binutils-gdb/gas/config/tc-arm.c
Jackie Smith Cashion c479fc62f4 oWed Jul 31 15:41:42 1996 James G. Smith <jsmith@cygnus.co.uk>
* config/tc-arm.c: Changed INSN_SIZE to variable insn_size, as
 	pre-cursor to adding Thumb support. Also added cpu_variant flag
 	information to each of the asm_flg structures.
	(md_parse_option): Updated ARM7 parsing to allow 't' for
 	thumb/halfword support, aswell as 'm' for long multiply.
	(md_show_usage): Updated help message.
	(md_assemble): Check that instruction flags are applicated to the
 	current cpu variant.
	(md_apply_fix3, tc_gen_reloc): Add BFD_RELOC_ARM_OFFSET_IMM8 and
 	BFD_RELOC_ARM_HWLITERAL relocation support for new halfword and
 	signextension instructions.
	(do_ldst): Generate halfword and signextension variants if
 	mnemonic flags match.
	(ldst_extend): Do not allow shifts in the offset field of halfword
 	or signextension instructions.
	(validate_offset_imm): Provide check on halfword and signextension
 	immediate range.
	(add_to_lit_pool): Merge identical literal pool values.

Wed Jul 31 15:55:12 1996  James G. Smith  <jsmith@cygnus.co.uk>

	* gas/arm/arm7t.s: Added.
	* gas/arm/arm7t.d: Added.
	* gas/arm/arm.exp: Updated to run the new test.
1996-07-31 14:57:57 +00:00

4378 lines
97 KiB
C

/* tc-arm.c All the arm specific stuff in one convenient, huge,
slow to compile, easy to find file.
Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
Modified by David Taylor (dtaylor@armltd.co.uk)
Copyright (C) 1994, 1995 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <ctype.h>
#include <string.h>
#define NO_RELOC 0
#include "as.h"
/* need TARGET_CPU */
#include "config.h"
#include "subsegs.h"
#include "obstack.h"
#include "symbols.h"
#include "listing.h"
/* ??? This is currently unused. */
#ifdef __STDC__
#define internalError() \
as_fatal ("ARM Internal Error, line %d, %s", __LINE__, __FILE__)
#else
#define internalError() as_fatal ("ARM Internal Error")
#endif
/* Types of processor to assemble for. */
#define ARM_1 0x00000001
#define ARM_2 0x00000002
#define ARM_3 0x00000004
#define ARM_250 0x00000004 /* ARM3 instruction set */
#define ARM_6 0x00000008
#define ARM_7 0x00000008
/* The following bitmasks control CPU extensions (ARM7 onwards): */
#define ARM_LONGMUL 0x00000010 /* allow long multiplies */
#define ARM_HALFWORD 0x00000020 /* allow ARM 16bit memory transfers */
/* Some useful combinations: */
#define ARM_ANY 0x00ffffff
#define ARM_2UP 0x00fffffe
#define ARM_ALL ARM_2UP /* Not arm1 only */
#define ARM_3UP 0x00fffffc
#define ARM_6UP 0x00fffff8 /* Includes ARM7 */
#define FPU_CORE 0x80000000
#define FPU_FPA10 0x40000000
#define FPU_FPA11 0x40000000
#define FPU_NONE 0
/* Some useful combinations */
#define FPU_ALL 0xff000000 /* Note this is ~ARM_ANY */
#define FPU_MEMMULTI 0x7f000000 /* Not fpu_core */
#ifndef CPU_DEFAULT
#define CPU_DEFAULT ARM_ALL
#endif
#ifndef FPU_DEFAULT
#define FPU_DEFAULT FPU_ALL
#endif
unsigned long cpu_variant = CPU_DEFAULT | FPU_DEFAULT;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful */
CONST char comment_chars[] = "@";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that comments like this one will always work. */
CONST char line_comment_chars[] = "#";
CONST char line_separator_chars[] = "";
/* Chars that can be used to separate mant from exp in floating point nums */
CONST char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
CONST char FLT_CHARS[] = "rRsSfFdDxXeEpP";
const int md_reloc_size = 8; /* Size of relocation record */
struct arm_it
{
CONST char *error;
unsigned long instruction;
int suffix;
struct
{
bfd_reloc_code_real_type type;
expressionS exp;
int pc_rel;
} reloc;
};
struct arm_it inst;
struct asm_shift
{
CONST char *template;
unsigned long value;
};
static CONST struct asm_shift shift[] =
{
{"asl", 0},
{"lsl", 0},
{"lsr", 0x00000020},
{"asr", 0x00000040},
{"ror", 0x00000060},
{"rrx", 0x00000060},
{"ASL", 0},
{"LSL", 0},
{"LSR", 0x00000020},
{"ASR", 0x00000040},
{"ROR", 0x00000060},
{"RRX", 0x00000060}
};
#define NO_SHIFT_RESTRICT 1
#define SHIFT_RESTRICT 0
#define NUM_FLOAT_VALS 8
CONST char *fp_const[] =
{
"0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
};
/* Number of littlenums required to hold an extended precision number */
#define MAX_LITTLENUMS 6
LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
#define FAIL (-1)
#define SUCCESS (0)
#define SUFF_S 1
#define SUFF_D 2
#define SUFF_E 3
#define SUFF_P 4
#define CP_T_X 0x00008000
#define CP_T_Y 0x00400000
#define CP_T_Pre 0x01000000
#define CP_T_UD 0x00800000
#define CP_T_WB 0x00200000
#define TRANS_BIT (0x00200000)
struct asm_cond
{
CONST char *template;
unsigned long value;
};
/* This is to save a hash look-up in the common case */
#define COND_ALWAYS 0xe0000000
static CONST struct asm_cond conds[] =
{
{"eq", 0x00000000},
{"ne", 0x10000000},
{"cs", 0x20000000}, {"hs", 0x20000000},
{"cc", 0x30000000}, {"ul", 0x30000000}, {"lo", 0x30000000},
{"mi", 0x40000000},
{"pl", 0x50000000},
{"vs", 0x60000000},
{"vc", 0x70000000},
{"hi", 0x80000000},
{"ls", 0x90000000},
{"ge", 0xa0000000},
{"lt", 0xb0000000},
{"gt", 0xc0000000},
{"le", 0xd0000000},
{"al", 0xe0000000},
{"nv", 0xf0000000}
};
struct asm_flg
{
CONST char *template; /* Basic flag string */
unsigned long set_bits; /* Bits to set */
unsigned long variants; /* Which CPU variants this exists for */
};
static CONST struct asm_flg s_flag[] =
{
{"s", 0x00100000, ARM_ANY},
{NULL, 0, 0}
};
static CONST struct asm_flg ldst_flags[] =
{
{"b", 0x00400000, ARM_ANY},
{"t", TRANS_BIT, ARM_ANY},
{"bt", 0x00400000 | TRANS_BIT, ARM_ANY},
{"h", 0x00000020, ARM_HALFWORD},
{"sb", 0x00000040, ARM_HALFWORD},
{"sh", 0x00000060, ARM_HALFWORD},
{NULL, 0, 0},
};
static CONST struct asm_flg byte_flag[] =
{
{"b", 0x00400000, ARM_3UP},
{NULL, 0, 0}
};
static CONST struct asm_flg cmp_flags[] =
{
{"s", 0x00100000, ARM_ANY},
{"p", 0x0010f000, ARM_ANY},
{NULL, 0, 0}
};
static CONST struct asm_flg ldm_flags[] =
{
{"ed", 0x01800000, ARM_ANY},
{"fd", 0x00800000, ARM_ANY},
{"ea", 0x01000000, ARM_ANY},
{"fa", 0x08000000, ARM_ANY},
{"ib", 0x01800000, ARM_ANY},
{"ia", 0x00800000, ARM_ANY},
{"db", 0x01000000, ARM_ANY},
{"da", 0x08000000, ARM_ANY},
{NULL, 0, 0}
};
static CONST struct asm_flg stm_flags[] =
{
{"ed", 0x08000000, ARM_ANY},
{"fd", 0x01000000, ARM_ANY},
{"ea", 0x00800000, ARM_ANY},
{"fa", 0x01800000, ARM_ANY},
{"ib", 0x01800000, ARM_ANY},
{"ia", 0x00800000, ARM_ANY},
{"db", 0x01000000, ARM_ANY},
{"da", 0x08000000, ARM_ANY},
{NULL, 0, 0}
};
static CONST struct asm_flg lfm_flags[] =
{
{"fd", 0x00800000, FPU_MEMMULTI},
{"ea", 0x01000000, FPU_MEMMULTI},
{NULL, 0, 0}
};
static CONST struct asm_flg sfm_flags[] =
{
{"fd", 0x01000000, FPU_MEMMULTI},
{"ea", 0x00800000, FPU_MEMMULTI},
{NULL, 0, 0}
};
static CONST struct asm_flg round_flags[] =
{
{"p", 0x00000020, FPU_ALL},
{"m", 0x00000040, FPU_ALL},
{"z", 0x00000060, FPU_ALL},
{NULL, 0, 0}
};
static CONST struct asm_flg except_flag[] =
{
{"e", 0x00400000, FPU_ALL},
{NULL, 0, 0}
};
static CONST struct asm_flg cplong_flag[] =
{
{"l", 0x00400000, ARM_2UP},
{NULL, 0, 0}
};
struct asm_psr
{
CONST char *template;
unsigned long number;
};
#define PSR_ALL 0x00010000
static CONST struct asm_psr psrs[] =
{
/* Valid <psr>'s */
{"cpsr", 0},
{"cpsr_all", 0},
{"spsr", 1},
{"spsr_all", 1},
/* Valid <psrf>'s */
{"cpsr_flg", 2},
{"spsr_flg", 3}
};
/* Functions called by parser */
/* ARM instructions */
static void do_arit PARAMS ((char *operands, unsigned long flags));
static void do_cmp PARAMS ((char *operands, unsigned long flags));
static void do_mov PARAMS ((char *operands, unsigned long flags));
static void do_ldst PARAMS ((char *operands, unsigned long flags));
static void do_ldmstm PARAMS ((char *operands, unsigned long flags));
static void do_branch PARAMS ((char *operands, unsigned long flags));
static void do_swi PARAMS ((char *operands, unsigned long flags));
/* Pseudo Op codes */
static void do_adr PARAMS ((char *operands, unsigned long flags));
static void do_nop PARAMS ((char *operands, unsigned long flags));
/* ARM 2 */
static void do_mul PARAMS ((char *operands, unsigned long flags));
static void do_mla PARAMS ((char *operands, unsigned long flags));
/* ARM 3 */
static void do_swap PARAMS ((char *operands, unsigned long flags));
/* ARM 6 */
static void do_msr PARAMS ((char *operands, unsigned long flags));
static void do_mrs PARAMS ((char *operands, unsigned long flags));
/* ARM 7M */
static void do_mull PARAMS ((char *operands, unsigned long flags));
/* Coprocessor Instructions */
static void do_cdp PARAMS ((char *operands, unsigned long flags));
static void do_lstc PARAMS ((char *operands, unsigned long flags));
static void do_co_reg PARAMS ((char *operands, unsigned long flags));
static void do_fp_ctrl PARAMS ((char *operands, unsigned long flags));
static void do_fp_ldst PARAMS ((char *operands, unsigned long flags));
static void do_fp_ldmstm PARAMS ((char *operands, unsigned long flags));
static void do_fp_dyadic PARAMS ((char *operands, unsigned long flags));
static void do_fp_monadic PARAMS ((char *operands, unsigned long flags));
static void do_fp_cmp PARAMS ((char *operands, unsigned long flags));
static void do_fp_from_reg PARAMS ((char *operands, unsigned long flags));
static void do_fp_to_reg PARAMS ((char *operands, unsigned long flags));
static void fix_new_arm PARAMS ((fragS *frag, int where,
short int size, expressionS *exp,
int pc_rel, int reloc));
static int arm_reg_parse PARAMS ((char **ccp));
static int arm_psr_parse PARAMS ((char **ccp));
/* ARM instructions take 4bytes in the object file, Thumb instructions
take 2. The assembler defaults to ARM code generation: */
static int insn_size = 4;
/* LONGEST_INST is the longest basic instruction name without conditions or
* flags.
* ARM7DM has 4 of length 5
*/
#define LONGEST_INST 5
struct asm_opcode
{
CONST char *template; /* Basic string to match */
unsigned long value; /* Basic instruction code */
CONST char *comp_suffix; /* Compulsory suffix that must follow conds */
CONST struct asm_flg *flags; /* Bits to toggle if flag 'n' set */
unsigned long variants; /* Which CPU variants this exists for */
void (*parms)(); /* Function to call to parse args */
};
static CONST struct asm_opcode insns[] =
{
/* ARM Instructions */
{"and", 0x00000000, NULL, s_flag, ARM_ANY, do_arit},
{"eor", 0x00200000, NULL, s_flag, ARM_ANY, do_arit},
{"sub", 0x00400000, NULL, s_flag, ARM_ANY, do_arit},
{"rsb", 0x00600000, NULL, s_flag, ARM_ANY, do_arit},
{"add", 0x00800000, NULL, s_flag, ARM_ANY, do_arit},
{"adc", 0x00a00000, NULL, s_flag, ARM_ANY, do_arit},
{"sbc", 0x00c00000, NULL, s_flag, ARM_ANY, do_arit},
{"rsc", 0x00e00000, NULL, s_flag, ARM_ANY, do_arit},
{"orr", 0x01800000, NULL, s_flag, ARM_ANY, do_arit},
{"bic", 0x01c00000, NULL, s_flag, ARM_ANY, do_arit},
{"tst", 0x01000000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"teq", 0x01200000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"cmp", 0x01400000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"cmn", 0x01600000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"mov", 0x01a00000, NULL, s_flag, ARM_ANY, do_mov},
{"mvn", 0x01e00000, NULL, s_flag, ARM_ANY, do_mov},
{"str", 0x04000000, NULL, ldst_flags, ARM_ANY, do_ldst},
{"ldr", 0x04100000, NULL, ldst_flags, ARM_ANY, do_ldst},
{"stm", 0x08000000, NULL, stm_flags, ARM_ANY, do_ldmstm},
{"ldm", 0x08100000, NULL, ldm_flags, ARM_ANY, do_ldmstm},
{"swi", 0x0f000000, NULL, NULL, ARM_ANY, do_swi},
{"bl", 0x0b000000, NULL, NULL, ARM_ANY, do_branch},
{"b", 0x0a000000, NULL, NULL, ARM_ANY, do_branch},
/* Pseudo ops */
{"adr", 0x028f0000, NULL, NULL, ARM_ANY, do_adr},
{"nop", 0x01a00000, NULL, NULL, ARM_ANY, do_nop},
/* ARM 2 multiplies */
{"mul", 0x00000090, NULL, s_flag, ARM_2UP, do_mul},
{"mla", 0x00200090, NULL, s_flag, ARM_2UP, do_mla},
/* ARM 3 - swp instructions */
{"swp", 0x01000090, NULL, byte_flag, ARM_3UP, do_swap},
/* ARM 6 Coprocessor instructions */
{"mrs", 0x010f0000, NULL, NULL, ARM_6UP, do_mrs},
{"msr", 0x0128f000, NULL, NULL, ARM_6UP, do_msr},
/* ARM 7M long multiplies - need signed/unsigned flags! */
{"smull", 0x00c00090, NULL, s_flag, ARM_LONGMUL, do_mull},
{"umull", 0x00800090, NULL, s_flag, ARM_LONGMUL, do_mull},
{"smlal", 0x00e00090, NULL, s_flag, ARM_LONGMUL, do_mull},
{"umlal", 0x00a00090, NULL, s_flag, ARM_LONGMUL, do_mull},
/* Floating point instructions */
{"wfs", 0x0e200110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"rfs", 0x0e300110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"wfc", 0x0e400110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"rfc", 0x0e500110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"ldf", 0x0c100100, "sdep", NULL, FPU_ALL, do_fp_ldst},
{"stf", 0x0c000100, "sdep", NULL, FPU_ALL, do_fp_ldst},
{"lfm", 0x0c100200, NULL, lfm_flags, FPU_MEMMULTI, do_fp_ldmstm},
{"sfm", 0x0c000200, NULL, sfm_flags, FPU_MEMMULTI, do_fp_ldmstm},
{"mvf", 0x0e008100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"mnf", 0x0e108100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"abs", 0x0e208100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"rnd", 0x0e308100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"sqt", 0x0e408100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"log", 0x0e508100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"lgn", 0x0e608100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"exp", 0x0e708100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"sin", 0x0e808100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"cos", 0x0e908100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"tan", 0x0ea08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"asn", 0x0eb08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"acs", 0x0ec08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"atn", 0x0ed08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"urd", 0x0ee08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"nrm", 0x0ef08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"adf", 0x0e000100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"suf", 0x0e200100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rsf", 0x0e300100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"muf", 0x0e100100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"dvf", 0x0e400100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rdf", 0x0e500100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"pow", 0x0e600100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rpw", 0x0e700100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rmf", 0x0e800100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"fml", 0x0e900100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"fdv", 0x0ea00100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"frd", 0x0eb00100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"pol", 0x0ec00100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"cmf", 0x0e90f110, NULL, except_flag, FPU_ALL, do_fp_cmp},
{"cnf", 0x0eb0f110, NULL, except_flag, FPU_ALL, do_fp_cmp},
/* The FPA10 data sheet suggests that the 'E' of cmfe/cnfe should not
be an optional suffix, but part of the instruction. To be compatible,
we accept either. */
{"cmfe", 0x0ed0f110, NULL, NULL, FPU_ALL, do_fp_cmp},
{"cnfe", 0x0ef0f110, NULL, NULL, FPU_ALL, do_fp_cmp},
{"flt", 0x0e000110, "sde", round_flags, FPU_ALL, do_fp_from_reg},
{"fix", 0x0e100110, NULL, round_flags, FPU_ALL, do_fp_to_reg},
/* Generic copressor instructions */
{"cdp", 0x0e000000, NULL, NULL, ARM_2UP, do_cdp},
{"ldc", 0x0c100000, NULL, cplong_flag, ARM_2UP, do_lstc},
{"stc", 0x0c000000, NULL, cplong_flag, ARM_2UP, do_lstc},
{"mcr", 0x0e000010, NULL, NULL, ARM_2UP, do_co_reg},
{"mrc", 0x0e100010, NULL, NULL, ARM_2UP, do_co_reg},
};
/* defines for various bits that we will want to toggle */
#define INST_IMMEDIATE 0x02000000
#define OFFSET_REG 0x02000000
#define HWOFFSET_IMM 0x00400000
#define SHIFT_BY_REG 0x00000010
#define PRE_INDEX 0x01000000
#define INDEX_UP 0x00800000
#define WRITE_BACK 0x00200000
#define MULTI_SET_PSR 0x00400000
#define LITERAL_MASK 0xf000f000
#define COND_MASK 0xf0000000
#define OPCODE_MASK 0xfe1fffff
#define DATA_OP_SHIFT 21
/* Codes to distinguish the arithmetic instructions */
#define OPCODE_AND 0
#define OPCODE_EOR 1
#define OPCODE_SUB 2
#define OPCODE_RSB 3
#define OPCODE_ADD 4
#define OPCODE_ADC 5
#define OPCODE_SBC 6
#define OPCODE_RSC 7
#define OPCODE_TST 8
#define OPCODE_TEQ 9
#define OPCODE_CMP 10
#define OPCODE_CMN 11
#define OPCODE_ORR 12
#define OPCODE_MOV 13
#define OPCODE_BIC 14
#define OPCODE_MVN 15
struct reg_entry
{
CONST char *name;
int number;
};
#define int_register(reg) ((reg) >= 0 && (reg) <= 15)
#define cp_register(reg) ((reg) >= 32 && (reg) <= 47)
#define fp_register(reg) ((reg) >= 16 && (reg) <= 23)
#define REG_PC 15
/* These are the standard names; Users can add aliases with .req */
static CONST struct reg_entry reg_table[] =
{
/* Processor Register Numbers */
{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3},
{"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7},
{"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11},
{"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", REG_PC},
/* APCS conventions */
{"a1", 0}, {"a2", 1}, {"a3", 2}, {"a4", 3},
{"v1", 4}, {"v2", 5}, {"v3", 6}, {"v4", 7}, {"v5", 8},
{"v6", 9}, {"sb", 9}, {"v7", 10}, {"sl", 10},
{"fp", 11}, {"ip", 12}, {"sp", 13}, {"lr", 14}, {"pc", REG_PC},
/* FP Registers */
{"f0", 16}, {"f1", 17}, {"f2", 18}, {"f3", 19},
{"f4", 20}, {"f5", 21}, {"f6", 22}, {"f7", 23},
{"c0", 32}, {"c1", 33}, {"c2", 34}, {"c3", 35},
{"c4", 36}, {"c5", 37}, {"c6", 38}, {"c7", 39},
{"c8", 40}, {"c9", 41}, {"c10", 42}, {"c11", 43},
{"c12", 44}, {"c13", 45}, {"c14", 46}, {"c15", 47},
{"cr0", 32}, {"cr1", 33}, {"cr2", 34}, {"cr3", 35},
{"cr4", 36}, {"cr5", 37}, {"cr6", 38}, {"cr7", 39},
{"cr8", 40}, {"cr9", 41}, {"cr10", 42}, {"cr11", 43},
{"cr12", 44}, {"cr13", 45}, {"cr14", 46}, {"cr15", 47},
{NULL, 0}
};
static CONST char *bad_args = "Bad arguments to instruction";
static CONST char *bad_pc = "r15 not allowed here";
static struct hash_control *arm_ops_hsh = NULL;
static struct hash_control *arm_cond_hsh = NULL;
static struct hash_control *arm_shift_hsh = NULL;
static struct hash_control *arm_reg_hsh = NULL;
static struct hash_control *arm_psr_hsh = NULL;
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function
*/
static void s_req PARAMS ((int));
static void s_align PARAMS ((int));
static void s_bss PARAMS ((int));
static void s_even PARAMS ((int));
static void s_ltorg PARAMS ((int));
static int my_get_expression PARAMS ((expressionS *, char **));
CONST pseudo_typeS md_pseudo_table[] =
{
{"req", s_req, 0}, /* Never called becasue '.req' does not start line */
{"bss", s_bss, 0},
{"align", s_align, 0},
{"even", s_even, 0},
{"ltorg", s_ltorg, 0},
{"pool", s_ltorg, 0},
{"word", cons, 4},
{"extend", float_cons, 'x'},
{"ldouble", float_cons, 'x'},
{"packed", float_cons, 'p'},
{0, 0, 0}
};
/* Stuff needed to resolve the label ambiguity
As:
...
label: <insn>
may differ from:
...
label:
<insn>
*/
symbolS *last_label_seen;
/* Literal stuff */
#define MAX_LITERAL_POOL_SIZE 1024
typedef struct literalS
{
struct expressionS exp;
struct arm_it *inst;
} literalT;
literalT literals[MAX_LITERAL_POOL_SIZE];
int next_literal_pool_place = 0; /* Next free entry in the pool */
int lit_pool_num = 1; /* Next literal pool number */
symbolS *current_poolP = NULL;
symbolS *symbol_make_empty ();
static int
add_to_lit_pool ()
{
int lit_count = 0;
if (current_poolP == NULL)
current_poolP = symbol_make_empty();
/* Check if this literal value is already in the pool: */
while (lit_count < next_literal_pool_place)
{
if (literals[lit_count].exp.X_op == inst.reloc.exp.X_op
&& inst.reloc.exp.X_op == O_constant
&& literals[lit_count].exp.X_add_number == inst.reloc.exp.X_add_number
&& literals[lit_count].exp.X_unsigned == inst.reloc.exp.X_unsigned)
break;
lit_count++;
}
if (lit_count == next_literal_pool_place) /* new entry */
{
if (next_literal_pool_place > MAX_LITERAL_POOL_SIZE)
{
inst.error = "Literal Pool Overflow\n";
return FAIL;
}
literals[next_literal_pool_place].exp = inst.reloc.exp;
lit_count = next_literal_pool_place++;
}
inst.reloc.exp.X_op = O_symbol;
inst.reloc.exp.X_add_number = (lit_count)*4-8;
inst.reloc.exp.X_add_symbol = current_poolP;
return SUCCESS;
}
/* Can't use symbol_new here, so have to create a symbol and them at
a later datete assign iot a value. Thats what these functions do */
static void
symbol_locate (symbolP, name, segment, valu, frag)
symbolS *symbolP;
CONST char *name; /* It is copied, the caller can modify */
segT segment; /* Segment identifier (SEG_<something>) */
valueT valu; /* Symbol value */
fragS *frag; /* Associated fragment */
{
unsigned int name_length;
char *preserved_copy_of_name;
name_length = strlen (name) + 1; /* +1 for \0 */
obstack_grow (&notes, name, name_length);
preserved_copy_of_name = obstack_finish (&notes);
#ifdef STRIP_UNDERSCORE
if (preserved_copy_of_name[0] == '_')
preserved_copy_of_name++;
#endif
#ifdef tc_canonicalize_symbol_name
preserved_copy_of_name =
tc_canonicalize_symbol_name (preserved_copy_of_name);
#endif
S_SET_NAME (symbolP, preserved_copy_of_name);
S_SET_SEGMENT (symbolP, segment);
S_SET_VALUE (symbolP, valu);
symbol_clear_list_pointers(symbolP);
symbolP->sy_frag = frag;
/*
* Link to end of symbol chain.
*/
{
extern int symbol_table_frozen;
if (symbol_table_frozen)
abort ();
}
symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
obj_symbol_new_hook (symbolP);
#ifdef tc_symbol_new_hook
tc_symbol_new_hook (symbolP);
#endif
#ifdef DEBUG_SYMS
verify_symbol_chain(symbol_rootP, symbol_lastP);
#endif /* DEBUG_SYMS */
}
symbolS *
symbol_make_empty ()
{
symbolS *symbolP;
symbolP = (symbolS *) obstack_alloc (&notes, sizeof (symbolS));
/* symbol must be born in some fixed state. This seems as good as any. */
memset (symbolP, 0, sizeof (symbolS));
#ifdef BFD_ASSEMBLER
symbolP->bsym = bfd_make_empty_symbol (stdoutput);
assert (symbolP->bsym != 0);
symbolP->bsym->udata.p = (PTR) symbolP;
#endif
return symbolP;
}
/* Check that an immediate is valid, and if so, convert it to the right format
*/
/* OH, for a rotate instruction in C! */
static int
validate_immediate (val)
int val;
{
unsigned int a = (unsigned int) val;
int i;
/* Do the easy (and most common ones) quickly */
for (i = 0; i <= 24; i += 2)
{
if ((a & (0xff << i)) == a)
return (int) (((32 - i) & 0x1e) << 7) | ((a >> i) & 0xff);
}
/* Now do the harder ones */
for (; i < 32; i += 2)
{
if ((a & ((0xff << i) | (0xff >> (32 - i)))) == a)
{
a = ((a >> i) & 0xff) | ((a << (32 - i)) & 0xff);
return (int) a | (((32 - i) >> 1) << 8);
}
}
return FAIL;
}
static int
validate_offset_imm (val, hwse)
int val;
int hwse;
{
if ((hwse && (val < -255 || val > 255))
|| (val < -4095 || val > 4095))
return FAIL;
return val;
}
static void
s_req (a)
int a;
{
as_bad ("Invalid syntax for .req directive.");
}
static void
s_bss (ignore)
int ignore;
{
/* We don't support putting frags in the BSS segment, we fake it by
marking in_bss, then looking at s_skip for clues?.. */
subseg_set (bss_section, 0);
demand_empty_rest_of_line ();
}
static void
s_even (ignore)
int ignore;
{
if (!need_pass_2) /* Never make frag if expect extra pass. */
frag_align (1, 0);
record_alignment (now_seg, 1);
demand_empty_rest_of_line ();
}
static void
s_ltorg (internal)
int internal;
{
int lit_count = 0;
char sym_name[20];
if (current_poolP == NULL)
{
/* Nothing to do */
if (!internal)
as_tsktsk ("Nothing to put in the pool\n");
return;
}
/* Align pool as you have word accesses */
/* Only make a frag if we have to ... */
if (!need_pass_2)
frag_align (2, 0);
record_alignment (now_seg, 2);
if (internal)
as_tsktsk ("Inserting implicit pool at change of section");
sprintf (sym_name, "$$lit_\002%x", lit_pool_num++);
symbol_locate (current_poolP, sym_name, now_seg,
(valueT) frag_now_fix (), frag_now);
symbol_table_insert (current_poolP);
while (lit_count < next_literal_pool_place)
/* First output the expression in the instruction to the pool */
emit_expr (&(literals[lit_count++].exp), 4); /* .word */
next_literal_pool_place = 0;
current_poolP = NULL;
}
#if 0 /* not used */
static void
arm_align (power, fill)
int power;
int fill;
{
/* Only make a frag if we HAVE to ... */
if (power && !need_pass_2)
frag_align (power, fill);
record_alignment (now_seg, power);
}
#endif
static void
s_align (unused) /* Same as s_align_ptwo but align 0 => align 2 */
int unused;
{
register int temp;
register long temp_fill;
long max_alignment = 15;
temp = get_absolute_expression ();
if (temp > max_alignment)
as_bad ("Alignment too large: %d. assumed.", temp = max_alignment);
else if (temp < 0)
{
as_bad ("Alignment negative. 0 assumed.");
temp = 0;
}
if (*input_line_pointer == ',')
{
input_line_pointer++;
temp_fill = get_absolute_expression ();
}
else
temp_fill = 0;
if (!temp)
temp = 2;
/* Only make a frag if we HAVE to. . . */
if (temp && !need_pass_2)
frag_align (temp, (int) temp_fill);
demand_empty_rest_of_line ();
record_alignment (now_seg, temp);
}
static void
end_of_line (str)
char *str;
{
while (*str == ' ')
str++;
if (*str != '\0')
inst.error = "Garbage following instruction";
}
static int
skip_past_comma (str)
char **str;
{
char *p = *str, c;
int comma = 0;
while ((c = *p) == ' ' || c == ',')
{
p++;
if (c == ',' && comma++)
return FAIL;
}
if (c == '\0')
return FAIL;
*str = p;
return comma ? SUCCESS : FAIL;
}
/* A standard register must be given at this point. Shift is the place to
put it in the instruction. */
static int
reg_required_here (str, shift)
char **str;
int shift;
{
int reg;
char *start = *str;
if ((reg = arm_reg_parse (str)) != FAIL && int_register (reg))
{
inst.instruction |= reg << shift;
return reg;
}
/* In the few cases where we might be able to accept something else
this error can be overridden */
inst.error = "Register expected";
/* Restore the start point, we may have got a reg of the wrong class. */
*str = start;
return FAIL;
}
static int
psr_required_here (str, shift)
char **str;
int shift;
{
int psr;
char *start = *str;
if ((psr = arm_psr_parse (str)) != FAIL && psr < 2)
{
if (psr == 1)
inst.instruction |= 1 << shift; /* Should be bit 22 */
return psr;
}
/* In the few cases where we might be able to accept something else
this error can be overridden */
inst.error = "<psr> expected";
/* Restore the start point. */
*str = start;
return FAIL;
}
static int
psrf_required_here (str, shift)
char **str;
int shift;
{
int psrf;
char *start = *str;
if ((psrf = arm_psr_parse (str)) != FAIL && psrf > 1)
{
if (psrf == 1 || psrf == 3)
inst.instruction |= 1 << shift; /* Should be bit 22 */
return psrf;
}
/* In the few cases where we might be able to accept something else
this error can be overridden */
inst.error = "<psrf> expected";
/* Restore the start point. */
*str = start;
return FAIL;
}
static int
co_proc_number (str)
char **str;
{
int processor, pchar;
while (**str == ' ')
(*str)++;
/* The data sheet seems to imply that just a number on its own is valid
here, but the RISC iX assembler seems to accept a prefix 'p'. We will
accept either. */
if (**str == 'p' || **str == 'P')
(*str)++;
pchar = *(*str)++;
if (pchar >= '0' && pchar <= '9')
{
processor = pchar - '0';
if (**str >= '0' && **str <= '9')
{
processor = processor * 10 + *(*str)++ - '0';
if (processor > 15)
{
inst.error = "Illegal co-processor number";
return FAIL;
}
}
}
else
{
inst.error = "Bad or missing co-processor number";
return FAIL;
}
inst.instruction |= processor << 8;
return SUCCESS;
}
static int
cp_opc_expr (str, where, length)
char **str;
int where;
int length;
{
expressionS expr;
while (**str == ' ')
(*str)++;
memset (&expr, '\0', sizeof (expr));
if (my_get_expression (&expr, str))
return FAIL;
if (expr.X_op != O_constant)
{
inst.error = "bad or missing expression";
return FAIL;
}
if ((expr.X_add_number & ((1 << length) - 1)) != expr.X_add_number)
{
inst.error = "immediate co-processor expression too large";
return FAIL;
}
inst.instruction |= expr.X_add_number << where;
return SUCCESS;
}
static int
cp_reg_required_here (str, where)
char **str;
int where;
{
int reg;
char *start = *str;
if ((reg = arm_reg_parse (str)) != FAIL && cp_register (reg))
{
reg &= 15;
inst.instruction |= reg << where;
return reg;
}
/* In the few cases where we might be able to accept something else
this error can be overridden */
inst.error = "Co-processor register expected";
/* Restore the start point */
*str = start;
return FAIL;
}
static int
fp_reg_required_here (str, where)
char **str;
int where;
{
int reg;
char *start = *str;
if ((reg = arm_reg_parse (str)) != FAIL && fp_register (reg))
{
reg &= 7;
inst.instruction |= reg << where;
return reg;
}
/* In the few cases where we might be able to accept something else
this error can be overridden */
inst.error = "Floating point register expected";
/* Restore the start point */
*str = start;
return FAIL;
}
static int
cp_address_offset (str)
char **str;
{
int offset;
while (**str == ' ')
(*str)++;
if (**str != '#')
{
inst.error = "immediate expression expected";
return FAIL;
}
(*str)++;
if (my_get_expression (&inst.reloc.exp, str))
return FAIL;
if (inst.reloc.exp.X_op == O_constant)
{
offset = inst.reloc.exp.X_add_number;
if (offset & 3)
{
inst.error = "co-processor address must be word aligned";
return FAIL;
}
if (offset > 1023 || offset < -1023)
{
inst.error = "offset too large";
return FAIL;
}
if (offset >= 0)
inst.instruction |= INDEX_UP;
else
offset = -offset;
inst.instruction |= offset >> 2;
}
else
inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
return SUCCESS;
}
static int
cp_address_required_here (str)
char **str;
{
char *p = *str;
int pre_inc = 0;
int write_back = 0;
if (*p == '[')
{
int reg;
p++;
while (*p == ' ')
p++;
if ((reg = reg_required_here (&p, 16)) == FAIL)
{
inst.error = "Register required";
return FAIL;
}
while (*p == ' ')
p++;
if (*p == ']')
{
p++;
if (skip_past_comma (&p) == SUCCESS)
{
/* [Rn], #expr */
write_back = WRITE_BACK;
if (reg == REG_PC)
{
inst.error = "pc may not be used in post-increment";
return FAIL;
}
if (cp_address_offset (&p) == FAIL)
return FAIL;
}
else
pre_inc = PRE_INDEX | INDEX_UP;
}
else
{
/* '['Rn, #expr']'[!] */
if (skip_past_comma (&p) == FAIL)
{
inst.error = "pre-indexed expression expected";
return FAIL;
}
pre_inc = PRE_INDEX;
if (cp_address_offset (&p) == FAIL)
return FAIL;
while (*p == ' ')
p++;
if (*p++ != ']')
{
inst.error = "missing ]";
return FAIL;
}
while (*p == ' ')
p++;
if (*p == '!')
{
if (reg == REG_PC)
{
inst.error = "pc may not be used with write-back";
return FAIL;
}
p++;
write_back = WRITE_BACK;
}
}
}
else
{
if (my_get_expression (&inst.reloc.exp, &p))
return FAIL;
inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
inst.reloc.exp.X_add_number -= 8; /* PC rel adjust */
inst.reloc.pc_rel = 1;
inst.instruction |= (REG_PC << 16);
pre_inc = PRE_INDEX;
}
inst.instruction |= write_back | pre_inc;
*str = p;
return SUCCESS;
}
static void
do_nop (str, flags)
char *str;
unsigned long flags;
{
/* Do nothing really */
inst.instruction |= flags; /* This is pointless */
end_of_line (str);
return;
}
static void
do_mrs (str, flags)
char *str;
unsigned long flags;
{
/* Only one syntax */
while (*str == ' ')
str++;
if (reg_required_here (&str, 12) == FAIL)
{
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| psr_required_here (&str, 22) == FAIL)
{
inst.error = "<psr> expected";
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_msr (str, flags)
char *str;
unsigned long flags;
{
int psr, psrf, reg;
/* Three possible forms: "<psr>, Rm", "<psrf>, Rm", "<psrf>, #expression" */
while (*str == ' ')
str++;
if ((psr = psr_required_here (&str, 22)) != FAIL)
{
inst.instruction |= PSR_ALL;
/* Sytax should be "<psr>, Rm" */
if (skip_past_comma (&str) == FAIL
|| (reg = reg_required_here (&str, 0)) == FAIL)
{
inst.error = bad_args;
return;
}
}
else if ((psrf = psrf_required_here (&str, 22)) != FAIL)
/* Syntax could be "<psrf>, rm", "<psrf>, #expression" */
{
if (skip_past_comma (&str) == FAIL)
{
inst.error = bad_args;
return;
}
if ((reg = reg_required_here (&str, 0)) != FAIL)
;
/* Immediate expression */
else if (*(str++) == '#')
{
inst.error = NULL;
if (my_get_expression (&inst.reloc.exp, &str))
{
inst.error = "Register or shift expression expected";
return;
}
if (inst.reloc.exp.X_add_symbol)
{
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.pc_rel = 0;
}
else
{
int value = validate_immediate (inst.reloc.exp.X_add_number);
if (value == FAIL)
{
inst.error = "Invalid constant";
return;
}
inst.instruction |= value;
}
flags |= INST_IMMEDIATE;
}
else
{
inst.error = "Error: the other";
return;
}
}
else
{
inst.error = bad_args;
return;
}
inst.error = NULL;
inst.instruction |= flags;
end_of_line (str);
return;
}
/* Long Multiply Parser
UMULL RdLo, RdHi, Rm, Rs
SMULL RdLo, RdHi, Rm, Rs
UMLAL RdLo, RdHi, Rm, Rs
SMLAL RdLo, RdHi, Rm, Rs
*/
static void
do_mull (str, flags)
char *str;
unsigned long flags;
{
int rdlo, rdhi, rm, rs;
/* only one format "rdlo, rdhi, rm, rs" */
while (*str == ' ')
str++;
if ((rdlo = reg_required_here (&str, 12)) == FAIL)
{
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rdhi = reg_required_here (&str, 16)) == FAIL)
{
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 0)) == FAIL)
{
inst.error = bad_args;
return;
}
/* rdhi, rdlo and rm must all be different */
if (rdlo == rdhi || rdlo == rm || rdhi == rm)
as_tsktsk ("rdhi, rdlo and rm must all be different");
if (skip_past_comma (&str) == FAIL
|| (rs = reg_required_here (&str, 8)) == FAIL)
{
inst.error = bad_args;
return;
}
if (rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC)
{
inst.error = bad_pc;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_mul (str, flags)
char *str;
unsigned long flags;
{
int rd, rm;
/* only one format "rd, rm, rs" */
while (*str == ' ')
str++;
if ((rd = reg_required_here (&str, 16)) == FAIL)
{
inst.error = bad_args;
return;
}
if (rd == REG_PC)
{
inst.error = bad_pc;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 0)) == FAIL)
{
inst.error = bad_args;
return;
}
if (rm == REG_PC)
{
inst.error = bad_pc;
return;
}
if (rm == rd)
as_tsktsk ("rd and rm should be different in mul");
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 8)) == FAIL)
{
inst.error = bad_args;
return;
}
if (rm == REG_PC)
{
inst.error = bad_pc;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_mla (str, flags)
char *str;
unsigned long flags;
{
int rd, rm;
/* only one format "rd, rm, rs, rn" */
while (*str == ' ')
str++;
if ((rd = reg_required_here (&str, 16)) == FAIL)
{
inst.error = bad_args;
return;
}
if (rd == REG_PC)
{
inst.error = bad_pc;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 0)) == FAIL)
{
inst.error = bad_args;
return;
}
if (rm == REG_PC)
{
inst.error = bad_pc;
return;
}
if (rm == rd)
as_tsktsk ("rd and rm should be different in mla");
if (skip_past_comma (&str) == FAIL
|| (rd = reg_required_here (&str, 8)) == FAIL
|| skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 12)) == FAIL)
{
inst.error = bad_args;
return;
}
if (rd == REG_PC || rm == REG_PC)
{
inst.error = bad_pc;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
/* Returns the index into fp_values of a floating point number, or -1 if
not in the table. */
static int
my_get_float_expression (str)
char **str;
{
LITTLENUM_TYPE words[MAX_LITTLENUMS];
char *save_in;
expressionS exp;
int i, j;
memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
/* Look for a raw floating point number */
if ((save_in = atof_ieee (*str, 'x', words)) != NULL
&& (is_end_of_line [(int)(*save_in)] || *save_in == '\0'))
{
for (i = 0; i < NUM_FLOAT_VALS; i++)
{
for (j = 0; j < MAX_LITTLENUMS; j++)
{
if (words[j] != fp_values[i][j])
break;
}
if (j == MAX_LITTLENUMS)
{
*str = save_in;
return i;
}
}
}
/* Try and parse a more complex expression, this will probably fail
unless the code uses a floating point prefix (eg "0f") */
save_in = input_line_pointer;
input_line_pointer = *str;
if (expression (&exp) == absolute_section
&& exp.X_op == O_big
&& exp.X_add_number < 0)
{
/* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
Ditto for 15. */
if (gen_to_words (words, 5, (long)15) == 0)
{
for (i = 0; i < NUM_FLOAT_VALS; i++)
{
for (j = 0; j < MAX_LITTLENUMS; j++)
{
if (words[j] != fp_values[i][j])
break;
}
if (j == MAX_LITTLENUMS)
{
*str = input_line_pointer;
input_line_pointer = save_in;
return i;
}
}
}
}
*str = input_line_pointer;
input_line_pointer = save_in;
return -1;
}
/* Return true if anything in the expression is a bignum */
static int
walk_no_bignums (sp)
symbolS *sp;
{
if (sp->sy_value.X_op == O_big)
return 1;
if (sp->sy_value.X_add_symbol)
{
return (walk_no_bignums (sp->sy_value.X_add_symbol)
|| (sp->sy_value.X_op_symbol
&& walk_no_bignums (sp->sy_value.X_op_symbol)));
}
return 0;
}
static int
my_get_expression (ep, str)
expressionS *ep;
char **str;
{
char *save_in;
segT seg;
save_in = input_line_pointer;
input_line_pointer = *str;
seg = expression (ep);
#ifdef OBJ_AOUT
if (seg != absolute_section
&& seg != text_section
&& seg != data_section
&& seg != bss_section
&& seg != undefined_section)
{
inst.error = "bad_segment";
*str = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
#endif
/* Get rid of any bignums now, so that we don't generate an error for which
we can't establish a line number later on. Big numbers are never valid
in instructions, which is where this routine is always called. */
if (ep->X_op == O_big
|| (ep->X_add_symbol
&& (walk_no_bignums (ep->X_add_symbol)
|| (ep->X_op_symbol
&& walk_no_bignums (ep->X_op_symbol)))))
{
inst.error = "Invalid constant";
*str = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
*str = input_line_pointer;
input_line_pointer = save_in;
return 0;
}
/* unrestrict should be one if <shift> <register> is permitted for this
instruction */
static int
decode_shift (str, unrestrict)
char **str;
int unrestrict;
{
struct asm_shift *shft;
char *p;
char c;
while (**str == ' ')
(*str)++;
for (p = *str; isalpha (*p); p++)
;
if (p == *str)
{
inst.error = "Shift expression expected";
return FAIL;
}
c = *p;
*p = '\0';
shft = (struct asm_shift *) hash_find (arm_shift_hsh, *str);
*p = c;
if (shft)
{
if (!strcmp (*str, "rrx"))
{
*str = p;
inst.instruction |= shft->value;
return SUCCESS;
}
while (*p == ' ')
p++;
if (unrestrict && reg_required_here (&p, 8) != FAIL)
{
inst.instruction |= shft->value | SHIFT_BY_REG;
*str = p;
return SUCCESS;
}
else if (*p == '#')
{
inst.error = NULL;
p++;
if (my_get_expression (&inst.reloc.exp, &p))
return FAIL;
/* Validate some simple #expressions */
if (! inst.reloc.exp.X_add_symbol)
{
int num = inst.reloc.exp.X_add_number;
if (num < 0 || num > 32
|| (num == 32
&& (shft->value == 0 || shft->value == 0x60)))
{
inst.error = "Invalid immediate shift";
return FAIL;
}
/* Shifts of zero should be converted to lsl (which is zero)*/
if (num == 0)
{
*str = p;
return SUCCESS;
}
/* Shifts of 32 are encoded as 0, for those shifts that
support it. */
if (num == 32)
num = 0;
inst.instruction |= (num << 7) | shft->value;
*str = p;
return SUCCESS;
}
inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
inst.reloc.pc_rel = 0;
inst.instruction |= shft->value;
*str = p;
return SUCCESS;
}
else
{
inst.error = unrestrict ? "shift requires register or #expression"
: "shift requires #expression";
*str = p;
return FAIL;
}
}
inst.error = "Shift expression expected";
return FAIL;
}
/* Do those data_ops which can take a negative immediate constant */
/* by altering the instuction. A bit of a hack really */
/* MOV <-> MVN
AND <-> BIC
ADC <-> SBC
by inverting the second operand, and
ADD <-> SUB
CMP <-> CMN
by negating the second operand.
*/
static int
negate_data_op (instruction, value)
unsigned long *instruction;
unsigned long value;
{
int op, new_inst;
unsigned long negated, inverted;
negated = validate_immediate (-value);
inverted = validate_immediate (~value);
op = (*instruction >> DATA_OP_SHIFT) & 0xf;
switch (op)
{
/* First negates */
case OPCODE_SUB: /* ADD <-> SUB */
new_inst = OPCODE_ADD;
value = negated;
break;
case OPCODE_ADD:
new_inst = OPCODE_SUB;
value = negated;
break;
case OPCODE_CMP: /* CMP <-> CMN */
new_inst = OPCODE_CMN;
value = negated;
break;
case OPCODE_CMN:
new_inst = OPCODE_CMP;
value = negated;
break;
/* Now Inverted ops */
case OPCODE_MOV: /* MOV <-> MVN */
new_inst = OPCODE_MVN;
value = inverted;
break;
case OPCODE_MVN:
new_inst = OPCODE_MOV;
value = inverted;
break;
case OPCODE_AND: /* AND <-> BIC */
new_inst = OPCODE_BIC;
value = inverted;
break;
case OPCODE_BIC:
new_inst = OPCODE_AND;
value = inverted;
break;
case OPCODE_ADC: /* ADC <-> SBC */
new_inst = OPCODE_SBC;
value = inverted;
break;
case OPCODE_SBC:
new_inst = OPCODE_ADC;
value = inverted;
break;
/* We cannot do anything */
default:
return FAIL;
}
if (value == FAIL)
return FAIL;
*instruction &= OPCODE_MASK;
*instruction |= new_inst << DATA_OP_SHIFT;
return value;
}
static int
data_op2 (str)
char **str;
{
int value;
expressionS expr;
while (**str == ' ')
(*str)++;
if (reg_required_here (str, 0) != FAIL)
{
if (skip_past_comma (str) == SUCCESS)
{
/* Shift operation on register */
return decode_shift (str, NO_SHIFT_RESTRICT);
}
return SUCCESS;
}
else
{
/* Immediate expression */
if (*((*str)++) == '#')
{
inst.error = NULL;
if (my_get_expression (&inst.reloc.exp, str))
return FAIL;
if (inst.reloc.exp.X_add_symbol)
{
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.pc_rel = 0;
}
else
{
if (skip_past_comma (str) == SUCCESS)
{
/* #x, y -- ie explicit rotation by Y */
if (my_get_expression (&expr, str))
return FAIL;
if (expr.X_op != O_constant)
{
inst.error = "Constant expression expected";
return FAIL;
}
/* Rotate must be a multiple of 2 */
if (((unsigned) expr.X_add_number) > 30
|| (expr.X_add_number & 1) != 0
|| ((unsigned) inst.reloc.exp.X_add_number) > 255)
{
inst.error = "Invalid constant";
return FAIL;
}
inst.instruction |= INST_IMMEDIATE;
inst.instruction |= inst.reloc.exp.X_add_number;
inst.instruction |= expr.X_add_number << 7;
return SUCCESS;
}
/* Implicit rotation, select a suitable one */
value = validate_immediate (inst.reloc.exp.X_add_number);
if (value == FAIL)
{
/* Can't be done, perhaps the code reads something like
"add Rd, Rn, #-n", where "sub Rd, Rn, #n" would be ok */
if ((value = negate_data_op (&inst.instruction,
inst.reloc.exp.X_add_number))
== FAIL)
{
inst.error = "Invalid constant";
return FAIL;
}
}
inst.instruction |= value;
}
inst.instruction |= INST_IMMEDIATE;
return SUCCESS;
}
inst.error = "Register or shift expression expected";
return FAIL;
}
}
static int
fp_op2 (str, flags)
char **str;
unsigned long flags;
{
while (**str == ' ')
(*str)++;
if (fp_reg_required_here (str, 0) != FAIL)
return SUCCESS;
else
{
/* Immediate expression */
if (*((*str)++) == '#')
{
int i;
inst.error = NULL;
while (**str == ' ')
(*str)++;
/* First try and match exact strings, this is to guarantee that
some formats will work even for cross assembly */
for (i = 0; fp_const[i]; i++)
{
if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
{
char *start = *str;
*str += strlen (fp_const[i]);
if (is_end_of_line[(int)**str] || **str == '\0')
{
inst.instruction |= i + 8;
return SUCCESS;
}
*str = start;
}
}
/* Just because we didn't get a match doesn't mean that the
constant isn't valid, just that it is in a format that we
don't automatically recognize. Try parsing it with
the standard expression routines. */
if ((i = my_get_float_expression (str)) >= 0)
{
inst.instruction |= i + 8;
return SUCCESS;
}
inst.error = "Invalid floating point immediate expression";
return FAIL;
}
inst.error = "Floating point register or immediate expression expected";
return FAIL;
}
}
static void
do_arit (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
if (reg_required_here (&str, 12) == FAIL
|| skip_past_comma (&str) == FAIL
|| reg_required_here (&str, 16) == FAIL
|| skip_past_comma (&str) == FAIL
|| data_op2 (&str) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_adr (str, flags)
char *str;
unsigned long flags;
{
/* This is a pseudo-op of the form "adr rd, label" to be converted into
a relative address of the form add rd, pc, #label-.-8 */
while (*str == ' ')
str++;
if (reg_required_here (&str, 12) == FAIL
|| skip_past_comma (&str) == FAIL
|| my_get_expression (&inst.reloc.exp, &str))
{
if (!inst.error)
inst.error = bad_args;
return;
}
/* Frag hacking will turn this into a sub instruction if the offset turns
out to be negative. */
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */
inst.reloc.pc_rel = 1;
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_cmp (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
if (reg_required_here (&str, 16) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| data_op2 (&str) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
if ((flags & 0x0000f000) == 0)
inst.instruction |= 0x00100000;
end_of_line (str);
return;
}
static void
do_mov (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
if (reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| data_op2 (&str) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static int
ldst_extend (str, hwse)
char **str;
int hwse;
{
int add = INDEX_UP;
switch (**str)
{
case '#':
(*str)++;
if (my_get_expression (&inst.reloc.exp, str))
return FAIL;
if (inst.reloc.exp.X_op == O_constant)
{
int value = inst.reloc.exp.X_add_number;
if ((hwse && (value < -255 || value > 255))
|| (value < -4095 || value > 4095))
{
inst.error = "address offset too large";
return FAIL;
}
if (value < 0)
{
value = -value;
add = 0;
}
/* Halfword and signextension instructions have the
immediate value split across bits 11..8 and bits 3..0 */
if (hwse)
inst.instruction |= add | HWOFFSET_IMM | (value >> 4) << 8 | value & 0xF;
else
inst.instruction |= add | value;
}
else
{
if (hwse)
{
inst.instruction |= HWOFFSET_IMM;
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
}
else
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
inst.reloc.pc_rel = 0;
}
return SUCCESS;
case '-':
add = 0; /* and fall through */
case '+':
(*str)++; /* and fall through */
default:
if (reg_required_here (str, 0) == FAIL)
{
inst.error = "Register expected";
return FAIL;
}
if (hwse)
inst.instruction |= add;
else
inst.instruction |= add | OFFSET_REG;
/* Shifts are not allowed in the halfword and signextension
forms of single memory transfers: */
if (!hwse && skip_past_comma (str) == SUCCESS)
return decode_shift (str, SHIFT_RESTRICT);
return SUCCESS;
}
}
static void
do_ldst (str, flags)
char *str;
unsigned long flags;
{
int halfword = 0;
int signextend = 0;
int pre_inc = 0;
int conflict_reg;
int value;
/* This is not ideal, but it is the simplest way of dealing with the
ARM7T extension instructions (since they use a different
encoding, but the same mnemonic): */
halfword = flags & 0x00000020;
signextend = flags & 0x00000040;
if (halfword || signextend)
{
/* This is actually a load/store of a halfword, or a
signed-extension load */
inst.instruction = (inst.instruction & COND_MASK)
| 0x00000090
| (inst.instruction & 0x00100000);
if (signextend && !(inst.instruction & 0x00100000))
{
inst.error = "Sign-extension not applicable to store instructions";
return;
}
}
while (*str == ' ')
str++;
if ((conflict_reg = reg_required_here (&str, 12)) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL)
{
inst.error = "Address expected";
return;
}
if (*str == '[')
{
int reg;
str++;
while (*str == ' ')
str++;
if ((reg = reg_required_here (&str, 16)) == FAIL)
{
inst.error = "Register required";
return;
}
conflict_reg = (((conflict_reg == reg)
&& (inst.instruction & 0x00100000))
? 1 : 0);
while (*str == ' ')
str++;
if (*str == ']')
{
str++;
if (skip_past_comma (&str) == SUCCESS)
{
/* [Rn],... (post inc) */
if (ldst_extend (&str, halfword | signextend) == FAIL)
return;
if (conflict_reg)
as_warn ("destination register same as write-back base\n");
}
else
{
/* [Rn] */
if (halfword | signextend)
inst.instruction |= HWOFFSET_IMM;
while (*str == ' ')
str++;
if (*str == '!')
{
if (conflict_reg)
as_warn ("destination register same as write-back base\n");
str++;
inst.instruction |= WRITE_BACK;
}
flags |= INDEX_UP;
if (! (flags & TRANS_BIT))
pre_inc = 1;
}
}
else
{
/* [Rn,...] */
if (skip_past_comma (&str) == FAIL)
{
inst.error = "pre-indexed expression expected";
return;
}
pre_inc = 1;
if (ldst_extend (&str, halfword | signextend) == FAIL)
return;
while (*str == ' ')
str++;
if (*str++ != ']')
{
inst.error = "missing ]";
return;
}
while (*str == ' ')
str++;
if (*str == '!')
{
if (conflict_reg)
as_warn ("destination register same as write-back base\n");
str++;
inst.instruction |= WRITE_BACK;
}
}
}
else if (*str == '=')
{
/* Parse an "ldr Rd, =expr" instruction; this is another pseudo op */
str++;
while (*str == ' ')
str++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
if (inst.reloc.exp.X_op != O_constant
&& inst.reloc.exp.X_op != O_symbol)
{
inst.error = "Constant expression expected";
return;
}
if (inst.reloc.exp.X_op == O_constant
&& (value = validate_immediate(inst.reloc.exp.X_add_number)) != FAIL)
{
/* This can be done with a mov instruction */
inst.instruction &= LITERAL_MASK;
inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
inst.instruction |= (flags & COND_MASK) | (value & 0xfff);
end_of_line(str);
return;
}
else
{
/* Insert into literal pool */
if (add_to_lit_pool () == FAIL)
{
if (!inst.error)
inst.error = "literal pool insertion failed\n";
return;
}
/* Change the instruction exp to point to the pool */
if (halfword || signextend)
{
inst.instruction |= HWOFFSET_IMM;
inst.reloc.type = BFD_RELOC_ARM_HWLITERAL;
}
else
inst.reloc.type = BFD_RELOC_ARM_LITERAL;
inst.reloc.pc_rel = 1;
inst.instruction |= (REG_PC << 16);
pre_inc = 1;
}
}
else
{
if (my_get_expression (&inst.reloc.exp, &str))
return;
if (halfword || signextend)
{
inst.instruction |= HWOFFSET_IMM;
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
}
else
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
inst.reloc.exp.X_add_number -= 8; /* PC rel adjust */
inst.reloc.pc_rel = 1;
inst.instruction |= (REG_PC << 16);
pre_inc = 1;
}
if (pre_inc && (flags & TRANS_BIT))
inst.error = "Pre-increment instruction with translate";
inst.instruction |= flags | (pre_inc ? PRE_INDEX : 0);
end_of_line (str);
return;
}
static void
do_ldmstm (str, flags)
char *str;
unsigned long flags;
{
int base_reg;
while (*str == ' ')
str++;
if ((base_reg = reg_required_here (&str, 16)) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (base_reg == REG_PC)
{
inst.error = "r15 not allowed as base register";
return;
}
while (*str == ' ')
str++;
if (*str == '!')
{
flags |= WRITE_BACK;
str++;
}
if (skip_past_comma (&str) == FAIL)
{
inst.error = bad_args;
return;
}
/* We come back here if we get ranges concatenated by '+' or '|' */
another_range:
if (*str == '{')
{
int in_range = 0;
int cur_reg = -1;
str++;
do
{
int reg;
while (*str == ' ')
str++;
if ((reg = arm_reg_parse (&str)) == FAIL || !int_register (reg))
{
inst.error = "Register expected";
return;
}
if (in_range)
{
int i;
if (reg <= cur_reg)
{
inst.error = "Bad range in register list";
return;
}
for (i = cur_reg + 1; i < reg; i++)
{
if (flags & (1 << i))
as_tsktsk
("Warning: Duplicated register (r%d) in register list",
i);
else
flags |= 1 << i;
}
in_range = 0;
}
if (flags & (1 << reg))
as_tsktsk ("Warning: Duplicated register (r%d) in register list",
reg);
else if (reg <= cur_reg)
as_tsktsk ("Warning: Register range not in ascending order");
flags |= 1 << reg;
cur_reg = reg;
} while (skip_past_comma (&str) != FAIL
|| (in_range = 1, *str++ == '-'));
str--;
while (*str == ' ')
str++;
if (*str++ != '}')
{
inst.error = "Missing `}'";
return;
}
}
else
{
expressionS expr;
if (my_get_expression (&expr, &str))
return;
if (expr.X_op == O_constant)
{
if (expr.X_add_number
!= (expr.X_add_number & 0x0000ffff))
{
inst.error = "invalid register mask";
return;
}
if ((flags & expr.X_add_number) != 0)
{
int regno = flags & expr.X_add_number;
regno &= -regno;
regno = (1 << regno) - 1;
as_tsktsk ("Warning: Duplicated register (r%d) in register list",
regno);
}
flags |= expr.X_add_number;
}
else
{
if (inst.reloc.type != 0)
{
inst.error = "expression too complex";
return;
}
memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
inst.reloc.type = BFD_RELOC_ARM_MULTI;
inst.reloc.pc_rel = 0;
}
}
while (*str == ' ')
str++;
if (*str == '|' || *str == '+')
{
str++;
goto another_range;
}
if (*str == '^')
{
str++;
flags |= MULTI_SET_PSR;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_swi (str, flags)
char *str;
unsigned long flags;
{
/* Allow optional leading '#'. */
while (*str == ' ')
str++;
if (*str == '#')
str++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
inst.reloc.type = BFD_RELOC_ARM_SWI;
inst.reloc.pc_rel = 0;
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_swap (str, flags)
char *str;
unsigned long flags;
{
int reg;
while (*str == ' ')
str++;
if ((reg = reg_required_here (&str, 12)) == FAIL)
return;
if (reg == REG_PC)
{
inst.error = "r15 not allowed in swap";
return;
}
if (skip_past_comma (&str) == FAIL
|| (reg = reg_required_here (&str, 0)) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (reg == REG_PC)
{
inst.error = "r15 not allowed in swap";
return;
}
if (skip_past_comma (&str) == FAIL
|| *str++ != '[')
{
inst.error = bad_args;
return;
}
while (*str == ' ')
str++;
if ((reg = reg_required_here (&str, 16)) == FAIL)
return;
if (reg == REG_PC)
{
inst.error = bad_pc;
return;
}
while (*str == ' ')
str++;
if (*str++ != ']')
{
inst.error = "missing ]";
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_branch (str, flags)
char *str;
unsigned long flags;
{
if (my_get_expression (&inst.reloc.exp, &str))
return;
inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH;
inst.reloc.pc_rel = 1;
inst.instruction |= flags | 0x00fffffe; /* PC-rel adjust */
end_of_line (str);
return;
}
static void
do_cdp (str, flags)
char *str;
unsigned long flags;
{
/* Co-processor data operation.
Format: CDP{cond} CP#,<expr>,CRd,CRn,CRm{,<expr>} */
while (*str == ' ')
str++;
if (co_proc_number (&str) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_opc_expr (&str, 20,4) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 16) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 0) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == SUCCESS)
{
if (cp_opc_expr (&str, 5, 3) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
}
end_of_line (str);
return;
}
static void
do_lstc (str, flags)
char *str;
unsigned long flags;
{
/* Co-processor register load/store.
Format: <LDC|STC{cond}[L] CP#,CRd,<address> */
while (*str == ' ')
str++;
if (co_proc_number (&str) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_address_required_here (&str) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_co_reg (str, flags)
char *str;
unsigned long flags;
{
/* Co-processor register transfer.
Format: <MCR|MRC>{cond} CP#,<expr1>,Rd,CRn,CRm{,<expr2>} */
while (*str == ' ')
str++;
if (co_proc_number (&str) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_opc_expr (&str, 21, 3) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 16) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 0) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == SUCCESS)
{
if (cp_opc_expr (&str, 5, 3) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
}
end_of_line (str);
return;
}
static void
do_fp_ctrl (str, flags)
char *str;
unsigned long flags;
{
/* FP control registers.
Format: <WFS|RFS|WFC|RFC>{cond} Rn */
while (*str == ' ')
str++;
if (reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
end_of_line (str);
return;
}
static void
do_fp_ldst (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= CP_T_X;
break;
case SUFF_E:
inst.instruction |= CP_T_Y;
break;
case SUFF_P:
inst.instruction |= CP_T_X | CP_T_Y;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_address_required_here (&str) == FAIL)
{
if (!inst.error)
inst.error = bad_args;
return;
}
end_of_line (str);
}
static void
do_fp_ldmstm (str, flags)
char *str;
unsigned long flags;
{
int num_regs;
while (*str == ' ')
str++;
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
/* Get Number of registers to transfer */
if (skip_past_comma (&str) == FAIL
|| my_get_expression (&inst.reloc.exp, &str))
{
if (! inst.error)
inst.error = "constant expression expected";
return;
}
if (inst.reloc.exp.X_op != O_constant)
{
inst.error = "Constant value required for number of registers";
return;
}
num_regs = inst.reloc.exp.X_add_number;
if (num_regs < 1 || num_regs > 4)
{
inst.error = "number of registers must be in the range [1:4]";
return;
}
switch (num_regs)
{
case 1:
inst.instruction |= CP_T_X;
break;
case 2:
inst.instruction |= CP_T_Y;
break;
case 3:
inst.instruction |= CP_T_Y | CP_T_X;
break;
case 4:
break;
default:
abort ();
}
if (flags)
{
int reg;
int write_back;
int offset;
/* The instruction specified "ea" or "fd", so we can only accept
[Rn]{!}. The instruction does not really support stacking or
unstacking, so we have to emulate these by setting appropriate
bits and offsets. */
if (skip_past_comma (&str) == FAIL
|| *str != '[')
{
if (! inst.error)
inst.error = bad_args;
return;
}
str++;
while (*str == ' ')
str++;
if ((reg = reg_required_here (&str, 16)) == FAIL)
{
inst.error = "Register required";
return;
}
while (*str == ' ')
str++;
if (*str != ']')
{
inst.error = bad_args;
return;
}
str++;
if (*str == '!')
{
write_back = 1;
str++;
if (reg == REG_PC)
{
inst.error = "R15 not allowed as base register with write-back";
return;
}
}
else
write_back = 0;
if (flags & CP_T_Pre)
{
/* Pre-decrement */
offset = 3 * num_regs;
if (write_back)
flags |= CP_T_WB;
}
else
{
/* Post-increment */
if (write_back)
{
flags |= CP_T_WB;
offset = 3 * num_regs;
}
else
{
/* No write-back, so convert this into a standard pre-increment
instruction -- aesthetically more pleasing. */
flags = CP_T_Pre | CP_T_UD;
offset = 0;
}
}
inst.instruction |= flags | offset;
}
else if (skip_past_comma (&str) == FAIL
|| cp_address_required_here (&str) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
end_of_line (str);
}
static void
do_fp_dyadic (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= 0x00000080;
break;
case SUFF_E:
inst.instruction |= 0x00080000;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_reg_required_here (&str, 16) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_op2 (&str) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_monadic (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= 0x00000080;
break;
case SUFF_E:
inst.instruction |= 0x00080000;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_op2 (&str) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_cmp (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
if (fp_reg_required_here (&str, 16) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_op2 (&str) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_from_reg (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= 0x00000080;
break;
case SUFF_E:
inst.instruction |= 0x00080000;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 16) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_to_reg (str, flags)
char *str;
unsigned long flags;
{
while (*str == ' ')
str++;
if (reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_reg_required_here (&str, 0) == FAIL)
{
if (! inst.error)
inst.error = bad_args;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
insert_reg (entry)
int entry;
{
int len = strlen (reg_table[entry].name) + 2;
char *buf = (char *) xmalloc (len);
char *buf2 = (char *) xmalloc (len);
int i = 0;
#ifdef REGISTER_PREFIX
buf[i++] = REGISTER_PREFIX;
#endif
strcpy (buf + i, reg_table[entry].name);
for (i = 0; buf[i]; i++)
buf2[i] = islower (buf[i]) ? toupper (buf[i]) : buf[i];
buf2[i] = '\0';
hash_insert (arm_reg_hsh, buf, (PTR) &reg_table[entry]);
hash_insert (arm_reg_hsh, buf2, (PTR) &reg_table[entry]);
}
static void
insert_reg_alias (str, regnum)
char *str;
int regnum;
{
struct reg_entry *new =
(struct reg_entry *)xmalloc (sizeof (struct reg_entry));
char *name = xmalloc (strlen (str) + 1);
strcpy (name, str);
new->name = name;
new->number = regnum;
hash_insert (arm_reg_hsh, name, (PTR) new);
}
static void
set_constant_flonums ()
{
int i;
for (i = 0; i < NUM_FLOAT_VALS; i++)
if (atof_ieee ((char *)fp_const[i], 'x', fp_values[i]) == NULL)
abort ();
}
void
md_begin ()
{
int i;
if ((arm_ops_hsh = hash_new ()) == NULL
|| (arm_cond_hsh = hash_new ()) == NULL
|| (arm_shift_hsh = hash_new ()) == NULL
|| (arm_reg_hsh = hash_new ()) == NULL
|| (arm_psr_hsh = hash_new ()) == NULL)
as_fatal ("Virtual memory exhausted");
for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
for (i = 0; i < sizeof (shift) / sizeof (struct asm_shift); i++)
hash_insert (arm_shift_hsh, shift[i].template, (PTR) (shift + i));
for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
for (i = 0; reg_table[i].name; i++)
insert_reg (i);
set_constant_flonums ();
}
/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
for use in the a.out file, and stores them in the array pointed to by buf.
This knows about the endian-ness of the target machine and does
THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
2 (short) and 4 (long) Floating numbers are put out as a series of
LITTLENUMS (shorts, here at least)
*/
void
md_number_to_chars (buf, val, n)
char *buf;
valueT val;
int n;
{
if (target_big_endian)
number_to_chars_bigendian (buf, val, n);
else
number_to_chars_littleendian (buf, val, n);
}
static valueT
md_chars_to_number (buf, n)
char *buf;
int n;
{
valueT result = 0;
unsigned char *where = (unsigned char *) buf;
if (target_big_endian)
{
while (n--)
{
result <<= 8;
result |= (*where++ & 255);
}
}
else
{
while (n--)
{
result <<= 8;
result |= (where[n] & 255);
}
}
return result;
}
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *litP. The number
of LITTLENUMS emitted is stored in *sizeP . An error message is
returned, or NULL on OK.
Note that fp constants aren't represent in the normal way on the ARM.
In big endian mode, things are as expected. However, in little endian
mode fp constants are big-endian word-wise, and little-endian byte-wise
within the words. For example, (double) 1.1 in big endian mode is
the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
the byte sequence 99 99 f1 3f 9a 99 99 99.
??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
char *
md_atof (type, litP, sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
char *t;
int i;
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return "Bad call to MD_ATOF()";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
if (target_big_endian)
{
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
else
{
/* For a 4 byte float the order of elements in `words' is 1 0. For an
8 byte float the order is 1 0 3 2. */
for (i = 0; i < prec; i += 2)
{
md_number_to_chars (litP, (valueT) words[i + 1], 2);
md_number_to_chars (litP + 2, (valueT) words[i], 2);
litP += 4;
}
}
return 0;
}
/* We have already put the pipeline compensation in the instruction */
long
md_pcrel_from (fixP)
fixS *fixP;
{
if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section
&& fixP->fx_subsy == NULL)
return 0; /* HACK */
return fixP->fx_where + fixP->fx_frag->fr_address;
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segment, size)
segT segment;
valueT size;
{
/* Round all sects to multiple of 4 */
return (size + 3) & ~3;
}
/* We have no need to default values of symbols. */
/* ARGSUSED */
symbolS *
md_undefined_symbol (name)
char *name;
{
return 0;
}
/* arm_reg_parse () := if it looks like a register, return its token and
advance the pointer. */
static int
arm_reg_parse (ccp)
register char **ccp;
{
char *start = *ccp;
char c;
char *p;
struct reg_entry *reg;
#ifdef REGISTER_PREFIX
if (*start != REGISTER_PREFIX)
return FAIL;
p = start + 1;
#else
p = start;
#ifdef OPTIONAL_REGISTER_PREFIX
if (*p == OPTIONAL_REGISTER_PREFIX)
p++, start++;
#endif
#endif
if (!isalpha (*p) || !is_name_beginner (*p))
return FAIL;
c = *p++;
while (isalpha (c) || isdigit (c) || c == '_')
c = *p++;
*--p = 0;
reg = (struct reg_entry *) hash_find (arm_reg_hsh, start);
*p = c;
if (reg)
{
*ccp = p;
return reg->number;
}
return FAIL;
}
static int
arm_psr_parse (ccp)
register char **ccp;
{
char *start = *ccp;
char c, *p;
CONST struct asm_psr *psr;
p = start;
c = *p++;
while (isalpha (c) || c == '_')
c = *p++;
*--p = 0;
psr = (CONST struct asm_psr *) hash_find (arm_psr_hsh, start);
*p = c;
if (psr)
{
*ccp = p;
return psr->number;
}
return FAIL;
}
int
md_apply_fix3 (fixP, val, seg)
fixS *fixP;
valueT *val;
segT seg;
{
offsetT value = *val;
offsetT newval, temp;
int sign;
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
/* Note whether this will delete the relocation. */
if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
fixP->fx_done = 1;
/* If this symbol is in a different section then we need to leave it for
the linker to deal with. Unfortunately, md_pcrel_from can't tell,
so we have to undo it's effects here. */
if (fixP->fx_pcrel)
{
if (S_IS_DEFINED (fixP->fx_addsy)
&& S_GET_SEGMENT (fixP->fx_addsy) != seg)
value += md_pcrel_from (fixP);
}
fixP->fx_addnumber = value; /* Remember value for emit_reloc */
switch (fixP->fx_r_type)
{
case BFD_RELOC_ARM_IMMEDIATE:
newval = validate_immediate (value);
temp = md_chars_to_number (buf, insn_size);
/* If the instruction will fail, see if we can fix things up by
changing the opcode. */
if (newval == FAIL
&& (newval = negate_data_op (&temp, value)) == FAIL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
"invalid constant after fixup\n");
break;
}
newval |= (temp & 0xfffff000);
md_number_to_chars (buf, newval, insn_size);
break;
case BFD_RELOC_ARM_OFFSET_IMM:
sign = value >= 0;
if ((value = validate_offset_imm (value, 0)) == FAIL)
{
as_bad ("bad immediate value for offset (%d)", val);
break;
}
if (value < 0)
value = -value;
newval = md_chars_to_number (buf, insn_size);
newval &= 0xff7ff000;
newval |= value | (sign ? 0x00800000 : 0);
md_number_to_chars (buf, newval, insn_size);
break;
case BFD_RELOC_ARM_OFFSET_IMM8:
case BFD_RELOC_ARM_HWLITERAL:
sign = value >= 0;
if ((value = validate_offset_imm (value, 1)) == FAIL)
{
if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
as_bad_where (fixP->fx_file, fixP->fx_line,
"invalid literal constant: pool needs to be closer\n");
else
as_bad ("bad immediate value for offset (%d)", value);
break;
}
if (value < 0)
value = -value;
newval = md_chars_to_number (buf, insn_size);
newval &= 0xff7ff0f0;
newval |= ((value >> 4) << 8) | value & 0xf | (sign ? 0x00800000 : 0);
md_number_to_chars (buf, newval, insn_size);
break;
case BFD_RELOC_ARM_LITERAL:
sign = value >= 0;
if (value < 0)
value = -value;
if ((value = validate_offset_imm (value, 0)) == FAIL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
"invalid literal constant: pool needs to be closer\n");
break;
}
newval = md_chars_to_number (buf, insn_size);
newval &= 0xff7ff000;
newval |= value | (sign ? 0x00800000 : 0);
md_number_to_chars (buf, newval, insn_size);
break;
case BFD_RELOC_ARM_SHIFT_IMM:
newval = md_chars_to_number (buf, insn_size);
if (((unsigned long) value) > 32
|| (value == 32
&& (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
{
as_bad_where (fixP->fx_file, fixP->fx_line,
"shift expression is too large");
break;
}
if (value == 0)
newval &= ~0x60; /* Shifts of zero must be done as lsl */
else if (value == 32)
value = 0;
newval &= 0xfffff07f;
newval |= (value & 0x1f) << 7;
md_number_to_chars (buf, newval , insn_size);
break;
case BFD_RELOC_ARM_SWI:
if (((unsigned long) value) > 0x00ffffff)
as_bad_where (fixP->fx_file, fixP->fx_line, "Invalid swi expression");
newval = md_chars_to_number (buf, insn_size) & 0xff000000;
newval |= value;
md_number_to_chars (buf, newval , insn_size);
break;
case BFD_RELOC_ARM_MULTI:
if (((unsigned long) value) > 0xffff)
as_bad_where (fixP->fx_file, fixP->fx_line,
"Invalid expression in load/store multiple");
newval = value | md_chars_to_number (buf, insn_size);
md_number_to_chars (buf, newval, insn_size);
break;
case BFD_RELOC_ARM_PCREL_BRANCH:
value = (value >> 2) & 0x00ffffff;
newval = md_chars_to_number (buf, insn_size);
value = (value + (newval & 0x00ffffff)) & 0x00ffffff;
newval = value | (newval & 0xff000000);
md_number_to_chars (buf, newval, insn_size);
break;
case BFD_RELOC_8:
if (fixP->fx_done || fixP->fx_pcrel)
md_number_to_chars (buf, value, 1);
break;
case BFD_RELOC_16:
if (fixP->fx_done || fixP->fx_pcrel)
md_number_to_chars (buf, value, 2);
break;
case BFD_RELOC_RVA:
case BFD_RELOC_32:
if (fixP->fx_done || fixP->fx_pcrel)
md_number_to_chars (buf, value, 4);
break;
case BFD_RELOC_ARM_CP_OFF_IMM:
sign = value >= 0;
if (value < -1023 || value > 1023 || (value & 3))
as_bad_where (fixP->fx_file, fixP->fx_line,
"Illegal value for co-processor offset");
if (value < 0)
value = -value;
newval = md_chars_to_number (buf, insn_size) & 0xff7fff00;
newval |= (value >> 2) | (sign ? 0x00800000 : 0);
md_number_to_chars (buf, newval , insn_size);
break;
case BFD_RELOC_NONE:
default:
as_bad_where (fixP->fx_file, fixP->fx_line,
"Bad relocation fixup type (%d)\n", fixP->fx_r_type);
}
return 1;
}
/* Translate internal representation of relocation info to BFD target
format. */
arelent *
tc_gen_reloc (section, fixp)
asection *section;
fixS *fixp;
{
arelent *reloc;
bfd_reloc_code_real_type code;
reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
assert (reloc != 0);
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
/* @@ Why fx_addnumber sometimes and fx_offset other times? */
if (fixp->fx_pcrel == 0)
reloc->addend = fixp->fx_offset;
else
reloc->addend = fixp->fx_offset = reloc->address;
switch (fixp->fx_r_type)
{
case BFD_RELOC_8:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_8_PCREL;
break;
}
case BFD_RELOC_16:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_16_PCREL;
break;
}
case BFD_RELOC_32:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_32_PCREL;
break;
}
case BFD_RELOC_ARM_PCREL_BRANCH:
case BFD_RELOC_RVA:
code = fixp->fx_r_type;
break;
case BFD_RELOC_ARM_LITERAL:
case BFD_RELOC_ARM_HWLITERAL:
/* If this is called then the a literal has been referenced across
a section boundry - possibly due to an implicit dump */
as_bad ("Literal referenced across section boundry (Implicit dump?)");
return NULL;
case BFD_RELOC_ARM_IMMEDIATE:
as_bad ("Internal_relocation (type %d) not fixed up (IMMEDIATE)"
, fixp->fx_r_type);
return NULL;
case BFD_RELOC_ARM_OFFSET_IMM:
as_bad ("Internal_relocation (type %d) not fixed up (OFFSET_IMM)"
, fixp->fx_r_type);
return NULL;
case BFD_RELOC_ARM_OFFSET_IMM8:
as_bad ("Internal_relocation (type %d) not fixed up (OFFSET_IMM8)"
, fixp->fx_r_type);
return NULL;
case BFD_RELOC_ARM_SHIFT_IMM:
as_bad ("Internal_relocation (type %d) not fixed up (SHIFT_IMM)"
, fixp->fx_r_type);
return NULL;
case BFD_RELOC_ARM_SWI:
as_bad ("Internal_relocation (type %d) not fixed up (SWI)"
, fixp->fx_r_type);
return NULL;
case BFD_RELOC_ARM_MULTI:
as_bad ("Internal_relocation (type %d) not fixed up (MULTI)"
, fixp->fx_r_type);
return NULL;
case BFD_RELOC_ARM_CP_OFF_IMM:
as_bad ("Internal_relocation (type %d) not fixed up (CP_OFF_IMM)"
, fixp->fx_r_type);
return NULL;
default:
abort ();
}
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
assert (reloc->howto != 0);
return reloc;
}
CONST int md_short_jump_size = 4;
CONST int md_long_jump_size = 4;
/* These should never be called on the arm */
void
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal ("md_create_long_jump\n");
}
void
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal ("md_create_short_jump\n");
}
int
md_estimate_size_before_relax (fragP, segtype)
fragS *fragP;
segT segtype;
{
as_fatal ("md_estimate_size_before_relax\n");
return (1);
}
void
output_inst (str)
char *str;
{
char *to = NULL;
if (inst.error)
{
as_bad ("%s -- statement `%s'\n", inst.error, str);
return;
}
to = frag_more (insn_size);
md_number_to_chars (to, inst.instruction, insn_size);
if (inst.reloc.type != BFD_RELOC_NONE)
fix_new_arm (frag_now, to - frag_now->fr_literal,
4, &inst.reloc.exp, inst.reloc.pc_rel,
inst.reloc.type);
return;
}
void
md_assemble (str)
char *str;
{
char c;
CONST struct asm_opcode *opcode;
char *p, *q, *start;
/* Align the instruction */
/* this may not be the right thing to do but ... */
/* arm_align (2, 0); */
listing_prev_line (); /* Defined in listing.h */
/* Align the previous label if needed */
if (last_label_seen != NULL)
{
last_label_seen->sy_frag = frag_now;
S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
S_SET_SEGMENT (last_label_seen, now_seg);
}
memset (&inst, '\0', sizeof (inst));
inst.reloc.type = BFD_RELOC_NONE;
if (*str == ' ')
str++; /* Skip leading white space */
/* scan up to the end of the op-code, which must end in white space or
end of string */
for (start = p = str; *p != '\0'; p++)
if (*p == ' ')
break;
if (p == str)
{
as_bad ("No operator -- statement `%s'\n", str);
return;
}
/* p now points to the end of the opcode, probably white space, but we have
to break the opcode up in case it contains condionals and flags;
keep trying with progressively smaller basic instructions until one
matches, or we run out of opcode. */
q = (p - str > LONGEST_INST) ? str + LONGEST_INST : p;
for (; q != str; q--)
{
c = *q;
*q = '\0';
opcode = (CONST struct asm_opcode *) hash_find (arm_ops_hsh, str);
*q = c;
if (opcode && opcode->template)
{
unsigned long flag_bits = 0;
char *r;
/* Check that this instruction is supported for this CPU */
if ((opcode->variants & cpu_variant) == 0)
goto try_shorter;
inst.instruction = opcode->value;
if (q == p) /* Just a simple opcode */
{
if (opcode->comp_suffix != 0)
as_bad ("Opcode `%s' must have suffix from <%s>\n", str,
opcode->comp_suffix);
else
{
inst.instruction |= COND_ALWAYS;
(*opcode->parms)(q, 0);
}
output_inst (start);
return;
}
/* Now check for a conditional */
r = q;
if (p - r >= 2)
{
CONST struct asm_cond *cond;
char d = *(r + 2);
*(r + 2) = '\0';
cond = (CONST struct asm_cond *) hash_find (arm_cond_hsh, r);
*(r + 2) = d;
if (cond)
{
if (cond->value == 0xf0000000)
as_tsktsk
("Warning: Use of the 'nv' conditional is deprecated\n");
inst.instruction |= cond->value;
r += 2;
}
else
inst.instruction |= COND_ALWAYS;
}
else
inst.instruction |= COND_ALWAYS;
/* if there is a compulsory suffix, it should come here, before
any optional flags. */
if (opcode->comp_suffix)
{
CONST char *s = opcode->comp_suffix;
while (*s)
{
inst.suffix++;
if (*r == *s)
break;
s++;
}
if (*s == '\0')
{
as_bad ("Opcode `%s' must have suffix from <%s>\n", str,
opcode->comp_suffix);
return;
}
r++;
}
/* The remainder, if any should now be flags for the instruction;
Scan these checking each one found with the opcode. */
if (r != p)
{
char d;
CONST struct asm_flg *flag = opcode->flags;
if (flag)
{
int flagno;
d = *p;
*p = '\0';
for (flagno = 0; flag[flagno].template; flagno++)
{
if ((flag[flagno].variants & cpu_variant) != 0
&& (! strcmp (r, flag[flagno].template)))
{
flag_bits |= flag[flagno].set_bits;
break;
}
}
*p = d;
if (! flag[flagno].template)
goto try_shorter;
}
else
goto try_shorter;
}
(*opcode->parms) (p, flag_bits);
output_inst (start);
return;
}
try_shorter:
;
}
/* It wasn't an instruction, but it might be a register alias of the form
alias .req reg
*/
q = p;
while (*q == ' ')
q++;
c = *p;
*p = '\0';
if (*q && !strncmp (q, ".req ", 4))
{
int reg;
if ((reg = arm_reg_parse (&str)) == FAIL)
{
char *r;
q += 4;
while (*q == ' ')
q++;
for (r = q; *r != '\0'; r++)
if (*r == ' ')
break;
if (r != q)
{
int regnum;
char d = *r;
*r = '\0';
regnum = arm_reg_parse (&q);
*r = d;
if (regnum != FAIL)
{
insert_reg_alias (str, regnum);
*p = c;
return;
}
}
}
else
{
*p = c;
return;
}
}
*p = c;
as_bad ("bad instruction `%s'", start);
}
/*
* md_parse_option
* Invocation line includes a switch not recognized by the base assembler.
* See if it's a processor-specific option. These are:
* Cpu variants, the arm part is optional:
* -m[arm]1 Currently not supported.
* -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
* -m[arm]3 Arm 3 processor
* -m[arm]6, Arm 6 processors
* -m[arm]7[t][[d]m] Arm 7 processors
* -mall All (except the ARM1)
* FP variants:
* -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
* -mfpe-old (No float load/store multiples)
* -mno-fpu Disable all floating point instructions
* Run-time endian selection:
* -EB big endian cpu
* -EL little endian cpu
*/
CONST char *md_shortopts = "m:";
struct option md_longopts[] = {
#ifdef ARM_BI_ENDIAN
#define OPTION_EB (OPTION_MD_BASE + 0)
{"EB", no_argument, NULL, OPTION_EB},
#define OPTION_EL (OPTION_MD_BASE + 1)
{"EL", no_argument, NULL, OPTION_EL},
#endif
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);
int
md_parse_option (c, arg)
int c;
char *arg;
{
char *str = arg;
switch (c)
{
#ifdef ARM_BI_ENDIAN
case OPTION_EB:
target_big_endian = 1;
break;
case OPTION_EL:
target_big_endian = 0;
break;
#endif
case 'm':
switch (*str)
{
case 'f':
if (! strcmp (str, "fpa10"))
cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_FPA10;
else if (! strcmp (str, "fpa11"))
cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_FPA11;
else if (! strcmp (str, "fpe-old"))
cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_CORE;
else
goto bad;
break;
case 'n':
if (! strcmp (str, "no-fpu"))
cpu_variant &= ~FPU_ALL;
break;
default:
if (! strcmp (str, "all"))
{
cpu_variant = ARM_ALL | FPU_ALL;
return 1;
}
/* Strip off optional "arm" */
if (! strncmp (str, "arm", 3))
str += 3;
switch (*str)
{
case '1':
if (! strcmp (str, "1"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_1;
else
goto bad;
break;
case '2':
if (! strcmp (str, "2"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_2;
else if (! strcmp (str, "250"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_250;
else
goto bad;
break;
case '3':
if (! strcmp (str, "3"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_3;
else
goto bad;
break;
case '6':
if (! strcmp (str, "6"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_6;
else
goto bad;
break;
case '7':
str++; /* eat the '7' */
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7;
for (; *str; str++)
{
switch (*str)
{
case 't':
cpu_variant |= ARM_HALFWORD;
break;
case 'm':
cpu_variant |= ARM_LONGMUL;
break;
case 'd': /* debug */
case 'i': /* embedded ice */
/* Included for completeness in ARM processor
naming. */
break;
default:
goto bad;
}
}
break;
default:
bad:
as_bad ("Invalid architecture -m%s", arg);
return 0;
}
}
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (fp)
FILE *fp;
{
fprintf (fp,
"-m[arm]1, -m[arm]2, -m[arm]250,\n-m[arm]3, -m[arm]6, -m[arm]7[t][[d]m]\n\
\t\t\tselect processor architecture\n\
-mall\t\t\tallow any instruction\n\
-mfpa10, -mfpa11\tselect floating point architecture\n\
-mfpe-old\t\tdon't allow floating-point multiple instructions\n\
-mno-fpu\t\tdon't allow any floating-point instructions.\n");
#ifdef ARM_BI_ENDIAN
fprintf (fp,
"-EB\t\t\tassemble code for a big endian cpu\n\
-EL\t\t\tassemble code for a little endian cpu\n");
#endif
}
/* We need to be able to fix up arbitrary expressions in some statements.
This is so that we can handle symbols that are an arbitrary distance from
the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
which returns part of an address in a form which will be valid for
a data instruction. We do this by pushing the expression into a symbol
in the expr_section, and creating a fix for that. */
static void
fix_new_arm (frag, where, size, exp, pc_rel, reloc)
fragS *frag;
int where;
short int size;
expressionS *exp;
int pc_rel;
int reloc;
{
fixS *new_fix;
switch (exp->X_op)
{
case O_constant:
case O_symbol:
case O_add:
case O_subtract:
new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
break;
default:
{
const char *fake;
symbolS *symbolP;
/* FIXME: This should be something which decode_local_label_name
will handle. */
fake = FAKE_LABEL_NAME;
/* Putting constant symbols in absolute_section rather than
expr_section is convenient for the old a.out code, for which
S_GET_SEGMENT does not always retrieve the value put in by
S_SET_SEGMENT. */
symbolP = symbol_new (fake, expr_section, 0, &zero_address_frag);
symbolP->sy_value = *exp;
new_fix = fix_new (frag, where, size, symbolP, 0, pc_rel, reloc);
}
break;
}
return;
}
/* A good place to do this, although this was probably not intended
* for this kind of use. We need to dump the literal pool before
* references are made to a null symbol pointer. */
void
arm_after_pass_hook (ignore)
asection *ignore;
{
if (current_poolP != NULL)
{
subseg_set (text_section, 0); /* Put it at the end of text section */
s_ltorg (0);
listing_prev_line ();
}
}
void
arm_start_line_hook ()
{
last_label_seen = NULL;
}
void
arm_frob_label (sym)
symbolS *sym;
{
last_label_seen = sym;
}