mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
ff77083572
GDB doesn't handle well the case of an inferior using the JIT interface to register JIT-ed objfiles and forking. If an inferior registers a code object using the JIT interface and then forks, the child process conceptually has the same code object loaded, so GDB should look it up and learn about it (it currently doesn't). To achieve this, I think it would make sense to have the inferior_created observable called when an inferior is created due to a fork in follow_fork_inferior. The inferior_created observable is currently called both after starting a new inferior and after attaching to an inferior, allowing various sub-components to learn about that new executing inferior. We can see handling a fork child just like attaching to it, so any work done when attaching should also be done in the case of a fork child. Instead of just calling the inferior_created observable, this patch makes follow_fork_inferior call the whole post_create_inferior function. This way, the attach and follow-fork code code paths are more alike. Given that post_create_inferior calls solib_create_inferior_hook, follow_fork_inferior doesn't need to do it itself, so those calls to solib_create_inferior_hook are removed. One question you may have: why not just call post_create_inferior at the places where solib_create_inferior_hook is currently called, instead of after target_follow_fork? - there's something fishy for the second solib_create_inferior_hook call site: at this point we have switched the current program space to the child's, but not the current inferior nor the current thread. So solib_create_inferior_hook (and everything under, including check_for_thread_db, for example) is called with inferior 1 as the current inferior and inferior 2's program space as the current program space. I think that's wrong, because at this point we are setting up inferior 2, and all that code relies on the current inferior. We could just add a switch_to_thread call before it to make inferior 2 the current one, but there are other problems (see below). - solib_create_inferior_hook is currently not called on the `follow_child && detach_fork` path. I think we need to call it, because we still get a new inferior in that case (even though we detach the parent). If we only call post_create_inferior where solib_create_inferior_hook used to be called, then the JIT subcomponent doesn't get informed about the new inferior, and that introduces a failure in the new gdb.base/jit-elf-fork.exp test. - if we try to put the post_create_inferior just after the switch_to_thread that was originally at line 662, or just before the call to target_follow_fork, we introduce a subtle failure in gdb.threads/fork-thread-pending.exp. What happens then is that libthread_db gets loaded (somewhere under post_create_inferior) before the linux-nat target learns about the LWPs (which happens in linux_nat_target::follow_fork). As a result, the ALL_LWPS loop in try_thread_db_load_1 doesn't see the child LWP, and the thread-db target doesn't have the chance to fill in thread_info::priv. A bit later, when the test does "info threads", and thread_db_target::pid_to_str is called, the thread-db target doesn't recognize the thread as one of its own, and delegates the request to the target below. Because the pid_to_str output is not the expected one, the test fails. This tells me that we need to call the process target's follow_fork first, to make the process target create the necessary LWP and thread structures. Then, we can call post_create_inferior to let the other components of GDB do their thing. But then you may ask: check_for_thread_db is already called today, somewhere under solib_create_inferior_hook, and that is before target_follow_fork, why don't we see this ordering problem!? Well, because of the first bullet point: when check_for_thread_db / thread_db_load are called, the current inferior is (erroneously) inferior 1, the parent. Because libthread_db is already loaded for the parent, thread_db_load early returns. check_for_thread_db later gets called by linux_nat_target::follow_fork. At this point, the current inferior is the correct one and the child's LWP exists, so all is well. Since we now call post_create_inferior after target_follow_fork, which calls the inferior_created observable, which calls check_for_thread_db, I don't think linux_nat_target needs to explicitly call check_for_thread_db itself, so that is removed. In terms of testing, this patch adds a new gdb.base/jit-elf-fork.exp test. It makes an inferior register a JIT code object and then fork. It then verifies that whatever the detach-on-fork and follow-fork-child parameters are, GDB knows about the JIT code object in all the inferiors that survive the fork. It verifies that the inferiors can unload that code object. There isn't currently a way to get visibility into GDB's idea of the JIT code objects for each inferior. For the purpose of this test, add the "maintenance info jit" command. There isn't much we can print about the JIT code objects except their load address. So the output looks a bit bare, but it's good enough for the test. gdb/ChangeLog: * NEWS: Mention "maint info jit" command. * infrun.c (follow_fork_inferior): Don't call solib_create_inferior_hook, call post_create_inferior if a new inferior was created. * jit.c (maint_info_jit_cmd): New. (_initialize_jit): Register new command. * linux-nat.c (linux_nat_target::follow_fork): Don't call check_for_thread_db. * linux-nat.h (check_for_thread_db): Remove declaration. * linux-thread-db.c (check_thread_signals): Make static. gdb/doc/ChangeLog: * gdb.texinfo (Maintenance Commands): Mention "maint info jit". gdb/testsuite/ChangeLog: * gdb.base/jit-elf-fork-main.c: New test. * gdb.base/jit-elf-fork-solib.c: New test. * gdb.base/jit-elf-fork.exp: New test. Change-Id: I9a192e55b8a451c00e88100669283fc9ca60de5c
1305 lines
37 KiB
C
1305 lines
37 KiB
C
/* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
|
|
|
|
Copyright (C) 2009-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
|
|
#include "jit.h"
|
|
#include "jit-reader.h"
|
|
#include "block.h"
|
|
#include "breakpoint.h"
|
|
#include "command.h"
|
|
#include "dictionary.h"
|
|
#include "filenames.h"
|
|
#include "frame-unwind.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "inferior.h"
|
|
#include "observable.h"
|
|
#include "objfiles.h"
|
|
#include "regcache.h"
|
|
#include "symfile.h"
|
|
#include "symtab.h"
|
|
#include "target.h"
|
|
#include "gdbsupport/gdb-dlfcn.h"
|
|
#include <sys/stat.h>
|
|
#include "gdb_bfd.h"
|
|
#include "readline/tilde.h"
|
|
#include "completer.h"
|
|
#include <forward_list>
|
|
|
|
static std::string jit_reader_dir;
|
|
|
|
static const char jit_break_name[] = "__jit_debug_register_code";
|
|
|
|
static const char jit_descriptor_name[] = "__jit_debug_descriptor";
|
|
|
|
static void jit_inferior_created_hook (inferior *inf);
|
|
static void jit_inferior_exit_hook (struct inferior *inf);
|
|
|
|
/* An unwinder is registered for every gdbarch. This key is used to
|
|
remember if the unwinder has been registered for a particular
|
|
gdbarch. */
|
|
|
|
static struct gdbarch_data *jit_gdbarch_data;
|
|
|
|
/* True if we want to see trace of jit level stuff. */
|
|
|
|
static bool jit_debug = false;
|
|
|
|
/* Print a "jit" debug statement. */
|
|
|
|
#define jit_debug_printf(fmt, ...) \
|
|
debug_prefixed_printf_cond (jit_debug, "jit", fmt, ##__VA_ARGS__)
|
|
|
|
static void
|
|
show_jit_debug (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
|
|
}
|
|
|
|
/* Implementation of the "maintenance info jit" command. */
|
|
|
|
static void
|
|
maint_info_jit_cmd (const char *args, int from_tty)
|
|
{
|
|
inferior *inf = current_inferior ();
|
|
bool printed_header = false;
|
|
|
|
/* Print a line for each JIT-ed objfile. */
|
|
for (objfile *obj : inf->pspace->objfiles ())
|
|
{
|
|
if (obj->jited_data == nullptr)
|
|
continue;
|
|
|
|
if (!printed_header)
|
|
{
|
|
printf_filtered ("Base address of known JIT-ed objfiles:\n");
|
|
printed_header = true;
|
|
}
|
|
|
|
printf_filtered (" %s\n", paddress (obj->arch (), obj->jited_data->addr));
|
|
}
|
|
}
|
|
|
|
struct jit_reader
|
|
{
|
|
jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
|
|
: functions (f), handle (std::move (h))
|
|
{
|
|
}
|
|
|
|
~jit_reader ()
|
|
{
|
|
functions->destroy (functions);
|
|
}
|
|
|
|
DISABLE_COPY_AND_ASSIGN (jit_reader);
|
|
|
|
struct gdb_reader_funcs *functions;
|
|
gdb_dlhandle_up handle;
|
|
};
|
|
|
|
/* One reader that has been loaded successfully, and can potentially be used to
|
|
parse debug info. */
|
|
|
|
static struct jit_reader *loaded_jit_reader = NULL;
|
|
|
|
typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
|
|
static const char reader_init_fn_sym[] = "gdb_init_reader";
|
|
|
|
/* Try to load FILE_NAME as a JIT debug info reader. */
|
|
|
|
static struct jit_reader *
|
|
jit_reader_load (const char *file_name)
|
|
{
|
|
reader_init_fn_type *init_fn;
|
|
struct gdb_reader_funcs *funcs = NULL;
|
|
|
|
jit_debug_printf ("Opening shared object %s", file_name);
|
|
|
|
gdb_dlhandle_up so = gdb_dlopen (file_name);
|
|
|
|
init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
|
|
if (!init_fn)
|
|
error (_("Could not locate initialization function: %s."),
|
|
reader_init_fn_sym);
|
|
|
|
if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
|
|
error (_("Reader not GPL compatible."));
|
|
|
|
funcs = init_fn ();
|
|
if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
|
|
error (_("Reader version does not match GDB version."));
|
|
|
|
return new jit_reader (funcs, std::move (so));
|
|
}
|
|
|
|
/* Provides the jit-reader-load command. */
|
|
|
|
static void
|
|
jit_reader_load_command (const char *args, int from_tty)
|
|
{
|
|
if (args == NULL)
|
|
error (_("No reader name provided."));
|
|
gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
|
|
|
|
if (loaded_jit_reader != NULL)
|
|
error (_("JIT reader already loaded. Run jit-reader-unload first."));
|
|
|
|
if (!IS_ABSOLUTE_PATH (file.get ()))
|
|
file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
|
|
file.get ()));
|
|
|
|
loaded_jit_reader = jit_reader_load (file.get ());
|
|
reinit_frame_cache ();
|
|
jit_inferior_created_hook (current_inferior ());
|
|
}
|
|
|
|
/* Provides the jit-reader-unload command. */
|
|
|
|
static void
|
|
jit_reader_unload_command (const char *args, int from_tty)
|
|
{
|
|
if (!loaded_jit_reader)
|
|
error (_("No JIT reader loaded."));
|
|
|
|
reinit_frame_cache ();
|
|
jit_inferior_exit_hook (current_inferior ());
|
|
|
|
delete loaded_jit_reader;
|
|
loaded_jit_reader = NULL;
|
|
}
|
|
|
|
/* Destructor for jiter_objfile_data. */
|
|
|
|
jiter_objfile_data::~jiter_objfile_data ()
|
|
{
|
|
if (this->jit_breakpoint != nullptr)
|
|
delete_breakpoint (this->jit_breakpoint);
|
|
}
|
|
|
|
/* Fetch the jiter_objfile_data associated with OBJF. If no data exists
|
|
yet, make a new structure and attach it. */
|
|
|
|
static jiter_objfile_data *
|
|
get_jiter_objfile_data (objfile *objf)
|
|
{
|
|
if (objf->jiter_data == nullptr)
|
|
objf->jiter_data.reset (new jiter_objfile_data ());
|
|
|
|
return objf->jiter_data.get ();
|
|
}
|
|
|
|
/* Remember OBJFILE has been created for struct jit_code_entry located
|
|
at inferior address ENTRY. */
|
|
|
|
static void
|
|
add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
|
|
{
|
|
gdb_assert (objfile->jited_data == nullptr);
|
|
|
|
objfile->jited_data.reset (new jited_objfile_data (entry));
|
|
}
|
|
|
|
/* Helper function for reading the global JIT descriptor from remote
|
|
memory. Returns true if all went well, false otherwise. */
|
|
|
|
static bool
|
|
jit_read_descriptor (gdbarch *gdbarch,
|
|
jit_descriptor *descriptor,
|
|
objfile *jiter)
|
|
{
|
|
int err;
|
|
struct type *ptr_type;
|
|
int ptr_size;
|
|
int desc_size;
|
|
gdb_byte *desc_buf;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
gdb_assert (jiter != nullptr);
|
|
jiter_objfile_data *objf_data = jiter->jiter_data.get ();
|
|
gdb_assert (objf_data != nullptr);
|
|
|
|
CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (jiter, objf_data->descriptor);
|
|
|
|
jit_debug_printf ("descriptor_addr = %s", paddress (gdbarch, addr));
|
|
|
|
/* Figure out how big the descriptor is on the remote and how to read it. */
|
|
ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
|
ptr_size = TYPE_LENGTH (ptr_type);
|
|
desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
|
|
desc_buf = (gdb_byte *) alloca (desc_size);
|
|
|
|
/* Read the descriptor. */
|
|
err = target_read_memory (addr, desc_buf, desc_size);
|
|
if (err)
|
|
{
|
|
printf_unfiltered (_("Unable to read JIT descriptor from "
|
|
"remote memory\n"));
|
|
return false;
|
|
}
|
|
|
|
/* Fix the endianness to match the host. */
|
|
descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
|
|
descriptor->action_flag =
|
|
extract_unsigned_integer (&desc_buf[4], 4, byte_order);
|
|
descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
|
|
descriptor->first_entry =
|
|
extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Helper function for reading a JITed code entry from remote memory. */
|
|
|
|
static void
|
|
jit_read_code_entry (struct gdbarch *gdbarch,
|
|
CORE_ADDR code_addr, struct jit_code_entry *code_entry)
|
|
{
|
|
int err, off;
|
|
struct type *ptr_type;
|
|
int ptr_size;
|
|
int entry_size;
|
|
int align_bytes;
|
|
gdb_byte *entry_buf;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* Figure out how big the entry is on the remote and how to read it. */
|
|
ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
|
ptr_size = TYPE_LENGTH (ptr_type);
|
|
|
|
/* Figure out where the uint64_t value will be. */
|
|
align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
|
|
off = 3 * ptr_size;
|
|
off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
|
|
|
|
entry_size = off + 8; /* Three pointers and one 64-bit int. */
|
|
entry_buf = (gdb_byte *) alloca (entry_size);
|
|
|
|
/* Read the entry. */
|
|
err = target_read_memory (code_addr, entry_buf, entry_size);
|
|
if (err)
|
|
error (_("Unable to read JIT code entry from remote memory!"));
|
|
|
|
/* Fix the endianness to match the host. */
|
|
ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
|
code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
|
|
code_entry->prev_entry =
|
|
extract_typed_address (&entry_buf[ptr_size], ptr_type);
|
|
code_entry->symfile_addr =
|
|
extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
|
|
code_entry->symfile_size =
|
|
extract_unsigned_integer (&entry_buf[off], 8, byte_order);
|
|
}
|
|
|
|
/* Proxy object for building a block. */
|
|
|
|
struct gdb_block
|
|
{
|
|
gdb_block (gdb_block *parent, CORE_ADDR begin, CORE_ADDR end,
|
|
const char *name)
|
|
: parent (parent),
|
|
begin (begin),
|
|
end (end),
|
|
name (name != nullptr ? xstrdup (name) : nullptr)
|
|
{}
|
|
|
|
/* The parent of this block. */
|
|
struct gdb_block *parent;
|
|
|
|
/* Points to the "real" block that is being built out of this
|
|
instance. This block will be added to a blockvector, which will
|
|
then be added to a symtab. */
|
|
struct block *real_block = nullptr;
|
|
|
|
/* The first and last code address corresponding to this block. */
|
|
CORE_ADDR begin, end;
|
|
|
|
/* The name of this block (if any). If this is non-NULL, the
|
|
FUNCTION symbol symbol is set to this value. */
|
|
gdb::unique_xmalloc_ptr<char> name;
|
|
};
|
|
|
|
/* Proxy object for building a symtab. */
|
|
|
|
struct gdb_symtab
|
|
{
|
|
explicit gdb_symtab (const char *file_name)
|
|
: file_name (file_name != nullptr ? file_name : "")
|
|
{}
|
|
|
|
/* The list of blocks in this symtab. These will eventually be
|
|
converted to real blocks.
|
|
|
|
This is specifically a linked list, instead of, for example, a vector,
|
|
because the pointers are returned to the user's debug info reader. So
|
|
it's important that the objects don't change location during their
|
|
lifetime (which would happen with a vector of objects getting resized). */
|
|
std::forward_list<gdb_block> blocks;
|
|
|
|
/* The number of blocks inserted. */
|
|
int nblocks = 0;
|
|
|
|
/* A mapping between line numbers to PC. */
|
|
gdb::unique_xmalloc_ptr<struct linetable> linetable;
|
|
|
|
/* The source file for this symtab. */
|
|
std::string file_name;
|
|
};
|
|
|
|
/* Proxy object for building an object. */
|
|
|
|
struct gdb_object
|
|
{
|
|
/* Symtabs of this object.
|
|
|
|
This is specifically a linked list, instead of, for example, a vector,
|
|
because the pointers are returned to the user's debug info reader. So
|
|
it's important that the objects don't change location during their
|
|
lifetime (which would happen with a vector of objects getting resized). */
|
|
std::forward_list<gdb_symtab> symtabs;
|
|
};
|
|
|
|
/* The type of the `private' data passed around by the callback
|
|
functions. */
|
|
|
|
typedef CORE_ADDR jit_dbg_reader_data;
|
|
|
|
/* The reader calls into this function to read data off the targets
|
|
address space. */
|
|
|
|
static enum gdb_status
|
|
jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
|
|
{
|
|
int result = target_read_memory ((CORE_ADDR) target_mem,
|
|
(gdb_byte *) gdb_buf, len);
|
|
if (result == 0)
|
|
return GDB_SUCCESS;
|
|
else
|
|
return GDB_FAIL;
|
|
}
|
|
|
|
/* The reader calls into this function to create a new gdb_object
|
|
which it can then pass around to the other callbacks. Right now,
|
|
all that is required is allocating the memory. */
|
|
|
|
static struct gdb_object *
|
|
jit_object_open_impl (struct gdb_symbol_callbacks *cb)
|
|
{
|
|
/* CB is not required right now, but sometime in the future we might
|
|
need a handle to it, and we'd like to do that without breaking
|
|
the ABI. */
|
|
return new gdb_object;
|
|
}
|
|
|
|
/* Readers call into this function to open a new gdb_symtab, which,
|
|
again, is passed around to other callbacks. */
|
|
|
|
static struct gdb_symtab *
|
|
jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
|
|
struct gdb_object *object,
|
|
const char *file_name)
|
|
{
|
|
/* CB stays unused. See comment in jit_object_open_impl. */
|
|
|
|
object->symtabs.emplace_front (file_name);
|
|
return &object->symtabs.front ();
|
|
}
|
|
|
|
/* Called by readers to open a new gdb_block. This function also
|
|
inserts the new gdb_block in the correct place in the corresponding
|
|
gdb_symtab. */
|
|
|
|
static struct gdb_block *
|
|
jit_block_open_impl (struct gdb_symbol_callbacks *cb,
|
|
struct gdb_symtab *symtab, struct gdb_block *parent,
|
|
GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
|
|
{
|
|
/* Place the block at the beginning of the list, it will be sorted when the
|
|
symtab is finalized. */
|
|
symtab->blocks.emplace_front (parent, begin, end, name);
|
|
symtab->nblocks++;
|
|
|
|
return &symtab->blocks.front ();
|
|
}
|
|
|
|
/* Readers call this to add a line mapping (from PC to line number) to
|
|
a gdb_symtab. */
|
|
|
|
static void
|
|
jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
|
|
struct gdb_symtab *stab, int nlines,
|
|
struct gdb_line_mapping *map)
|
|
{
|
|
int i;
|
|
int alloc_len;
|
|
|
|
if (nlines < 1)
|
|
return;
|
|
|
|
alloc_len = sizeof (struct linetable)
|
|
+ (nlines - 1) * sizeof (struct linetable_entry);
|
|
stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
|
|
stab->linetable->nitems = nlines;
|
|
for (i = 0; i < nlines; i++)
|
|
{
|
|
stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
|
|
stab->linetable->item[i].line = map[i].line;
|
|
stab->linetable->item[i].is_stmt = 1;
|
|
}
|
|
}
|
|
|
|
/* Called by readers to close a gdb_symtab. Does not need to do
|
|
anything as of now. */
|
|
|
|
static void
|
|
jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
|
|
struct gdb_symtab *stab)
|
|
{
|
|
/* Right now nothing needs to be done here. We may need to do some
|
|
cleanup here in the future (again, without breaking the plugin
|
|
ABI). */
|
|
}
|
|
|
|
/* Transform STAB to a proper symtab, and add it it OBJFILE. */
|
|
|
|
static void
|
|
finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
|
|
{
|
|
struct compunit_symtab *cust;
|
|
size_t blockvector_size;
|
|
CORE_ADDR begin, end;
|
|
struct blockvector *bv;
|
|
|
|
int actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
|
|
|
|
/* Sort the blocks in the order they should appear in the blockvector. */
|
|
stab->blocks.sort([] (const gdb_block &a, const gdb_block &b)
|
|
{
|
|
if (a.begin != b.begin)
|
|
return a.begin < b.begin;
|
|
|
|
return a.end > b.end;
|
|
});
|
|
|
|
cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
|
|
allocate_symtab (cust, stab->file_name.c_str ());
|
|
add_compunit_symtab_to_objfile (cust);
|
|
|
|
/* JIT compilers compile in memory. */
|
|
COMPUNIT_DIRNAME (cust) = NULL;
|
|
|
|
/* Copy over the linetable entry if one was provided. */
|
|
if (stab->linetable)
|
|
{
|
|
size_t size = ((stab->linetable->nitems - 1)
|
|
* sizeof (struct linetable_entry)
|
|
+ sizeof (struct linetable));
|
|
SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
|
|
= (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
|
|
memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)),
|
|
stab->linetable.get (), size);
|
|
}
|
|
|
|
blockvector_size = (sizeof (struct blockvector)
|
|
+ (actual_nblocks - 1) * sizeof (struct block *));
|
|
bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
|
|
blockvector_size);
|
|
COMPUNIT_BLOCKVECTOR (cust) = bv;
|
|
|
|
/* At the end of this function, (begin, end) will contain the PC range this
|
|
entire blockvector spans. */
|
|
BLOCKVECTOR_MAP (bv) = NULL;
|
|
begin = stab->blocks.front ().begin;
|
|
end = stab->blocks.front ().end;
|
|
BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
|
|
|
|
/* First run over all the gdb_block objects, creating a real block
|
|
object for each. Simultaneously, keep setting the real_block
|
|
fields. */
|
|
int block_idx = FIRST_LOCAL_BLOCK;
|
|
for (gdb_block &gdb_block_iter : stab->blocks)
|
|
{
|
|
struct block *new_block = allocate_block (&objfile->objfile_obstack);
|
|
struct symbol *block_name = new (&objfile->objfile_obstack) symbol;
|
|
struct type *block_type = arch_type (objfile->arch (),
|
|
TYPE_CODE_VOID,
|
|
TARGET_CHAR_BIT,
|
|
"void");
|
|
|
|
BLOCK_MULTIDICT (new_block)
|
|
= mdict_create_linear (&objfile->objfile_obstack, NULL);
|
|
/* The address range. */
|
|
BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter.begin;
|
|
BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter.end;
|
|
|
|
/* The name. */
|
|
SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
|
|
SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
|
|
symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
|
|
SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
|
|
SYMBOL_BLOCK_VALUE (block_name) = new_block;
|
|
|
|
block_name->m_name = obstack_strdup (&objfile->objfile_obstack,
|
|
gdb_block_iter.name.get ());
|
|
|
|
BLOCK_FUNCTION (new_block) = block_name;
|
|
|
|
BLOCKVECTOR_BLOCK (bv, block_idx) = new_block;
|
|
if (begin > BLOCK_START (new_block))
|
|
begin = BLOCK_START (new_block);
|
|
if (end < BLOCK_END (new_block))
|
|
end = BLOCK_END (new_block);
|
|
|
|
gdb_block_iter.real_block = new_block;
|
|
|
|
block_idx++;
|
|
}
|
|
|
|
/* Now add the special blocks. */
|
|
struct block *block_iter = NULL;
|
|
for (enum block_enum i : { GLOBAL_BLOCK, STATIC_BLOCK })
|
|
{
|
|
struct block *new_block;
|
|
|
|
new_block = (i == GLOBAL_BLOCK
|
|
? allocate_global_block (&objfile->objfile_obstack)
|
|
: allocate_block (&objfile->objfile_obstack));
|
|
BLOCK_MULTIDICT (new_block)
|
|
= mdict_create_linear (&objfile->objfile_obstack, NULL);
|
|
BLOCK_SUPERBLOCK (new_block) = block_iter;
|
|
block_iter = new_block;
|
|
|
|
BLOCK_START (new_block) = (CORE_ADDR) begin;
|
|
BLOCK_END (new_block) = (CORE_ADDR) end;
|
|
|
|
BLOCKVECTOR_BLOCK (bv, i) = new_block;
|
|
|
|
if (i == GLOBAL_BLOCK)
|
|
set_block_compunit_symtab (new_block, cust);
|
|
}
|
|
|
|
/* Fill up the superblock fields for the real blocks, using the
|
|
real_block fields populated earlier. */
|
|
for (gdb_block &gdb_block_iter : stab->blocks)
|
|
{
|
|
if (gdb_block_iter.parent != NULL)
|
|
{
|
|
/* If the plugin specifically mentioned a parent block, we
|
|
use that. */
|
|
BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
|
|
gdb_block_iter.parent->real_block;
|
|
}
|
|
else
|
|
{
|
|
/* And if not, we set a default parent block. */
|
|
BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
|
|
BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called when closing a gdb_objfile. Converts OBJ to a proper
|
|
objfile. */
|
|
|
|
static void
|
|
jit_object_close_impl (struct gdb_symbol_callbacks *cb,
|
|
struct gdb_object *obj)
|
|
{
|
|
struct objfile *objfile;
|
|
jit_dbg_reader_data *priv_data;
|
|
|
|
priv_data = (jit_dbg_reader_data *) cb->priv_data;
|
|
|
|
objfile = objfile::make (nullptr, "<< JIT compiled code >>",
|
|
OBJF_NOT_FILENAME);
|
|
objfile->per_bfd->gdbarch = target_gdbarch ();
|
|
|
|
for (gdb_symtab &symtab : obj->symtabs)
|
|
finalize_symtab (&symtab, objfile);
|
|
|
|
add_objfile_entry (objfile, *priv_data);
|
|
|
|
delete obj;
|
|
}
|
|
|
|
/* Try to read CODE_ENTRY using the loaded jit reader (if any).
|
|
ENTRY_ADDR is the address of the struct jit_code_entry in the
|
|
inferior address space. */
|
|
|
|
static int
|
|
jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
|
|
CORE_ADDR entry_addr)
|
|
{
|
|
int status;
|
|
jit_dbg_reader_data priv_data;
|
|
struct gdb_reader_funcs *funcs;
|
|
struct gdb_symbol_callbacks callbacks =
|
|
{
|
|
jit_object_open_impl,
|
|
jit_symtab_open_impl,
|
|
jit_block_open_impl,
|
|
jit_symtab_close_impl,
|
|
jit_object_close_impl,
|
|
|
|
jit_symtab_line_mapping_add_impl,
|
|
jit_target_read_impl,
|
|
|
|
&priv_data
|
|
};
|
|
|
|
priv_data = entry_addr;
|
|
|
|
if (!loaded_jit_reader)
|
|
return 0;
|
|
|
|
gdb::byte_vector gdb_mem (code_entry->symfile_size);
|
|
|
|
status = 1;
|
|
try
|
|
{
|
|
if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
|
|
code_entry->symfile_size))
|
|
status = 0;
|
|
}
|
|
catch (const gdb_exception &e)
|
|
{
|
|
status = 0;
|
|
}
|
|
|
|
if (status)
|
|
{
|
|
funcs = loaded_jit_reader->functions;
|
|
if (funcs->read (funcs, &callbacks, gdb_mem.data (),
|
|
code_entry->symfile_size)
|
|
!= GDB_SUCCESS)
|
|
status = 0;
|
|
}
|
|
|
|
if (status == 0)
|
|
jit_debug_printf ("Could not read symtab using the loaded JIT reader.");
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
|
|
struct jit_code_entry in the inferior address space. */
|
|
|
|
static void
|
|
jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
|
|
CORE_ADDR entry_addr,
|
|
struct gdbarch *gdbarch)
|
|
{
|
|
struct bfd_section *sec;
|
|
struct objfile *objfile;
|
|
const struct bfd_arch_info *b;
|
|
|
|
jit_debug_printf ("symfile_addr = %s, symfile_size = %s",
|
|
paddress (gdbarch, code_entry->symfile_addr),
|
|
pulongest (code_entry->symfile_size));
|
|
|
|
gdb_bfd_ref_ptr nbfd (gdb_bfd_open_from_target_memory
|
|
(code_entry->symfile_addr, code_entry->symfile_size, gnutarget));
|
|
if (nbfd == NULL)
|
|
{
|
|
puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
|
|
return;
|
|
}
|
|
|
|
/* Check the format. NOTE: This initializes important data that GDB uses!
|
|
We would segfault later without this line. */
|
|
if (!bfd_check_format (nbfd.get (), bfd_object))
|
|
{
|
|
printf_unfiltered (_("\
|
|
JITed symbol file is not an object file, ignoring it.\n"));
|
|
return;
|
|
}
|
|
|
|
/* Check bfd arch. */
|
|
b = gdbarch_bfd_arch_info (gdbarch);
|
|
if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
|
|
warning (_("JITed object file architecture %s is not compatible "
|
|
"with target architecture %s."),
|
|
bfd_get_arch_info (nbfd.get ())->printable_name,
|
|
b->printable_name);
|
|
|
|
/* Read the section address information out of the symbol file. Since the
|
|
file is generated by the JIT at runtime, it should all of the absolute
|
|
addresses that we care about. */
|
|
section_addr_info sai;
|
|
for (sec = nbfd->sections; sec != NULL; sec = sec->next)
|
|
if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
|
|
{
|
|
/* We assume that these virtual addresses are absolute, and do not
|
|
treat them as offsets. */
|
|
sai.emplace_back (bfd_section_vma (sec),
|
|
bfd_section_name (sec),
|
|
sec->index);
|
|
}
|
|
|
|
/* This call does not take ownership of SAI. */
|
|
objfile = symbol_file_add_from_bfd (nbfd.get (),
|
|
bfd_get_filename (nbfd.get ()), 0,
|
|
&sai,
|
|
OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
|
|
|
|
add_objfile_entry (objfile, entry_addr);
|
|
}
|
|
|
|
/* This function registers code associated with a JIT code entry. It uses the
|
|
pointer and size pair in the entry to read the symbol file from the remote
|
|
and then calls symbol_file_add_from_local_memory to add it as though it were
|
|
a symbol file added by the user. */
|
|
|
|
static void
|
|
jit_register_code (struct gdbarch *gdbarch,
|
|
CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
|
|
{
|
|
int success;
|
|
|
|
jit_debug_printf ("symfile_addr = %s, symfile_size = %s",
|
|
paddress (gdbarch, code_entry->symfile_addr),
|
|
pulongest (code_entry->symfile_size));
|
|
|
|
success = jit_reader_try_read_symtab (code_entry, entry_addr);
|
|
|
|
if (!success)
|
|
jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
|
|
}
|
|
|
|
/* Look up the objfile with this code entry address. */
|
|
|
|
static struct objfile *
|
|
jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
|
|
{
|
|
for (objfile *objf : current_program_space->objfiles ())
|
|
{
|
|
if (objf->jited_data != nullptr && objf->jited_data->addr == entry_addr)
|
|
return objf;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This is called when a breakpoint is deleted. It updates the
|
|
inferior's cache, if needed. */
|
|
|
|
static void
|
|
jit_breakpoint_deleted (struct breakpoint *b)
|
|
{
|
|
if (b->type != bp_jit_event)
|
|
return;
|
|
|
|
for (bp_location *iter : b->locations ())
|
|
{
|
|
for (objfile *objf : iter->pspace->objfiles ())
|
|
{
|
|
jiter_objfile_data *jiter_data = objf->jiter_data.get ();
|
|
|
|
if (jiter_data != nullptr
|
|
&& jiter_data->jit_breakpoint == iter->owner)
|
|
{
|
|
jiter_data->cached_code_address = 0;
|
|
jiter_data->jit_breakpoint = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* (Re-)Initialize the jit breakpoints for JIT-producing objfiles in
|
|
PSPACE. */
|
|
|
|
static void
|
|
jit_breakpoint_re_set_internal (struct gdbarch *gdbarch, program_space *pspace)
|
|
{
|
|
for (objfile *the_objfile : pspace->objfiles ())
|
|
{
|
|
/* Skip separate debug objects. */
|
|
if (the_objfile->separate_debug_objfile_backlink != nullptr)
|
|
continue;
|
|
|
|
if (the_objfile->skip_jit_symbol_lookup)
|
|
continue;
|
|
|
|
/* Lookup the registration symbol. If it is missing, then we
|
|
assume we are not attached to a JIT. */
|
|
bound_minimal_symbol reg_symbol
|
|
= lookup_minimal_symbol (jit_break_name, nullptr, the_objfile);
|
|
if (reg_symbol.minsym == NULL
|
|
|| BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
|
|
{
|
|
/* No need to repeat the lookup the next time. */
|
|
the_objfile->skip_jit_symbol_lookup = true;
|
|
continue;
|
|
}
|
|
|
|
bound_minimal_symbol desc_symbol
|
|
= lookup_minimal_symbol (jit_descriptor_name, NULL, the_objfile);
|
|
if (desc_symbol.minsym == NULL
|
|
|| BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
|
|
{
|
|
/* No need to repeat the lookup the next time. */
|
|
the_objfile->skip_jit_symbol_lookup = true;
|
|
continue;
|
|
}
|
|
|
|
jiter_objfile_data *objf_data
|
|
= get_jiter_objfile_data (the_objfile);
|
|
objf_data->register_code = reg_symbol.minsym;
|
|
objf_data->descriptor = desc_symbol.minsym;
|
|
|
|
CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (the_objfile,
|
|
objf_data->register_code);
|
|
|
|
jit_debug_printf ("breakpoint_addr = %s", paddress (gdbarch, addr));
|
|
|
|
/* Check if we need to re-create the breakpoint. */
|
|
if (objf_data->cached_code_address == addr)
|
|
continue;
|
|
|
|
/* Delete the old breakpoint. */
|
|
if (objf_data->jit_breakpoint != nullptr)
|
|
delete_breakpoint (objf_data->jit_breakpoint);
|
|
|
|
/* Put a breakpoint in the registration symbol. */
|
|
objf_data->cached_code_address = addr;
|
|
objf_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
|
|
}
|
|
}
|
|
|
|
/* The private data passed around in the frame unwind callback
|
|
functions. */
|
|
|
|
struct jit_unwind_private
|
|
{
|
|
/* Cached register values. See jit_frame_sniffer to see how this
|
|
works. */
|
|
detached_regcache *regcache;
|
|
|
|
/* The frame being unwound. */
|
|
struct frame_info *this_frame;
|
|
};
|
|
|
|
/* Sets the value of a particular register in this frame. */
|
|
|
|
static void
|
|
jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
|
|
struct gdb_reg_value *value)
|
|
{
|
|
struct jit_unwind_private *priv;
|
|
int gdb_reg;
|
|
|
|
priv = (struct jit_unwind_private *) cb->priv_data;
|
|
|
|
gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
|
|
dwarf_regnum);
|
|
if (gdb_reg == -1)
|
|
{
|
|
jit_debug_printf ("Could not recognize DWARF regnum %d", dwarf_regnum);
|
|
value->free (value);
|
|
return;
|
|
}
|
|
|
|
priv->regcache->raw_supply (gdb_reg, value->value);
|
|
value->free (value);
|
|
}
|
|
|
|
static void
|
|
reg_value_free_impl (struct gdb_reg_value *value)
|
|
{
|
|
xfree (value);
|
|
}
|
|
|
|
/* Get the value of register REGNUM in the previous frame. */
|
|
|
|
static struct gdb_reg_value *
|
|
jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
|
|
{
|
|
struct jit_unwind_private *priv;
|
|
struct gdb_reg_value *value;
|
|
int gdb_reg, size;
|
|
struct gdbarch *frame_arch;
|
|
|
|
priv = (struct jit_unwind_private *) cb->priv_data;
|
|
frame_arch = get_frame_arch (priv->this_frame);
|
|
|
|
gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
|
|
size = register_size (frame_arch, gdb_reg);
|
|
value = ((struct gdb_reg_value *)
|
|
xmalloc (sizeof (struct gdb_reg_value) + size - 1));
|
|
value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
|
|
value->value);
|
|
value->size = size;
|
|
value->free = reg_value_free_impl;
|
|
return value;
|
|
}
|
|
|
|
/* gdb_reg_value has a free function, which must be called on each
|
|
saved register value. */
|
|
|
|
static void
|
|
jit_dealloc_cache (struct frame_info *this_frame, void *cache)
|
|
{
|
|
struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
|
|
|
|
gdb_assert (priv_data->regcache != NULL);
|
|
delete priv_data->regcache;
|
|
xfree (priv_data);
|
|
}
|
|
|
|
/* The frame sniffer for the pseudo unwinder.
|
|
|
|
While this is nominally a frame sniffer, in the case where the JIT
|
|
reader actually recognizes the frame, it does a lot more work -- it
|
|
unwinds the frame and saves the corresponding register values in
|
|
the cache. jit_frame_prev_register simply returns the saved
|
|
register values. */
|
|
|
|
static int
|
|
jit_frame_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame, void **cache)
|
|
{
|
|
struct jit_unwind_private *priv_data;
|
|
struct gdb_unwind_callbacks callbacks;
|
|
struct gdb_reader_funcs *funcs;
|
|
|
|
callbacks.reg_get = jit_unwind_reg_get_impl;
|
|
callbacks.reg_set = jit_unwind_reg_set_impl;
|
|
callbacks.target_read = jit_target_read_impl;
|
|
|
|
if (loaded_jit_reader == NULL)
|
|
return 0;
|
|
|
|
funcs = loaded_jit_reader->functions;
|
|
|
|
gdb_assert (!*cache);
|
|
|
|
*cache = XCNEW (struct jit_unwind_private);
|
|
priv_data = (struct jit_unwind_private *) *cache;
|
|
/* Take a snapshot of current regcache. */
|
|
priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
|
|
true);
|
|
priv_data->this_frame = this_frame;
|
|
|
|
callbacks.priv_data = priv_data;
|
|
|
|
/* Try to coax the provided unwinder to unwind the stack */
|
|
if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
|
|
{
|
|
jit_debug_printf ("Successfully unwound frame using JIT reader.");
|
|
return 1;
|
|
}
|
|
|
|
jit_debug_printf ("Could not unwind frame using JIT reader.");
|
|
|
|
jit_dealloc_cache (this_frame, *cache);
|
|
*cache = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* The frame_id function for the pseudo unwinder. Relays the call to
|
|
the loaded plugin. */
|
|
|
|
static void
|
|
jit_frame_this_id (struct frame_info *this_frame, void **cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct jit_unwind_private priv;
|
|
struct gdb_frame_id frame_id;
|
|
struct gdb_reader_funcs *funcs;
|
|
struct gdb_unwind_callbacks callbacks;
|
|
|
|
priv.regcache = NULL;
|
|
priv.this_frame = this_frame;
|
|
|
|
/* We don't expect the frame_id function to set any registers, so we
|
|
set reg_set to NULL. */
|
|
callbacks.reg_get = jit_unwind_reg_get_impl;
|
|
callbacks.reg_set = NULL;
|
|
callbacks.target_read = jit_target_read_impl;
|
|
callbacks.priv_data = &priv;
|
|
|
|
gdb_assert (loaded_jit_reader);
|
|
funcs = loaded_jit_reader->functions;
|
|
|
|
frame_id = funcs->get_frame_id (funcs, &callbacks);
|
|
*this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
|
|
}
|
|
|
|
/* Pseudo unwinder function. Reads the previously fetched value for
|
|
the register from the cache. */
|
|
|
|
static struct value *
|
|
jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
|
|
{
|
|
struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
|
|
struct gdbarch *gdbarch;
|
|
|
|
if (priv == NULL)
|
|
return frame_unwind_got_optimized (this_frame, reg);
|
|
|
|
gdbarch = priv->regcache->arch ();
|
|
gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
|
|
enum register_status status = priv->regcache->cooked_read (reg, buf);
|
|
|
|
if (status == REG_VALID)
|
|
return frame_unwind_got_bytes (this_frame, reg, buf);
|
|
else
|
|
return frame_unwind_got_optimized (this_frame, reg);
|
|
}
|
|
|
|
/* Relay everything back to the unwinder registered by the JIT debug
|
|
info reader.*/
|
|
|
|
static const struct frame_unwind jit_frame_unwind =
|
|
{
|
|
"jit",
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
jit_frame_this_id,
|
|
jit_frame_prev_register,
|
|
NULL,
|
|
jit_frame_sniffer,
|
|
jit_dealloc_cache
|
|
};
|
|
|
|
|
|
/* This is the information that is stored at jit_gdbarch_data for each
|
|
architecture. */
|
|
|
|
struct jit_gdbarch_data_type
|
|
{
|
|
/* Has the (pseudo) unwinder been prepended? */
|
|
int unwinder_registered;
|
|
};
|
|
|
|
/* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
|
|
|
|
static void
|
|
jit_prepend_unwinder (struct gdbarch *gdbarch)
|
|
{
|
|
struct jit_gdbarch_data_type *data;
|
|
|
|
data
|
|
= (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
|
|
if (!data->unwinder_registered)
|
|
{
|
|
frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
|
|
data->unwinder_registered = 1;
|
|
}
|
|
}
|
|
|
|
/* Register any already created translations. */
|
|
|
|
static void
|
|
jit_inferior_init (inferior *inf)
|
|
{
|
|
struct jit_descriptor descriptor;
|
|
struct jit_code_entry cur_entry;
|
|
CORE_ADDR cur_entry_addr;
|
|
struct gdbarch *gdbarch = inf->gdbarch;
|
|
program_space *pspace = inf->pspace;
|
|
|
|
jit_debug_printf ("called");
|
|
|
|
jit_prepend_unwinder (gdbarch);
|
|
|
|
jit_breakpoint_re_set_internal (gdbarch, pspace);
|
|
|
|
for (objfile *jiter : pspace->objfiles ())
|
|
{
|
|
if (jiter->jiter_data == nullptr)
|
|
continue;
|
|
|
|
/* Read the descriptor so we can check the version number and load
|
|
any already JITed functions. */
|
|
if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
|
|
continue;
|
|
|
|
/* Check that the version number agrees with that we support. */
|
|
if (descriptor.version != 1)
|
|
{
|
|
printf_unfiltered (_("Unsupported JIT protocol version %ld "
|
|
"in descriptor (expected 1)\n"),
|
|
(long) descriptor.version);
|
|
continue;
|
|
}
|
|
|
|
/* If we've attached to a running program, we need to check the
|
|
descriptor to register any functions that were already
|
|
generated. */
|
|
for (cur_entry_addr = descriptor.first_entry;
|
|
cur_entry_addr != 0;
|
|
cur_entry_addr = cur_entry.next_entry)
|
|
{
|
|
jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
|
|
|
|
/* This hook may be called many times during setup, so make sure
|
|
we don't add the same symbol file twice. */
|
|
if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
|
|
continue;
|
|
|
|
jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Looks for the descriptor and registration symbols and breakpoints
|
|
the registration function. If it finds both, it registers all the
|
|
already JITed code. If it has already found the symbols, then it
|
|
doesn't try again. */
|
|
|
|
static void
|
|
jit_inferior_created_hook (inferior *inf)
|
|
{
|
|
jit_inferior_init (inf);
|
|
}
|
|
|
|
/* Exported routine to call to re-set the jit breakpoints,
|
|
e.g. when a program is rerun. */
|
|
|
|
void
|
|
jit_breakpoint_re_set (void)
|
|
{
|
|
jit_breakpoint_re_set_internal (target_gdbarch (), current_program_space);
|
|
}
|
|
|
|
/* This function cleans up any code entries left over when the
|
|
inferior exits. We get left over code when the inferior exits
|
|
without unregistering its code, for example when it crashes. */
|
|
|
|
static void
|
|
jit_inferior_exit_hook (struct inferior *inf)
|
|
{
|
|
for (objfile *objf : current_program_space->objfiles_safe ())
|
|
{
|
|
if (objf->jited_data != nullptr && objf->jited_data->addr != 0)
|
|
objf->unlink ();
|
|
}
|
|
}
|
|
|
|
void
|
|
jit_event_handler (gdbarch *gdbarch, objfile *jiter)
|
|
{
|
|
struct jit_descriptor descriptor;
|
|
|
|
/* If we get a JIT breakpoint event for this objfile, it is necessarily a
|
|
JITer. */
|
|
gdb_assert (jiter->jiter_data != nullptr);
|
|
|
|
/* Read the descriptor from remote memory. */
|
|
if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
|
|
return;
|
|
CORE_ADDR entry_addr = descriptor.relevant_entry;
|
|
|
|
/* Do the corresponding action. */
|
|
switch (descriptor.action_flag)
|
|
{
|
|
case JIT_NOACTION:
|
|
break;
|
|
|
|
case JIT_REGISTER:
|
|
{
|
|
jit_code_entry code_entry;
|
|
jit_read_code_entry (gdbarch, entry_addr, &code_entry);
|
|
jit_register_code (gdbarch, entry_addr, &code_entry);
|
|
break;
|
|
}
|
|
|
|
case JIT_UNREGISTER:
|
|
{
|
|
objfile *jited = jit_find_objf_with_entry_addr (entry_addr);
|
|
if (jited == nullptr)
|
|
printf_unfiltered (_("Unable to find JITed code "
|
|
"entry at address: %s\n"),
|
|
paddress (gdbarch, entry_addr));
|
|
else
|
|
jited->unlink ();
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
error (_("Unknown action_flag value in JIT descriptor!"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Initialize the jit_gdbarch_data slot with an instance of struct
|
|
jit_gdbarch_data_type */
|
|
|
|
static void *
|
|
jit_gdbarch_data_init (struct obstack *obstack)
|
|
{
|
|
struct jit_gdbarch_data_type *data =
|
|
XOBNEW (obstack, struct jit_gdbarch_data_type);
|
|
|
|
data->unwinder_registered = 0;
|
|
|
|
return data;
|
|
}
|
|
|
|
void _initialize_jit ();
|
|
void
|
|
_initialize_jit ()
|
|
{
|
|
jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
|
|
JIT_READER_DIR_RELOCATABLE);
|
|
add_setshow_boolean_cmd ("jit", class_maintenance, &jit_debug,
|
|
_("Set JIT debugging."),
|
|
_("Show JIT debugging."),
|
|
_("When set, JIT debugging is enabled."),
|
|
NULL,
|
|
show_jit_debug,
|
|
&setdebuglist, &showdebuglist);
|
|
|
|
add_cmd ("jit", class_maintenance, maint_info_jit_cmd,
|
|
_("Print information about JIT-ed code objects."),
|
|
&maintenanceinfolist);
|
|
|
|
gdb::observers::inferior_created.attach (jit_inferior_created_hook, "jit");
|
|
gdb::observers::inferior_execd.attach (jit_inferior_created_hook, "jit");
|
|
gdb::observers::inferior_exit.attach (jit_inferior_exit_hook, "jit");
|
|
gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted, "jit");
|
|
|
|
jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
|
|
if (is_dl_available ())
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
|
|
Load FILE as debug info reader and unwinder for JIT compiled code.\n\
|
|
Usage: jit-reader-load FILE\n\
|
|
Try to load file FILE as a debug info reader (and unwinder) for\n\
|
|
JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
|
|
relocated relative to the GDB executable if required."));
|
|
set_cmd_completer (c, filename_completer);
|
|
|
|
c = add_com ("jit-reader-unload", no_class,
|
|
jit_reader_unload_command, _("\
|
|
Unload the currently loaded JIT debug info reader.\n\
|
|
Usage: jit-reader-unload\n\n\
|
|
Do \"help jit-reader-load\" for info on loading debug info readers."));
|
|
set_cmd_completer (c, noop_completer);
|
|
}
|
|
}
|