#if 0
asection *section;
#endif
name = NULL;
if (!arg)
{
if (!selected_frame)
error ("No frame selected.\n");
pc = get_frame_pc (selected_frame);
if (find_pc_partial_function (pc, &name, &low, &high) == 0)
error ("No function contains program counter for selected frame.\n");
#if defined(TUI)
else if (tui_version)
low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
(Opaque) low,
(Opaque) pc);
#endif
low += FUNCTION_START_OFFSET;
}
else if (!(space_index = (char *) strchr (arg, ' ')))
{
/* One argument. */
pc = parse_and_eval_address (arg);
if (find_pc_partial_function (pc, &name, &low, &high) == 0)
error ("No function contains specified address.\n");
#if defined(TUI)
else if (tui_version)
low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
(Opaque) low,
(Opaque) pc);
#endif
#if 0
if (overlay_debugging)
{
section = find_pc_overlay (pc);
if (pc_in_unmapped_range (pc, section))
{
/* find_pc_partial_function will have returned low and high
relative to the symbolic (mapped) address range. Need to
translate them back to the unmapped range where PC is. */
low = overlay_unmapped_address (low, section);
high = overlay_unmapped_address (high, section);
}
}
#endif
low += FUNCTION_START_OFFSET;
}
else
{
/* Two arguments. */
*space_index = '\0';
low = parse_and_eval_address (arg);
high = parse_and_eval_address (space_index + 1);
}
#if defined(TUI)
if (!tui_version ||
m_winPtrIsNull (disassemWin) || !disassemWin->generic.isVisible)
#endif
{
printf_filtered ("Dump of assembler code ");
if (name != NULL)
{
printf_filtered ("for function %s:\n", name);
}
else
{
printf_filtered ("from ");
print_address_numeric (low, 1, gdb_stdout);
printf_filtered (" to ");
print_address_numeric (high, 1, gdb_stdout);
printf_filtered (":\n");
}
/* Dump the specified range. */
pc = low;
#ifdef GDB_TARGET_MASK_DISAS_PC
pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
#else
pc_masked = pc;
#endif
while (pc_masked < high)
{
QUIT;
print_address (pc_masked, gdb_stdout);
printf_filtered (":\t");
/* We often wrap here if there are long symbolic names. */
wrap_here (" ");
pc += print_insn (pc, gdb_stdout);
printf_filtered ("\n");
#ifdef GDB_TARGET_MASK_DISAS_PC
pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
#else
pc_masked = pc;
#endif
}
printf_filtered ("End of assembler dump.\n");
gdb_flush (gdb_stdout);
}
#if defined(TUI)
else
{
tuiDo ((TuiOpaqueFuncPtr) tui_vAddWinToLayout, DISASSEM_WIN);
tuiDo ((TuiOpaqueFuncPtr) tui_vUpdateSourceWindowsWithAddr, low);
}
#endif
}
/* Print the instruction at address MEMADDR in debugged memory,
on STREAM. Returns length of the instruction, in bytes. */
static int
print_insn (memaddr, stream)
CORE_ADDR memaddr;
struct ui_file *stream;
{
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_BIG;
else
TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_LITTLE;
if (TARGET_ARCHITECTURE != NULL)
TARGET_PRINT_INSN_INFO->mach = TARGET_ARCHITECTURE->mach;
/* else: should set .mach=0 but some disassemblers don't grok this */
return TARGET_PRINT_INSN (memaddr, TARGET_PRINT_INSN_INFO);
}
void
_initialize_printcmd ()
{
current_display_number = -1;
add_info ("address", address_info,
"Describe where symbol SYM is stored.");
add_info ("symbol", sym_info,
"Describe what symbol is at location ADDR.\n\
Only for symbols with fixed locations (global or static scope).");
add_com ("x", class_vars, x_command,
concat ("Examine memory: x/FMT ADDRESS.\n\
ADDRESS is an expression for the memory address to examine.\n\
FMT is a repeat count followed by a format letter and a size letter.\n\
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
"Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
The specified number of objects of the specified size are printed\n\
according to the format.\n\n\
Defaults for format and size letters are those previously used.\n\
Default count is 1. Default address is following last thing printed\n\
with this command or \"print\".", NULL));
add_com ("disassemble", class_vars, disassemble_command,
"Disassemble a specified section of memory.\n\
Default is the function surrounding the pc of the selected frame.\n\
With a single argument, the function surrounding that address is dumped.\n\
Two arguments are taken as a range of memory to dump.");
if (xdb_commands)
add_com_alias ("va", "disassemble", class_xdb, 0);
#if 0
add_com ("whereis", class_vars, whereis_command,
"Print line number and file of definition of variable.");
#endif
add_info ("display", display_info,
"Expressions to display when program stops, with code numbers.");
add_cmd ("undisplay", class_vars, undisplay_command,
"Cancel some expressions to be displayed when program stops.\n\
Arguments are the code numbers of the expressions to stop displaying.\n\
No argument means cancel all automatic-display expressions.\n\
\"delete display\" has the same effect as this command.\n\
Do \"info display\" to see current list of code numbers.",
&cmdlist);
add_com ("display", class_vars, display_command,
"Print value of expression EXP each time the program stops.\n\
/FMT may be used before EXP as in the \"print\" command.\n\
/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
as in the \"x\" command, and then EXP is used to get the address to examine\n\
and examining is done as in the \"x\" command.\n\n\
With no argument, display all currently requested auto-display expressions.\n\
Use \"undisplay\" to cancel display requests previously made."
);
add_cmd ("display", class_vars, enable_display,
"Enable some expressions to be displayed when program stops.\n\
Arguments are the code numbers of the expressions to resume displaying.\n\
No argument means enable all automatic-display expressions.\n\
Do \"info display\" to see current list of code numbers.", &enablelist);
add_cmd ("display", class_vars, disable_display_command,
"Disable some expressions to be displayed when program stops.\n\
Arguments are the code numbers of the expressions to stop displaying.\n\
No argument means disable all automatic-display expressions.\n\
Do \"info display\" to see current list of code numbers.", &disablelist);
add_cmd ("display", class_vars, undisplay_command,
"Cancel some expressions to be displayed when program stops.\n\
Arguments are the code numbers of the expressions to stop displaying.\n\
No argument means cancel all automatic-display expressions.\n\
Do \"info display\" to see current list of code numbers.", &deletelist);
add_com ("printf", class_vars, printf_command,
"printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
This is useful for formatted output in user-defined commands.");
add_com ("output", class_vars, output_command,
"Like \"print\" but don't put in value history and don't print newline.\n\
This is useful in user-defined commands.");
add_prefix_cmd ("set", class_vars, set_command,
concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
example). VAR may be a debugger \"convenience\" variable (names starting\n\
with $), a register (a few standard names starting with $), or an actual\n\
variable in the program being debugged. EXP is any valid expression.\n",
"Use \"set variable\" for variables with names identical to set subcommands.\n\
\nWith a subcommand, this command modifies parts of the gdb environment.\n\
You can see these environment settings with the \"show\" command.", NULL),
&setlist, "set ", 1, &cmdlist);
if (dbx_commands)
add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
EXP and assign result to variable VAR, using assignment\n\
syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
example). VAR may be a debugger \"convenience\" variable (names starting\n\
with $), a register (a few standard names starting with $), or an actual\n\
variable in the program being debugged. EXP is any valid expression.\n",
"Use \"set variable\" for variables with names identical to set subcommands.\n\
\nWith a subcommand, this command modifies parts of the gdb environment.\n\
You can see these environment settings with the \"show\" command.", NULL));
/* "call" is the same as "set", but handy for dbx users to call fns. */
add_com ("call", class_vars, call_command,
"Call a function in the program.\n\
The argument is the function name and arguments, in the notation of the\n\
current working language. The result is printed and saved in the value\n\
history, if it is not void.");
add_cmd ("variable", class_vars, set_command,
"Evaluate expression EXP and assign result to variable VAR, using assignment\n\
syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
example). VAR may be a debugger \"convenience\" variable (names starting\n\
with $), a register (a few standard names starting with $), or an actual\n\
variable in the program being debugged. EXP is any valid expression.\n\
This may usually be abbreviated to simply \"set\".",
&setlist);
add_com ("print", class_vars, print_command,
concat ("Print value of expression EXP.\n\
Variables accessible are those of the lexical environment of the selected\n\
stack frame, plus all those whose scope is global or an entire file.\n\
\n\
$NUM gets previous value number NUM. $ and $$ are the last two values.\n\
$$NUM refers to NUM'th value back from the last one.\n\
Names starting with $ refer to registers (with the values they would have\n",
"if the program were to return to the stack frame now selected, restoring\n\
all registers saved by frames farther in) or else to debugger\n\
\"convenience\" variables (any such name not a known register).\n\
Use assignment expressions to give values to convenience variables.\n",
"\n\
{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
@ is a binary operator for treating consecutive data objects\n\
anywhere in memory as an array. FOO@NUM gives an array whose first\n\
element is FOO, whose second element is stored in the space following\n\
where FOO is stored, etc. FOO must be an expression whose value\n\
resides in memory.\n",
"\n\
EXP may be preceded with /FMT, where FMT is a format letter\n\
but no count or size letter (see \"x\" command).", NULL));
add_com_alias ("p", "print", class_vars, 1);
add_com ("inspect", class_vars, inspect_command,
"Same as \"print\" command, except that if you are running in the epoch\n\
environment, the value is printed in its own window.");
add_show_from_set (
add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
(char *) &max_symbolic_offset,
"Set the largest offset that will be printed in <symbol+1234> form.",
&setprintlist),
&showprintlist);
add_show_from_set (
add_set_cmd ("symbol-filename", no_class, var_boolean,
(char *) &print_symbol_filename,
"Set printing of source filename and line number with <symbol>.",
&setprintlist),
&showprintlist);
/* For examine/instruction a single byte quantity is specified as
the data. This avoids problems with value_at_lazy() requiring a
valid data type (and rejecting VOID). */
examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
}