mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
b7b3111471
sis.h: Get rid of all uses of long long's. * (close_port read_uart write_uart uarta_tx): Don't seg fault when can't open pty's. * exec.c: Add two new instructions: smul, and divscc. * interf.c (flush_windows): New routine to flush the register windows out to the stack just before returning to GDB. Makes backtraces work much better.
1496 lines
28 KiB
C
1496 lines
28 KiB
C
/*
|
|
* This file is part of SIS.
|
|
*
|
|
* SIS, SPARC instruction simulator V1.8 Copyright (C) 1995 Jiri Gaisler,
|
|
* European Space Agency
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it under
|
|
* the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 675
|
|
* Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*/
|
|
|
|
/* The control space devices */
|
|
|
|
#include <sys/types.h>
|
|
#include <stdio.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file.h>
|
|
#include "sis.h"
|
|
#include "end.h"
|
|
|
|
extern int32 sis_verbose;
|
|
extern int mecrev0;
|
|
extern char uart_dev1[], uart_dev2[];
|
|
|
|
#define MEC_WS 0 /* Waitstates per MEC access (0 ws) */
|
|
#define MOK 0
|
|
|
|
/* MEC register addresses */
|
|
|
|
#define MEC_UARTA 0x0E0
|
|
#define MEC_UARTB 0x0E4
|
|
#define MEC_UART_CTRL 0x0E8
|
|
#define MEC_TIMER_CTRL 0x098
|
|
#define MEC_RTC_COUNTER 0x080
|
|
#define MEC_RTC_RELOAD 0x080
|
|
#define MEC_RTC_SCALER 0x084
|
|
#define MEC_GPT_COUNTER 0x088
|
|
#define MEC_GPT_RELOAD 0x088
|
|
#define MEC_GPT_SCALER 0x08C
|
|
#define MEC_DBG 0x0C0
|
|
#define MEC_BRK 0x0C4
|
|
#define MEC_WPR 0x0C8
|
|
#define MEC_SFSR 0x0A0
|
|
#define MEC_FFAR 0x0A4
|
|
#define MEC_IPR 0x048
|
|
#define MEC_IMR 0x04C
|
|
#define MEC_ICR 0x050
|
|
#define MEC_IFR 0x054
|
|
#define MEC_MCR 0x000
|
|
#define MEC_MEMCFG 0x010
|
|
#define MEC_WCR 0x018
|
|
#define MEC_MAR0 0x020
|
|
#define MEC_MAR1 0x024
|
|
#define MEC_SFR 0x004
|
|
#define MEC_WDOG 0x060
|
|
#define MEC_TRAPD 0x064
|
|
#define MEC_PWDR 0x008
|
|
#define SIM_LOAD 0x0F0
|
|
|
|
/* Memory exception causes */
|
|
#define PROT_EXC 0x3
|
|
#define UIMP_ACC 0x4
|
|
#define MEC_ACC 0x6
|
|
#define WATCH_EXC 0xa
|
|
#define BREAK_EXC 0xb
|
|
|
|
/* Size of UART buffers (bytes) */
|
|
#define UARTBUF 1024
|
|
|
|
/* Number of simulator ticks between flushing the UARTS. */
|
|
/* For good performance, keep above 1000 */
|
|
#define UART_FLUSH_TIME 3000
|
|
|
|
/* MEC timer control register bits */
|
|
#define TCR_GACR 1
|
|
#define TCR_GACL 2
|
|
#define TCR_GASE 4
|
|
#define TCR_GASL 8
|
|
#define TCR_TCRCR 0x100
|
|
#define TCR_TCRCL 0x200
|
|
#define TCR_TCRSE 0x400
|
|
#define TCR_TCRSL 0x800
|
|
|
|
/* New uart defines */
|
|
#define UART_TX_TIME 1000
|
|
#define UART_RX_TIME 1000
|
|
#define UARTA_DR 0x1
|
|
#define UARTA_SRE 0x2
|
|
#define UARTA_HRE 0x4
|
|
#define UARTA_OR 0x40
|
|
#define UARTA_CLR 0x80
|
|
#define UARTB_DR 0x10000
|
|
#define UARTB_SRE 0x20000
|
|
#define UARTB_HRE 0x40000
|
|
#define UARTB_OR 0x400000
|
|
#define UARTB_CLR 0x800000
|
|
|
|
#define UART_DR 0x100
|
|
#define UART_TSE 0x200
|
|
#define UART_THE 0x400
|
|
|
|
/* MEC registers */
|
|
|
|
static char fname[256];
|
|
static uint32 find = 0;
|
|
static char simfn[] = "simload";
|
|
static uint32 brk_point = 0;
|
|
static uint32 watch_point = 0;
|
|
static uint32 mec_dbg = 0;
|
|
static uint32 mec_sfsr = 0x078;
|
|
static uint32 mec_ffar = 0;
|
|
static uint32 mec_ipr = 0;
|
|
static uint32 mec_imr = 0x3fff;
|
|
static uint32 mec_icr = 0;
|
|
static uint32 mec_ifr = 0;
|
|
static uint32 mec_mcr; /* MEC control register */
|
|
static uint32 mec_memcfg; /* Memory control register */
|
|
static uint32 mec_wcr; /* MEC waitstate register */
|
|
static uint32 mec_mar0; /* MEC access registers (2) */
|
|
static uint32 mec_mar1; /* MEC access registers (2) */
|
|
static uint32 mec_regs[64];
|
|
static uint32 posted_irq;
|
|
static uint32 mec_ersr = 0; /* MEC error and status register */
|
|
static uint32 mec_emr = 0x60; /* MEC error mask register */
|
|
static uint32 mec_tcr = 0; /* MEC test comtrol register */
|
|
|
|
static uint32 rtc_counter = 0xffffffff;
|
|
static uint32 rtc_reload = 0xffffffff;
|
|
static uint32 rtc_scaler = 0xff;
|
|
static uint32 rtc_enabled = 0;
|
|
static uint32 rtc_cr = 0;
|
|
static uint32 rtc_se = 0;
|
|
static uint32 rtc_cont = 0;
|
|
|
|
static uint32 gpt_counter = 0xffffffff;
|
|
static uint32 gpt_reload = 0xffffffff;
|
|
static uint32 gpt_scaler = 0xffff;
|
|
static uint32 gpt_enabled = 0;
|
|
static uint32 gpt_cr = 0;
|
|
static uint32 gpt_se = 0;
|
|
static uint32 gpt_cont = 0;
|
|
|
|
static uint32 wdog_scaler;
|
|
static uint32 wdog_counter;
|
|
static uint32 wdog_rst_delay;
|
|
static uint32 wdog_rston;
|
|
|
|
#ifdef MECREV0
|
|
static uint32 gpt_irqon = 1;
|
|
static uint32 rtc_irqon = 1;
|
|
#endif
|
|
|
|
enum wdog_type {
|
|
init, disabled, enabled, stopped
|
|
};
|
|
|
|
static enum wdog_type wdog_status;
|
|
|
|
/* Memory support variables */
|
|
|
|
static uint32 mem_ramr_ws; /* RAM read waitstates */
|
|
static uint32 mem_ramw_ws; /* RAM write waitstates */
|
|
static uint32 mem_romr_ws; /* ROM read waitstates */
|
|
static uint32 mem_romw_ws; /* ROM write waitstates */
|
|
static uint32 mem_ramsz; /* RAM size */
|
|
static uint32 mem_romsz; /* RAM size */
|
|
static uint32 mem_banksz; /* RAM bank size */
|
|
static uint32 mem_accprot; /* RAM write protection enabled */
|
|
|
|
/* UART support variables */
|
|
|
|
static unsigned char Adata, Bdata;
|
|
static int32 fd1, fd2; /* file descriptor for input file */
|
|
static int32 Ucontrol; /* UART status register */
|
|
static unsigned char aq[UARTBUF], bq[UARTBUF];
|
|
static int32 res;
|
|
static int32 anum, aind = 0;
|
|
static int32 bnum, bind = 0;
|
|
static char wbufa[UARTBUF], wbufb[UARTBUF];
|
|
static unsigned wnuma;
|
|
static unsigned wnumb;
|
|
static FILE *f1 = NULL, *f2 = NULL;
|
|
|
|
static char uarta_sreg, uarta_hreg, uartb_sreg, uartb_hreg;
|
|
static uint32 uart_stat_reg;
|
|
static uint32 uarta_data, uartb_data;
|
|
|
|
void uarta_tx();
|
|
void uartb_tx();
|
|
uint32 read_uart();
|
|
void write_uart();
|
|
uint32 rtc_counter_read();
|
|
void rtc_scaler_set();
|
|
void rtc_reload_set();
|
|
uint32 gpt_counter_read();
|
|
void gpt_scaler_set();
|
|
void gpt_reload_set();
|
|
void timer_ctrl();
|
|
void port_init();
|
|
void uart_irq_start();
|
|
void mec_reset();
|
|
void wdog_start();
|
|
|
|
|
|
/* One-time init */
|
|
|
|
void
|
|
init_sim()
|
|
{
|
|
port_init();
|
|
}
|
|
|
|
/* Power-on reset init */
|
|
|
|
void
|
|
reset()
|
|
{
|
|
mec_reset();
|
|
uart_irq_start();
|
|
wdog_start();
|
|
}
|
|
|
|
/* IU error mode manager */
|
|
|
|
int
|
|
error_mode(pc)
|
|
uint32 pc;
|
|
{
|
|
|
|
if ((mec_emr & 0x1) == 0) {
|
|
if (mec_mcr & 0x20) {
|
|
sys_reset();
|
|
mec_ersr = 0x8000;
|
|
printf("Error manager reset - IU in error mode at 0x%08x\n", pc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check memory settings */
|
|
|
|
void
|
|
decode_memcfg()
|
|
{
|
|
mem_ramsz = (256 * 1024) << ((mec_memcfg >> 10) & 7);
|
|
mem_banksz = ((mec_memcfg >> 10) & 7) + 18 - 6;
|
|
mem_romsz = (4 * 1024) << ((mec_memcfg >> 18) & 7);
|
|
if (sis_verbose)
|
|
printf("RAM size: %d K, ROM size: %d K, protection bank size: %d K\n",
|
|
mem_ramsz >> 10, mem_romsz >> 10, 1 << mem_banksz);
|
|
}
|
|
|
|
void
|
|
decode_wcr()
|
|
{
|
|
mem_ramr_ws = mec_wcr & 3;
|
|
mem_ramw_ws = (mec_wcr >> 2) & 3;
|
|
mem_romr_ws = (mec_wcr >> 4) & 0x0f;
|
|
mem_romw_ws = (mec_wcr >> 8) & 0x0f;
|
|
if (sis_verbose)
|
|
printf("Waitstates = RAM read: %d, RAM write: %d, ROM read: %d, ROM write: %d\n",
|
|
mem_ramr_ws, mem_ramw_ws, mem_romr_ws, mem_romw_ws);
|
|
}
|
|
|
|
void
|
|
decode_mcr()
|
|
{
|
|
mem_accprot = (mec_mcr >> 3) & 1;
|
|
if (sis_verbose && mem_accprot)
|
|
printf("Memory access protection enabled\n");
|
|
if (sis_verbose && (mec_mcr & 2))
|
|
printf("Software reset enabled\n");
|
|
if (sis_verbose && (mec_mcr & 1))
|
|
printf("Power-down mode enabled\n");
|
|
}
|
|
|
|
/* Flush ports when simulator stops */
|
|
|
|
void
|
|
sim_stop()
|
|
{
|
|
#ifdef FAST_UART
|
|
flush_uart();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
close_port()
|
|
{
|
|
if (f1)
|
|
fclose(f1);
|
|
if (f2)
|
|
fclose(f2);
|
|
}
|
|
|
|
void
|
|
exit_sim()
|
|
{
|
|
close_port();
|
|
}
|
|
|
|
void
|
|
mec_reset()
|
|
{
|
|
|
|
find = 0;
|
|
brk_point = 0;
|
|
watch_point = 0;
|
|
mec_dbg = 0;
|
|
mec_sfsr = 0x078;
|
|
mec_ffar = 0;
|
|
mec_ipr = 0;
|
|
mec_imr = 0x3fff;
|
|
mec_icr = 0;
|
|
mec_ifr = 0;
|
|
mec_memcfg = 0x10000;
|
|
mec_mcr = 0x01b50014;
|
|
mec_wcr = -1;
|
|
mec_mar0 = -1;
|
|
mec_mar1 = -1;
|
|
mec_ersr = 0; /* MEC error and status register */
|
|
mec_emr = 0x60; /* MEC error mask register */
|
|
mec_tcr = 0; /* MEC test comtrol register */
|
|
|
|
decode_memcfg();
|
|
decode_wcr();
|
|
decode_mcr();
|
|
|
|
posted_irq = 0;
|
|
wnuma = wnumb = 0;
|
|
anum = aind = bnum = bind = 0;
|
|
|
|
uart_stat_reg = UARTA_SRE | UARTA_HRE | UARTB_SRE | UARTB_HRE;
|
|
uarta_data = uartb_data = UART_THE | UART_TSE;
|
|
|
|
rtc_counter = 0xffffffff;
|
|
rtc_reload = 0xffffffff;
|
|
rtc_scaler = 0xff;
|
|
rtc_enabled = 0;
|
|
rtc_cr = 0;
|
|
rtc_se = 0;
|
|
rtc_cont = 0;
|
|
|
|
gpt_counter = 0xffffffff;
|
|
gpt_reload = 0xffffffff;
|
|
gpt_scaler = 0xffff;
|
|
gpt_enabled = 0;
|
|
gpt_cr = 0;
|
|
gpt_se = 0;
|
|
gpt_cont = 0;
|
|
|
|
wdog_scaler = 255;
|
|
wdog_rst_delay = 255;
|
|
wdog_counter = 0xffff;
|
|
wdog_rston = 0;
|
|
wdog_status = init;
|
|
|
|
#ifdef MECREV0
|
|
gpt_irqon = 1;
|
|
rtc_irqon = 1;
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
int32
|
|
mec_intack(level)
|
|
int32 level;
|
|
{
|
|
int irq_test;
|
|
|
|
if (sis_verbose)
|
|
printf("interrupt %d acknowledged\n",level);
|
|
irq_test = mec_tcr & 0x80000;
|
|
if ((irq_test) && (mec_ifr & (1 << level)))
|
|
mec_ifr &= ~(1 << level);
|
|
else
|
|
mec_ipr &= ~(1 << level);
|
|
posted_irq &= ~(1 << level);
|
|
#ifdef MECREV0
|
|
if (mecrev0) {
|
|
if (uart_stat_reg & 1)
|
|
mec_ipr |= (1 << 4);
|
|
if (uart_stat_reg & 0x100)
|
|
mec_ipr |= (1 << 5);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int32
|
|
chk_irq()
|
|
{
|
|
int32 i;
|
|
uint32 itmp;
|
|
|
|
itmp = ((mec_ipr | mec_ifr) & ~mec_imr) & 0x0fffe;
|
|
if (itmp != 0) {
|
|
for (i = 15; i > 0; i--) {
|
|
if (((itmp >> i) & 1) != 0) {
|
|
if ((posted_irq & (1 << i)) == 0) {
|
|
if (sis_verbose)
|
|
printf("interrupt %d generated\n",i);
|
|
set_int(i, mec_intack, i);
|
|
posted_irq |= (1 << i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
mec_irq(level)
|
|
int32 level;
|
|
{
|
|
mec_ipr |= (1 << level);
|
|
chk_irq();
|
|
}
|
|
|
|
void
|
|
set_sfsr(fault, addr, asi, read)
|
|
uint32 fault;
|
|
uint32 addr;
|
|
uint32 asi;
|
|
uint32 read;
|
|
{
|
|
mec_ffar = addr;
|
|
mec_sfsr = (fault << 3) | (!read << 15);
|
|
switch (asi) {
|
|
case 8:
|
|
mec_sfsr |= 0x2002;
|
|
break;
|
|
case 9:
|
|
mec_sfsr |= 0x3002;
|
|
break;
|
|
case 0xa:
|
|
mec_sfsr |= 0x0004;
|
|
break;
|
|
case 0xb:
|
|
mec_sfsr |= 0x1004;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int32
|
|
chk_brk(addr, asi)
|
|
uint32 addr;
|
|
{
|
|
if ((mec_dbg & 0x80000) && (addr == brk_point) &&
|
|
((asi == 9) || (asi == 8))) {
|
|
mec_dbg |= 0x00800000;
|
|
if (mec_dbg & 0x00200000) {
|
|
set_sfsr(BREAK_EXC, addr, asi, 1);
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int32
|
|
chk_watch(addr, read, asi)
|
|
uint32 addr;
|
|
uint32 read;
|
|
{
|
|
uint32 hit;
|
|
|
|
if ((mec_dbg & 0x40000) && (asi != 9) && (asi != 8) &&
|
|
(((mec_dbg & 0x10000) && (read == 0)) || ((mec_dbg & 0x20000) && read))) {
|
|
if (((addr ^ watch_point) &
|
|
(0xffff0000 | (mec_dbg & 0x0ffff))) == 0) {
|
|
mec_dbg |= 0x00400000;
|
|
if (mec_dbg & 0x100000) {
|
|
set_sfsr(WATCH_EXC, addr, asi, read);
|
|
return (1);
|
|
}
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int32
|
|
mec_read(addr, asi, data)
|
|
uint32 addr;
|
|
uint32 asi;
|
|
uint32 *data;
|
|
{
|
|
|
|
switch (addr & 0x0ff) {
|
|
|
|
case MEC_SFR:
|
|
case MEC_WDOG:
|
|
return (1);
|
|
break;
|
|
case MEC_DBG:
|
|
*data = mec_dbg;
|
|
break;
|
|
case MEC_UARTA:
|
|
case MEC_UARTB:
|
|
if (asi != 0xb)
|
|
return (1);
|
|
*data = read_uart(addr);
|
|
break;
|
|
|
|
case MEC_UART_CTRL:
|
|
|
|
*data = read_uart(addr);
|
|
break;
|
|
|
|
case MEC_RTC_COUNTER:
|
|
*data = rtc_counter_read();
|
|
break;
|
|
|
|
case MEC_GPT_COUNTER:
|
|
*data = gpt_counter_read();
|
|
break;
|
|
|
|
case MEC_SFSR:
|
|
*data = mec_sfsr;
|
|
break;
|
|
|
|
case MEC_FFAR:
|
|
*data = mec_ffar;
|
|
break;
|
|
|
|
case MEC_IPR:
|
|
*data = mec_ipr;
|
|
break;
|
|
|
|
case MEC_IMR:
|
|
*data = mec_imr;
|
|
break;
|
|
|
|
case MEC_IFR:
|
|
*data = mec_ifr;
|
|
break;
|
|
|
|
case SIM_LOAD:
|
|
fname[find] = 0;
|
|
if (find == 0)
|
|
strcpy(fname, "simload");
|
|
*data = bfd_load(fname);
|
|
find = 0;
|
|
break;
|
|
|
|
case MEC_MCR:
|
|
*data = mec_mcr;
|
|
break;
|
|
|
|
case MEC_MEMCFG:
|
|
*data = mec_memcfg;
|
|
break;
|
|
|
|
case MEC_WCR:
|
|
*data = mec_wcr;
|
|
break;
|
|
|
|
case MEC_MAR0:
|
|
*data = mec_mar0;
|
|
break;
|
|
|
|
case MEC_MAR1:
|
|
*data = mec_mar1;
|
|
break;
|
|
|
|
case MEC_PWDR:
|
|
return (1);
|
|
break;
|
|
|
|
default:
|
|
if (sis_verbose)
|
|
printf("Warning, read from unimplemented MEC register %x\n\r", addr);
|
|
*data = mec_regs[((addr & 0x0ff) >> 2)];
|
|
break;
|
|
}
|
|
return (MOK);
|
|
}
|
|
|
|
int
|
|
mec_write(addr, data)
|
|
uint32 addr;
|
|
uint32 data;
|
|
{
|
|
|
|
switch (addr & 0x0ff) {
|
|
|
|
case MEC_SFR:
|
|
if (mec_mcr & 0x2) {
|
|
sys_reset();
|
|
mec_ersr = 0x4000;
|
|
printf(" Software reset issued\n");
|
|
}
|
|
break;
|
|
|
|
case MEC_BRK:
|
|
brk_point = data;
|
|
break;
|
|
|
|
case MEC_DBG:
|
|
mec_dbg = data;
|
|
break;
|
|
|
|
case MEC_WPR:
|
|
watch_point = data;
|
|
break;
|
|
|
|
case MEC_UARTA:
|
|
case MEC_UARTB:
|
|
case MEC_UART_CTRL:
|
|
write_uart(addr, data);
|
|
break;
|
|
|
|
case MEC_GPT_RELOAD:
|
|
gpt_reload_set(data);
|
|
break;
|
|
|
|
case MEC_GPT_SCALER:
|
|
gpt_scaler_set(data);
|
|
break;
|
|
|
|
case MEC_TIMER_CTRL:
|
|
timer_ctrl(data);
|
|
break;
|
|
|
|
case MEC_RTC_RELOAD:
|
|
rtc_reload_set(data);
|
|
break;
|
|
|
|
case MEC_RTC_SCALER:
|
|
rtc_scaler_set(data);
|
|
break;
|
|
|
|
case MEC_SFSR:
|
|
mec_sfsr = 0;
|
|
break;
|
|
|
|
case MEC_IMR:
|
|
mec_imr = data & 0x7ffe;
|
|
chk_irq();
|
|
break;
|
|
|
|
case MEC_ICR:
|
|
mec_icr &= ~data & 0x0fffe;
|
|
break;
|
|
|
|
case MEC_IFR:
|
|
mec_ifr = data & 0xfffe;
|
|
chk_irq();
|
|
break;
|
|
case SIM_LOAD:
|
|
fname[find++] = (char) data;
|
|
break;
|
|
|
|
case MEC_MCR:
|
|
mec_mcr = data;
|
|
decode_mcr();
|
|
break;
|
|
|
|
case MEC_MEMCFG:
|
|
mec_memcfg = data & ~0xC0e08000;
|
|
decode_memcfg();
|
|
break;
|
|
|
|
case MEC_WCR:
|
|
mec_wcr = data;
|
|
decode_wcr();
|
|
break;
|
|
|
|
case MEC_MAR0:
|
|
mec_mar0 = data;
|
|
break;
|
|
|
|
case MEC_MAR1:
|
|
mec_mar1 = data;
|
|
break;
|
|
|
|
case MEC_WDOG:
|
|
wdog_scaler = (data >> 16) & 0x0ff;
|
|
wdog_counter = data & 0x0ffff;
|
|
wdog_rst_delay = data >> 24;
|
|
wdog_rston = 0;
|
|
if (wdog_status == stopped)
|
|
wdog_start();
|
|
wdog_status = enabled;
|
|
break;
|
|
|
|
case MEC_TRAPD:
|
|
if (wdog_status == init) {
|
|
wdog_status = disabled;
|
|
if (sis_verbose)
|
|
printf("Watchdog disabled\n");
|
|
}
|
|
break;
|
|
|
|
case MEC_PWDR:
|
|
if (mec_mcr & 1)
|
|
wait_for_irq();
|
|
break;
|
|
|
|
default:
|
|
if (sis_verbose)
|
|
printf("Warning, write to unimplemented MEC register %x\n\r",
|
|
addr);
|
|
mec_regs[((addr & 0x0ffc) >> 2)] = data;
|
|
break;
|
|
}
|
|
return (MOK);
|
|
}
|
|
|
|
|
|
/* MEC UARTS */
|
|
|
|
|
|
void
|
|
port_init()
|
|
{
|
|
|
|
int32 pty_remote = 1;
|
|
|
|
|
|
|
|
if ((fd1 = open(uart_dev1, O_RDWR | O_NDELAY | O_NONBLOCK)) < 0) {
|
|
printf("Warning, couldn't open output device %s\n", uart_dev1);
|
|
} else {
|
|
printf("serial port A on %s\n", uart_dev1);
|
|
f1 = fdopen(fd1, "r+");
|
|
setbuf(f1, NULL);
|
|
}
|
|
if ((fd2 = open(uart_dev2, O_RDWR | O_NDELAY | O_NONBLOCK)) < 0) {
|
|
printf("Warning, couldn't open output device %s\n", uart_dev2);
|
|
} else {
|
|
printf("serial port B on %s\n", uart_dev2);
|
|
f2 = fdopen(fd2, "r+");
|
|
setbuf(f2, NULL);
|
|
}
|
|
|
|
wnuma = wnumb = 0;
|
|
}
|
|
|
|
uint32
|
|
read_uart(addr)
|
|
uint32 addr;
|
|
{
|
|
|
|
unsigned tmp;
|
|
|
|
switch (addr & 0xff) {
|
|
|
|
case 0xE0: /* UART 1 */
|
|
#ifdef FAST_UART
|
|
if (aind < anum) {
|
|
if ((aind + 1) < anum)
|
|
mec_irq(4);
|
|
return (0x700 | (uint32) aq[aind++]);
|
|
} else {
|
|
if (f1)
|
|
anum = fread(aq, 1, UARTBUF, f1);
|
|
else
|
|
anum = 0;
|
|
if (anum > 0) {
|
|
aind = 0;
|
|
if ((aind + 1) < anum)
|
|
mec_irq(4);
|
|
return (0x700 | (uint32) aq[aind++]);
|
|
} else {
|
|
return (0x600 | (uint32) aq[aind]);
|
|
}
|
|
|
|
}
|
|
#else
|
|
tmp = uarta_data;
|
|
uarta_data &= ~UART_DR;
|
|
uart_stat_reg &= ~UARTA_DR;
|
|
return tmp;
|
|
#endif
|
|
break;
|
|
|
|
case 0xE4: /* UART 2 */
|
|
#ifdef FAST_UART
|
|
if (bind < bnum) {
|
|
if ((bind + 1) < bnum)
|
|
mec_irq(5);
|
|
return (0x700 | (uint32) bq[bind++]);
|
|
} else {
|
|
if (f2)
|
|
bnum = fread(bq, 1, UARTBUF, f2);
|
|
else
|
|
bnum = 0;
|
|
if (bnum > 0) {
|
|
bind = 0;
|
|
if ((bind + 1) < bnum)
|
|
mec_irq(5);
|
|
return (0x700 | (uint32) bq[bind++]);
|
|
} else {
|
|
return (0x600 | (uint32) bq[bind]);
|
|
}
|
|
|
|
}
|
|
#else
|
|
tmp = uartb_data;
|
|
uartb_data &= ~UART_DR;
|
|
uart_stat_reg &= ~UARTB_DR;
|
|
return tmp;
|
|
#endif
|
|
break;
|
|
|
|
case 0xE8: /* UART status register */
|
|
#ifdef FAST_UART
|
|
Ucontrol = 0;
|
|
if (aind < anum) {
|
|
Ucontrol |= 0x00000001;
|
|
} else {
|
|
if (f1)
|
|
anum = fread(aq, 1, UARTBUF, f1);
|
|
else
|
|
anum = 0;
|
|
if (anum > 0) {
|
|
Ucontrol |= 0x00000001;
|
|
aind = 0;
|
|
mec_irq(4);
|
|
}
|
|
}
|
|
if (bind < bnum) {
|
|
Ucontrol |= 0x00010000;
|
|
} else {
|
|
if (f2)
|
|
bnum = fread(bq, 1, UARTBUF, f2);
|
|
else
|
|
bnum = 0;
|
|
if (bnum > 0) {
|
|
Ucontrol |= 0x00010000;
|
|
bind = 0;
|
|
mec_irq(5);
|
|
}
|
|
}
|
|
|
|
Ucontrol |= 0x00060006;
|
|
return (Ucontrol);
|
|
#else
|
|
return (uart_stat_reg);
|
|
#endif
|
|
break;
|
|
default:
|
|
if (sis_verbose)
|
|
printf("Read from unimplemented MEC register (%x)\n", addr);
|
|
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
write_uart(addr, data)
|
|
uint32 addr;
|
|
uint32 data;
|
|
{
|
|
|
|
int32 wnum = 0;
|
|
unsigned char c;
|
|
|
|
c = (unsigned char) data;
|
|
switch (addr & 0xff) {
|
|
|
|
case 0xE0: /* UART A */
|
|
#ifdef FAST_UART
|
|
if (wnuma < UARTBUF)
|
|
wbufa[wnuma++] = c;
|
|
else {
|
|
while (wnuma)
|
|
if (f1)
|
|
wnuma -= fwrite(wbufa, 1, wnuma, f1);
|
|
else
|
|
wnuma--;
|
|
wbufa[wnuma++] = c;
|
|
}
|
|
mec_irq(4);
|
|
#else
|
|
if (uart_stat_reg & UARTA_SRE) {
|
|
uarta_sreg = c;
|
|
uart_stat_reg &= ~UARTA_SRE;
|
|
event(uarta_tx, 0, UART_TX_TIME);
|
|
} else {
|
|
uarta_hreg = c;
|
|
uart_stat_reg &= ~UARTA_HRE;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case 0xE4: /* UART B */
|
|
#ifdef FAST_UART
|
|
if (wnumb < UARTBUF)
|
|
wbufb[wnumb++] = c;
|
|
else {
|
|
while (wnumb)
|
|
if (f2)
|
|
wnumb -= fwrite(wbufb, 1, wnumb, f2);
|
|
else
|
|
wnumb--;
|
|
wbufb[wnumb++] = c;
|
|
}
|
|
mec_irq(5);
|
|
#else
|
|
if (uart_stat_reg & UARTB_SRE) {
|
|
uartb_sreg = c;
|
|
uart_stat_reg &= ~UARTB_SRE;
|
|
event(uartb_tx, 0, UART_TX_TIME);
|
|
} else {
|
|
uartb_hreg = c;
|
|
uart_stat_reg &= ~UARTB_HRE;
|
|
}
|
|
#endif
|
|
break;
|
|
case 0xE8: /* UART status register */
|
|
#ifndef FAST_UART
|
|
if (data & UARTA_CLR) {
|
|
uart_stat_reg &= 0xFFFF0000;
|
|
uart_stat_reg |= UARTA_SRE | UARTA_HRE;
|
|
}
|
|
if (data & UARTB_CLR) {
|
|
uart_stat_reg &= 0x0000FFFF;
|
|
uart_stat_reg |= UARTB_SRE | UARTB_HRE;
|
|
}
|
|
#endif
|
|
break;
|
|
default:
|
|
if (sis_verbose)
|
|
printf("Write to unimplemented MEC register (%x)\n", addr);
|
|
|
|
}
|
|
}
|
|
|
|
flush_uart()
|
|
{
|
|
while (wnuma)
|
|
if (f1)
|
|
wnuma -= fwrite(wbufa, 1, wnuma, f1);
|
|
else
|
|
wnuma = 0;
|
|
while (wnumb)
|
|
if (f2)
|
|
wnumb -= fwrite(wbufb, 1, wnumb, f2);
|
|
else
|
|
wnumb = 0;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
uarta_tx()
|
|
{
|
|
|
|
while ((f1 ? fwrite(&uarta_sreg, 1, 1, f1) : 1) != 1);
|
|
if (uart_stat_reg & UARTA_HRE) {
|
|
uart_stat_reg |= UARTA_SRE;
|
|
} else {
|
|
uarta_sreg = uarta_hreg;
|
|
uart_stat_reg |= UARTA_HRE;
|
|
event(uarta_tx, 0, UART_TX_TIME);
|
|
}
|
|
mec_irq(4);
|
|
}
|
|
|
|
void
|
|
uartb_tx()
|
|
{
|
|
while (fwrite(&uartb_sreg, 1, 1, f2) != 1);
|
|
if (uart_stat_reg & UARTB_HRE) {
|
|
uart_stat_reg |= UARTB_SRE;
|
|
} else {
|
|
uartb_sreg = uartb_hreg;
|
|
uart_stat_reg |= UARTB_HRE;
|
|
event(uartb_tx, 0, UART_TX_TIME);
|
|
}
|
|
mec_irq(5);
|
|
}
|
|
|
|
void
|
|
uart_rx(arg)
|
|
caddr_t arg;
|
|
{
|
|
int32 rsize;
|
|
char rxd;
|
|
|
|
rsize = fread(&rxd, 1, 1, f1);
|
|
if (rsize) {
|
|
uarta_data = UART_DR | rxd;
|
|
if (uart_stat_reg & UARTA_HRE)
|
|
uarta_data |= UART_THE;
|
|
if (uart_stat_reg & UARTA_SRE)
|
|
uarta_data |= UART_TSE;
|
|
if (uart_stat_reg & UARTA_DR) {
|
|
uart_stat_reg |= UARTA_OR;
|
|
mec_irq(7); /* UART error interrupt */
|
|
}
|
|
uart_stat_reg |= UARTA_DR;
|
|
mec_irq(4);
|
|
}
|
|
rsize = fread(&rxd, 1, 1, f2);
|
|
if (rsize) {
|
|
uartb_data = UART_DR | rxd;
|
|
if (uart_stat_reg & UARTB_HRE)
|
|
uartb_data |= UART_THE;
|
|
if (uart_stat_reg & UARTB_SRE)
|
|
uartb_data |= UART_TSE;
|
|
if (uart_stat_reg & UARTB_DR) {
|
|
uart_stat_reg |= UARTB_OR;
|
|
mec_irq(7); /* UART error interrupt */
|
|
}
|
|
uart_stat_reg |= UARTB_DR;
|
|
mec_irq(5);
|
|
}
|
|
event(uart_rx, 0, UART_RX_TIME);
|
|
}
|
|
|
|
void
|
|
uart_intr(arg)
|
|
caddr_t arg;
|
|
{
|
|
read_uart(0xE8); /* Check for UART interrupts every 1000 clk */
|
|
flush_uart(); /* Flush UART ports */
|
|
event(uart_intr, 0, UART_FLUSH_TIME);
|
|
}
|
|
|
|
|
|
void
|
|
uart_irq_start()
|
|
{
|
|
#ifdef FAST_UART
|
|
event(uart_intr, 0, UART_FLUSH_TIME);
|
|
#else
|
|
event(uart_rx, 0, UART_RX_TIME);
|
|
#endif
|
|
}
|
|
|
|
/* Watch-dog */
|
|
|
|
void
|
|
wdog_intr(arg)
|
|
caddr_t arg;
|
|
{
|
|
if (wdog_status == disabled) {
|
|
wdog_status = stopped;
|
|
} else {
|
|
|
|
if (wdog_counter) {
|
|
wdog_counter--;
|
|
event(wdog_intr, 0, wdog_scaler + 1);
|
|
} else {
|
|
if (wdog_rston) {
|
|
printf("Watchdog reset!\n");
|
|
sys_reset();
|
|
mec_ersr = 0xC000;
|
|
} else {
|
|
mec_irq(15);
|
|
wdog_rston = 1;
|
|
wdog_counter = wdog_rst_delay;
|
|
event(wdog_intr, 0, wdog_scaler + 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
wdog_start()
|
|
{
|
|
event(wdog_intr, 0, wdog_scaler + 1);
|
|
if (sis_verbose)
|
|
printf("Watchdog started, scaler = %d, counter = %d\n",
|
|
wdog_scaler, wdog_counter);
|
|
}
|
|
|
|
|
|
/* MEC timers */
|
|
|
|
|
|
void
|
|
rtc_intr(arg)
|
|
caddr_t arg;
|
|
{
|
|
if (rtc_counter == 0) {
|
|
#ifdef MECREV0
|
|
if (mecrev0) {
|
|
if (rtc_cr) {
|
|
rtc_counter = rtc_reload;
|
|
mec_irq(13);
|
|
} else {
|
|
rtc_cont = 0;
|
|
if (rtc_irqon) {
|
|
mec_irq(13);
|
|
rtc_irqon = 0;
|
|
} else {
|
|
if (sis_verbose)
|
|
printf("RTC interrupt lost (MEC rev.0)\n");
|
|
}
|
|
}
|
|
} else {
|
|
mec_irq(13);
|
|
if (rtc_cr)
|
|
rtc_counter = rtc_reload;
|
|
else
|
|
rtc_cont = 0;
|
|
}
|
|
|
|
#else
|
|
|
|
mec_irq(13);
|
|
if (rtc_cr)
|
|
rtc_counter = rtc_reload;
|
|
else
|
|
rtc_cont = 0;
|
|
#endif
|
|
|
|
} else
|
|
rtc_counter -= 1;
|
|
if (rtc_se && rtc_cont) {
|
|
event(rtc_intr, 0, rtc_scaler + 1);
|
|
rtc_enabled = 1;
|
|
} else {
|
|
if (sis_verbose)
|
|
printf("RTC stopped\n\r");
|
|
rtc_enabled = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
rtc_start()
|
|
{
|
|
if (sis_verbose)
|
|
printf("RTC started (period %d)\n\r", rtc_scaler + 1);
|
|
event(rtc_intr, 0, rtc_scaler + 1);
|
|
rtc_enabled = 1;
|
|
}
|
|
|
|
uint32
|
|
rtc_counter_read()
|
|
{
|
|
return (rtc_counter);
|
|
}
|
|
|
|
void
|
|
rtc_scaler_set(val)
|
|
uint32 val;
|
|
{
|
|
rtc_scaler = val & 0x0ff; /* eight-bit scaler only */
|
|
}
|
|
|
|
void
|
|
rtc_reload_set(val)
|
|
uint32 val;
|
|
{
|
|
rtc_reload = val;
|
|
}
|
|
|
|
void
|
|
gpt_intr(arg)
|
|
caddr_t arg;
|
|
{
|
|
if (gpt_counter == 0) {
|
|
#ifdef MECREV0
|
|
if (mecrev0) {
|
|
if (gpt_cr) {
|
|
gpt_counter = gpt_reload;
|
|
mec_irq(12);
|
|
} else {
|
|
gpt_cont = 0;
|
|
if (gpt_irqon) {
|
|
mec_irq(12);
|
|
gpt_irqon = 0;
|
|
} else {
|
|
if (sis_verbose)
|
|
printf("GPT interrupt lost (MEC rev.0)\n");
|
|
}
|
|
}
|
|
} else {
|
|
mec_irq(12);
|
|
if (gpt_cr)
|
|
gpt_counter = gpt_reload;
|
|
else
|
|
gpt_cont = 0;
|
|
}
|
|
|
|
#else
|
|
mec_irq(12);
|
|
if (gpt_cr)
|
|
gpt_counter = gpt_reload;
|
|
else
|
|
gpt_cont = 0;
|
|
#endif
|
|
} else
|
|
gpt_counter -= 1;
|
|
if (gpt_se && gpt_cont) {
|
|
event(gpt_intr, 0, gpt_scaler + 1);
|
|
gpt_enabled = 1;
|
|
} else {
|
|
if (sis_verbose)
|
|
printf("GPT stopped\n\r");
|
|
gpt_enabled = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
gpt_start()
|
|
{
|
|
if (sis_verbose)
|
|
printf("GPT started (period %d)\n\r", gpt_scaler + 1);
|
|
event(gpt_intr, 0, gpt_scaler + 1);
|
|
gpt_enabled = 1;
|
|
}
|
|
|
|
uint32
|
|
gpt_counter_read()
|
|
{
|
|
return (gpt_counter);
|
|
}
|
|
|
|
void
|
|
gpt_scaler_set(val)
|
|
uint32 val;
|
|
{
|
|
gpt_scaler = val & 0x0ffff; /* 16-bit scaler */
|
|
}
|
|
|
|
void
|
|
gpt_reload_set(val)
|
|
uint32 val;
|
|
{
|
|
gpt_reload = val;
|
|
}
|
|
|
|
void
|
|
timer_ctrl(val)
|
|
uint32 val;
|
|
{
|
|
|
|
#ifdef MECREV0
|
|
if ((mecrev0) && (val & 0x500))
|
|
rtc_irqon = 1;
|
|
#endif
|
|
|
|
rtc_cr = ((val & TCR_TCRCR) != 0);
|
|
if (val & TCR_TCRCL) {
|
|
rtc_counter = rtc_reload;
|
|
rtc_cont = 1;
|
|
}
|
|
if (val & TCR_TCRSL) {
|
|
rtc_cont = 1;
|
|
}
|
|
rtc_se = ((val & TCR_TCRSE) != 0);
|
|
if (rtc_cont && rtc_se && (rtc_enabled == 0))
|
|
rtc_start();
|
|
|
|
#ifdef MECREV0
|
|
if ((mecrev0) && (val & 0x5))
|
|
gpt_irqon = 1;
|
|
#endif
|
|
|
|
gpt_cr = (val & TCR_GACR);
|
|
if (val & TCR_GACL) {
|
|
gpt_counter = gpt_reload;
|
|
gpt_cont = 1;
|
|
}
|
|
if (val & TCR_GACL) {
|
|
gpt_cont = 1;
|
|
}
|
|
gpt_se = (val & TCR_GASE) >> 2;
|
|
if (gpt_cont && gpt_se && (gpt_enabled == 0))
|
|
gpt_start();
|
|
}
|
|
|
|
|
|
/* Memory emulation */
|
|
|
|
/* ROM size 512 Kbyte */
|
|
#define ROM_SZ 0x080000
|
|
|
|
/* RAM size 4 Mbyte */
|
|
#define RAM_START 0x02000000
|
|
#define RAM_END 0x02400000
|
|
#define RAM_MASK 0x003fffff
|
|
|
|
/* MEC registers */
|
|
#define MEC_START 0x01f80000
|
|
#define MEC_END 0x01f80100
|
|
|
|
/* Memory exception waitstates */
|
|
#define MEM_EX_WS 1
|
|
|
|
/* ERC32 always adds one waitstate during ldd/std */
|
|
#define LDD_WS 1
|
|
#define STD_WS 1
|
|
|
|
extern int32 sis_verbose;
|
|
|
|
static uint32 romb[ROM_SZ / 4];
|
|
static uint32 ramb[(RAM_END - RAM_START) / 4];
|
|
|
|
int
|
|
memory_read(asi, addr, data, ws)
|
|
int32 asi;
|
|
uint32 addr;
|
|
uint32 *data;
|
|
int32 *ws;
|
|
{
|
|
int32 mexc;
|
|
uint32 *mem;
|
|
|
|
#ifdef MECBRK
|
|
|
|
if (mec_dbg & 0x80000) {
|
|
if (chk_brk(addr, asi)) {
|
|
*ws = MEM_EX_WS;
|
|
return (1);
|
|
}
|
|
}
|
|
if (mec_dbg & 0x40000) {
|
|
if (chk_watch(addr, 1, asi)) {
|
|
*ws = MEM_EX_WS;
|
|
return (1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (addr < mem_romsz) {
|
|
*data = romb[addr >> 2];
|
|
*ws = mem_romr_ws;
|
|
return (0);
|
|
} else if ((addr >= RAM_START) && (addr < (RAM_START + mem_ramsz))) {
|
|
*data = ramb[(addr & RAM_MASK) >> 2];
|
|
*ws = mem_ramr_ws;
|
|
return (0);
|
|
} else if ((addr >= MEC_START) && (addr < MEC_END)) {
|
|
mexc = mec_read(addr, asi, data);
|
|
if (mexc) {
|
|
set_sfsr(MEC_ACC, addr, asi, 1);
|
|
*ws = MEM_EX_WS;
|
|
} else {
|
|
*ws = 0;
|
|
}
|
|
return (mexc);
|
|
}
|
|
printf("Memory exception at %x (illegal address)\n", addr);
|
|
set_sfsr(UIMP_ACC, addr, asi, 1);
|
|
*ws = MEM_EX_WS;
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
memory_write(asi, addr, data, sz, ws)
|
|
int32 asi;
|
|
uint32 addr;
|
|
uint32 *data;
|
|
int32 sz;
|
|
int32 *ws;
|
|
{
|
|
uint32 byte_addr;
|
|
uint32 byte_mask;
|
|
uint32 waddr;
|
|
uint32 bank;
|
|
int32 mexc;
|
|
|
|
#ifdef MECBRK
|
|
if (mec_dbg & 0x40000) {
|
|
if (chk_watch(addr, 0, asi)) {
|
|
*ws = MEM_EX_WS;
|
|
return (1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if ((addr >= RAM_START) && (addr < (RAM_START + mem_ramsz))) {
|
|
if (mem_accprot) {
|
|
bank = (addr & RAM_MASK) >> mem_banksz;
|
|
if (bank < 32
|
|
? !((1 << bank) & mec_mar0)
|
|
: !((1 << (bank - 32) & mec_mar1))) {
|
|
printf("Memory access protection error at %x\n", addr);
|
|
set_sfsr(PROT_EXC, addr, asi, 0);
|
|
*ws = MEM_EX_WS;
|
|
return (1);
|
|
}
|
|
}
|
|
*ws = mem_ramw_ws;
|
|
waddr = (addr & RAM_MASK) >> 2;
|
|
switch (sz) {
|
|
case 0:
|
|
byte_addr = addr & 3;
|
|
byte_mask = 0x0ff << (24 - (8 * byte_addr));
|
|
ramb[waddr] = (ramb[waddr] & ~byte_mask)
|
|
| ((*data & 0x0ff) << (24 - (8 * byte_addr)));
|
|
break;
|
|
case 1:
|
|
byte_addr = (addr & 2) >> 1;
|
|
byte_mask = 0x0ffff << (16 - (16 * byte_addr));
|
|
ramb[waddr] = (ramb[waddr] & ~byte_mask)
|
|
| ((*data & 0x0ffff) << (16 - (16 * byte_addr)));
|
|
break;
|
|
case 2:
|
|
ramb[waddr] = *data;
|
|
break;
|
|
case 3:
|
|
ramb[waddr] = data[0];
|
|
ramb[waddr + 1] = data[1];
|
|
*ws += mem_ramw_ws + STD_WS;
|
|
break;
|
|
}
|
|
return (0);
|
|
} else if ((addr >= MEC_START) && (addr < MEC_END)) {
|
|
if ((sz != 2) || (asi != 0xb)) {
|
|
set_sfsr(MEC_ACC, addr, asi, 0);
|
|
*ws = MEM_EX_WS;
|
|
return (1);
|
|
}
|
|
mexc = mec_write(addr, *data);
|
|
if (mexc) {
|
|
set_sfsr(MEC_ACC, addr, asi, 0);
|
|
*ws = MEM_EX_WS;
|
|
} else {
|
|
*ws = 0;
|
|
}
|
|
return (mexc);
|
|
|
|
}
|
|
*ws = MEM_EX_WS;
|
|
set_sfsr(UIMP_ACC, addr, asi, 0);
|
|
return (1);
|
|
}
|
|
|
|
unsigned char *
|
|
get_mem_ptr(addr, size)
|
|
uint32 addr;
|
|
uint32 size;
|
|
{
|
|
char *bram, *brom;
|
|
|
|
brom = (char *) romb;
|
|
bram = (char *) ramb;
|
|
if ((addr + size) < ROM_SZ) {
|
|
return (&brom[addr]);
|
|
} else if ((addr >= RAM_START) && ((addr + size) < RAM_END)) {
|
|
return (&bram[(addr & RAM_MASK)]);
|
|
}
|
|
return ((char *) -1);
|
|
}
|
|
|
|
int
|
|
sis_memory_write(addr, data, length)
|
|
uint32 addr;
|
|
char *data;
|
|
uint32 length;
|
|
{
|
|
char *mem;
|
|
uint32 i;
|
|
|
|
if ((mem = get_mem_ptr(addr, length)) == ((char *) -1))
|
|
return (0);
|
|
#ifdef HOST_LITTLE_ENDIAN
|
|
for (i = 0; i < length; i++) {
|
|
mem[i ^ 0x3] = data[i];
|
|
}
|
|
#else
|
|
memcpy(mem, data, length);
|
|
#endif
|
|
return (length);
|
|
}
|
|
|
|
int
|
|
sis_memory_read(addr, data, length)
|
|
uint32 addr;
|
|
char *data;
|
|
uint32 length;
|
|
{
|
|
char *mem;
|
|
int i;
|
|
|
|
if ((mem = get_mem_ptr(addr, length)) == ((char *) -1))
|
|
return (0);
|
|
|
|
#ifdef HOST_LITTLE_ENDIAN
|
|
for (i = 0; i < length; i++) {
|
|
data[i] = mem[i ^ 0x3];
|
|
}
|
|
#else
|
|
memcpy(data, mem, length);
|
|
#endif
|
|
return (length);
|
|
}
|