binutils-gdb/sim/aarch64/interp.c
Joel Brobecker 618f726fcb GDB copyright headers update after running GDB's copyright.py script.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2016-01-01 08:43:22 +04:00

485 lines
11 KiB
C

/* interp.c -- AArch64 sim interface to GDB.
Copyright (C) 2015-2016 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include <stdio.h>
#include <assert.h>
#include <signal.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include "ansidecl.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"
#include "gdb/signals.h"
#include "gdb/sim-aarch64.h"
#include "sim-main.h"
#include "sim-options.h"
#include "memory.h"
#include "simulator.h"
#include "dis-asm.h"
static struct disassemble_info info;
static unsigned long symcount = 0;
static asymbol ** symtab = NULL;
/* FIXME: 1000 characters should be enough to hold the disassembled
instruction plus any comments that come after it. But maybe with
C++ programs this might not be enough. Not sure if it is worth
adding logic to dynamically grow the buffer though. */
static char opbuf[1000];
static int op_printf (void *, const char *, ...) ATTRIBUTE_FPTR_PRINTF_2;
static int
op_printf (void *stream ATTRIBUTE_UNUSED, const char *fmt, ...)
{
size_t space_remaining;
int ret;
va_list ap;
space_remaining = sizeof (opbuf) - strlen (opbuf);
va_start (ap, fmt);
/* Instead of printing to stream we store the text in opbuf.
This allows us to use the sim_io_eprintf routine to output
the text in aarch64_print_insn. */
ret = vsnprintf (opbuf + strlen (opbuf), space_remaining, fmt, ap);
va_end (ap);
return ret;
}
void
aarch64_print_insn (SIM_DESC sd, uint64_t addr)
{
int size;
opbuf[0] = 0;
size = print_insn_aarch64 (addr, & info);
sim_io_eprintf (sd, " %*s\n", size, opbuf);
}
static int
sim_dis_read (bfd_vma memaddr,
bfd_byte * ptr,
unsigned int length,
struct disassemble_info * info)
{
aarch64_get_mem_blk (info->application_data, memaddr, (char *) ptr, length);
return 0;
}
/* Filter out (in place) symbols that are useless for disassembly.
COUNT is the number of elements in SYMBOLS.
Return the number of useful symbols. */
static unsigned long
remove_useless_symbols (asymbol **symbols, unsigned long count)
{
asymbol **in_ptr = symbols;
asymbol **out_ptr = symbols;
while (count-- > 0)
{
asymbol *sym = *in_ptr++;
if (strstr (sym->name, "gcc2_compiled"))
continue;
if (sym->name == NULL || sym->name[0] == '\0')
continue;
if (sym->flags & (BSF_DEBUGGING))
continue;
if ( bfd_is_und_section (sym->section)
|| bfd_is_com_section (sym->section))
continue;
if (sym->name[0] == '$')
continue;
*out_ptr++ = sym;
}
return out_ptr - symbols;
}
static signed int
compare_symbols (const void *ap, const void *bp)
{
const asymbol *a = * (const asymbol **) ap;
const asymbol *b = * (const asymbol **) bp;
if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
return 1;
if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
return -1;
return 0;
}
/* Find the name of the function at ADDR. */
const char *
aarch64_get_func (uint64_t addr)
{
int min, max;
min = -1;
max = symcount;
while (min < max - 1)
{
int sym;
bfd_vma sa;
sym = (min + max) / 2;
sa = bfd_asymbol_value (symtab[sym]);
if (sa > addr)
max = sym;
else if (sa < addr)
min = sym;
else
{
min = sym;
break;
}
}
if (min != -1)
return bfd_asymbol_name (symtab [min]);
return "";
}
uint64_t
aarch64_get_sym_value (const char *name)
{
unsigned long i;
for (i = 0; i < symcount; i++)
if (strcmp (bfd_asymbol_name (symtab[i]), name) == 0)
return bfd_asymbol_value (symtab[i]);
return 0;
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
long storage;
bfd_vma addr = 0;
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
aarch64_set_next_PC (cpu, addr);
aarch64_update_PC (cpu);
/* Standalone mode (i.e. `run`) will take care of the argv for us in
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
with `gdb`), we need to handle it because the user can change the
argv on the fly via gdb's 'run'. */
if (STATE_PROG_ARGV (sd) != argv)
{
freeargv (STATE_PROG_ARGV (sd));
STATE_PROG_ARGV (sd) = dupargv (argv);
}
memset (& info, 0, sizeof (info));
init_disassemble_info (& info, NULL, op_printf);
info.read_memory_func = sim_dis_read;
info.arch = bfd_get_arch (abfd);
info.mach = bfd_get_mach (abfd);
info.application_data = cpu;
if (info.mach == 0)
info.arch = bfd_arch_aarch64;
disassemble_init_for_target (& info);
storage = bfd_get_symtab_upper_bound (abfd);
if (storage > 0)
{
symtab = (asymbol **) xmalloc (storage);
symcount = bfd_canonicalize_symtab (abfd, symtab);
symcount = remove_useless_symbols (symtab, symcount);
qsort (symtab, symcount, sizeof (asymbol *), compare_symbols);
}
aarch64_init (cpu, bfd_get_start_address (abfd));
return SIM_RC_OK;
}
/* Read the LENGTH bytes at BUF as a little-endian value. */
static bfd_vma
get_le (unsigned char *buf, unsigned int length)
{
bfd_vma acc = 0;
while (length -- > 0)
acc = (acc << 8) + buf[length];
return acc;
}
/* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
static void
put_le (unsigned char *buf, unsigned int length, bfd_vma val)
{
int i;
for (i = 0; i < length; i++)
{
buf[i] = val & 0xff;
val >>= 8;
}
}
static int
check_regno (int regno)
{
return 0 <= regno && regno < AARCH64_MAX_REGNO;
}
static size_t
reg_size (int regno)
{
if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
return 32;
return 64;
}
static int
aarch64_reg_get (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return 0;
size = reg_size (regno);
if (length != size)
return 0;
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
val = aarch64_get_reg_u64 (cpu, regno, 0);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
val = aarch64_get_FP_double (cpu, regno - 32);
break;
case AARCH64_PC_REGNO:
val = aarch64_get_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
val = aarch64_get_CPSR (cpu);
break;
case AARCH64_FPSR_REGNO:
val = aarch64_get_FPSR (cpu);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return -1;
}
put_le (buf, length, val);
return size;
}
static int
aarch64_reg_set (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return -1;
size = reg_size (regno);
if (length != size)
return -1;
val = get_le (buf, length);
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
aarch64_set_reg_u64 (cpu, regno, 1, val);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
aarch64_set_FP_double (cpu, regno - 32, (double) val);
break;
case AARCH64_PC_REGNO:
aarch64_set_next_PC (cpu, val);
aarch64_update_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
aarch64_set_CPSR (cpu, val);
break;
case AARCH64_FPSR_REGNO:
aarch64_set_FPSR (cpu, val);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return 0;
}
return size;
}
static sim_cia
aarch64_pc_get (sim_cpu *cpu)
{
return aarch64_get_PC (cpu);
}
static void
aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
{
aarch64_set_next_PC (cpu, pc);
aarch64_update_PC (cpu);
}
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
enum
{
OPTION_DISAS = OPTION_START,
};
static SIM_RC
aarch64_option_handler (SIM_DESC sd ATTRIBUTE_UNUSED,
sim_cpu * current_cpu ATTRIBUTE_UNUSED,
int opt,
char * arg ATTRIBUTE_UNUSED,
int is_command ATTRIBUTE_UNUSED)
{
switch (opt)
{
case OPTION_DISAS:
disas = TRUE;
return SIM_RC_OK;
default:
sim_io_eprintf (sd, "Unknown AArch64 option %d\n", opt);
return SIM_RC_FAIL;
}
}
static DECLARE_OPTION_HANDLER (aarch64_option_handler);
const OPTION aarch64_options[] =
{
{ {"disas", no_argument, NULL, OPTION_DISAS },
'\0', NULL, "Enable instruction disassembly",
aarch64_option_handler, NULL },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL }
};
SIM_DESC
sim_open (SIM_OPEN_KIND kind,
struct host_callback_struct * callback,
struct bfd * abfd,
char ** argv)
{
int i;
sim_cpu *cpu;
SIM_DESC sd = sim_state_alloc (kind, callback);
if (sd == NULL)
return sd;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
sim_add_option_table (sd, NULL, aarch64_options);
/* Perform the initialization steps one by one. */
if (sim_cpu_alloc_all (sd, 1, 0) != SIM_RC_OK
|| sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
|| sim_parse_args (sd, argv) != SIM_RC_OK
|| sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK
|| sim_config (sd) != SIM_RC_OK
|| sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return NULL;
}
aarch64_init_LIT_table ();
assert (MAX_NR_PROCESSORS == 1);
cpu = STATE_CPU (sd, 0);
CPU_PC_FETCH (cpu) = aarch64_pc_get;
CPU_PC_STORE (cpu) = aarch64_pc_set;
CPU_REG_FETCH (cpu) = aarch64_reg_get;
CPU_REG_STORE (cpu) = aarch64_reg_set;
/* Set SP, FP and PC to 0 and set LR to -1
so we can detect a top-level return. */
aarch64_set_reg_u64 (cpu, SP, 1, 0);
aarch64_set_reg_u64 (cpu, FP, 1, 0);
aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
aarch64_set_next_PC (cpu, 0);
aarch64_update_PC (cpu);
/* Default to a 128 Mbyte (== 2^27) memory space. */
sim_do_commandf (sd, "memory-size 0x8000000");
return sd;
}
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr ATTRIBUTE_UNUSED,
int nr_cpus ATTRIBUTE_UNUSED,
int siggnal ATTRIBUTE_UNUSED)
{
aarch64_run (sd);
}