binutils-gdb/bfd/elf-m10300.c
Alan Modra d87bef3a7b Update year range in copyright notice of binutils files
The newer update-copyright.py fixes file encoding too, removing cr/lf
on binutils/bfdtest2.c and ld/testsuite/ld-cygwin/exe-export.exp, and
embedded cr in binutils/testsuite/binutils-all/ar.exp string match.
2023-01-01 21:50:11 +10:30

5530 lines
161 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Matsushita 10300 specific support for 32-bit ELF
Copyright (C) 1996-2023 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/mn10300.h"
#include "libiberty.h"
/* The mn10300 linker needs to keep track of the number of relocs that
it decides to copy in check_relocs for each symbol. This is so
that it can discard PC relative relocs if it doesn't need them when
linking with -Bsymbolic. We store the information in a field
extending the regular ELF linker hash table. */
struct elf32_mn10300_link_hash_entry
{
/* The basic elf link hash table entry. */
struct elf_link_hash_entry root;
/* For function symbols, the number of times this function is
called directly (ie by name). */
unsigned int direct_calls;
/* For function symbols, the size of this function's stack
(if <= 255 bytes). We stuff this into "call" instructions
to this target when it's valid and profitable to do so.
This does not include stack allocated by movm! */
unsigned char stack_size;
/* For function symbols, arguments (if any) for movm instruction
in the prologue. We stuff this value into "call" instructions
to the target when it's valid and profitable to do so. */
unsigned char movm_args;
/* For function symbols, the amount of stack space that would be allocated
by the movm instruction. This is redundant with movm_args, but we
add it to the hash table to avoid computing it over and over. */
unsigned char movm_stack_size;
/* When set, convert all "call" instructions to this target into "calls"
instructions. */
#define MN10300_CONVERT_CALL_TO_CALLS 0x1
/* Used to mark functions which have had redundant parts of their
prologue deleted. */
#define MN10300_DELETED_PROLOGUE_BYTES 0x2
unsigned char flags;
/* Calculated value. */
bfd_vma value;
#define GOT_UNKNOWN 0
#define GOT_NORMAL 1
#define GOT_TLS_GD 2
#define GOT_TLS_LD 3
#define GOT_TLS_IE 4
/* Used to distinguish GOT entries for TLS types from normal GOT entries. */
unsigned char tls_type;
};
/* We derive a hash table from the main elf linker hash table so
we can store state variables and a secondary hash table without
resorting to global variables. */
struct elf32_mn10300_link_hash_table
{
/* The main hash table. */
struct elf_link_hash_table root;
/* A hash table for static functions. We could derive a new hash table
instead of using the full elf32_mn10300_link_hash_table if we wanted
to save some memory. */
struct elf32_mn10300_link_hash_table *static_hash_table;
/* Random linker state flags. */
#define MN10300_HASH_ENTRIES_INITIALIZED 0x1
char flags;
struct
{
bfd_signed_vma refcount;
bfd_vma offset;
char got_allocated;
char rel_emitted;
} tls_ldm_got;
};
#define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent))
struct elf_mn10300_obj_tdata
{
struct elf_obj_tdata root;
/* tls_type for each local got entry. */
char * local_got_tls_type;
};
#define elf_mn10300_tdata(abfd) \
((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any)
#define elf_mn10300_local_got_tls_type(abfd) \
(elf_mn10300_tdata (abfd)->local_got_tls_type)
#ifndef streq
#define streq(a, b) (strcmp ((a),(b)) == 0)
#endif
/* For MN10300 linker hash table. */
/* Get the MN10300 ELF linker hash table from a link_info structure. */
#define elf32_mn10300_hash_table(p) \
((is_elf_hash_table ((p)->hash) \
&& elf_hash_table_id (elf_hash_table (p)) == MN10300_ELF_DATA) \
? (struct elf32_mn10300_link_hash_table *) (p)->hash : NULL)
#define elf32_mn10300_link_hash_traverse(table, func, info) \
(elf_link_hash_traverse \
(&(table)->root, \
(bool (*) (struct elf_link_hash_entry *, void *)) (func), \
(info)))
static reloc_howto_type elf_mn10300_howto_table[] =
{
/* Dummy relocation. Does nothing. */
HOWTO (R_MN10300_NONE,
0,
0,
0,
false,
0,
complain_overflow_dont,
bfd_elf_generic_reloc,
"R_MN10300_NONE",
false,
0,
0,
false),
/* Standard 32 bit reloc. */
HOWTO (R_MN10300_32,
0,
4,
32,
false,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_MN10300_32",
false,
0xffffffff,
0xffffffff,
false),
/* Standard 16 bit reloc. */
HOWTO (R_MN10300_16,
0,
2,
16,
false,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_MN10300_16",
false,
0xffff,
0xffff,
false),
/* Standard 8 bit reloc. */
HOWTO (R_MN10300_8,
0,
1,
8,
false,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_MN10300_8",
false,
0xff,
0xff,
false),
/* Standard 32bit pc-relative reloc. */
HOWTO (R_MN10300_PCREL32,
0,
4,
32,
true,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_MN10300_PCREL32",
false,
0xffffffff,
0xffffffff,
true),
/* Standard 16bit pc-relative reloc. */
HOWTO (R_MN10300_PCREL16,
0,
2,
16,
true,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_MN10300_PCREL16",
false,
0xffff,
0xffff,
true),
/* Standard 8 pc-relative reloc. */
HOWTO (R_MN10300_PCREL8,
0,
1,
8,
true,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_MN10300_PCREL8",
false,
0xff,
0xff,
true),
/* GNU extension to record C++ vtable hierarchy. */
HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
0, /* rightshift */
0, /* size */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
NULL, /* special_function */
"R_MN10300_GNU_VTINHERIT", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
/* GNU extension to record C++ vtable member usage */
HOWTO (R_MN10300_GNU_VTENTRY, /* type */
0, /* rightshift */
0, /* size */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
NULL, /* special_function */
"R_MN10300_GNU_VTENTRY", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
/* Standard 24 bit reloc. */
HOWTO (R_MN10300_24,
0,
4,
24,
false,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_MN10300_24",
false,
0xffffff,
0xffffff,
false),
HOWTO (R_MN10300_GOTPC32, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOTPC32", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
true), /* pcrel_offset */
HOWTO (R_MN10300_GOTPC16, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOTPC16", /* name */
false, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
true), /* pcrel_offset */
HOWTO (R_MN10300_GOTOFF32, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOTOFF32", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_GOTOFF24, /* type */
0, /* rightshift */
4, /* size */
24, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOTOFF24", /* name */
false, /* partial_inplace */
0xffffff, /* src_mask */
0xffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_GOTOFF16, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOTOFF16", /* name */
false, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_PLT32, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_PLT32", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
true), /* pcrel_offset */
HOWTO (R_MN10300_PLT16, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_PLT16", /* name */
false, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
true), /* pcrel_offset */
HOWTO (R_MN10300_GOT32, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOT32", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_GOT24, /* type */
0, /* rightshift */
4, /* size */
24, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOT24", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_GOT16, /* type */
0, /* rightshift */
2, /* size */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GOT16", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_COPY, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_COPY", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_GLOB_DAT, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_GLOB_DAT", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_JMP_SLOT, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_JMP_SLOT", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_RELATIVE, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_RELATIVE", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_GD, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_GD", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_LD, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_LD", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_LDO, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_LDO", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_GOTIE, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_GOTIE", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_IE, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_IE", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_LE, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_LE", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_DTPMOD, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_DTPMOD", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_DTPOFF, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_DTPOFF", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_TLS_TPOFF, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* */
"R_MN10300_TLS_TPOFF", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_SYM_DIFF, /* type */
0, /* rightshift */
4, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
NULL, /* special handler. */
"R_MN10300_SYM_DIFF", /* name */
false, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
HOWTO (R_MN10300_ALIGN, /* type */
0, /* rightshift */
1, /* size */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
NULL, /* special handler. */
"R_MN10300_ALIGN", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false) /* pcrel_offset */
};
struct mn10300_reloc_map
{
bfd_reloc_code_real_type bfd_reloc_val;
unsigned char elf_reloc_val;
};
static const struct mn10300_reloc_map mn10300_reloc_map[] =
{
{ BFD_RELOC_NONE, R_MN10300_NONE, },
{ BFD_RELOC_32, R_MN10300_32, },
{ BFD_RELOC_16, R_MN10300_16, },
{ BFD_RELOC_8, R_MN10300_8, },
{ BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
{ BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
{ BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
{ BFD_RELOC_24, R_MN10300_24, },
{ BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
{ BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
{ BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 },
{ BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 },
{ BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 },
{ BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 },
{ BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 },
{ BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 },
{ BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 },
{ BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 },
{ BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 },
{ BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 },
{ BFD_RELOC_MN10300_COPY, R_MN10300_COPY },
{ BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT },
{ BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT },
{ BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE },
{ BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD },
{ BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD },
{ BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO },
{ BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE },
{ BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE },
{ BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE },
{ BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD },
{ BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF },
{ BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF },
{ BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF },
{ BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN }
};
/* Create the GOT section. */
static bool
_bfd_mn10300_elf_create_got_section (bfd * abfd,
struct bfd_link_info * info)
{
flagword flags;
flagword pltflags;
asection * s;
struct elf_link_hash_entry * h;
const struct elf_backend_data * bed = get_elf_backend_data (abfd);
struct elf_link_hash_table *htab;
int ptralign;
/* This function may be called more than once. */
htab = elf_hash_table (info);
if (htab->sgot != NULL)
return true;
switch (bed->s->arch_size)
{
case 32:
ptralign = 2;
break;
case 64:
ptralign = 3;
break;
default:
bfd_set_error (bfd_error_bad_value);
return false;
}
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
pltflags = flags;
pltflags |= SEC_CODE;
if (bed->plt_not_loaded)
pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
if (bed->plt_readonly)
pltflags |= SEC_READONLY;
s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
htab->splt = s;
if (s == NULL
|| !bfd_set_section_alignment (s, bed->plt_alignment))
return false;
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
.plt section. */
if (bed->want_plt_sym)
{
h = _bfd_elf_define_linkage_sym (abfd, info, s,
"_PROCEDURE_LINKAGE_TABLE_");
htab->hplt = h;
if (h == NULL)
return false;
}
s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
htab->sgot = s;
if (s == NULL
|| !bfd_set_section_alignment (s, ptralign))
return false;
if (bed->want_got_plt)
{
s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
htab->sgotplt = s;
if (s == NULL
|| !bfd_set_section_alignment (s, ptralign))
return false;
}
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
(or .got.plt) section. We don't do this in the linker script
because we don't want to define the symbol if we are not creating
a global offset table. */
h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
htab->hgot = h;
if (h == NULL)
return false;
/* The first bit of the global offset table is the header. */
s->size += bed->got_header_size;
return true;
}
static reloc_howto_type *
bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
unsigned int i;
for (i = ARRAY_SIZE (mn10300_reloc_map); i--;)
if (mn10300_reloc_map[i].bfd_reloc_val == code)
return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
return NULL;
}
static reloc_howto_type *
bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;)
if (elf_mn10300_howto_table[i].name != NULL
&& strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0)
return elf_mn10300_howto_table + i;
return NULL;
}
/* Set the howto pointer for an MN10300 ELF reloc. */
static bool
mn10300_info_to_howto (bfd *abfd,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
unsigned int r_type;
r_type = ELF32_R_TYPE (dst->r_info);
if (r_type >= R_MN10300_MAX)
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return false;
}
cache_ptr->howto = elf_mn10300_howto_table + r_type;
return true;
}
static int
elf_mn10300_tls_transition (struct bfd_link_info * info,
int r_type,
struct elf_link_hash_entry * h,
asection * sec,
bool counting)
{
bool is_local;
if (r_type == R_MN10300_TLS_GD
&& h != NULL
&& elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
return R_MN10300_TLS_GOTIE;
if (bfd_link_pic (info))
return r_type;
if (! (sec->flags & SEC_CODE))
return r_type;
if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created)
is_local = true;
else
is_local = SYMBOL_CALLS_LOCAL (info, h);
/* For the main program, these are the transitions we do. */
switch (r_type)
{
case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE;
case R_MN10300_TLS_LD: return R_MN10300_NONE;
case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE;
case R_MN10300_TLS_IE:
case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type;
}
return r_type;
}
/* Return the relocation value for @tpoff relocation
if STT_TLS virtual address is ADDRESS. */
static bfd_vma
dtpoff (struct bfd_link_info * info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
/* If tls_sec is NULL, we should have signalled an error already. */
if (htab->tls_sec == NULL)
return 0;
return address - htab->tls_sec->vma;
}
/* Return the relocation value for @tpoff relocation
if STT_TLS virtual address is ADDRESS. */
static bfd_vma
tpoff (struct bfd_link_info * info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
/* If tls_sec is NULL, we should have signalled an error already. */
if (htab->tls_sec == NULL)
return 0;
return address - (htab->tls_size + htab->tls_sec->vma);
}
/* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need
to skip, after this one. The actual value is the offset between
this reloc and the PLT reloc. */
static int
mn10300_do_tls_transition (bfd * input_bfd,
unsigned int r_type,
unsigned int tls_r_type,
bfd_byte * contents,
bfd_vma offset)
{
bfd_byte *op = contents + offset;
int gotreg = 0;
#define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2))
/* This is common to all GD/LD transitions, so break it out. */
if (r_type == R_MN10300_TLS_GD
|| r_type == R_MN10300_TLS_LD)
{
op -= 2;
/* mov imm,d0. */
BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC);
BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC);
/* add aN,d0. */
BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1);
gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2;
/* Call. */
BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD);
}
switch (TLS_PAIR (r_type, tls_r_type))
{
case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE):
{
/* Keep track of which register we put GOTptr in. */
/* mov (_x@indntpoff,a2),a0. */
memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6);
op[1] |= gotreg;
/* add e2,a0. */
memcpy (op+6, "\xF9\x78\x28", 3);
/* or 0x00000000, d0 - six byte nop. */
memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
}
return 7;
case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE):
{
/* Register is *always* a0. */
/* mov _x@tpoff,a0. */
memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6);
/* add e2,a0. */
memcpy (op+6, "\xF9\x78\x28", 3);
/* or 0x00000000, d0 - six byte nop. */
memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
}
return 7;
case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE):
{
/* Register is *always* a0. */
/* mov e2,a0. */
memcpy (op, "\xF5\x88", 2);
/* or 0x00000000, d0 - six byte nop. */
memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6);
/* or 0x00000000, e2 - seven byte nop. */
memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7);
}
return 7;
case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE):
/* No changes needed, just the reloc change. */
return 0;
/* These are a little tricky, because we have to detect which
opcode is being used (they're different sizes, with the reloc
at different offsets within the opcode) and convert each
accordingly, copying the operands as needed. The conversions
we do are as follows (IE,GOTIE,LE):
1111 1100 1010 01Dn [-- abs32 --] MOV (x@indntpoff),Dn
1111 1100 0000 DnAm [-- abs32 --] MOV (x@gotntpoff,Am),Dn
1111 1100 1100 11Dn [-- abs32 --] MOV x@tpoff,Dn
1111 1100 1010 00An [-- abs32 --] MOV (x@indntpoff),An
1111 1100 0010 AnAm [-- abs32 --] MOV (x@gotntpoff,Am),An
1111 1100 1101 11An [-- abs32 --] MOV x@tpoff,An
1111 1110 0000 1110 Rnnn Xxxx [-- abs32 --] MOV (x@indntpoff),Rn
1111 1110 0000 1010 Rnnn Rmmm [-- abs32 --] MOV (x@indntpoff,Rm),Rn
1111 1110 0000 1000 Rnnn Xxxx [-- abs32 --] MOV x@tpoff,Rn
Since the GOT pointer is always $a2, we assume the last
normally won't happen, but let's be paranoid and plan for the
day that GCC optimizes it somewhow. */
case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE):
if (op[-2] == 0xFC)
{
op -= 2;
if ((op[1] & 0xFC) == 0xA4) /* Dn */
{
op[1] &= 0x03; /* Leaves Dn. */
op[1] |= 0xCC;
}
else /* An */
{
op[1] &= 0x03; /* Leaves An. */
op[1] |= 0xDC;
}
}
else if (op[-3] == 0xFE)
op[-2] = 0x08;
else
abort ();
break;
case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE):
if (op[-2] == 0xFC)
{
op -= 2;
if ((op[1] & 0xF0) == 0x00) /* Dn */
{
op[1] &= 0x0C; /* Leaves Dn. */
op[1] >>= 2;
op[1] |= 0xCC;
}
else /* An */
{
op[1] &= 0x0C; /* Leaves An. */
op[1] >>= 2;
op[1] |= 0xDC;
}
}
else if (op[-3] == 0xFE)
op[-2] = 0x08;
else
abort ();
break;
default:
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: unsupported transition from %s to %s"),
input_bfd,
elf_mn10300_howto_table[r_type].name,
elf_mn10300_howto_table[tls_r_type].name);
break;
}
#undef TLS_PAIR
return 0;
}
/* Look through the relocs for a section during the first phase.
Since we don't do .gots or .plts, we just need to consider the
virtual table relocs for gc. */
static bool
mn10300_elf_check_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
bool sym_diff_reloc_seen;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Sym * isymbuf = NULL;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
bfd * dynobj;
bfd_vma * local_got_offsets;
asection * sgot;
asection * srelgot;
asection * sreloc;
bool result = false;
sgot = NULL;
srelgot = NULL;
sreloc = NULL;
if (bfd_link_relocatable (info))
return true;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
sym_hashes = elf_sym_hashes (abfd);
dynobj = elf_hash_table (info)->dynobj;
local_got_offsets = elf_local_got_offsets (abfd);
rel_end = relocs + sec->reloc_count;
sym_diff_reloc_seen = false;
for (rel = relocs; rel < rel_end; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
unsigned int r_type;
int tls_type = GOT_NORMAL;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
r_type = ELF32_R_TYPE (rel->r_info);
r_type = elf_mn10300_tls_transition (info, r_type, h, sec, true);
/* Some relocs require a global offset table. */
if (dynobj == NULL)
{
switch (r_type)
{
case R_MN10300_GOT32:
case R_MN10300_GOT24:
case R_MN10300_GOT16:
case R_MN10300_GOTOFF32:
case R_MN10300_GOTOFF24:
case R_MN10300_GOTOFF16:
case R_MN10300_GOTPC32:
case R_MN10300_GOTPC16:
case R_MN10300_TLS_GD:
case R_MN10300_TLS_LD:
case R_MN10300_TLS_GOTIE:
case R_MN10300_TLS_IE:
elf_hash_table (info)->dynobj = dynobj = abfd;
if (! _bfd_mn10300_elf_create_got_section (dynobj, info))
goto fail;
break;
default:
break;
}
}
switch (r_type)
{
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_MN10300_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
goto fail;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_MN10300_GNU_VTENTRY:
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
goto fail;
break;
case R_MN10300_TLS_LD:
htab->tls_ldm_got.refcount ++;
tls_type = GOT_TLS_LD;
if (htab->tls_ldm_got.got_allocated)
break;
goto create_got;
case R_MN10300_TLS_IE:
case R_MN10300_TLS_GOTIE:
if (bfd_link_pic (info))
info->flags |= DF_STATIC_TLS;
/* Fall through */
case R_MN10300_TLS_GD:
case R_MN10300_GOT32:
case R_MN10300_GOT24:
case R_MN10300_GOT16:
create_got:
/* This symbol requires a global offset table entry. */
switch (r_type)
{
case R_MN10300_TLS_IE:
case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break;
case R_MN10300_TLS_GD: tls_type = GOT_TLS_GD; break;
default: tls_type = GOT_NORMAL; break;
}
sgot = htab->root.sgot;
srelgot = htab->root.srelgot;
BFD_ASSERT (sgot != NULL && srelgot != NULL);
if (r_type == R_MN10300_TLS_LD)
{
htab->tls_ldm_got.offset = sgot->size;
htab->tls_ldm_got.got_allocated ++;
}
else if (h != NULL)
{
if (elf_mn10300_hash_entry (h)->tls_type != tls_type
&& elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN)
{
if (tls_type == GOT_TLS_IE
&& elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD)
/* No change - this is ok. */;
else if (tls_type == GOT_TLS_GD
&& elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
/* Transition GD->IE. */
tls_type = GOT_TLS_IE;
else
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: %s' accessed both as normal and thread local symbol"),
abfd, h ? h->root.root.string : "<local>");
}
elf_mn10300_hash_entry (h)->tls_type = tls_type;
if (h->got.offset != (bfd_vma) -1)
/* We have already allocated space in the .got. */
break;
h->got.offset = sgot->size;
if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
/* Make sure this symbol is output as a dynamic symbol. */
&& h->dynindx == -1)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
goto fail;
}
srelgot->size += sizeof (Elf32_External_Rela);
if (r_type == R_MN10300_TLS_GD)
srelgot->size += sizeof (Elf32_External_Rela);
}
else
{
/* This is a global offset table entry for a local
symbol. */
if (local_got_offsets == NULL)
{
size_t size;
unsigned int i;
size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char));
local_got_offsets = bfd_alloc (abfd, size);
if (local_got_offsets == NULL)
goto fail;
elf_local_got_offsets (abfd) = local_got_offsets;
elf_mn10300_local_got_tls_type (abfd)
= (char *) (local_got_offsets + symtab_hdr->sh_info);
for (i = 0; i < symtab_hdr->sh_info; i++)
local_got_offsets[i] = (bfd_vma) -1;
}
if (local_got_offsets[r_symndx] != (bfd_vma) -1)
/* We have already allocated space in the .got. */
break;
local_got_offsets[r_symndx] = sgot->size;
if (bfd_link_pic (info))
{
/* If we are generating a shared object, we need to
output a R_MN10300_RELATIVE reloc so that the dynamic
linker can adjust this GOT entry. */
srelgot->size += sizeof (Elf32_External_Rela);
if (r_type == R_MN10300_TLS_GD)
/* And a R_MN10300_TLS_DTPOFF reloc as well. */
srelgot->size += sizeof (Elf32_External_Rela);
}
elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type;
}
sgot->size += 4;
if (r_type == R_MN10300_TLS_GD
|| r_type == R_MN10300_TLS_LD)
sgot->size += 4;
goto need_shared_relocs;
case R_MN10300_PLT32:
case R_MN10300_PLT16:
/* This symbol requires a procedure linkage table entry. We
actually build the entry in adjust_dynamic_symbol,
because this might be a case of linking PIC code which is
never referenced by a dynamic object, in which case we
don't need to generate a procedure linkage table entry
after all. */
/* If this is a local symbol, we resolve it directly without
creating a procedure linkage table entry. */
if (h == NULL)
continue;
if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
|| ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
break;
h->needs_plt = 1;
break;
case R_MN10300_24:
case R_MN10300_16:
case R_MN10300_8:
case R_MN10300_PCREL32:
case R_MN10300_PCREL16:
case R_MN10300_PCREL8:
if (h != NULL)
h->non_got_ref = 1;
break;
case R_MN10300_SYM_DIFF:
sym_diff_reloc_seen = true;
break;
case R_MN10300_32:
if (h != NULL)
h->non_got_ref = 1;
need_shared_relocs:
/* If we are creating a shared library, then we
need to copy the reloc into the shared library. */
if (bfd_link_pic (info)
&& (sec->flags & SEC_ALLOC) != 0
/* Do not generate a dynamic reloc for a
reloc associated with a SYM_DIFF operation. */
&& ! sym_diff_reloc_seen)
{
asection * sym_section = NULL;
/* Find the section containing the
symbol involved in the relocation. */
if (h == NULL)
{
Elf_Internal_Sym * isym;
if (isymbuf == NULL)
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (isymbuf)
{
isym = isymbuf + r_symndx;
/* All we care about is whether this local symbol is absolute. */
if (isym->st_shndx == SHN_ABS)
sym_section = bfd_abs_section_ptr;
}
}
else
{
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
sym_section = h->root.u.def.section;
}
/* If the symbol is absolute then the relocation can
be resolved during linking and there is no need for
a dynamic reloc. */
if (sym_section != bfd_abs_section_ptr)
{
/* When creating a shared object, we must copy these
reloc types into the output file. We create a reloc
section in dynobj and make room for this reloc. */
if (sreloc == NULL)
{
sreloc = _bfd_elf_make_dynamic_reloc_section
(sec, dynobj, 2, abfd, /*rela?*/ true);
if (sreloc == NULL)
goto fail;
}
sreloc->size += sizeof (Elf32_External_Rela);
}
}
break;
}
if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF)
sym_diff_reloc_seen = false;
}
result = true;
fail:
if (symtab_hdr->contents != (unsigned char *) isymbuf)
free (isymbuf);
return result;
}
/* Return the section that should be marked against GC for a given
relocation. */
static asection *
mn10300_elf_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
if (h != NULL)
switch (ELF32_R_TYPE (rel->r_info))
{
case R_MN10300_GNU_VTINHERIT:
case R_MN10300_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
/* Perform a relocation as part of a final link. */
static bfd_reloc_status_type
mn10300_elf_final_link_relocate (reloc_howto_type *howto,
bfd *input_bfd,
bfd *output_bfd ATTRIBUTE_UNUSED,
asection *input_section,
bfd_byte *contents,
bfd_vma offset,
bfd_vma value,
bfd_vma addend,
struct elf_link_hash_entry * h,
unsigned long symndx,
struct bfd_link_info *info,
asection *sym_sec ATTRIBUTE_UNUSED,
int is_local ATTRIBUTE_UNUSED)
{
struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
static asection * sym_diff_section;
static bfd_vma sym_diff_value;
bool is_sym_diff_reloc;
unsigned long r_type = howto->type;
bfd_byte * hit_data = contents + offset;
bfd * dynobj;
asection * sgot;
asection * splt;
asection * sreloc;
dynobj = elf_hash_table (info)->dynobj;
sgot = NULL;
splt = NULL;
sreloc = NULL;
switch (r_type)
{
case R_MN10300_24:
case R_MN10300_16:
case R_MN10300_8:
case R_MN10300_PCREL8:
case R_MN10300_PCREL16:
case R_MN10300_PCREL32:
case R_MN10300_GOTOFF32:
case R_MN10300_GOTOFF24:
case R_MN10300_GOTOFF16:
if (bfd_link_pic (info)
&& (input_section->flags & SEC_ALLOC) != 0
&& h != NULL
&& ! SYMBOL_REFERENCES_LOCAL (info, h))
return bfd_reloc_dangerous;
/* Fall through. */
case R_MN10300_GOT32:
/* Issue 2052223:
Taking the address of a protected function in a shared library
is illegal. Issue an error message here. */
if (bfd_link_pic (info)
&& (input_section->flags & SEC_ALLOC) != 0
&& h != NULL
&& ELF_ST_VISIBILITY (h->other) == STV_PROTECTED
&& (h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
&& ! SYMBOL_REFERENCES_LOCAL (info, h))
return bfd_reloc_dangerous;
}
is_sym_diff_reloc = false;
if (sym_diff_section != NULL)
{
BFD_ASSERT (sym_diff_section == input_section);
switch (r_type)
{
case R_MN10300_32:
case R_MN10300_24:
case R_MN10300_16:
case R_MN10300_8:
value -= sym_diff_value;
/* If we are computing a 32-bit value for the location lists
and the result is 0 then we add one to the value. A zero
value can result because of linker relaxation deleteing
prologue instructions and using a value of 1 (for the begin
and end offsets in the location list entry) results in a
nul entry which does not prevent the following entries from
being parsed. */
if (r_type == R_MN10300_32
&& value == 0
&& strcmp (input_section->name, ".debug_loc") == 0)
value = 1;
sym_diff_section = NULL;
is_sym_diff_reloc = true;
break;
default:
sym_diff_section = NULL;
break;
}
}
switch (r_type)
{
case R_MN10300_SYM_DIFF:
BFD_ASSERT (addend == 0);
/* Cache the input section and value.
The offset is unreliable, since relaxation may
have reduced the following reloc's offset. */
sym_diff_section = input_section;
sym_diff_value = value;
return bfd_reloc_ok;
case R_MN10300_ALIGN:
case R_MN10300_NONE:
return bfd_reloc_ok;
case R_MN10300_32:
if (bfd_link_pic (info)
/* Do not generate relocs when an R_MN10300_32 has been used
with an R_MN10300_SYM_DIFF to compute a difference of two
symbols. */
&& !is_sym_diff_reloc
/* Also, do not generate a reloc when the symbol associated
with the R_MN10300_32 reloc is absolute - there is no
need for a run time computation in this case. */
&& sym_sec != bfd_abs_section_ptr
/* If the section is not going to be allocated at load time
then there is no need to generate relocs for it. */
&& (input_section->flags & SEC_ALLOC) != 0)
{
Elf_Internal_Rela outrel;
bool skip, relocate;
/* When generating a shared object, these relocations are
copied into the output file to be resolved at run
time. */
if (sreloc == NULL)
{
sreloc = _bfd_elf_get_dynamic_reloc_section
(input_bfd, input_section, /*rela?*/ true);
if (sreloc == NULL)
return false;
}
skip = false;
outrel.r_offset = _bfd_elf_section_offset (input_bfd, info,
input_section, offset);
if (outrel.r_offset == (bfd_vma) -1)
skip = true;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (skip)
{
memset (&outrel, 0, sizeof outrel);
relocate = false;
}
else
{
/* h->dynindx may be -1 if this symbol was marked to
become local. */
if (h == NULL
|| SYMBOL_REFERENCES_LOCAL (info, h))
{
relocate = true;
outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
outrel.r_addend = value + addend;
}
else
{
BFD_ASSERT (h->dynindx != -1);
relocate = false;
outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32);
outrel.r_addend = value + addend;
}
}
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
(bfd_byte *) (((Elf32_External_Rela *) sreloc->contents)
+ sreloc->reloc_count));
++sreloc->reloc_count;
/* If this reloc is against an external symbol, we do
not want to fiddle with the addend. Otherwise, we
need to include the symbol value so that it becomes
an addend for the dynamic reloc. */
if (! relocate)
return bfd_reloc_ok;
}
value += addend;
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_24:
value += addend;
if ((long) value > 0x7fffff || (long) value < -0x800000)
return bfd_reloc_overflow;
bfd_put_8 (input_bfd, value & 0xff, hit_data);
bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
return bfd_reloc_ok;
case R_MN10300_16:
value += addend;
if ((long) value > 0x7fff || (long) value < -0x8000)
return bfd_reloc_overflow;
bfd_put_16 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_8:
value += addend;
if ((long) value > 0x7f || (long) value < -0x80)
return bfd_reloc_overflow;
bfd_put_8 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_PCREL8:
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
value += addend;
if ((long) value > 0x7f || (long) value < -0x80)
return bfd_reloc_overflow;
bfd_put_8 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_PCREL16:
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
value += addend;
if ((long) value > 0x7fff || (long) value < -0x8000)
return bfd_reloc_overflow;
bfd_put_16 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_PCREL32:
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
value += addend;
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_GNU_VTINHERIT:
case R_MN10300_GNU_VTENTRY:
return bfd_reloc_ok;
case R_MN10300_GOTPC32:
if (dynobj == NULL)
return bfd_reloc_dangerous;
/* Use global offset table as symbol value. */
value = htab->root.sgot->output_section->vma;
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
value += addend;
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_GOTPC16:
if (dynobj == NULL)
return bfd_reloc_dangerous;
/* Use global offset table as symbol value. */
value = htab->root.sgot->output_section->vma;
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
value += addend;
if ((long) value > 0x7fff || (long) value < -0x8000)
return bfd_reloc_overflow;
bfd_put_16 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_GOTOFF32:
if (dynobj == NULL)
return bfd_reloc_dangerous;
value -= htab->root.sgot->output_section->vma;
value += addend;
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_GOTOFF24:
if (dynobj == NULL)
return bfd_reloc_dangerous;
value -= htab->root.sgot->output_section->vma;
value += addend;
if ((long) value > 0x7fffff || (long) value < -0x800000)
return bfd_reloc_overflow;
bfd_put_8 (input_bfd, value, hit_data);
bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
return bfd_reloc_ok;
case R_MN10300_GOTOFF16:
if (dynobj == NULL)
return bfd_reloc_dangerous;
value -= htab->root.sgot->output_section->vma;
value += addend;
if ((long) value > 0x7fff || (long) value < -0x8000)
return bfd_reloc_overflow;
bfd_put_16 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_PLT32:
if (h != NULL
&& ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
&& ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
&& h->plt.offset != (bfd_vma) -1)
{
if (dynobj == NULL)
return bfd_reloc_dangerous;
splt = htab->root.splt;
value = (splt->output_section->vma
+ splt->output_offset
+ h->plt.offset) - value;
}
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
value += addend;
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_PLT16:
if (h != NULL
&& ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
&& ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
&& h->plt.offset != (bfd_vma) -1)
{
if (dynobj == NULL)
return bfd_reloc_dangerous;
splt = htab->root.splt;
value = (splt->output_section->vma
+ splt->output_offset
+ h->plt.offset) - value;
}
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
value += addend;
if ((long) value > 0x7fff || (long) value < -0x8000)
return bfd_reloc_overflow;
bfd_put_16 (input_bfd, value, hit_data);
return bfd_reloc_ok;
case R_MN10300_TLS_LDO:
value = dtpoff (info, value);
bfd_put_32 (input_bfd, value + addend, hit_data);
return bfd_reloc_ok;
case R_MN10300_TLS_LE:
value = tpoff (info, value);
bfd_put_32 (input_bfd, value + addend, hit_data);
return bfd_reloc_ok;
case R_MN10300_TLS_LD:
if (dynobj == NULL)
return bfd_reloc_dangerous;
sgot = htab->root.sgot;
BFD_ASSERT (sgot != NULL);
value = htab->tls_ldm_got.offset + sgot->output_offset;
bfd_put_32 (input_bfd, value, hit_data);
if (!htab->tls_ldm_got.rel_emitted)
{
asection *srelgot = htab->root.srelgot;
Elf_Internal_Rela rel;
BFD_ASSERT (srelgot != NULL);
htab->tls_ldm_got.rel_emitted ++;
rel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ htab->tls_ldm_got.offset);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4);
rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
rel.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, & rel,
(bfd_byte *) ((Elf32_External_Rela *) srelgot->contents
+ srelgot->reloc_count));
++ srelgot->reloc_count;
}
return bfd_reloc_ok;
case R_MN10300_TLS_GOTIE:
value = tpoff (info, value);
/* Fall Through. */
case R_MN10300_TLS_GD:
case R_MN10300_TLS_IE:
case R_MN10300_GOT32:
case R_MN10300_GOT24:
case R_MN10300_GOT16:
if (dynobj == NULL)
return bfd_reloc_dangerous;
sgot = htab->root.sgot;
if (r_type == R_MN10300_TLS_GD)
value = dtpoff (info, value);
if (h != NULL)
{
bfd_vma off;
off = h->got.offset;
/* Offsets in the GOT are allocated in check_relocs
which is not called for shared libraries... */
if (off == (bfd_vma) -1)
off = 0;
if (sgot->contents != NULL
&& (! elf_hash_table (info)->dynamic_sections_created
|| SYMBOL_REFERENCES_LOCAL (info, h)))
/* This is actually a static link, or it is a
-Bsymbolic link and the symbol is defined
locally, or the symbol was forced to be local
because of a version file. We must initialize
this entry in the global offset table.
When doing a dynamic link, we create a .rela.got
relocation entry to initialize the value. This
is done in the finish_dynamic_symbol routine. */
bfd_put_32 (output_bfd, value,
sgot->contents + off);
value = sgot->output_offset + off;
}
else
{
bfd_vma off;
off = elf_local_got_offsets (input_bfd)[symndx];
if (off & 1)
bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1));
else
{
bfd_put_32 (output_bfd, value, sgot->contents + off);
if (bfd_link_pic (info))
{
asection *srelgot = htab->root.srelgot;;
Elf_Internal_Rela outrel;
BFD_ASSERT (srelgot != NULL);
outrel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ off);
switch (r_type)
{
case R_MN10300_TLS_GD:
outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF);
outrel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ off + 4);
bfd_elf32_swap_reloca_out (output_bfd, & outrel,
(bfd_byte *) (((Elf32_External_Rela *)
srelgot->contents)
+ srelgot->reloc_count));
++ srelgot->reloc_count;
outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
break;
case R_MN10300_TLS_GOTIE:
case R_MN10300_TLS_IE:
outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
break;
default:
outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
break;
}
outrel.r_addend = value;
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
(bfd_byte *) (((Elf32_External_Rela *)
srelgot->contents)
+ srelgot->reloc_count));
++ srelgot->reloc_count;
elf_local_got_offsets (input_bfd)[symndx] |= 1;
}
value = sgot->output_offset + (off & ~(bfd_vma) 1);
}
}
value += addend;
if (r_type == R_MN10300_TLS_IE)
{
value += sgot->output_section->vma;
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
}
else if (r_type == R_MN10300_TLS_GOTIE
|| r_type == R_MN10300_TLS_GD
|| r_type == R_MN10300_TLS_LD)
{
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
}
else if (r_type == R_MN10300_GOT32)
{
bfd_put_32 (input_bfd, value, hit_data);
return bfd_reloc_ok;
}
else if (r_type == R_MN10300_GOT24)
{
if ((long) value > 0x7fffff || (long) value < -0x800000)
return bfd_reloc_overflow;
bfd_put_8 (input_bfd, value & 0xff, hit_data);
bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
return bfd_reloc_ok;
}
else if (r_type == R_MN10300_GOT16)
{
if ((long) value > 0x7fff || (long) value < -0x8000)
return bfd_reloc_overflow;
bfd_put_16 (input_bfd, value, hit_data);
return bfd_reloc_ok;
}
/* Fall through. */
default:
return bfd_reloc_notsupported;
}
}
/* Relocate an MN10300 ELF section. */
static int
mn10300_elf_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel, *relend;
Elf_Internal_Rela * trel;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
Elf_Internal_Sym *sym;
asection *sec;
struct elf32_mn10300_link_hash_entry *h;
bfd_vma relocation;
bfd_reloc_status_type r;
int tls_r_type;
bool unresolved_reloc = false;
bool warned, ignored;
struct elf_link_hash_entry * hh;
relocation = 0;
r_symndx = ELF32_R_SYM (rel->r_info);
r_type = ELF32_R_TYPE (rel->r_info);
howto = elf_mn10300_howto_table + r_type;
/* Just skip the vtable gc relocs. */
if (r_type == R_MN10300_GNU_VTINHERIT
|| r_type == R_MN10300_GNU_VTENTRY)
continue;
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
hh = NULL;
else
{
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
hh, sec, relocation,
unresolved_reloc, warned, ignored);
}
h = elf_mn10300_hash_entry (hh);
tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0);
if (tls_r_type != r_type)
{
bool had_plt;
had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type,
contents, rel->r_offset);
r_type = tls_r_type;
howto = elf_mn10300_howto_table + r_type;
if (had_plt)
for (trel = rel+1; trel < relend; trel++)
if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32
|| ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32)
&& rel->r_offset + had_plt == trel->r_offset)
trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE);
}
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
}
else
{
if ((h->root.root.type == bfd_link_hash_defined
|| h->root.root.type == bfd_link_hash_defweak)
&& ( r_type == R_MN10300_GOTPC32
|| r_type == R_MN10300_GOTPC16
|| (( r_type == R_MN10300_PLT32
|| r_type == R_MN10300_PLT16)
&& ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
&& ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
&& h->root.plt.offset != (bfd_vma) -1)
|| (( r_type == R_MN10300_GOT32
|| r_type == R_MN10300_GOT24
|| r_type == R_MN10300_TLS_GD
|| r_type == R_MN10300_TLS_LD
|| r_type == R_MN10300_TLS_GOTIE
|| r_type == R_MN10300_TLS_IE
|| r_type == R_MN10300_GOT16)
&& elf_hash_table (info)->dynamic_sections_created
&& !SYMBOL_REFERENCES_LOCAL (info, hh))
|| (r_type == R_MN10300_32
&& !SYMBOL_REFERENCES_LOCAL (info, hh)
/* _32 relocs in executables force _COPY relocs,
such that the address of the symbol ends up
being local. */
&& (((input_section->flags & SEC_ALLOC) != 0
&& !bfd_link_executable (info))
/* DWARF will emit R_MN10300_32 relocations
in its sections against symbols defined
externally in shared libraries. We can't
do anything with them here. */
|| ((input_section->flags & SEC_DEBUGGING) != 0
&& h->root.def_dynamic)))))
/* In these cases, we don't need the relocation
value. We check specially because in some
obscure cases sec->output_section will be NULL. */
relocation = 0;
else if (!bfd_link_relocatable (info) && unresolved_reloc
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): "
"unresolvable %s relocation against symbol `%s'"),
input_bfd,
input_section,
(uint64_t) rel->r_offset,
howto->name,
h->root.root.root.string);
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (bfd_link_relocatable (info))
continue;
r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
input_section,
contents, rel->r_offset,
relocation, rel->r_addend,
(struct elf_link_hash_entry *) h,
r_symndx,
info, sec, h == NULL);
if (r != bfd_reloc_ok)
{
const char *name;
const char *msg = NULL;
if (h != NULL)
name = h->root.root.root.string;
else
{
name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name));
if (name == NULL || *name == '\0')
name = bfd_section_name (sec);
}
switch (r)
{
case bfd_reloc_overflow:
(*info->callbacks->reloc_overflow)
(info, (h ? &h->root.root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
break;
case bfd_reloc_undefined:
(*info->callbacks->undefined_symbol)
(info, name, input_bfd, input_section, rel->r_offset, true);
break;
case bfd_reloc_outofrange:
msg = _("internal error: out of range error");
goto common_error;
case bfd_reloc_notsupported:
msg = _("internal error: unsupported relocation error");
goto common_error;
case bfd_reloc_dangerous:
if (r_type == R_MN10300_PCREL32)
msg = _("error: inappropriate relocation type for shared"
" library (did you forget -fpic?)");
else if (r_type == R_MN10300_GOT32)
/* xgettext:c-format */
msg = _("%pB: taking the address of protected function"
" '%s' cannot be done when making a shared library");
else
msg = _("internal error: suspicious relocation type used"
" in shared library");
goto common_error;
default:
msg = _("internal error: unknown error");
/* Fall through. */
common_error:
_bfd_error_handler (msg, input_bfd, name);
bfd_set_error (bfd_error_bad_value);
return false;
}
}
}
return true;
}
/* Finish initializing one hash table entry. */
static bool
elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry,
void * in_args)
{
struct elf32_mn10300_link_hash_entry *entry;
struct bfd_link_info *link_info = (struct bfd_link_info *) in_args;
unsigned int byte_count = 0;
entry = (struct elf32_mn10300_link_hash_entry *) gen_entry;
/* If we already know we want to convert "call" to "calls" for calls
to this symbol, then return now. */
if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
return true;
/* If there are no named calls to this symbol, or there's nothing we
can move from the function itself into the "call" instruction,
then note that all "call" instructions should be converted into
"calls" instructions and return. If a symbol is available for
dynamic symbol resolution (overridable or overriding), avoid
custom calling conventions. */
if (entry->direct_calls == 0
|| (entry->stack_size == 0 && entry->movm_args == 0)
|| (elf_hash_table (link_info)->dynamic_sections_created
&& ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL
&& ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN))
{
/* Make a note that we should convert "call" instructions to "calls"
instructions for calls to this symbol. */
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
return true;
}
/* We may be able to move some instructions from the function itself into
the "call" instruction. Count how many bytes we might be able to
eliminate in the function itself. */
/* A movm instruction is two bytes. */
if (entry->movm_args)
byte_count += 2;
/* Count the insn to allocate stack space too. */
if (entry->stack_size > 0)
{
if (entry->stack_size <= 128)
byte_count += 3;
else
byte_count += 4;
}
/* If using "call" will result in larger code, then turn all
the associated "call" instructions into "calls" instructions. */
if (byte_count < entry->direct_calls)
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
/* This routine never fails. */
return true;
}
/* Used to count hash table entries. */
static bool
elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED,
void * in_args)
{
int *count = (int *) in_args;
(*count) ++;
return true;
}
/* Used to enumerate hash table entries into a linear array. */
static bool
elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry,
void * in_args)
{
struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args;
**ptr = gen_entry;
(*ptr) ++;
return true;
}
/* Used to sort the array created by the above. */
static int
sort_by_value (const void *va, const void *vb)
{
struct elf32_mn10300_link_hash_entry *a
= *(struct elf32_mn10300_link_hash_entry **) va;
struct elf32_mn10300_link_hash_entry *b
= *(struct elf32_mn10300_link_hash_entry **) vb;
return a->value - b->value;
}
/* Compute the stack size and movm arguments for the function
referred to by HASH at address ADDR in section with
contents CONTENTS, store the information in the hash table. */
static void
compute_function_info (bfd *abfd,
struct elf32_mn10300_link_hash_entry *hash,
bfd_vma addr,
unsigned char *contents)
{
unsigned char byte1, byte2;
/* We only care about a very small subset of the possible prologue
sequences here. Basically we look for:
movm [d2,d3,a2,a3],sp (optional)
add <size>,sp (optional, and only for sizes which fit in an unsigned
8 bit number)
If we find anything else, we quit. */
/* Look for movm [regs],sp. */
byte1 = bfd_get_8 (abfd, contents + addr);
byte2 = bfd_get_8 (abfd, contents + addr + 1);
if (byte1 == 0xcf)
{
hash->movm_args = byte2;
addr += 2;
byte1 = bfd_get_8 (abfd, contents + addr);
byte2 = bfd_get_8 (abfd, contents + addr + 1);
}
/* Now figure out how much stack space will be allocated by the movm
instruction. We need this kept separate from the function's normal
stack space. */
if (hash->movm_args)
{
/* Space for d2. */
if (hash->movm_args & 0x80)
hash->movm_stack_size += 4;
/* Space for d3. */
if (hash->movm_args & 0x40)
hash->movm_stack_size += 4;
/* Space for a2. */
if (hash->movm_args & 0x20)
hash->movm_stack_size += 4;
/* Space for a3. */
if (hash->movm_args & 0x10)
hash->movm_stack_size += 4;
/* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */
if (hash->movm_args & 0x08)
hash->movm_stack_size += 8 * 4;
if (bfd_get_mach (abfd) == bfd_mach_am33
|| bfd_get_mach (abfd) == bfd_mach_am33_2)
{
/* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */
if (hash->movm_args & 0x1)
hash->movm_stack_size += 6 * 4;
/* exreg1 space. e4, e5, e6, e7 */
if (hash->movm_args & 0x2)
hash->movm_stack_size += 4 * 4;
/* exreg0 space. e2, e3 */
if (hash->movm_args & 0x4)
hash->movm_stack_size += 2 * 4;
}
}
/* Now look for the two stack adjustment variants. */
if (byte1 == 0xf8 && byte2 == 0xfe)
{
int temp = bfd_get_8 (abfd, contents + addr + 2);
temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
hash->stack_size = -temp;
}
else if (byte1 == 0xfa && byte2 == 0xfe)
{
int temp = bfd_get_16 (abfd, contents + addr + 2);
temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
temp = -temp;
if (temp < 255)
hash->stack_size = temp;
}
/* If the total stack to be allocated by the call instruction is more
than 255 bytes, then we can't remove the stack adjustment by using
"call" (we might still be able to remove the "movm" instruction. */
if (hash->stack_size + hash->movm_stack_size > 255)
hash->stack_size = 0;
}
/* Delete some bytes from a section while relaxing. */
static bool
mn10300_elf_relax_delete_bytes (bfd *abfd,
asection *sec,
bfd_vma addr,
int count)
{
Elf_Internal_Shdr *symtab_hdr;
unsigned int sec_shndx;
bfd_byte *contents;
Elf_Internal_Rela *irel, *irelend;
Elf_Internal_Rela *irelalign;
bfd_vma toaddr;
Elf_Internal_Sym *isym, *isymend;
struct elf_link_hash_entry **sym_hashes;
struct elf_link_hash_entry **end_hashes;
unsigned int symcount;
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
contents = elf_section_data (sec)->this_hdr.contents;
irelalign = NULL;
toaddr = sec->size;
irel = elf_section_data (sec)->relocs;
irelend = irel + sec->reloc_count;
if (sec->reloc_count > 0)
{
/* If there is an align reloc at the end of the section ignore it.
GAS creates these relocs for reasons of its own, and they just
serve to keep the section artifically inflated. */
if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN)
--irelend;
/* The deletion must stop at the next ALIGN reloc for an alignment
power larger than, or not a multiple of, the number of bytes we
are deleting. */
for (; irel < irelend; irel++)
{
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
&& irel->r_offset > addr
&& irel->r_offset < toaddr)
{
int alignment = 1 << irel->r_addend;
if (count < alignment
|| alignment % count != 0)
{
irelalign = irel;
toaddr = irel->r_offset;
break;
}
}
}
}
/* Actually delete the bytes. */
memmove (contents + addr, contents + addr + count,
(size_t) (toaddr - addr - count));
/* Adjust the section's size if we are shrinking it, or else
pad the bytes between the end of the shrunken region and
the start of the next region with NOP codes. */
if (irelalign == NULL)
{
sec->size -= count;
/* Include symbols at the end of the section, but
not at the end of a sub-region of the section. */
toaddr ++;
}
else
{
int i;
#define NOP_OPCODE 0xcb
for (i = 0; i < count; i ++)
bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
}
/* Adjust all the relocs. */
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
{
/* Get the new reloc address. */
if ((irel->r_offset > addr
&& irel->r_offset < toaddr)
|| (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
&& irel->r_offset == toaddr))
irel->r_offset -= count;
}
/* Adjust the local symbols in the section, reducing their value
by the number of bytes deleted. Note - symbols within the deleted
region are moved to the address of the start of the region, which
actually means that they will address the byte beyond the end of
the region once the deletion has been completed. */
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
{
if (isym->st_shndx == sec_shndx
&& isym->st_value > addr
&& isym->st_value < toaddr)
{
if (isym->st_value < addr + count)
isym->st_value = addr;
else
isym->st_value -= count;
}
/* Adjust the function symbol's size as well. */
else if (isym->st_shndx == sec_shndx
&& ELF_ST_TYPE (isym->st_info) == STT_FUNC
&& isym->st_value + isym->st_size > addr
&& isym->st_value + isym->st_size < toaddr)
isym->st_size -= count;
}
/* Now adjust the global symbols defined in this section. */
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
- symtab_hdr->sh_info);
sym_hashes = elf_sym_hashes (abfd);
end_hashes = sym_hashes + symcount;
for (; sym_hashes < end_hashes; sym_hashes++)
{
struct elf_link_hash_entry *sym_hash = *sym_hashes;
if ((sym_hash->root.type == bfd_link_hash_defined
|| sym_hash->root.type == bfd_link_hash_defweak)
&& sym_hash->root.u.def.section == sec
&& sym_hash->root.u.def.value > addr
&& sym_hash->root.u.def.value < toaddr)
{
if (sym_hash->root.u.def.value < addr + count)
sym_hash->root.u.def.value = addr;
else
sym_hash->root.u.def.value -= count;
}
/* Adjust the function symbol's size as well. */
else if (sym_hash->root.type == bfd_link_hash_defined
&& sym_hash->root.u.def.section == sec
&& sym_hash->type == STT_FUNC
&& sym_hash->root.u.def.value + sym_hash->size > addr
&& sym_hash->root.u.def.value + sym_hash->size < toaddr)
sym_hash->size -= count;
}
/* See if we can move the ALIGN reloc forward.
We have adjusted r_offset for it already. */
if (irelalign != NULL)
{
bfd_vma alignto, alignaddr;
if ((int) irelalign->r_addend > 0)
{
/* This is the old address. */
alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
/* This is where the align points to now. */
alignaddr = BFD_ALIGN (irelalign->r_offset,
1 << irelalign->r_addend);
if (alignaddr < alignto)
/* Tail recursion. */
return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr,
(int) (alignto - alignaddr));
}
}
return true;
}
/* Return TRUE if a symbol exists at the given address, else return
FALSE. */
static bool
mn10300_elf_symbol_address_p (bfd *abfd,
asection *sec,
Elf_Internal_Sym *isym,
bfd_vma addr)
{
Elf_Internal_Shdr *symtab_hdr;
unsigned int sec_shndx;
Elf_Internal_Sym *isymend;
struct elf_link_hash_entry **sym_hashes;
struct elf_link_hash_entry **end_hashes;
unsigned int symcount;
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
/* Examine all the symbols. */
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
if (isym->st_shndx == sec_shndx
&& isym->st_value == addr)
return true;
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
- symtab_hdr->sh_info);
sym_hashes = elf_sym_hashes (abfd);
end_hashes = sym_hashes + symcount;
for (; sym_hashes < end_hashes; sym_hashes++)
{
struct elf_link_hash_entry *sym_hash = *sym_hashes;
if ((sym_hash->root.type == bfd_link_hash_defined
|| sym_hash->root.type == bfd_link_hash_defweak)
&& sym_hash->root.u.def.section == sec
&& sym_hash->root.u.def.value == addr)
return true;
}
return false;
}
/* This function handles relaxing for the mn10300.
There are quite a few relaxing opportunities available on the mn10300:
* calls:32 -> calls:16 2 bytes
* call:32 -> call:16 2 bytes
* call:32 -> calls:32 1 byte
* call:16 -> calls:16 1 byte
* These are done anytime using "calls" would result
in smaller code, or when necessary to preserve the
meaning of the program.
* call:32 varies
* call:16
* In some circumstances we can move instructions
from a function prologue into a "call" instruction.
This is only done if the resulting code is no larger
than the original code.
* jmp:32 -> jmp:16 2 bytes
* jmp:16 -> bra:8 1 byte
* If the previous instruction is a conditional branch
around the jump/bra, we may be able to reverse its condition
and change its target to the jump's target. The jump/bra
can then be deleted. 2 bytes
* mov abs32 -> mov abs16 1 or 2 bytes
* Most instructions which accept imm32 can relax to imm16 1 or 2 bytes
- Most instructions which accept imm16 can relax to imm8 1 or 2 bytes
* Most instructions which accept d32 can relax to d16 1 or 2 bytes
- Most instructions which accept d16 can relax to d8 1 or 2 bytes
We don't handle imm16->imm8 or d16->d8 as they're very rare
and somewhat more difficult to support. */
static bool
mn10300_elf_relax_section (bfd *abfd,
asection *sec,
struct bfd_link_info *link_info,
bool *again)
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Rela *internal_relocs = NULL;
Elf_Internal_Rela *irel, *irelend;
bfd_byte *contents = NULL;
Elf_Internal_Sym *isymbuf = NULL;
struct elf32_mn10300_link_hash_table *hash_table;
asection *section = sec;
bfd_vma align_gap_adjustment;
if (bfd_link_relocatable (link_info))
(*link_info->callbacks->einfo)
(_("%P%F: --relax and -r may not be used together\n"));
/* Assume nothing changes. */
*again = false;
/* We need a pointer to the mn10300 specific hash table. */
hash_table = elf32_mn10300_hash_table (link_info);
if (hash_table == NULL)
return false;
/* Initialize fields in each hash table entry the first time through. */
if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
{
bfd *input_bfd;
/* Iterate over all the input bfds. */
for (input_bfd = link_info->input_bfds;
input_bfd != NULL;
input_bfd = input_bfd->link.next)
{
/* We're going to need all the symbols for each bfd. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info != 0)
{
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
if (isymbuf == NULL)
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (isymbuf == NULL)
goto error_return;
}
/* Iterate over each section in this bfd. */
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
struct elf32_mn10300_link_hash_entry *hash;
asection *sym_sec = NULL;
const char *sym_name;
char *new_name;
/* If there's nothing to do in this section, skip it. */
if (! ((section->flags & SEC_RELOC) != 0
&& section->reloc_count != 0))
continue;
if ((section->flags & SEC_ALLOC) == 0)
continue;
/* Get cached copy of section contents if it exists. */
if (elf_section_data (section)->this_hdr.contents != NULL)
contents = elf_section_data (section)->this_hdr.contents;
else if (section->size != 0)
{
/* Go get them off disk. */
if (!bfd_malloc_and_get_section (input_bfd, section,
&contents))
goto error_return;
}
else
contents = NULL;
/* If there aren't any relocs, then there's nothing to do. */
if ((section->flags & SEC_RELOC) != 0
&& section->reloc_count != 0)
{
/* Get a copy of the native relocations. */
internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
NULL, NULL,
link_info->keep_memory);
if (internal_relocs == NULL)
goto error_return;
/* Now examine each relocation. */
irel = internal_relocs;
irelend = irel + section->reloc_count;
for (; irel < irelend; irel++)
{
long r_type;
unsigned long r_index;
unsigned char code;
r_type = ELF32_R_TYPE (irel->r_info);
r_index = ELF32_R_SYM (irel->r_info);
if (r_type < 0 || r_type >= (int) R_MN10300_MAX)
goto error_return;
/* We need the name and hash table entry of the target
symbol! */
hash = NULL;
sym_sec = NULL;
if (r_index < symtab_hdr->sh_info)
{
/* A local symbol. */
Elf_Internal_Sym *isym;
struct elf_link_hash_table *elftab;
size_t amt;
isym = isymbuf + r_index;
if (isym->st_shndx == SHN_UNDEF)
sym_sec = bfd_und_section_ptr;
else if (isym->st_shndx == SHN_ABS)
sym_sec = bfd_abs_section_ptr;
else if (isym->st_shndx == SHN_COMMON)
sym_sec = bfd_com_section_ptr;
else
sym_sec
= bfd_section_from_elf_index (input_bfd,
isym->st_shndx);
sym_name
= bfd_elf_string_from_elf_section (input_bfd,
(symtab_hdr
->sh_link),
isym->st_name);
/* If it isn't a function, then we don't care
about it. */
if (ELF_ST_TYPE (isym->st_info) != STT_FUNC)
continue;
/* Tack on an ID so we can uniquely identify this
local symbol in the global hash table. */
amt = strlen (sym_name) + 10;
new_name = bfd_malloc (amt);
if (new_name == NULL)
goto error_return;
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
sym_name = new_name;
elftab = &hash_table->static_hash_table->root;
hash = ((struct elf32_mn10300_link_hash_entry *)
elf_link_hash_lookup (elftab, sym_name,
true, true, false));
free (new_name);
}
else
{
r_index -= symtab_hdr->sh_info;
hash = (struct elf32_mn10300_link_hash_entry *)
elf_sym_hashes (input_bfd)[r_index];
}
sym_name = hash->root.root.root.string;
if ((section->flags & SEC_CODE) != 0)
{
/* If this is not a "call" instruction, then we
should convert "call" instructions to "calls"
instructions. */
code = bfd_get_8 (input_bfd,
contents + irel->r_offset - 1);
if (code != 0xdd && code != 0xcd)
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
}
/* If this is a jump/call, then bump the
direct_calls counter. Else force "call" to
"calls" conversions. */
if (r_type == R_MN10300_PCREL32
|| r_type == R_MN10300_PLT32
|| r_type == R_MN10300_PLT16
|| r_type == R_MN10300_PCREL16)
hash->direct_calls++;
else
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
}
}
/* Now look at the actual contents to get the stack size,
and a list of what registers were saved in the prologue
(ie movm_args). */
if ((section->flags & SEC_CODE) != 0)
{
Elf_Internal_Sym *isym, *isymend;
unsigned int sec_shndx;
struct elf_link_hash_entry **hashes;
struct elf_link_hash_entry **end_hashes;
unsigned int symcount;
sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
section);
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
- symtab_hdr->sh_info);
hashes = elf_sym_hashes (input_bfd);
end_hashes = hashes + symcount;
/* Look at each function defined in this section and
update info for that function. */
isymend = isymbuf + symtab_hdr->sh_info;
for (isym = isymbuf; isym < isymend; isym++)
{
if (isym->st_shndx == sec_shndx
&& ELF_ST_TYPE (isym->st_info) == STT_FUNC)
{
struct elf_link_hash_table *elftab;
size_t amt;
struct elf_link_hash_entry **lhashes = hashes;
/* Skip a local symbol if it aliases a
global one. */
for (; lhashes < end_hashes; lhashes++)
{
hash = (struct elf32_mn10300_link_hash_entry *) *lhashes;
if ((hash->root.root.type == bfd_link_hash_defined
|| hash->root.root.type == bfd_link_hash_defweak)
&& hash->root.root.u.def.section == section
&& hash->root.type == STT_FUNC
&& hash->root.root.u.def.value == isym->st_value)
break;
}
if (lhashes != end_hashes)
continue;
if (isym->st_shndx == SHN_UNDEF)
sym_sec = bfd_und_section_ptr;
else if (isym->st_shndx == SHN_ABS)
sym_sec = bfd_abs_section_ptr;
else if (isym->st_shndx == SHN_COMMON)
sym_sec = bfd_com_section_ptr;
else
sym_sec
= bfd_section_from_elf_index (input_bfd,
isym->st_shndx);
sym_name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link,
isym->st_name));
/* Tack on an ID so we can uniquely identify this
local symbol in the global hash table. */
amt = strlen (sym_name) + 10;
new_name = bfd_malloc (amt);
if (new_name == NULL)
goto error_return;
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
sym_name = new_name;
elftab = &hash_table->static_hash_table->root;
hash = ((struct elf32_mn10300_link_hash_entry *)
elf_link_hash_lookup (elftab, sym_name,
true, true, false));
free (new_name);
compute_function_info (input_bfd, hash,
isym->st_value, contents);
hash->value = isym->st_value;
}
}
for (; hashes < end_hashes; hashes++)
{
hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
if ((hash->root.root.type == bfd_link_hash_defined
|| hash->root.root.type == bfd_link_hash_defweak)
&& hash->root.root.u.def.section == section
&& hash->root.type == STT_FUNC)
compute_function_info (input_bfd, hash,
(hash)->root.root.u.def.value,
contents);
}
}
/* Cache or free any memory we allocated for the relocs. */
if (elf_section_data (section)->relocs != internal_relocs)
free (internal_relocs);
internal_relocs = NULL;
/* Cache or free any memory we allocated for the contents. */
if (contents != NULL
&& elf_section_data (section)->this_hdr.contents != contents)
{
if (! link_info->keep_memory)
free (contents);
else
{
/* Cache the section contents for elf_link_input_bfd. */
elf_section_data (section)->this_hdr.contents = contents;
}
}
contents = NULL;
}
/* Cache or free any memory we allocated for the symbols. */
if (isymbuf != NULL
&& symtab_hdr->contents != (unsigned char *) isymbuf)
{
if (! link_info->keep_memory)
free (isymbuf);
else
{
/* Cache the symbols for elf_link_input_bfd. */
symtab_hdr->contents = (unsigned char *) isymbuf;
}
}
isymbuf = NULL;
}
/* Now iterate on each symbol in the hash table and perform
the final initialization steps on each. */
elf32_mn10300_link_hash_traverse (hash_table,
elf32_mn10300_finish_hash_table_entry,
link_info);
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
elf32_mn10300_finish_hash_table_entry,
link_info);
{
/* This section of code collects all our local symbols, sorts
them by value, and looks for multiple symbols referring to
the same address. For those symbols, the flags are merged.
At this point, the only flag that can be set is
MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags
together. */
int static_count = 0, i;
struct elf32_mn10300_link_hash_entry **entries;
struct elf32_mn10300_link_hash_entry **ptr;
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
elf32_mn10300_count_hash_table_entries,
&static_count);
entries = bfd_malloc (static_count * sizeof (* ptr));
ptr = entries;
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
elf32_mn10300_list_hash_table_entries,
& ptr);
qsort (entries, static_count, sizeof (entries[0]), sort_by_value);
for (i = 0; i < static_count - 1; i++)
if (entries[i]->value && entries[i]->value == entries[i+1]->value)
{
int v = entries[i]->flags;
int j;
for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++)
v |= entries[j]->flags;
for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++)
entries[j]->flags = v;
i = j - 1;
}
}
/* All entries in the hash table are fully initialized. */
hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
/* Now that everything has been initialized, go through each
code section and delete any prologue insns which will be
redundant because their operations will be performed by
a "call" instruction. */
for (input_bfd = link_info->input_bfds;
input_bfd != NULL;
input_bfd = input_bfd->link.next)
{
/* We're going to need all the local symbols for each bfd. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info != 0)
{
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
if (isymbuf == NULL)
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (isymbuf == NULL)
goto error_return;
}
/* Walk over each section in this bfd. */
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
unsigned int sec_shndx;
Elf_Internal_Sym *isym, *isymend;
struct elf_link_hash_entry **hashes;
struct elf_link_hash_entry **end_hashes;
unsigned int symcount;
/* Skip non-code sections and empty sections. */
if ((section->flags & SEC_CODE) == 0 || section->size == 0)
continue;
if (section->reloc_count != 0)
{
/* Get a copy of the native relocations. */
internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
NULL, NULL,
link_info->keep_memory);
if (internal_relocs == NULL)
goto error_return;
}
/* Get cached copy of section contents if it exists. */
if (elf_section_data (section)->this_hdr.contents != NULL)
contents = elf_section_data (section)->this_hdr.contents;
else
{
/* Go get them off disk. */
if (!bfd_malloc_and_get_section (input_bfd, section,
&contents))
goto error_return;
}
sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
section);
/* Now look for any function in this section which needs
insns deleted from its prologue. */
isymend = isymbuf + symtab_hdr->sh_info;
for (isym = isymbuf; isym < isymend; isym++)
{
struct elf32_mn10300_link_hash_entry *sym_hash;
asection *sym_sec = NULL;
const char *sym_name;
char *new_name;
struct elf_link_hash_table *elftab;
size_t amt;
if (isym->st_shndx != sec_shndx)
continue;
if (isym->st_shndx == SHN_UNDEF)
sym_sec = bfd_und_section_ptr;
else if (isym->st_shndx == SHN_ABS)
sym_sec = bfd_abs_section_ptr;
else if (isym->st_shndx == SHN_COMMON)
sym_sec = bfd_com_section_ptr;
else
sym_sec
= bfd_section_from_elf_index (input_bfd, isym->st_shndx);
sym_name
= bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
isym->st_name);
/* Tack on an ID so we can uniquely identify this
local symbol in the global hash table. */
amt = strlen (sym_name) + 10;
new_name = bfd_malloc (amt);
if (new_name == NULL)
goto error_return;
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
sym_name = new_name;
elftab = & hash_table->static_hash_table->root;
sym_hash = (struct elf32_mn10300_link_hash_entry *)
elf_link_hash_lookup (elftab, sym_name,
false, false, false);
free (new_name);
if (sym_hash == NULL)
continue;
if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
&& ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
{
int bytes = 0;
/* Note that we've changed things. */
elf_section_data (section)->relocs = internal_relocs;
elf_section_data (section)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Count how many bytes we're going to delete. */
if (sym_hash->movm_args)
bytes += 2;
if (sym_hash->stack_size > 0)
{
if (sym_hash->stack_size <= 128)
bytes += 3;
else
bytes += 4;
}
/* Note that we've deleted prologue bytes for this
function. */
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
/* Actually delete the bytes. */
if (!mn10300_elf_relax_delete_bytes (input_bfd,
section,
isym->st_value,
bytes))
goto error_return;
/* Something changed. Not strictly necessary, but
may lead to more relaxing opportunities. */
*again = true;
}
}
/* Look for any global functions in this section which
need insns deleted from their prologues. */
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
- symtab_hdr->sh_info);
hashes = elf_sym_hashes (input_bfd);
end_hashes = hashes + symcount;
for (; hashes < end_hashes; hashes++)
{
struct elf32_mn10300_link_hash_entry *sym_hash;
sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
if ((sym_hash->root.root.type == bfd_link_hash_defined
|| sym_hash->root.root.type == bfd_link_hash_defweak)
&& sym_hash->root.root.u.def.section == section
&& ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
&& ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
{
int bytes = 0;
bfd_vma symval;
struct elf_link_hash_entry **hh;
/* Note that we've changed things. */
elf_section_data (section)->relocs = internal_relocs;
elf_section_data (section)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Count how many bytes we're going to delete. */
if (sym_hash->movm_args)
bytes += 2;
if (sym_hash->stack_size > 0)
{
if (sym_hash->stack_size <= 128)
bytes += 3;
else
bytes += 4;
}
/* Note that we've deleted prologue bytes for this
function. */
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
/* Actually delete the bytes. */
symval = sym_hash->root.root.u.def.value;
if (!mn10300_elf_relax_delete_bytes (input_bfd,
section,
symval,
bytes))
goto error_return;
/* There may be other C++ functions symbols with the same
address. If so then mark these as having had their
prologue bytes deleted as well. */
for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++)
{
struct elf32_mn10300_link_hash_entry *h;
h = (struct elf32_mn10300_link_hash_entry *) * hh;
if (h != sym_hash
&& (h->root.root.type == bfd_link_hash_defined
|| h->root.root.type == bfd_link_hash_defweak)
&& h->root.root.u.def.section == section
&& ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS)
&& h->root.root.u.def.value == symval
&& h->root.type == STT_FUNC)
h->flags |= MN10300_DELETED_PROLOGUE_BYTES;
}
/* Something changed. Not strictly necessary, but
may lead to more relaxing opportunities. */
*again = true;
}
}
/* Cache or free any memory we allocated for the relocs. */
if (elf_section_data (section)->relocs != internal_relocs)
free (internal_relocs);
internal_relocs = NULL;
/* Cache or free any memory we allocated for the contents. */
if (contents != NULL
&& elf_section_data (section)->this_hdr.contents != contents)
{
if (! link_info->keep_memory)
free (contents);
else
/* Cache the section contents for elf_link_input_bfd. */
elf_section_data (section)->this_hdr.contents = contents;
}
contents = NULL;
}
/* Cache or free any memory we allocated for the symbols. */
if (isymbuf != NULL
&& symtab_hdr->contents != (unsigned char *) isymbuf)
{
if (! link_info->keep_memory)
free (isymbuf);
else
/* Cache the symbols for elf_link_input_bfd. */
symtab_hdr->contents = (unsigned char *) isymbuf;
}
isymbuf = NULL;
}
}
/* (Re)initialize for the basic instruction shortening/relaxing pass. */
contents = NULL;
internal_relocs = NULL;
isymbuf = NULL;
/* For error_return. */
section = sec;
/* We don't have to do anything for a relocatable link, if
this section does not have relocs, or if this is not a
code section. */
if (bfd_link_relocatable (link_info)
|| (sec->flags & SEC_RELOC) == 0
|| sec->reloc_count == 0
|| (sec->flags & SEC_CODE) == 0)
return true;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
/* Get a copy of the native relocations. */
internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
link_info->keep_memory);
if (internal_relocs == NULL)
goto error_return;
/* Scan for worst case alignment gap changes. Note that this logic
is not ideal; what we should do is run this scan for every
opcode/address range and adjust accordingly, but that's
expensive. Worst case is that for an alignment of N bytes, we
move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc
all before it. Plus, this still doesn't cover cross-section
jumps with section alignment. */
irelend = internal_relocs + sec->reloc_count;
align_gap_adjustment = 0;
for (irel = internal_relocs; irel < irelend; irel++)
{
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN)
{
bfd_vma adj = 1 << irel->r_addend;
bfd_vma aend = irel->r_offset;
aend = BFD_ALIGN (aend, 1 << irel->r_addend);
adj = 2 * adj - adj - 1;
/* Record the biggest adjustmnet. Skip any alignment at the
end of our section. */
if (align_gap_adjustment < adj
&& aend < sec->output_section->vma + sec->output_offset + sec->size)
align_gap_adjustment = adj;
}
}
/* Walk through them looking for relaxing opportunities. */
irelend = internal_relocs + sec->reloc_count;
for (irel = internal_relocs; irel < irelend; irel++)
{
bfd_vma symval;
bfd_signed_vma jump_offset;
asection *sym_sec = NULL;
struct elf32_mn10300_link_hash_entry *h = NULL;
/* If this isn't something that can be relaxed, then ignore
this reloc. */
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
continue;
/* Get the section contents if we haven't done so already. */
if (contents == NULL)
{
/* Get cached copy if it exists. */
if (elf_section_data (sec)->this_hdr.contents != NULL)
contents = elf_section_data (sec)->this_hdr.contents;
else
{
/* Go get them off disk. */
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
goto error_return;
}
}
/* Read this BFD's symbols if we haven't done so already. */
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
{
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
if (isymbuf == NULL)
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (isymbuf == NULL)
goto error_return;
}
/* Get the value of the symbol referred to by the reloc. */
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
{
Elf_Internal_Sym *isym;
const char *sym_name;
char *new_name;
/* A local symbol. */
isym = isymbuf + ELF32_R_SYM (irel->r_info);
if (isym->st_shndx == SHN_UNDEF)
sym_sec = bfd_und_section_ptr;
else if (isym->st_shndx == SHN_ABS)
sym_sec = bfd_abs_section_ptr;
else if (isym->st_shndx == SHN_COMMON)
sym_sec = bfd_com_section_ptr;
else
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
sym_name = bfd_elf_string_from_elf_section (abfd,
symtab_hdr->sh_link,
isym->st_name);
if ((sym_sec->flags & SEC_MERGE)
&& sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE)
{
symval = isym->st_value;
/* GAS may reduce relocations against symbols in SEC_MERGE
sections to a relocation against the section symbol when
the original addend was zero. When the reloc is against
a section symbol we should include the addend in the
offset passed to _bfd_merged_section_offset, since the
location of interest is the original symbol. On the
other hand, an access to "sym+addend" where "sym" is not
a section symbol should not include the addend; Such an
access is presumed to be an offset from "sym"; The
location of interest is just "sym". */
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
symval += irel->r_addend;
symval = _bfd_merged_section_offset (abfd, & sym_sec,
elf_section_data (sym_sec)->sec_info,
symval);
if (ELF_ST_TYPE (isym->st_info) != STT_SECTION)
symval += irel->r_addend;
symval += sym_sec->output_section->vma
+ sym_sec->output_offset - irel->r_addend;
}
else
symval = (isym->st_value
+ sym_sec->output_section->vma
+ sym_sec->output_offset);
/* Tack on an ID so we can uniquely identify this
local symbol in the global hash table. */
new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10);
if (new_name == NULL)
goto error_return;
sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
sym_name = new_name;
h = (struct elf32_mn10300_link_hash_entry *)
elf_link_hash_lookup (&hash_table->static_hash_table->root,
sym_name, false, false, false);
free (new_name);
}
else
{
unsigned long indx;
/* An external symbol. */
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
h = (struct elf32_mn10300_link_hash_entry *)
(elf_sym_hashes (abfd)[indx]);
BFD_ASSERT (h != NULL);
if (h->root.root.type != bfd_link_hash_defined
&& h->root.root.type != bfd_link_hash_defweak)
/* This appears to be a reference to an undefined
symbol. Just ignore it--it will be caught by the
regular reloc processing. */
continue;
/* Check for a reference to a discarded symbol and ignore it. */
if (h->root.root.u.def.section->output_section == NULL)
continue;
sym_sec = h->root.root.u.def.section->output_section;
symval = (h->root.root.u.def.value
+ h->root.root.u.def.section->output_section->vma
+ h->root.root.u.def.section->output_offset);
}
/* For simplicity of coding, we are going to modify the section
contents, the section relocs, and the BFD symbol table. We
must tell the rest of the code not to free up this
information. It would be possible to instead create a table
of changes which have to be made, as is done in coff-mips.c;
that would be more work, but would require less memory when
the linker is run. */
/* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
branch/call, also deal with "call" -> "calls" conversions and
insertion of prologue data into "call" instructions. */
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32)
{
bfd_vma value = symval;
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32
&& h != NULL
&& ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
&& ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
&& h->root.plt.offset != (bfd_vma) -1)
{
asection * splt;
splt = hash_table->root.splt;
value = ((splt->output_section->vma
+ splt->output_offset
+ h->root.plt.offset)
- (sec->output_section->vma
+ sec->output_offset
+ irel->r_offset));
}
/* If we've got a "call" instruction that needs to be turned
into a "calls" instruction, do so now. It saves a byte. */
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
{
unsigned char code;
/* Get the opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
/* Make sure we're working with a "call" instruction! */
if (code == 0xdd)
{
/* Note that we've changed the relocs, section contents,
etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
/* Fix irel->r_offset and irel->r_addend. */
irel->r_offset += 1;
irel->r_addend += 1;
/* Delete one byte of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 3, 1))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
}
}
else if (h)
{
/* We've got a "call" instruction which needs some data
from target function filled in. */
unsigned char code;
/* Get the opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
/* Insert data from the target function into the "call"
instruction if needed. */
if (code == 0xdd)
{
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
contents + irel->r_offset + 5);
}
}
/* Deal with pc-relative gunk. */
value -= (sec->output_section->vma + sec->output_offset);
value -= irel->r_offset;
value += irel->r_addend;
/* See if the value will fit in 16 bits, note the high value is
0x7fff + 2 as the target will be two bytes closer if we are
able to relax, if it's in the same section. */
if (sec->output_section == sym_sec->output_section)
jump_offset = 0x8001;
else
jump_offset = 0x7fff;
/* Account for jumps across alignment boundaries using
align_gap_adjustment. */
if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment
&& ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment))
{
unsigned char code;
/* Get the opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
if (code != 0xdc && code != 0xdd && code != 0xff)
continue;
/* Note that we've changed the relocs, section contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
if (code == 0xdc)
bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
else if (code == 0xdd)
bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
else if (code == 0xff)
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_PLT32)
? R_MN10300_PLT16 :
R_MN10300_PCREL16);
/* Delete two bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 1, 2))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
}
}
/* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
branch. */
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
{
bfd_vma value = symval;
/* If we've got a "call" instruction that needs to be turned
into a "calls" instruction, do so now. It saves a byte. */
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
{
unsigned char code;
/* Get the opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
/* Make sure we're working with a "call" instruction! */
if (code == 0xcd)
{
/* Note that we've changed the relocs, section contents,
etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
/* Fix irel->r_offset and irel->r_addend. */
irel->r_offset += 1;
irel->r_addend += 1;
/* Delete one byte of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 1, 1))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
}
}
else if (h)
{
unsigned char code;
/* Get the opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
/* Insert data from the target function into the "call"
instruction if needed. */
if (code == 0xcd)
{
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
contents + irel->r_offset + 3);
}
}
/* Deal with pc-relative gunk. */
value -= (sec->output_section->vma + sec->output_offset);
value -= irel->r_offset;
value += irel->r_addend;
/* See if the value will fit in 8 bits, note the high value is
0x7f + 1 as the target will be one bytes closer if we are
able to relax. */
if ((long) value < 0x80 && (long) value > -0x80)
{
unsigned char code;
/* Get the opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
if (code != 0xcc)
continue;
/* Note that we've changed the relocs, section contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
R_MN10300_PCREL8);
/* Delete one byte of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 1, 1))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
}
}
/* Try to eliminate an unconditional 8 bit pc-relative branch
which immediately follows a conditional 8 bit pc-relative
branch around the unconditional branch.
original: new:
bCC lab1 bCC' lab2
bra lab2
lab1: lab1:
This happens when the bCC can't reach lab2 at assembly time,
but due to other relaxations it can reach at link time. */
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
{
Elf_Internal_Rela *nrel;
unsigned char code;
/* Do nothing if this reloc is the last byte in the section. */
if (irel->r_offset == sec->size)
continue;
/* See if the next instruction is an unconditional pc-relative
branch, more often than not this test will fail, so we
test it first to speed things up. */
code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
if (code != 0xca)
continue;
/* Also make sure the next relocation applies to the next
instruction and that it's a pc-relative 8 bit branch. */
nrel = irel + 1;
if (nrel == irelend
|| irel->r_offset + 2 != nrel->r_offset
|| ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
continue;
/* Make sure our destination immediately follows the
unconditional branch. */
if (symval != (sec->output_section->vma + sec->output_offset
+ irel->r_offset + 3))
continue;
/* Now make sure we are a conditional branch. This may not
be necessary, but why take the chance.
Note these checks assume that R_MN10300_PCREL8 relocs
only occur on bCC and bCCx insns. If they occured
elsewhere, we'd need to know the start of this insn
for this check to be accurate. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
if (code != 0xc0 && code != 0xc1 && code != 0xc2
&& code != 0xc3 && code != 0xc4 && code != 0xc5
&& code != 0xc6 && code != 0xc7 && code != 0xc8
&& code != 0xc9 && code != 0xe8 && code != 0xe9
&& code != 0xea && code != 0xeb)
continue;
/* We also have to be sure there is no symbol/label
at the unconditional branch. */
if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf,
irel->r_offset + 1))
continue;
/* Note that we've changed the relocs, section contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Reverse the condition of the first branch. */
switch (code)
{
case 0xc8:
code = 0xc9;
break;
case 0xc9:
code = 0xc8;
break;
case 0xc0:
code = 0xc2;
break;
case 0xc2:
code = 0xc0;
break;
case 0xc3:
code = 0xc1;
break;
case 0xc1:
code = 0xc3;
break;
case 0xc4:
code = 0xc6;
break;
case 0xc6:
code = 0xc4;
break;
case 0xc7:
code = 0xc5;
break;
case 0xc5:
code = 0xc7;
break;
case 0xe8:
code = 0xe9;
break;
case 0x9d:
code = 0xe8;
break;
case 0xea:
code = 0xeb;
break;
case 0xeb:
code = 0xea;
break;
}
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
/* Set the reloc type and symbol for the first branch
from the second branch. */
irel->r_info = nrel->r_info;
/* Make the reloc for the second branch a null reloc. */
nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
R_MN10300_NONE);
/* Delete two bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 1, 2))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
}
/* Try to turn a 24 immediate, displacement or absolute address
into a 8 immediate, displacement or absolute address. */
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24)
{
bfd_vma value = symval;
value += irel->r_addend;
/* See if the value will fit in 8 bits. */
if ((long) value < 0x7f && (long) value > -0x80)
{
unsigned char code;
/* AM33 insns which have 24 operands are 6 bytes long and
will have 0xfd as the first byte. */
/* Get the first opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
if (code == 0xfd)
{
/* Get the second opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
/* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
equivalent instructions exists. */
if (code != 0x6b && code != 0x7b
&& code != 0x8b && code != 0x9b
&& ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
|| (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
|| (code & 0x0f) == 0x0e))
{
/* Not safe if the high bit is on as relaxing may
move the value out of high mem and thus not fit
in a signed 8bit value. This is currently over
conservative. */
if ((value & 0x80) == 0)
{
/* Note that we've changed the relocation contents,
etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3);
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
/* Fix the relocation's type. */
irel->r_info =
ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
R_MN10300_8);
/* Delete two bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 1, 2))
goto error_return;
/* That will change things, so, we should relax
again. Note that this is not required, and it
may be slow. */
*again = true;
break;
}
}
}
}
}
/* Try to turn a 32bit immediate, displacement or absolute address
into a 16bit immediate, displacement or absolute address. */
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
{
bfd_vma value = symval;
if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32)
{
asection * sgot;
sgot = hash_table->root.sgot;
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32)
{
value = sgot->output_offset;
if (h)
value += h->root.got.offset;
else
value += (elf_local_got_offsets
(abfd)[ELF32_R_SYM (irel->r_info)]);
}
else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
value -= sgot->output_section->vma;
else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32)
value = (sgot->output_section->vma
- (sec->output_section->vma
+ sec->output_offset
+ irel->r_offset));
else
abort ();
}
value += irel->r_addend;
/* See if the value will fit in 24 bits.
We allow any 16bit match here. We prune those we can't
handle below. */
if (value + 0x800000 < 0x1000000 && irel->r_offset >= 3)
{
unsigned char code;
/* AM33 insns which have 32bit operands are 7 bytes long and
will have 0xfe as the first byte. */
/* Get the first opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
if (code == 0xfe)
{
/* Get the second opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
/* All the am33 32 -> 24 relaxing possibilities. */
/* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
equivalent instructions exists. */
if (code != 0x6b && code != 0x7b
&& code != 0x8b && code != 0x9b
&& (ELF32_R_TYPE (irel->r_info)
!= (int) R_MN10300_GOTPC32)
&& ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
|| (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
|| (code & 0x0f) == 0x0e))
{
/* Not safe if the high bit is on as relaxing may
move the value out of high mem and thus not fit
in a signed 16bit value. This is currently over
conservative. */
if ((value & 0x8000) == 0)
{
/* Note that we've changed the relocation contents,
etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3);
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
/* Fix the relocation's type. */
irel->r_info =
ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTOFF32)
? R_MN10300_GOTOFF24
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOT32)
? R_MN10300_GOT24 :
R_MN10300_24);
/* Delete one byte of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 3, 1))
goto error_return;
/* That will change things, so, we should relax
again. Note that this is not required, and it
may be slow. */
*again = true;
break;
}
}
}
}
/* See if the value will fit in 16 bits.
We allow any 16bit match here. We prune those we can't
handle below. */
if (value + 0x8000 < 0x10000 && irel->r_offset >= 2)
{
unsigned char code;
/* Most insns which have 32bit operands are 6 bytes long;
exceptions are pcrel insns and bit insns.
We handle pcrel insns above. We don't bother trying
to handle the bit insns here.
The first byte of the remaining insns will be 0xfc. */
/* Get the first opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
if (code != 0xfc)
continue;
/* Get the second opcode. */
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
if ((code & 0xf0) < 0x80)
switch (code & 0xf0)
{
/* mov (d32,am),dn -> mov (d32,am),dn
mov dm,(d32,am) -> mov dn,(d32,am)
mov (d32,am),an -> mov (d32,am),an
mov dm,(d32,am) -> mov dn,(d32,am)
movbu (d32,am),dn -> movbu (d32,am),dn
movbu dm,(d32,am) -> movbu dn,(d32,am)
movhu (d32,am),dn -> movhu (d32,am),dn
movhu dm,(d32,am) -> movhu dn,(d32,am) */
case 0x00:
case 0x10:
case 0x20:
case 0x30:
case 0x40:
case 0x50:
case 0x60:
case 0x70:
/* Not safe if the high bit is on as relaxing may
move the value out of high mem and thus not fit
in a signed 16bit value. */
if (code == 0xcc
&& (value & 0x8000))
continue;
/* Note that we've changed the relocation contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTOFF32)
? R_MN10300_GOTOFF16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOT32)
? R_MN10300_GOT16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTPC32)
? R_MN10300_GOTPC16 :
R_MN10300_16);
/* Delete two bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 2, 2))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
break;
}
else if ((code & 0xf0) == 0x80
|| (code & 0xf0) == 0x90)
switch (code & 0xf3)
{
/* mov dn,(abs32) -> mov dn,(abs16)
movbu dn,(abs32) -> movbu dn,(abs16)
movhu dn,(abs32) -> movhu dn,(abs16) */
case 0x81:
case 0x82:
case 0x83:
/* Note that we've changed the relocation contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
if ((code & 0xf3) == 0x81)
code = 0x01 + (code & 0x0c);
else if ((code & 0xf3) == 0x82)
code = 0x02 + (code & 0x0c);
else if ((code & 0xf3) == 0x83)
code = 0x03 + (code & 0x0c);
else
abort ();
/* Fix the opcode. */
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTOFF32)
? R_MN10300_GOTOFF16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOT32)
? R_MN10300_GOT16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTPC32)
? R_MN10300_GOTPC16 :
R_MN10300_16);
/* The opcode got shorter too, so we have to fix the
addend and offset too! */
irel->r_offset -= 1;
/* Delete three bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 1, 3))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
break;
/* mov am,(abs32) -> mov am,(abs16)
mov am,(d32,sp) -> mov am,(d16,sp)
mov dm,(d32,sp) -> mov dm,(d32,sp)
movbu dm,(d32,sp) -> movbu dm,(d32,sp)
movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
case 0x80:
case 0x90:
case 0x91:
case 0x92:
case 0x93:
/* sp-based offsets are zero-extended. */
if (code >= 0x90 && code <= 0x93
&& (long) value < 0)
continue;
/* Note that we've changed the relocation contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTOFF32)
? R_MN10300_GOTOFF16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOT32)
? R_MN10300_GOT16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTPC32)
? R_MN10300_GOTPC16 :
R_MN10300_16);
/* Delete two bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 2, 2))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
break;
}
else if ((code & 0xf0) < 0xf0)
switch (code & 0xfc)
{
/* mov imm32,dn -> mov imm16,dn
mov imm32,an -> mov imm16,an
mov (abs32),dn -> mov (abs16),dn
movbu (abs32),dn -> movbu (abs16),dn
movhu (abs32),dn -> movhu (abs16),dn */
case 0xcc:
case 0xdc:
case 0xa4:
case 0xa8:
case 0xac:
/* Not safe if the high bit is on as relaxing may
move the value out of high mem and thus not fit
in a signed 16bit value. */
if (code == 0xcc
&& (value & 0x8000))
continue;
/* "mov imm16, an" zero-extends the immediate. */
if ((code & 0xfc) == 0xdc
&& (long) value < 0)
continue;
/* Note that we've changed the relocation contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
if ((code & 0xfc) == 0xcc)
code = 0x2c + (code & 0x03);
else if ((code & 0xfc) == 0xdc)
code = 0x24 + (code & 0x03);
else if ((code & 0xfc) == 0xa4)
code = 0x30 + (code & 0x03);
else if ((code & 0xfc) == 0xa8)
code = 0x34 + (code & 0x03);
else if ((code & 0xfc) == 0xac)
code = 0x38 + (code & 0x03);
else
abort ();
/* Fix the opcode. */
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTOFF32)
? R_MN10300_GOTOFF16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOT32)
? R_MN10300_GOT16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTPC32)
? R_MN10300_GOTPC16 :
R_MN10300_16);
/* The opcode got shorter too, so we have to fix the
addend and offset too! */
irel->r_offset -= 1;
/* Delete three bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 1, 3))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
break;
/* mov (abs32),an -> mov (abs16),an
mov (d32,sp),an -> mov (d16,sp),an
mov (d32,sp),dn -> mov (d16,sp),dn
movbu (d32,sp),dn -> movbu (d16,sp),dn
movhu (d32,sp),dn -> movhu (d16,sp),dn
add imm32,dn -> add imm16,dn
cmp imm32,dn -> cmp imm16,dn
add imm32,an -> add imm16,an
cmp imm32,an -> cmp imm16,an
and imm32,dn -> and imm16,dn
or imm32,dn -> or imm16,dn
xor imm32,dn -> xor imm16,dn
btst imm32,dn -> btst imm16,dn */
case 0xa0:
case 0xb0:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xc0:
case 0xc8:
case 0xd0:
case 0xd8:
case 0xe0:
case 0xe1:
case 0xe2:
case 0xe3:
/* cmp imm16, an zero-extends the immediate. */
if (code == 0xdc
&& (long) value < 0)
continue;
/* So do sp-based offsets. */
if (code >= 0xb0 && code <= 0xb3
&& (long) value < 0)
continue;
/* Note that we've changed the relocation contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTOFF32)
? R_MN10300_GOTOFF16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOT32)
? R_MN10300_GOT16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTPC32)
? R_MN10300_GOTPC16 :
R_MN10300_16);
/* Delete two bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 2, 2))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
break;
}
else if (code == 0xfe)
{
/* add imm32,sp -> add imm16,sp */
/* Note that we've changed the relocation contents, etc. */
elf_section_data (sec)->relocs = internal_relocs;
elf_section_data (sec)->this_hdr.contents = contents;
symtab_hdr->contents = (unsigned char *) isymbuf;
/* Fix the opcode. */
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
/* Fix the relocation's type. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOT32)
? R_MN10300_GOT16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTOFF32)
? R_MN10300_GOTOFF16
: (ELF32_R_TYPE (irel->r_info)
== (int) R_MN10300_GOTPC32)
? R_MN10300_GOTPC16 :
R_MN10300_16);
/* Delete two bytes of data. */
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
irel->r_offset + 2, 2))
goto error_return;
/* That will change things, so, we should relax again.
Note that this is not required, and it may be slow. */
*again = true;
break;
}
}
}
}
if (isymbuf != NULL
&& symtab_hdr->contents != (unsigned char *) isymbuf)
{
if (! link_info->keep_memory)
free (isymbuf);
else
{
/* Cache the symbols for elf_link_input_bfd. */
symtab_hdr->contents = (unsigned char *) isymbuf;
}
}
if (contents != NULL
&& elf_section_data (sec)->this_hdr.contents != contents)
{
if (! link_info->keep_memory)
free (contents);
else
{
/* Cache the section contents for elf_link_input_bfd. */
elf_section_data (sec)->this_hdr.contents = contents;
}
}
if (elf_section_data (sec)->relocs != internal_relocs)
free (internal_relocs);
return true;
error_return:
if (symtab_hdr->contents != (unsigned char *) isymbuf)
free (isymbuf);
if (elf_section_data (section)->this_hdr.contents != contents)
free (contents);
if (elf_section_data (section)->relocs != internal_relocs)
free (internal_relocs);
return false;
}
/* This is a version of bfd_generic_get_relocated_section_contents
which uses mn10300_elf_relocate_section. */
static bfd_byte *
mn10300_elf_get_relocated_section_contents (bfd *output_bfd,
struct bfd_link_info *link_info,
struct bfd_link_order *link_order,
bfd_byte *data,
bool relocatable,
asymbol **symbols)
{
Elf_Internal_Shdr *symtab_hdr;
asection *input_section = link_order->u.indirect.section;
bfd *input_bfd = input_section->owner;
asection **sections = NULL;
Elf_Internal_Rela *internal_relocs = NULL;
Elf_Internal_Sym *isymbuf = NULL;
/* We only need to handle the case of relaxing, or of having a
particular set of section contents, specially. */
if (relocatable
|| elf_section_data (input_section)->this_hdr.contents == NULL)
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
link_order, data,
relocatable,
symbols);
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
bfd_byte *orig_data = data;
if (data == NULL)
{
data = bfd_malloc (input_section->size);
if (data == NULL)
return NULL;
}
memcpy (data, elf_section_data (input_section)->this_hdr.contents,
(size_t) input_section->size);
if ((input_section->flags & SEC_RELOC) != 0
&& input_section->reloc_count > 0)
{
asection **secpp;
Elf_Internal_Sym *isym, *isymend;
bfd_size_type amt;
internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section,
NULL, NULL, false);
if (internal_relocs == NULL)
goto error_return;
if (symtab_hdr->sh_info != 0)
{
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
if (isymbuf == NULL)
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (isymbuf == NULL)
goto error_return;
}
amt = symtab_hdr->sh_info;
amt *= sizeof (asection *);
sections = bfd_malloc (amt);
if (sections == NULL && amt != 0)
goto error_return;
isymend = isymbuf + symtab_hdr->sh_info;
for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
{
asection *isec;
if (isym->st_shndx == SHN_UNDEF)
isec = bfd_und_section_ptr;
else if (isym->st_shndx == SHN_ABS)
isec = bfd_abs_section_ptr;
else if (isym->st_shndx == SHN_COMMON)
isec = bfd_com_section_ptr;
else
isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
*secpp = isec;
}
if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
input_section, data, internal_relocs,
isymbuf, sections))
goto error_return;
free (sections);
if (symtab_hdr->contents != (unsigned char *) isymbuf)
free (isymbuf);
if (internal_relocs != elf_section_data (input_section)->relocs)
free (internal_relocs);
}
return data;
error_return:
free (sections);
if (symtab_hdr->contents != (unsigned char *) isymbuf)
free (isymbuf);
if (internal_relocs != elf_section_data (input_section)->relocs)
free (internal_relocs);
if (orig_data == NULL)
free (data);
return NULL;
}
/* Assorted hash table functions. */
/* Initialize an entry in the link hash table. */
/* Create an entry in an MN10300 ELF linker hash table. */
static struct bfd_hash_entry *
elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
struct elf32_mn10300_link_hash_entry *ret =
(struct elf32_mn10300_link_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = (struct elf32_mn10300_link_hash_entry *)
bfd_hash_allocate (table, sizeof (* ret));
if (ret == NULL)
return (struct bfd_hash_entry *) ret;
/* Call the allocation method of the superclass. */
ret = (struct elf32_mn10300_link_hash_entry *)
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
table, string);
if (ret != NULL)
{
ret->direct_calls = 0;
ret->stack_size = 0;
ret->movm_args = 0;
ret->movm_stack_size = 0;
ret->flags = 0;
ret->value = 0;
ret->tls_type = GOT_UNKNOWN;
}
return (struct bfd_hash_entry *) ret;
}
static void
_bfd_mn10300_copy_indirect_symbol (struct bfd_link_info * info,
struct elf_link_hash_entry * dir,
struct elf_link_hash_entry * ind)
{
struct elf32_mn10300_link_hash_entry * edir;
struct elf32_mn10300_link_hash_entry * eind;
edir = elf_mn10300_hash_entry (dir);
eind = elf_mn10300_hash_entry (ind);
if (ind->root.type == bfd_link_hash_indirect
&& dir->got.refcount <= 0)
{
edir->tls_type = eind->tls_type;
eind->tls_type = GOT_UNKNOWN;
}
edir->direct_calls = eind->direct_calls;
edir->stack_size = eind->stack_size;
edir->movm_args = eind->movm_args;
edir->movm_stack_size = eind->movm_stack_size;
edir->flags = eind->flags;
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
}
/* Destroy an mn10300 ELF linker hash table. */
static void
elf32_mn10300_link_hash_table_free (bfd *obfd)
{
struct elf32_mn10300_link_hash_table *ret
= (struct elf32_mn10300_link_hash_table *) obfd->link.hash;
obfd->link.hash = &ret->static_hash_table->root.root;
_bfd_elf_link_hash_table_free (obfd);
obfd->is_linker_output = true;
obfd->link.hash = &ret->root.root;
_bfd_elf_link_hash_table_free (obfd);
}
/* Create an mn10300 ELF linker hash table. */
static struct bfd_link_hash_table *
elf32_mn10300_link_hash_table_create (bfd *abfd)
{
struct elf32_mn10300_link_hash_table *ret;
size_t amt = sizeof (* ret);
ret = bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
amt = sizeof (struct elf_link_hash_table);
ret->static_hash_table = bfd_zmalloc (amt);
if (ret->static_hash_table == NULL)
{
free (ret);
return NULL;
}
if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
elf32_mn10300_link_hash_newfunc,
sizeof (struct elf32_mn10300_link_hash_entry),
MN10300_ELF_DATA))
{
free (ret->static_hash_table);
free (ret);
return NULL;
}
abfd->is_linker_output = false;
abfd->link.hash = NULL;
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
elf32_mn10300_link_hash_newfunc,
sizeof (struct elf32_mn10300_link_hash_entry),
MN10300_ELF_DATA))
{
abfd->is_linker_output = true;
abfd->link.hash = &ret->static_hash_table->root.root;
_bfd_elf_link_hash_table_free (abfd);
free (ret);
return NULL;
}
ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free;
ret->tls_ldm_got.offset = -1;
return & ret->root.root;
}
static unsigned long
elf_mn10300_mach (flagword flags)
{
switch (flags & EF_MN10300_MACH)
{
case E_MN10300_MACH_MN10300:
default:
return bfd_mach_mn10300;
case E_MN10300_MACH_AM33:
return bfd_mach_am33;
case E_MN10300_MACH_AM33_2:
return bfd_mach_am33_2;
}
}
/* The final processing done just before writing out a MN10300 ELF object
file. This gets the MN10300 architecture right based on the machine
number. */
static bool
_bfd_mn10300_elf_final_write_processing (bfd *abfd)
{
unsigned long val;
switch (bfd_get_mach (abfd))
{
default:
case bfd_mach_mn10300:
val = E_MN10300_MACH_MN10300;
break;
case bfd_mach_am33:
val = E_MN10300_MACH_AM33;
break;
case bfd_mach_am33_2:
val = E_MN10300_MACH_AM33_2;
break;
}
elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
elf_elfheader (abfd)->e_flags |= val;
return _bfd_elf_final_write_processing (abfd);
}
static bool
_bfd_mn10300_elf_object_p (bfd *abfd)
{
bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
return true;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bool
_bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
{
bfd *obfd = info->output_bfd;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return true;
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
&& bfd_get_mach (obfd) < bfd_get_mach (ibfd))
{
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
bfd_get_mach (ibfd)))
return false;
}
return true;
}
#define PLT0_ENTRY_SIZE 15
#define PLT_ENTRY_SIZE 20
#define PIC_PLT_ENTRY_SIZE 24
static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] =
{
0xfc, 0xa0, 0, 0, 0, 0, /* mov (.got+8),a0 */
0xfe, 0xe, 0x10, 0, 0, 0, 0, /* mov (.got+4),r1 */
0xf0, 0xf4, /* jmp (a0) */
};
static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] =
{
0xfc, 0xa0, 0, 0, 0, 0, /* mov (nameN@GOT + .got),a0 */
0xf0, 0xf4, /* jmp (a0) */
0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
0xdc, 0, 0, 0, 0, /* jmp .plt0 */
};
static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] =
{
0xfc, 0x22, 0, 0, 0, 0, /* mov (nameN@GOT,a2),a0 */
0xf0, 0xf4, /* jmp (a0) */
0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
0xf8, 0x22, 8, /* mov (8,a2),a0 */
0xfb, 0xa, 0x1a, 4, /* mov (4,a2),r1 */
0xf0, 0xf4, /* jmp (a0) */
};
/* Return size of the first PLT entry. */
#define elf_mn10300_sizeof_plt0(info) \
(bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE)
/* Return size of a PLT entry. */
#define elf_mn10300_sizeof_plt(info) \
(bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE)
/* Return offset of the PLT0 address in an absolute PLT entry. */
#define elf_mn10300_plt_plt0_offset(info) 16
/* Return offset of the linker in PLT0 entry. */
#define elf_mn10300_plt0_linker_offset(info) 2
/* Return offset of the GOT id in PLT0 entry. */
#define elf_mn10300_plt0_gotid_offset(info) 9
/* Return offset of the temporary in PLT entry. */
#define elf_mn10300_plt_temp_offset(info) 8
/* Return offset of the symbol in PLT entry. */
#define elf_mn10300_plt_symbol_offset(info) 2
/* Return offset of the relocation in PLT entry. */
#define elf_mn10300_plt_reloc_offset(info) 11
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
/* Create dynamic sections when linking against a dynamic object. */
static bool
_bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
flagword flags;
asection * s;
const struct elf_backend_data * bed = get_elf_backend_data (abfd);
struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
int ptralign = 0;
switch (bed->s->arch_size)
{
case 32:
ptralign = 2;
break;
case 64:
ptralign = 3;
break;
default:
bfd_set_error (bfd_error_bad_value);
return false;
}
/* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
.rel[a].bss sections. */
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
s = bfd_make_section_anyway_with_flags (abfd,
(bed->default_use_rela_p
? ".rela.plt" : ".rel.plt"),
flags | SEC_READONLY);
htab->root.srelplt = s;
if (s == NULL
|| !bfd_set_section_alignment (s, ptralign))
return false;
if (! _bfd_mn10300_elf_create_got_section (abfd, info))
return false;
if (bed->want_dynbss)
{
/* The .dynbss section is a place to put symbols which are defined
by dynamic objects, are referenced by regular objects, and are
not functions. We must allocate space for them in the process
image and use a R_*_COPY reloc to tell the dynamic linker to
initialize them at run time. The linker script puts the .dynbss
section into the .bss section of the final image. */
s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
SEC_ALLOC | SEC_LINKER_CREATED);
if (s == NULL)
return false;
/* The .rel[a].bss section holds copy relocs. This section is not
normally needed. We need to create it here, though, so that the
linker will map it to an output section. We can't just create it
only if we need it, because we will not know whether we need it
until we have seen all the input files, and the first time the
main linker code calls BFD after examining all the input files
(size_dynamic_sections) the input sections have already been
mapped to the output sections. If the section turns out not to
be needed, we can discard it later. We will never need this
section when generating a shared object, since they do not use
copy relocs. */
if (! bfd_link_pic (info))
{
s = bfd_make_section_anyway_with_flags (abfd,
(bed->default_use_rela_p
? ".rela.bss" : ".rel.bss"),
flags | SEC_READONLY);
if (s == NULL
|| !bfd_set_section_alignment (s, ptralign))
return false;
}
}
return true;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bool
_bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info,
struct elf_link_hash_entry * h)
{
struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
bfd * dynobj;
asection * s;
dynobj = htab->root.dynobj;
/* Make sure we know what is going on here. */
BFD_ASSERT (dynobj != NULL
&& (h->needs_plt
|| h->is_weakalias
|| (h->def_dynamic
&& h->ref_regular
&& !h->def_regular)));
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later,
when we know the address of the .got section. */
if (h->type == STT_FUNC
|| h->needs_plt)
{
if (! bfd_link_pic (info)
&& !h->def_dynamic
&& !h->ref_dynamic)
{
/* This case can occur if we saw a PLT reloc in an input
file, but the symbol was never referred to by a dynamic
object. In such a case, we don't actually need to build
a procedure linkage table, and we can just do a REL32
reloc instead. */
BFD_ASSERT (h->needs_plt);
return true;
}
/* Make sure this symbol is output as a dynamic symbol. */
if (h->dynindx == -1)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
s = htab->root.splt;
BFD_ASSERT (s != NULL);
/* If this is the first .plt entry, make room for the special
first entry. */
if (s->size == 0)
s->size += elf_mn10300_sizeof_plt0 (info);
/* If this symbol is not defined in a regular file, and we are
not generating a shared library, then set the symbol to this
location in the .plt. This is required to make function
pointers compare as equal between the normal executable and
the shared library. */
if (! bfd_link_pic (info)
&& !h->def_regular)
{
h->root.u.def.section = s;
h->root.u.def.value = s->size;
}
h->plt.offset = s->size;
/* Make room for this entry. */
s->size += elf_mn10300_sizeof_plt (info);
/* We also need to make an entry in the .got.plt section, which
will be placed in the .got section by the linker script. */
s = htab->root.sgotplt;
BFD_ASSERT (s != NULL);
s->size += 4;
/* We also need to make an entry in the .rela.plt section. */
s = htab->root.srelplt;
BFD_ASSERT (s != NULL);
s->size += sizeof (Elf32_External_Rela);
return true;
}
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->is_weakalias)
{
struct elf_link_hash_entry *def = weakdef (h);
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
h->root.u.def.section = def->root.u.def.section;
h->root.u.def.value = def->root.u.def.value;
return true;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (bfd_link_pic (info))
return true;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if (!h->non_got_ref)
return true;
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
s = bfd_get_linker_section (dynobj, ".dynbss");
BFD_ASSERT (s != NULL);
/* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to
copy the initial value out of the dynamic object and into the
runtime process image. We need to remember the offset into the
.rela.bss section we are going to use. */
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
{
asection * srel;
srel = bfd_get_linker_section (dynobj, ".rela.bss");
BFD_ASSERT (srel != NULL);
srel->size += sizeof (Elf32_External_Rela);
h->needs_copy = 1;
}
return _bfd_elf_adjust_dynamic_copy (info, h, s);
}
/* Set the sizes of the dynamic sections. */
static bool
_bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd,
struct bfd_link_info * info)
{
struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
bfd * dynobj;
asection * s;
bool relocs;
dynobj = htab->root.dynobj;
BFD_ASSERT (dynobj != NULL);
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
s = bfd_get_linker_section (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
else
{
/* We may have created entries in the .rela.got section.
However, if we are not creating the dynamic sections, we will
not actually use these entries. Reset the size of .rela.got,
which will cause it to get stripped from the output file
below. */
s = htab->root.sgot;
if (s != NULL)
s->size = 0;
}
if (htab->tls_ldm_got.refcount > 0)
{
s = htab->root.srelgot;
BFD_ASSERT (s != NULL);
s->size += sizeof (Elf32_External_Rela);
}
/* The check_relocs and adjust_dynamic_symbol entry points have
determined the sizes of the various dynamic sections. Allocate
memory for them. */
relocs = false;
for (s = dynobj->sections; s != NULL; s = s->next)
{
const char * name;
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
/* It's OK to base decisions on the section name, because none
of the dynobj section names depend upon the input files. */
name = bfd_section_name (s);
if (streq (name, ".plt"))
{
/* Remember whether there is a PLT. */
;
}
else if (startswith (name, ".rela"))
{
if (s->size != 0)
{
/* Remember whether there are any reloc sections other
than .rela.plt. */
if (! streq (name, ".rela.plt"))
relocs = true;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else if (! startswith (name, ".got")
&& ! streq (name, ".dynbss"))
/* It's not one of our sections, so don't allocate space. */
continue;
if (s->size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
s->flags |= SEC_EXCLUDE;
continue;
}
if ((s->flags & SEC_HAS_CONTENTS) == 0)
continue;
/* Allocate memory for the section contents. We use bfd_zalloc
here in case unused entries are not reclaimed before the
section's contents are written out. This should not happen,
but this way if it does, we get a R_MN10300_NONE reloc
instead of garbage. */
s->contents = bfd_zalloc (dynobj, s->size);
if (s->contents == NULL)
return false;
}
return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static bool
_bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd,
struct bfd_link_info * info,
struct elf_link_hash_entry * h,
Elf_Internal_Sym * sym)
{
struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
bfd * dynobj;
dynobj = htab->root.dynobj;
if (h->plt.offset != (bfd_vma) -1)
{
asection * splt;
asection * sgot;
asection * srel;
bfd_vma plt_index;
bfd_vma got_offset;
Elf_Internal_Rela rel;
/* This symbol has an entry in the procedure linkage table. Set
it up. */
BFD_ASSERT (h->dynindx != -1);
splt = htab->root.splt;
sgot = htab->root.sgotplt;
srel = htab->root.srelplt;
BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
/* Get the index in the procedure linkage table which
corresponds to this symbol. This is the index of this symbol
in all the symbols for which we are making plt entries. The
first entry in the procedure linkage table is reserved. */
plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info))
/ elf_mn10300_sizeof_plt (info));
/* Get the offset into the .got table of the entry that
corresponds to this function. Each .got entry is 4 bytes.
The first three are reserved. */
got_offset = (plt_index + 3) * 4;
/* Fill in the entry in the procedure linkage table. */
if (! bfd_link_pic (info))
{
memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry,
elf_mn10300_sizeof_plt (info));
bfd_put_32 (output_bfd,
(sgot->output_section->vma
+ sgot->output_offset
+ got_offset),
(splt->contents + h->plt.offset
+ elf_mn10300_plt_symbol_offset (info)));
bfd_put_32 (output_bfd,
(1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)),
(splt->contents + h->plt.offset
+ elf_mn10300_plt_plt0_offset (info)));
}
else
{
memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry,
elf_mn10300_sizeof_plt (info));
bfd_put_32 (output_bfd, got_offset,
(splt->contents + h->plt.offset
+ elf_mn10300_plt_symbol_offset (info)));
}
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
(splt->contents + h->plt.offset
+ elf_mn10300_plt_reloc_offset (info)));
/* Fill in the entry in the global offset table. */
bfd_put_32 (output_bfd,
(splt->output_section->vma
+ splt->output_offset
+ h->plt.offset
+ elf_mn10300_plt_temp_offset (info)),
sgot->contents + got_offset);
/* Fill in the entry in the .rela.plt section. */
rel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ got_offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT);
rel.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &rel,
(bfd_byte *) ((Elf32_External_Rela *) srel->contents
+ plt_index));
if (!h->def_regular)
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value alone. */
sym->st_shndx = SHN_UNDEF;
}
if (h->got.offset != (bfd_vma) -1)
{
asection * sgot;
asection * srel;
Elf_Internal_Rela rel;
/* This symbol has an entry in the global offset table. Set it up. */
sgot = htab->root.sgot;
srel = htab->root.srelgot;
BFD_ASSERT (sgot != NULL && srel != NULL);
rel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ (h->got.offset & ~1));
switch (elf_mn10300_hash_entry (h)->tls_type)
{
case GOT_TLS_GD:
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4);
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD);
rel.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, & rel,
(bfd_byte *) ((Elf32_External_Rela *) srel->contents
+ srel->reloc_count));
++ srel->reloc_count;
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF);
rel.r_offset += 4;
rel.r_addend = 0;
break;
case GOT_TLS_IE:
/* We originally stored the addend in the GOT, but at this
point, we want to move it to the reloc instead as that's
where the dynamic linker wants it. */
rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
if (h->dynindx == -1)
rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
else
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF);
break;
default:
/* If this is a -Bsymbolic link, and the symbol is defined
locally, we just want to emit a RELATIVE reloc. Likewise if
the symbol was forced to be local because of a version file.
The entry in the global offset table will already have been
initialized in the relocate_section function. */
if (bfd_link_pic (info)
&& (info->symbolic || h->dynindx == -1)
&& h->def_regular)
{
rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
rel.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT);
rel.r_addend = 0;
}
}
if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE)
{
bfd_elf32_swap_reloca_out (output_bfd, &rel,
(bfd_byte *) ((Elf32_External_Rela *) srel->contents
+ srel->reloc_count));
++ srel->reloc_count;
}
}
if (h->needs_copy)
{
asection * s;
Elf_Internal_Rela rel;
/* This symbol needs a copy reloc. Set it up. */
BFD_ASSERT (h->dynindx != -1
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak));
s = bfd_get_linker_section (dynobj, ".rela.bss");
BFD_ASSERT (s != NULL);
rel.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY);
rel.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, & rel,
(bfd_byte *) ((Elf32_External_Rela *) s->contents
+ s->reloc_count));
++ s->reloc_count;
}
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
if (h == elf_hash_table (info)->hdynamic
|| h == elf_hash_table (info)->hgot)
sym->st_shndx = SHN_ABS;
return true;
}
/* Finish up the dynamic sections. */
static bool
_bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd,
struct bfd_link_info * info)
{
bfd * dynobj;
asection * sgot;
asection * sdyn;
struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
dynobj = htab->root.dynobj;
sgot = htab->root.sgotplt;
BFD_ASSERT (sgot != NULL);
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
if (elf_hash_table (info)->dynamic_sections_created)
{
asection * splt;
Elf32_External_Dyn * dyncon;
Elf32_External_Dyn * dynconend;
BFD_ASSERT (sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection * s;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
break;
case DT_PLTGOT:
s = htab->root.sgot;
goto get_vma;
case DT_JMPREL:
s = htab->root.srelplt;
get_vma:
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_PLTRELSZ:
s = htab->root.srelplt;
dyn.d_un.d_val = s->size;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
}
}
/* Fill in the first entry in the procedure linkage table. */
splt = htab->root.splt;
if (splt && splt->size > 0)
{
if (bfd_link_pic (info))
{
memcpy (splt->contents, elf_mn10300_pic_plt_entry,
elf_mn10300_sizeof_plt (info));
}
else
{
memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE);
bfd_put_32 (output_bfd,
sgot->output_section->vma + sgot->output_offset + 4,
splt->contents + elf_mn10300_plt0_gotid_offset (info));
bfd_put_32 (output_bfd,
sgot->output_section->vma + sgot->output_offset + 8,
splt->contents + elf_mn10300_plt0_linker_offset (info));
}
/* UnixWare sets the entsize of .plt to 4, although that doesn't
really seem like the right value. */
elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
/* UnixWare sets the entsize of .plt to 4, but this is incorrect
as it means that the size of the PLT0 section (15 bytes) is not
a multiple of the sh_entsize. Some ELF tools flag this as an
error. We could pad PLT0 to 16 bytes, but that would introduce
compatibilty issues with previous toolchains, so instead we
just set the entry size to 1. */
elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1;
}
}
/* Fill in the first three entries in the global offset table. */
if (sgot->size > 0)
{
if (sdyn == NULL)
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
else
bfd_put_32 (output_bfd,
sdyn->output_section->vma + sdyn->output_offset,
sgot->contents);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
}
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
return true;
}
/* Classify relocation types, such that combreloc can sort them
properly. */
static enum elf_reloc_type_class
_bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
const asection *rel_sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela *rela)
{
switch ((int) ELF32_R_TYPE (rela->r_info))
{
case R_MN10300_RELATIVE: return reloc_class_relative;
case R_MN10300_JMP_SLOT: return reloc_class_plt;
case R_MN10300_COPY: return reloc_class_copy;
default: return reloc_class_normal;
}
}
/* Allocate space for an MN10300 extension to the bfd elf data structure. */
static bool
mn10300_elf_mkobject (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata),
MN10300_ELF_DATA);
}
#define bfd_elf32_mkobject mn10300_elf_mkobject
#ifndef ELF_ARCH
#define TARGET_LITTLE_SYM mn10300_elf32_vec
#define TARGET_LITTLE_NAME "elf32-mn10300"
#define ELF_ARCH bfd_arch_mn10300
#define ELF_TARGET_ID MN10300_ELF_DATA
#define ELF_MACHINE_CODE EM_MN10300
#define ELF_MACHINE_ALT1 EM_CYGNUS_MN10300
#define ELF_MAXPAGESIZE 0x1000
#endif
#define elf_info_to_howto mn10300_info_to_howto
#define elf_info_to_howto_rel NULL
#define elf_backend_can_gc_sections 1
#define elf_backend_rela_normal 1
#define elf_backend_check_relocs mn10300_elf_check_relocs
#define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook
#define elf_backend_relocate_section mn10300_elf_relocate_section
#define bfd_elf32_bfd_relax_section mn10300_elf_relax_section
#define bfd_elf32_bfd_get_relocated_section_contents \
mn10300_elf_get_relocated_section_contents
#define bfd_elf32_bfd_link_hash_table_create \
elf32_mn10300_link_hash_table_create
#ifndef elf_symbol_leading_char
#define elf_symbol_leading_char '_'
#endif
/* So we can set bits in e_flags. */
#define elf_backend_final_write_processing \
_bfd_mn10300_elf_final_write_processing
#define elf_backend_object_p _bfd_mn10300_elf_object_p
#define bfd_elf32_bfd_merge_private_bfd_data \
_bfd_mn10300_elf_merge_private_bfd_data
#define elf_backend_can_gc_sections 1
#define elf_backend_create_dynamic_sections \
_bfd_mn10300_elf_create_dynamic_sections
#define elf_backend_adjust_dynamic_symbol \
_bfd_mn10300_elf_adjust_dynamic_symbol
#define elf_backend_size_dynamic_sections \
_bfd_mn10300_elf_size_dynamic_sections
#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
#define elf_backend_finish_dynamic_symbol \
_bfd_mn10300_elf_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
_bfd_mn10300_elf_finish_dynamic_sections
#define elf_backend_copy_indirect_symbol \
_bfd_mn10300_copy_indirect_symbol
#define elf_backend_reloc_type_class \
_bfd_mn10300_elf_reloc_type_class
#define elf_backend_want_got_plt 1
#define elf_backend_plt_readonly 1
#define elf_backend_want_plt_sym 0
#define elf_backend_got_header_size 12
#define elf_backend_dtrel_excludes_plt 1
#include "elf32-target.h"