binutils-gdb/sim/bfin/dv-bfin_dma.c
Joel Brobecker 618f726fcb GDB copyright headers update after running GDB's copyright.py script.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2016-01-01 08:43:22 +04:00

565 lines
15 KiB
C

/* Blackfin Direct Memory Access (DMA) Channel model.
Copyright (C) 2010-2016 Free Software Foundation, Inc.
Contributed by Analog Devices, Inc.
This file is part of simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include "sim-main.h"
#include "devices.h"
#include "hw-device.h"
#include "dv-bfin_dma.h"
#include "dv-bfin_dmac.h"
/* Note: This DMA implementation requires the producer to be the master when
the peer is MDMA. The source is always a slave. This way we don't
have the two DMA devices thrashing each other with one trying to
write and the other trying to read. */
struct bfin_dma
{
/* This top portion matches common dv_bfin struct. */
bu32 base;
struct hw *dma_master;
bool acked;
struct hw_event *handler;
unsigned ele_size;
struct hw *hw_peer;
/* Order after here is important -- matches hardware MMR layout. */
union {
struct { bu16 ndpl, ndph; };
bu32 next_desc_ptr;
};
union {
struct { bu16 sal, sah; };
bu32 start_addr;
};
bu16 BFIN_MMR_16 (config);
bu32 _pad0;
bu16 BFIN_MMR_16 (x_count);
bs16 BFIN_MMR_16 (x_modify);
bu16 BFIN_MMR_16 (y_count);
bs16 BFIN_MMR_16 (y_modify);
bu32 curr_desc_ptr, curr_addr;
bu16 BFIN_MMR_16 (irq_status);
bu16 BFIN_MMR_16 (peripheral_map);
bu16 BFIN_MMR_16 (curr_x_count);
bu32 _pad1;
bu16 BFIN_MMR_16 (curr_y_count);
bu32 _pad2;
};
#define mmr_base() offsetof(struct bfin_dma, next_desc_ptr)
#define mmr_offset(mmr) (offsetof(struct bfin_dma, mmr) - mmr_base())
static const char * const mmr_names[] =
{
"NEXT_DESC_PTR", "START_ADDR", "CONFIG", "<INV>", "X_COUNT", "X_MODIFY",
"Y_COUNT", "Y_MODIFY", "CURR_DESC_PTR", "CURR_ADDR", "IRQ_STATUS",
"PERIPHERAL_MAP", "CURR_X_COUNT", "<INV>", "CURR_Y_COUNT", "<INV>",
};
#define mmr_name(off) mmr_names[(off) / 4]
static bool
bfin_dma_enabled (struct bfin_dma *dma)
{
return (dma->config & DMAEN);
}
static bool
bfin_dma_running (struct bfin_dma *dma)
{
return (dma->irq_status & DMA_RUN);
}
static struct hw *
bfin_dma_get_peer (struct hw *me, struct bfin_dma *dma)
{
if (dma->hw_peer)
return dma->hw_peer;
return dma->hw_peer = bfin_dmac_get_peer (me, dma->peripheral_map);
}
static void
bfin_dma_process_desc (struct hw *me, struct bfin_dma *dma)
{
bu8 ndsize = (dma->config & NDSIZE) >> NDSIZE_SHIFT;
bu16 _flows[9], *flows = _flows;
HW_TRACE ((me, "dma starting up %#x", dma->config));
switch (dma->config & WDSIZE)
{
case WDSIZE_32:
dma->ele_size = 4;
break;
case WDSIZE_16:
dma->ele_size = 2;
break;
default:
dma->ele_size = 1;
break;
}
/* Address has to be mutiple of transfer size. */
if (dma->start_addr & (dma->ele_size - 1))
dma->irq_status |= DMA_ERR;
if (dma->ele_size != (unsigned) abs (dma->x_modify))
hw_abort (me, "DMA config (striding) %#x not supported (x_modify: %d)",
dma->config, dma->x_modify);
switch (dma->config & DMAFLOW)
{
case DMAFLOW_AUTO:
case DMAFLOW_STOP:
if (ndsize)
hw_abort (me, "DMA config error: DMAFLOW_{AUTO,STOP} requires NDSIZE_0");
break;
case DMAFLOW_ARRAY:
if (ndsize == 0 || ndsize > 7)
hw_abort (me, "DMA config error: DMAFLOW_ARRAY requires NDSIZE 1...7");
sim_read (hw_system (me), dma->curr_desc_ptr, (void *)flows, ndsize * 2);
break;
case DMAFLOW_SMALL:
if (ndsize == 0 || ndsize > 8)
hw_abort (me, "DMA config error: DMAFLOW_SMALL requires NDSIZE 1...8");
sim_read (hw_system (me), dma->next_desc_ptr, (void *)flows, ndsize * 2);
break;
case DMAFLOW_LARGE:
if (ndsize == 0 || ndsize > 9)
hw_abort (me, "DMA config error: DMAFLOW_LARGE requires NDSIZE 1...9");
sim_read (hw_system (me), dma->next_desc_ptr, (void *)flows, ndsize * 2);
break;
default:
hw_abort (me, "DMA config error: invalid DMAFLOW %#x", dma->config);
}
if (ndsize)
{
bu8 idx;
bu16 *stores[] = {
&dma->sal,
&dma->sah,
&dma->config,
&dma->x_count,
(void *) &dma->x_modify,
&dma->y_count,
(void *) &dma->y_modify,
};
switch (dma->config & DMAFLOW)
{
case DMAFLOW_LARGE:
dma->ndph = _flows[1];
--ndsize;
++flows;
case DMAFLOW_SMALL:
dma->ndpl = _flows[0];
--ndsize;
++flows;
break;
}
for (idx = 0; idx < ndsize; ++idx)
*stores[idx] = flows[idx];
}
dma->curr_desc_ptr = dma->next_desc_ptr;
dma->curr_addr = dma->start_addr;
dma->curr_x_count = dma->x_count ? : 0xffff;
dma->curr_y_count = dma->y_count ? : 0xffff;
}
static int
bfin_dma_finish_x (struct hw *me, struct bfin_dma *dma)
{
/* XXX: This would be the time to process the next descriptor. */
/* XXX: Should this toggle Enable in dma->config ? */
if (dma->config & DI_EN)
hw_port_event (me, 0, 1);
if ((dma->config & DMA2D) && dma->curr_y_count > 1)
{
dma->curr_y_count -= 1;
dma->curr_x_count = dma->x_count;
/* With 2D, last X transfer does not modify curr_addr. */
dma->curr_addr = dma->curr_addr - dma->x_modify + dma->y_modify;
return 1;
}
switch (dma->config & DMAFLOW)
{
case DMAFLOW_STOP:
HW_TRACE ((me, "dma is complete"));
dma->irq_status = (dma->irq_status & ~DMA_RUN) | DMA_DONE;
return 0;
default:
bfin_dma_process_desc (me, dma);
return 1;
}
}
static void bfin_dma_hw_event_callback (struct hw *, void *);
static void
bfin_dma_reschedule (struct hw *me, unsigned delay)
{
struct bfin_dma *dma = hw_data (me);
if (dma->handler)
{
hw_event_queue_deschedule (me, dma->handler);
dma->handler = NULL;
}
if (!delay)
return;
HW_TRACE ((me, "scheduling next process in %u", delay));
dma->handler = hw_event_queue_schedule (me, delay,
bfin_dma_hw_event_callback, dma);
}
/* Chew through the DMA over and over. */
static void
bfin_dma_hw_event_callback (struct hw *me, void *data)
{
struct bfin_dma *dma = data;
struct hw *peer;
struct dv_bfin *bfin_peer;
bu8 buf[4096];
unsigned ret, nr_bytes, ele_count;
dma->handler = NULL;
peer = bfin_dma_get_peer (me, dma);
bfin_peer = hw_data (peer);
ret = 0;
if (dma->x_modify < 0)
/* XXX: This sucks performance wise. */
nr_bytes = dma->ele_size;
else
nr_bytes = MIN (sizeof (buf), dma->curr_x_count * dma->ele_size);
/* Pumping a chunk! */
bfin_peer->dma_master = me;
bfin_peer->acked = false;
if (dma->config & WNR)
{
HW_TRACE ((me, "dma transfer to 0x%08lx length %u",
(unsigned long) dma->curr_addr, nr_bytes));
ret = hw_dma_read_buffer (peer, buf, 0, dma->curr_addr, nr_bytes);
/* Has the DMA stalled ? abort for now. */
if (ret == 0)
goto reschedule;
/* XXX: How to handle partial DMA transfers ? */
if (ret % dma->ele_size)
goto error;
ret = sim_write (hw_system (me), dma->curr_addr, buf, ret);
}
else
{
HW_TRACE ((me, "dma transfer from 0x%08lx length %u",
(unsigned long) dma->curr_addr, nr_bytes));
ret = sim_read (hw_system (me), dma->curr_addr, buf, nr_bytes);
if (ret == 0)
goto reschedule;
/* XXX: How to handle partial DMA transfers ? */
if (ret % dma->ele_size)
goto error;
ret = hw_dma_write_buffer (peer, buf, 0, dma->curr_addr, ret, 0);
if (ret == 0)
goto reschedule;
}
/* Ignore partial writes. */
ele_count = ret / dma->ele_size;
dma->curr_addr += ele_count * dma->x_modify;
dma->curr_x_count -= ele_count;
if ((!dma->acked && dma->curr_x_count) || bfin_dma_finish_x (me, dma))
/* Still got work to do, so schedule again. */
reschedule:
bfin_dma_reschedule (me, ret ? 1 : 5000);
return;
error:
/* Don't reschedule on errors ... */
dma->irq_status |= DMA_ERR;
}
static unsigned
bfin_dma_io_write_buffer (struct hw *me, const void *source, int space,
address_word addr, unsigned nr_bytes)
{
struct bfin_dma *dma = hw_data (me);
bu32 mmr_off;
bu32 value;
bu16 *value16p;
bu32 *value32p;
void *valuep;
/* Invalid access mode is higher priority than missing register. */
if (!dv_bfin_mmr_require_16_32 (me, addr, nr_bytes, true))
return 0;
if (nr_bytes == 4)
value = dv_load_4 (source);
else
value = dv_load_2 (source);
mmr_off = addr % dma->base;
valuep = (void *)((unsigned long)dma + mmr_base() + mmr_off);
value16p = valuep;
value32p = valuep;
HW_TRACE_WRITE ();
/* XXX: All registers are RO when DMA is enabled (except IRQ_STATUS).
But does the HW discard writes or send up IVGHW ? The sim
simply discards atm ... */
switch (mmr_off)
{
case mmr_offset(next_desc_ptr):
case mmr_offset(start_addr):
case mmr_offset(curr_desc_ptr):
case mmr_offset(curr_addr):
/* Don't require 32bit access as all DMA MMRs can be used as 16bit. */
if (!bfin_dma_running (dma))
{
if (nr_bytes == 4)
*value32p = value;
else
*value16p = value;
}
else
HW_TRACE ((me, "discarding write while dma running"));
break;
case mmr_offset(x_count):
case mmr_offset(x_modify):
case mmr_offset(y_count):
case mmr_offset(y_modify):
if (!bfin_dma_running (dma))
*value16p = value;
break;
case mmr_offset(peripheral_map):
if (!bfin_dma_running (dma))
{
*value16p = (*value16p & CTYPE) | (value & ~CTYPE);
/* Clear peripheral peer so it gets looked up again. */
dma->hw_peer = NULL;
}
else
HW_TRACE ((me, "discarding write while dma running"));
break;
case mmr_offset(config):
/* XXX: How to handle updating CONFIG of a running channel ? */
if (nr_bytes == 4)
*value32p = value;
else
*value16p = value;
if (bfin_dma_enabled (dma))
{
dma->irq_status |= DMA_RUN;
bfin_dma_process_desc (me, dma);
/* The writer is the master. */
if (!(dma->peripheral_map & CTYPE) || (dma->config & WNR))
bfin_dma_reschedule (me, 1);
}
else
{
dma->irq_status &= ~DMA_RUN;
bfin_dma_reschedule (me, 0);
}
break;
case mmr_offset(irq_status):
dv_w1c_2 (value16p, value, DMA_DONE | DMA_ERR);
break;
case mmr_offset(curr_x_count):
case mmr_offset(curr_y_count):
if (!bfin_dma_running (dma))
*value16p = value;
else
HW_TRACE ((me, "discarding write while dma running"));
break;
default:
/* XXX: The HW lets the pad regions be read/written ... */
dv_bfin_mmr_invalid (me, addr, nr_bytes, true);
return 0;
}
return nr_bytes;
}
static unsigned
bfin_dma_io_read_buffer (struct hw *me, void *dest, int space,
address_word addr, unsigned nr_bytes)
{
struct bfin_dma *dma = hw_data (me);
bu32 mmr_off;
bu16 *value16p;
bu32 *value32p;
void *valuep;
/* Invalid access mode is higher priority than missing register. */
if (!dv_bfin_mmr_require_16_32 (me, addr, nr_bytes, false))
return 0;
mmr_off = addr % dma->base;
valuep = (void *)((unsigned long)dma + mmr_base() + mmr_off);
value16p = valuep;
value32p = valuep;
HW_TRACE_READ ();
/* Hardware lets you read all MMRs as 16 or 32 bits, even reserved. */
if (nr_bytes == 4)
dv_store_4 (dest, *value32p);
else
dv_store_2 (dest, *value16p);
return nr_bytes;
}
static unsigned
bfin_dma_dma_read_buffer (struct hw *me, void *dest, int space,
unsigned_word addr, unsigned nr_bytes)
{
struct bfin_dma *dma = hw_data (me);
unsigned ret, ele_count;
HW_TRACE_DMA_READ ();
/* If someone is trying to read from me, I have to be enabled. */
if (!bfin_dma_enabled (dma) && !bfin_dma_running (dma))
return 0;
/* XXX: handle x_modify ... */
ret = sim_read (hw_system (me), dma->curr_addr, dest, nr_bytes);
/* Ignore partial writes. */
ele_count = ret / dma->ele_size;
/* Has the DMA stalled ? abort for now. */
if (!ele_count)
return 0;
dma->curr_addr += ele_count * dma->x_modify;
dma->curr_x_count -= ele_count;
if (dma->curr_x_count == 0)
bfin_dma_finish_x (me, dma);
return ret;
}
static unsigned
bfin_dma_dma_write_buffer (struct hw *me, const void *source,
int space, unsigned_word addr,
unsigned nr_bytes,
int violate_read_only_section)
{
struct bfin_dma *dma = hw_data (me);
unsigned ret, ele_count;
HW_TRACE_DMA_WRITE ();
/* If someone is trying to write to me, I have to be enabled. */
if (!bfin_dma_enabled (dma) && !bfin_dma_running (dma))
return 0;
/* XXX: handle x_modify ... */
ret = sim_write (hw_system (me), dma->curr_addr, source, nr_bytes);
/* Ignore partial writes. */
ele_count = ret / dma->ele_size;
/* Has the DMA stalled ? abort for now. */
if (!ele_count)
return 0;
dma->curr_addr += ele_count * dma->x_modify;
dma->curr_x_count -= ele_count;
if (dma->curr_x_count == 0)
bfin_dma_finish_x (me, dma);
return ret;
}
static const struct hw_port_descriptor bfin_dma_ports[] =
{
{ "di", 0, 0, output_port, }, /* DMA Interrupt */
{ NULL, 0, 0, 0, },
};
static void
attach_bfin_dma_regs (struct hw *me, struct bfin_dma *dma)
{
address_word attach_address;
int attach_space;
unsigned attach_size;
reg_property_spec reg;
if (hw_find_property (me, "reg") == NULL)
hw_abort (me, "Missing \"reg\" property");
if (!hw_find_reg_array_property (me, "reg", 0, &reg))
hw_abort (me, "\"reg\" property must contain three addr/size entries");
hw_unit_address_to_attach_address (hw_parent (me),
&reg.address,
&attach_space, &attach_address, me);
hw_unit_size_to_attach_size (hw_parent (me), &reg.size, &attach_size, me);
if (attach_size != BFIN_MMR_DMA_SIZE)
hw_abort (me, "\"reg\" size must be %#x", BFIN_MMR_DMA_SIZE);
hw_attach_address (hw_parent (me),
0, attach_space, attach_address, attach_size, me);
dma->base = attach_address;
}
static void
bfin_dma_finish (struct hw *me)
{
struct bfin_dma *dma;
dma = HW_ZALLOC (me, struct bfin_dma);
set_hw_data (me, dma);
set_hw_io_read_buffer (me, bfin_dma_io_read_buffer);
set_hw_io_write_buffer (me, bfin_dma_io_write_buffer);
set_hw_dma_read_buffer (me, bfin_dma_dma_read_buffer);
set_hw_dma_write_buffer (me, bfin_dma_dma_write_buffer);
set_hw_ports (me, bfin_dma_ports);
attach_bfin_dma_regs (me, dma);
/* Initialize the DMA Channel. */
dma->peripheral_map = bfin_dmac_default_pmap (me);
}
const struct hw_descriptor dv_bfin_dma_descriptor[] =
{
{"bfin_dma", bfin_dma_finish,},
{NULL, NULL},
};