mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
26503e2f5e
Our recent commit to support unnamed structure members better ditched the old ctf_member_iter iterator body in favour of ctf_member_next. However, these functions treat unnamed structure members differently: ctf_member_iter just returned whatever the internal representation contained, while ctf_member_next took care to always return "" rather than sometimes returning "" and sometimes NULL depending on whether the dict was dynamic (a product of ctf_create) or not (a product of ctf_open). After this commit, ctf_member_iter did the same. It was always a bug for external callers not to treat a "" return from these functions as if it were NULL, so only buggy callers could be affected -- but one of those buggy callers was ctf_add_type, which assumed that it could just take whatever name was returned from ctf_member_iter and slam it directly into the internal representation of a dynamic dict -- which expects NULL for unnamed members, not "". The net effect of all of this is that taking a struct containing unnamed members and ctf_add_type'ing it into a dynamic dict produced a dict whose unnamed members were inaccessible to ctf_member_info (though if you wrote that dict out and then ctf_open'ed it, they would magically reappear again). Compensate for this by suitably transforming a "" name into NULL in the internal representation, as should have been done all along. libctf/ChangeLog 2021-01-19 Nick Alcock <nick.alcock@oracle.com> * ctf-create.c (membadd): Transform ""-named members into NULL-named ones. * testsuite/libctf-regression/type-add-unnamed-struct*: New test.
3091 lines
90 KiB
C
3091 lines
90 KiB
C
/* CTF file creation.
|
|
Copyright (C) 2019-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <sys/param.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <zlib.h>
|
|
|
|
#include <elf.h>
|
|
#include "elf-bfd.h"
|
|
|
|
#ifndef EOVERFLOW
|
|
#define EOVERFLOW ERANGE
|
|
#endif
|
|
|
|
#ifndef roundup
|
|
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
|
|
#endif
|
|
|
|
/* Make sure the ptrtab has enough space for at least one more type.
|
|
|
|
We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25%
|
|
at a time. */
|
|
|
|
static int
|
|
ctf_grow_ptrtab (ctf_dict_t *fp)
|
|
{
|
|
size_t new_ptrtab_len = fp->ctf_ptrtab_len;
|
|
|
|
/* We allocate one more ptrtab entry than we need, for the initial zero,
|
|
plus one because the caller will probably allocate a new type. */
|
|
|
|
if (fp->ctf_ptrtab == NULL)
|
|
new_ptrtab_len = 1024;
|
|
else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len)
|
|
new_ptrtab_len = fp->ctf_ptrtab_len * 1.25;
|
|
|
|
if (new_ptrtab_len != fp->ctf_ptrtab_len)
|
|
{
|
|
uint32_t *new_ptrtab;
|
|
|
|
if ((new_ptrtab = realloc (fp->ctf_ptrtab,
|
|
new_ptrtab_len * sizeof (uint32_t))) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
fp->ctf_ptrtab = new_ptrtab;
|
|
memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0,
|
|
(new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t));
|
|
fp->ctf_ptrtab_len = new_ptrtab_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* To create an empty CTF dict, we just declare a zeroed header and call
|
|
ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new dict r/w and
|
|
initialize the dynamic members. We start assigning type IDs at 1 because
|
|
type ID 0 is used as a sentinel and a not-found indicator. */
|
|
|
|
ctf_dict_t *
|
|
ctf_create (int *errp)
|
|
{
|
|
static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } };
|
|
|
|
ctf_dynhash_t *dthash;
|
|
ctf_dynhash_t *dvhash;
|
|
ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL;
|
|
ctf_dynhash_t *objthash = NULL, *funchash = NULL;
|
|
ctf_sect_t cts;
|
|
ctf_dict_t *fp;
|
|
|
|
libctf_init_debug();
|
|
dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
|
|
NULL, NULL);
|
|
if (dthash == NULL)
|
|
{
|
|
ctf_set_open_errno (errp, EAGAIN);
|
|
goto err;
|
|
}
|
|
|
|
dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
if (dvhash == NULL)
|
|
{
|
|
ctf_set_open_errno (errp, EAGAIN);
|
|
goto err_dt;
|
|
}
|
|
|
|
structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
free, NULL);
|
|
funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
free, NULL);
|
|
if (!structs || !unions || !enums || !names)
|
|
{
|
|
ctf_set_open_errno (errp, EAGAIN);
|
|
goto err_dv;
|
|
}
|
|
|
|
cts.cts_name = _CTF_SECTION;
|
|
cts.cts_data = &hdr;
|
|
cts.cts_size = sizeof (hdr);
|
|
cts.cts_entsize = 1;
|
|
|
|
if ((fp = ctf_bufopen_internal (&cts, NULL, NULL, NULL, 1, errp)) == NULL)
|
|
goto err_dv;
|
|
|
|
fp->ctf_structs.ctn_writable = structs;
|
|
fp->ctf_unions.ctn_writable = unions;
|
|
fp->ctf_enums.ctn_writable = enums;
|
|
fp->ctf_names.ctn_writable = names;
|
|
fp->ctf_objthash = objthash;
|
|
fp->ctf_funchash = funchash;
|
|
fp->ctf_dthash = dthash;
|
|
fp->ctf_dvhash = dvhash;
|
|
fp->ctf_dtoldid = 0;
|
|
fp->ctf_snapshots = 1;
|
|
fp->ctf_snapshot_lu = 0;
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
|
|
ctf_set_ctl_hashes (fp);
|
|
ctf_setmodel (fp, CTF_MODEL_NATIVE);
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
|
{
|
|
ctf_set_open_errno (errp, ctf_errno (fp));
|
|
ctf_dict_close (fp);
|
|
return NULL;
|
|
}
|
|
|
|
return fp;
|
|
|
|
err_dv:
|
|
ctf_dynhash_destroy (structs);
|
|
ctf_dynhash_destroy (unions);
|
|
ctf_dynhash_destroy (enums);
|
|
ctf_dynhash_destroy (names);
|
|
ctf_dynhash_destroy (objthash);
|
|
ctf_dynhash_destroy (funchash);
|
|
ctf_dynhash_destroy (dvhash);
|
|
err_dt:
|
|
ctf_dynhash_destroy (dthash);
|
|
err:
|
|
return NULL;
|
|
}
|
|
|
|
/* Delete data symbols that have been assigned names from the variable section.
|
|
Must be called from within ctf_serialize, because that is the only place
|
|
you can safely delete variables without messing up ctf_rollback. */
|
|
|
|
static int
|
|
symtypetab_delete_nonstatic_vars (ctf_dict_t *fp)
|
|
{
|
|
ctf_dvdef_t *dvd, *nvd;
|
|
ctf_id_t type;
|
|
|
|
for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
|
|
{
|
|
nvd = ctf_list_next (dvd);
|
|
|
|
if (((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_objthash, dvd->dvd_name)) > 0)
|
|
&& type == dvd->dvd_type)
|
|
ctf_dvd_delete (fp, dvd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determine if a symbol is "skippable" and should never appear in the
|
|
symtypetab sections. */
|
|
|
|
int
|
|
ctf_symtab_skippable (ctf_link_sym_t *sym)
|
|
{
|
|
/* Never skip symbols whose name is not yet known. */
|
|
if (sym->st_nameidx_set)
|
|
return 0;
|
|
|
|
return (sym->st_name == NULL || sym->st_name[0] == 0
|
|
|| sym->st_shndx == SHN_UNDEF
|
|
|| strcmp (sym->st_name, "_START_") == 0
|
|
|| strcmp (sym->st_name, "_END_") == 0
|
|
|| (sym->st_type == STT_OBJECT && sym->st_shndx == SHN_EXTABS
|
|
&& sym->st_value == 0));
|
|
}
|
|
|
|
/* Symtypetab emission flags. */
|
|
|
|
#define CTF_SYMTYPETAB_EMIT_FUNCTION 0x1
|
|
#define CTF_SYMTYPETAB_EMIT_PAD 0x2
|
|
#define CTF_SYMTYPETAB_FORCE_INDEXED 0x4
|
|
|
|
/* Get the number of symbols in a symbol hash, the count of symbols, the maximum
|
|
seen, the eventual size, without any padding elements, of the func/data and
|
|
(if generated) index sections, and the size of accumulated padding elements.
|
|
The linker-reported set of symbols is found in SYMFP.
|
|
|
|
Also figure out if any symbols need to be moved to the variable section, and
|
|
add them (if not already present). */
|
|
|
|
_libctf_nonnull_
|
|
static int
|
|
symtypetab_density (ctf_dict_t *fp, ctf_dict_t *symfp, ctf_dynhash_t *symhash,
|
|
size_t *count, size_t *max, size_t *unpadsize,
|
|
size_t *padsize, size_t *idxsize, int flags)
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
const void *name;
|
|
const void *ctf_sym;
|
|
ctf_dynhash_t *linker_known = NULL;
|
|
int err;
|
|
int beyond_max = 0;
|
|
|
|
*count = 0;
|
|
*max = 0;
|
|
*unpadsize = 0;
|
|
*idxsize = 0;
|
|
*padsize = 0;
|
|
|
|
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
|
|
{
|
|
/* Make a dynhash citing only symbols reported by the linker of the
|
|
appropriate type, then traverse all potential-symbols we know the types
|
|
of, removing them from linker_known as we go. Once this is done, the
|
|
only symbols remaining in linker_known are symbols we don't know the
|
|
types of: we must emit pads for those symbols that are below the
|
|
maximum symbol we will emit (any beyond that are simply skipped). */
|
|
|
|
if ((linker_known = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
while ((err = ctf_dynhash_cnext (symfp->ctf_dynsyms, &i,
|
|
&name, &ctf_sym)) == 0)
|
|
{
|
|
ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;
|
|
|
|
if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& sym->st_type != STT_FUNC)
|
|
|| (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& sym->st_type != STT_OBJECT))
|
|
continue;
|
|
|
|
if (ctf_symtab_skippable (sym))
|
|
continue;
|
|
|
|
/* This should only be true briefly before all the names are
|
|
finalized, long before we get this far. */
|
|
if (!ctf_assert (fp, !sym->st_nameidx_set))
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (ctf_dynhash_cinsert (linker_known, name, ctf_sym) < 0)
|
|
{
|
|
ctf_dynhash_destroy (linker_known);
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
}
|
|
}
|
|
if (err != ECTF_NEXT_END)
|
|
{
|
|
ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols during "
|
|
"serialization"));
|
|
ctf_dynhash_destroy (linker_known);
|
|
return (ctf_set_errno (fp, err));
|
|
}
|
|
}
|
|
|
|
while ((err = ctf_dynhash_cnext (symhash, &i, &name, NULL)) == 0)
|
|
{
|
|
ctf_link_sym_t *sym;
|
|
|
|
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
|
|
{
|
|
/* Linker did not report symbol in symtab. Remove it from the
|
|
set of known data symbols and continue. */
|
|
if ((sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, name)) == NULL)
|
|
{
|
|
ctf_dynhash_remove (symhash, name);
|
|
continue;
|
|
}
|
|
|
|
/* We don't remove skippable symbols from the symhash because we don't
|
|
want them to be migrated into variables. */
|
|
if (ctf_symtab_skippable (sym))
|
|
continue;
|
|
|
|
if ((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& sym->st_type != STT_FUNC)
|
|
{
|
|
ctf_err_warn (fp, 1, 0, _("Symbol %x added to CTF as a function "
|
|
"but is of type %x\n"),
|
|
sym->st_symidx, sym->st_type);
|
|
ctf_dynhash_remove (symhash, name);
|
|
continue;
|
|
}
|
|
else if (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& sym->st_type != STT_OBJECT)
|
|
{
|
|
ctf_err_warn (fp, 1, 0, _("Symbol %x added to CTF as a data "
|
|
"object but is of type %x\n"),
|
|
sym->st_symidx, sym->st_type);
|
|
ctf_dynhash_remove (symhash, name);
|
|
continue;
|
|
}
|
|
|
|
ctf_dynhash_remove (linker_known, name);
|
|
}
|
|
*unpadsize += sizeof (uint32_t);
|
|
(*count)++;
|
|
|
|
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
|
|
{
|
|
if (*max < sym->st_symidx)
|
|
*max = sym->st_symidx;
|
|
}
|
|
else
|
|
(*max)++;
|
|
}
|
|
if (err != ECTF_NEXT_END)
|
|
{
|
|
ctf_err_warn (fp, 0, err, _("iterating over CTF symtypetab during "
|
|
"serialization"));
|
|
ctf_dynhash_destroy (linker_known);
|
|
return (ctf_set_errno (fp, err));
|
|
}
|
|
|
|
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
|
|
{
|
|
while ((err = ctf_dynhash_cnext (linker_known, &i, NULL, &ctf_sym)) == 0)
|
|
{
|
|
ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;
|
|
|
|
if (sym->st_symidx > *max)
|
|
beyond_max++;
|
|
}
|
|
if (err != ECTF_NEXT_END)
|
|
{
|
|
ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols "
|
|
"during CTF serialization"));
|
|
ctf_dynhash_destroy (linker_known);
|
|
return (ctf_set_errno (fp, err));
|
|
}
|
|
}
|
|
|
|
*idxsize = *count * sizeof (uint32_t);
|
|
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
|
|
*padsize = (ctf_dynhash_elements (linker_known) - beyond_max) * sizeof (uint32_t);
|
|
|
|
ctf_dynhash_destroy (linker_known);
|
|
return 0;
|
|
}
|
|
|
|
/* Emit an objt or func symtypetab into DP in a particular order defined by an
|
|
array of ctf_link_sym_t or symbol names passed in. The index has NIDX
|
|
elements in it: unindexed output would terminate at symbol OUTMAX and is in
|
|
any case no larger than SIZE bytes. Some index elements are expected to be
|
|
skipped: see symtypetab_density. The linker-reported set of symbols (if any)
|
|
is found in SYMFP. */
|
|
static int
|
|
emit_symtypetab (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
|
|
ctf_link_sym_t **idx, const char **nameidx, uint32_t nidx,
|
|
uint32_t outmax, int size, int flags)
|
|
{
|
|
uint32_t i;
|
|
uint32_t *dpp = dp;
|
|
ctf_dynhash_t *symhash;
|
|
|
|
ctf_dprintf ("Emitting table of size %i, outmax %u, %u symtypetab entries, "
|
|
"flags %i\n", size, outmax, nidx, flags);
|
|
|
|
/* Empty table? Nothing to do. */
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
symhash = fp->ctf_funchash;
|
|
else
|
|
symhash = fp->ctf_objthash;
|
|
|
|
for (i = 0; i < nidx; i++)
|
|
{
|
|
const char *sym_name;
|
|
void *type;
|
|
|
|
/* If we have a linker-reported set of symbols, we may be given that set
|
|
to work from, or a set of symbol names. In both cases we want to look
|
|
at the corresponding linker-reported symbol (if any). */
|
|
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
|
|
{
|
|
ctf_link_sym_t *this_link_sym;
|
|
|
|
if (idx)
|
|
this_link_sym = idx[i];
|
|
else
|
|
this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, nameidx[i]);
|
|
|
|
/* Unreported symbol number. No pad, no nothing. */
|
|
if (!this_link_sym)
|
|
continue;
|
|
|
|
/* Symbol of the wrong type, or skippable? This symbol is not in this
|
|
table. */
|
|
if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& this_link_sym->st_type != STT_FUNC)
|
|
|| (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& this_link_sym->st_type != STT_OBJECT))
|
|
continue;
|
|
|
|
if (ctf_symtab_skippable (this_link_sym))
|
|
continue;
|
|
|
|
sym_name = this_link_sym->st_name;
|
|
|
|
/* Linker reports symbol of a different type to the symbol we actually
|
|
added? Skip the symbol. No pad, since the symbol doesn't actually
|
|
belong in this table at all. (Warned about in
|
|
symtypetab_density.) */
|
|
if ((this_link_sym->st_type == STT_FUNC)
|
|
&& (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
|
|
continue;
|
|
|
|
if ((this_link_sym->st_type == STT_OBJECT)
|
|
&& (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
|
|
continue;
|
|
}
|
|
else
|
|
sym_name = nameidx[i];
|
|
|
|
/* Symbol in index but no type set? Silently skip and (optionally)
|
|
pad. (In force-indexed mode, this is also where we track symbols of
|
|
the wrong type for this round of insertion.) */
|
|
if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
|
|
{
|
|
if (flags & CTF_SYMTYPETAB_EMIT_PAD)
|
|
*dpp++ = 0;
|
|
continue;
|
|
}
|
|
|
|
if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) < size))
|
|
return -1; /* errno is set for us. */
|
|
|
|
*dpp++ = (ctf_id_t) (uintptr_t) type;
|
|
|
|
/* When emitting unindexed output, all later symbols are pads: stop
|
|
early. */
|
|
if ((flags & CTF_SYMTYPETAB_EMIT_PAD) && idx[i]->st_symidx == outmax)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Emit an objt or func symtypetab index into DP in a paticular order defined by
|
|
an array of symbol names passed in. Stop at NIDX. The linker-reported set
|
|
of symbols (if any) is found in SYMFP. */
|
|
static int
|
|
emit_symtypetab_index (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
|
|
const char **idx, uint32_t nidx, int size, int flags)
|
|
{
|
|
uint32_t i;
|
|
uint32_t *dpp = dp;
|
|
ctf_dynhash_t *symhash;
|
|
|
|
ctf_dprintf ("Emitting index of size %i, %u entries reported by linker, "
|
|
"flags %i\n", size, nidx, flags);
|
|
|
|
/* Empty table? Nothing to do. */
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
symhash = fp->ctf_funchash;
|
|
else
|
|
symhash = fp->ctf_objthash;
|
|
|
|
/* Indexes should always be unpadded. */
|
|
if (!ctf_assert (fp, !(flags & CTF_SYMTYPETAB_EMIT_PAD)))
|
|
return -1; /* errno is set for us. */
|
|
|
|
for (i = 0; i < nidx; i++)
|
|
{
|
|
const char *sym_name;
|
|
void *type;
|
|
|
|
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
|
|
{
|
|
ctf_link_sym_t *this_link_sym;
|
|
|
|
this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, idx[i]);
|
|
|
|
/* This is an index: unreported symbols should never appear in it. */
|
|
if (!ctf_assert (fp, this_link_sym != NULL))
|
|
return -1; /* errno is set for us. */
|
|
|
|
/* Symbol of the wrong type, or skippable? This symbol is not in this
|
|
table. */
|
|
if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& this_link_sym->st_type != STT_FUNC)
|
|
|| (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
|
|
&& this_link_sym->st_type != STT_OBJECT))
|
|
continue;
|
|
|
|
if (ctf_symtab_skippable (this_link_sym))
|
|
continue;
|
|
|
|
sym_name = this_link_sym->st_name;
|
|
|
|
/* Linker reports symbol of a different type to the symbol we actually
|
|
added? Skip the symbol. */
|
|
if ((this_link_sym->st_type == STT_FUNC)
|
|
&& (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
|
|
continue;
|
|
|
|
if ((this_link_sym->st_type == STT_OBJECT)
|
|
&& (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
|
|
continue;
|
|
}
|
|
else
|
|
sym_name = idx[i];
|
|
|
|
/* Symbol in index and reported by linker, but no type set? Silently skip
|
|
and (optionally) pad. (In force-indexed mode, this is also where we
|
|
track symbols of the wrong type for this round of insertion.) */
|
|
if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
|
|
continue;
|
|
|
|
ctf_str_add_ref (fp, sym_name, dpp++);
|
|
|
|
if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) <= size))
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned char *
|
|
ctf_copy_smembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
|
|
{
|
|
ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
ctf_member_t ctm;
|
|
|
|
for (; dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
ctf_member_t *copied;
|
|
|
|
ctm.ctm_name = 0;
|
|
ctm.ctm_type = (uint32_t) dmd->dmd_type;
|
|
ctm.ctm_offset = (uint32_t) dmd->dmd_offset;
|
|
|
|
memcpy (t, &ctm, sizeof (ctm));
|
|
copied = (ctf_member_t *) t;
|
|
if (dmd->dmd_name)
|
|
ctf_str_add_ref (fp, dmd->dmd_name, &copied->ctm_name);
|
|
|
|
t += sizeof (ctm);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
static unsigned char *
|
|
ctf_copy_lmembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
|
|
{
|
|
ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
ctf_lmember_t ctlm;
|
|
|
|
for (; dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
ctf_lmember_t *copied;
|
|
|
|
ctlm.ctlm_name = 0;
|
|
ctlm.ctlm_type = (uint32_t) dmd->dmd_type;
|
|
ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (dmd->dmd_offset);
|
|
ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (dmd->dmd_offset);
|
|
|
|
memcpy (t, &ctlm, sizeof (ctlm));
|
|
copied = (ctf_lmember_t *) t;
|
|
if (dmd->dmd_name)
|
|
ctf_str_add_ref (fp, dmd->dmd_name, &copied->ctlm_name);
|
|
|
|
t += sizeof (ctlm);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
static unsigned char *
|
|
ctf_copy_emembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
|
|
{
|
|
ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
ctf_enum_t cte;
|
|
|
|
for (; dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
ctf_enum_t *copied;
|
|
|
|
cte.cte_value = dmd->dmd_value;
|
|
memcpy (t, &cte, sizeof (cte));
|
|
copied = (ctf_enum_t *) t;
|
|
ctf_str_add_ref (fp, dmd->dmd_name, &copied->cte_name);
|
|
t += sizeof (cte);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
/* Sort a newly-constructed static variable array. */
|
|
|
|
typedef struct ctf_sort_var_arg_cb
|
|
{
|
|
ctf_dict_t *fp;
|
|
ctf_strs_t *strtab;
|
|
} ctf_sort_var_arg_cb_t;
|
|
|
|
static int
|
|
ctf_sort_var (const void *one_, const void *two_, void *arg_)
|
|
{
|
|
const ctf_varent_t *one = one_;
|
|
const ctf_varent_t *two = two_;
|
|
ctf_sort_var_arg_cb_t *arg = arg_;
|
|
|
|
return (strcmp (ctf_strraw_explicit (arg->fp, one->ctv_name, arg->strtab),
|
|
ctf_strraw_explicit (arg->fp, two->ctv_name, arg->strtab)));
|
|
}
|
|
|
|
/* Compatibility: just update the threshold for ctf_discard. */
|
|
int
|
|
ctf_update (ctf_dict_t *fp)
|
|
{
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
fp->ctf_dtoldid = fp->ctf_typemax;
|
|
return 0;
|
|
}
|
|
|
|
/* If the specified CTF dict is writable and has been modified, reload this dict
|
|
with the updated type definitions, ready for serialization. In order to make
|
|
this code and the rest of libctf as simple as possible, we perform updates by
|
|
taking the dynamic type definitions and creating an in-memory CTF dict
|
|
containing the definitions, and then call ctf_simple_open_internal() on it.
|
|
We perform one extra trick here for the benefit of callers and to keep our
|
|
code simple: ctf_simple_open_internal() will return a new ctf_dict_t, but we
|
|
want to keep the fp constant for the caller, so after
|
|
ctf_simple_open_internal() returns, we use memcpy to swap the interior of the
|
|
old and new ctf_dict_t's, and then free the old. */
|
|
int
|
|
ctf_serialize (ctf_dict_t *fp)
|
|
{
|
|
ctf_dict_t ofp, *nfp;
|
|
ctf_header_t hdr, *hdrp;
|
|
ctf_dtdef_t *dtd;
|
|
ctf_dvdef_t *dvd;
|
|
ctf_varent_t *dvarents;
|
|
ctf_strs_writable_t strtab;
|
|
ctf_dict_t *symfp = fp;
|
|
|
|
unsigned char *t;
|
|
unsigned long i;
|
|
int symflags = 0;
|
|
size_t buf_size, type_size, objt_size, func_size;
|
|
size_t objt_unpadsize, func_unpadsize, objt_padsize, func_padsize;
|
|
size_t funcidx_size, objtidx_size;
|
|
size_t nvars, nfuncs, nobjts, maxobjt, maxfunc;
|
|
size_t ndynsyms = 0;
|
|
const char **sym_name_order = NULL;
|
|
unsigned char *buf = NULL, *newbuf;
|
|
int err;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
/* Update required? */
|
|
if (!(fp->ctf_flags & LCTF_DIRTY))
|
|
return 0;
|
|
|
|
/* Fill in an initial CTF header. We will leave the label, object,
|
|
and function sections empty and only output a header, type section,
|
|
and string table. The type section begins at a 4-byte aligned
|
|
boundary past the CTF header itself (at relative offset zero). The flag
|
|
indicating a new-style function info section (an array of CTF_K_FUNCTION
|
|
type IDs in the types section) is flipped on. */
|
|
|
|
memset (&hdr, 0, sizeof (hdr));
|
|
hdr.cth_magic = CTF_MAGIC;
|
|
hdr.cth_version = CTF_VERSION;
|
|
|
|
/* This is a new-format func info section, and the symtab and strtab come out
|
|
of the dynsym and dynstr these days. */
|
|
hdr.cth_flags = (CTF_F_NEWFUNCINFO | CTF_F_DYNSTR);
|
|
|
|
/* Iterate through the dynamic type definition list and compute the
|
|
size of the CTF type section we will need to generate. */
|
|
|
|
for (type_size = 0, dtd = ctf_list_next (&fp->ctf_dtdefs);
|
|
dtd != NULL; dtd = ctf_list_next (dtd))
|
|
{
|
|
uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
|
|
type_size += sizeof (ctf_stype_t);
|
|
else
|
|
type_size += sizeof (ctf_type_t);
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
type_size += sizeof (uint32_t);
|
|
break;
|
|
case CTF_K_ARRAY:
|
|
type_size += sizeof (ctf_array_t);
|
|
break;
|
|
case CTF_K_SLICE:
|
|
type_size += sizeof (ctf_slice_t);
|
|
break;
|
|
case CTF_K_FUNCTION:
|
|
type_size += sizeof (uint32_t) * (vlen + (vlen & 1));
|
|
break;
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
|
|
type_size += sizeof (ctf_member_t) * vlen;
|
|
else
|
|
type_size += sizeof (ctf_lmember_t) * vlen;
|
|
break;
|
|
case CTF_K_ENUM:
|
|
type_size += sizeof (ctf_enum_t) * vlen;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Symbol table stuff is done only if the linker has told this dict about
|
|
potential symbols (usually the case for parent dicts only). The linker
|
|
will report symbols to the parent dict in a parent/child link, as usual
|
|
with all linker-related matters. */
|
|
|
|
if (!fp->ctf_dynsyms && fp->ctf_parent && fp->ctf_parent->ctf_dynsyms)
|
|
symfp = fp->ctf_parent;
|
|
|
|
/* No linker-reported symbols at all: ctf_link_shuffle_syms was never called.
|
|
This must be an unsorted, indexed dict. Otherwise, this is a sorted
|
|
dict, and the header flags indicate as much. */
|
|
if (!symfp->ctf_dynsyms)
|
|
symflags = CTF_SYMTYPETAB_FORCE_INDEXED;
|
|
else
|
|
hdr.cth_flags |= CTF_F_IDXSORTED;
|
|
|
|
/* Work out the sizes of the object and function sections, and work out the
|
|
number of pad (unassigned) symbols in each, and the overall size of the
|
|
sections. */
|
|
|
|
if (symtypetab_density (fp, symfp, fp->ctf_objthash, &nobjts, &maxobjt,
|
|
&objt_unpadsize, &objt_padsize, &objtidx_size,
|
|
symflags) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
ctf_dprintf ("Object symtypetab: %i objects, max %i, unpadded size %i, "
|
|
"%i bytes of pads, index size %i\n", (int) nobjts, (int) maxobjt,
|
|
(int) objt_unpadsize, (int) objt_padsize, (int) objtidx_size);
|
|
|
|
if (symtypetab_density (fp, symfp, fp->ctf_funchash, &nfuncs, &maxfunc,
|
|
&func_unpadsize, &func_padsize, &funcidx_size,
|
|
symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
ctf_dprintf ("Function symtypetab: %i functions, max %i, unpadded size %i, "
|
|
"%i bytes of pads, index size %i\n", (int) nfuncs, (int) maxfunc,
|
|
(int) func_unpadsize, (int) func_padsize, (int) funcidx_size);
|
|
|
|
/* If the linker has reported any symbols at all, those symbols that the
|
|
linker has not reported are now removed from the ctf_objthash and
|
|
ctf_funchash. Delete entries from the variable section that duplicate
|
|
newly-added data symbols. There's no need to migrate new ones in, because
|
|
linker invocations (even ld -r) can only introduce new symbols, not remove
|
|
symbols that already exist, and the compiler always emits both a variable
|
|
and a data symbol simultaneously. */
|
|
|
|
if (symtypetab_delete_nonstatic_vars (fp) < 0)
|
|
return -1;
|
|
|
|
/* It is worth indexing each section if it would save space to do so, due to
|
|
reducing the number of pads sufficiently. A pad is the same size as a
|
|
single index entry: but index sections compress relatively poorly compared
|
|
to constant pads, so it takes a lot of contiguous padding to equal one
|
|
index section entry. It would be nice to be able to *verify* whether we
|
|
would save space after compression rather than guessing, but this seems
|
|
difficult, since it would require complete reserialization. Regardless, if
|
|
the linker has not reported any symbols (e.g. if this is not a final link
|
|
but just an ld -r), we must emit things in indexed fashion just as the
|
|
compiler does. */
|
|
|
|
objt_size = objt_unpadsize;
|
|
if (!(symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
|
|
&& ((objt_padsize + objt_unpadsize) * CTF_INDEX_PAD_THRESHOLD
|
|
> objt_padsize))
|
|
{
|
|
objt_size += objt_padsize;
|
|
objtidx_size = 0;
|
|
}
|
|
|
|
func_size = func_unpadsize;
|
|
if (!(symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
|
|
&& ((func_padsize + func_unpadsize) * CTF_INDEX_PAD_THRESHOLD
|
|
> func_padsize))
|
|
{
|
|
func_size += func_padsize;
|
|
funcidx_size = 0;
|
|
}
|
|
|
|
/* Computing the number of entries in the CTF variable section is much
|
|
simpler. */
|
|
|
|
for (nvars = 0, dvd = ctf_list_next (&fp->ctf_dvdefs);
|
|
dvd != NULL; dvd = ctf_list_next (dvd), nvars++);
|
|
|
|
/* Compute the size of the CTF buffer we need, sans only the string table,
|
|
then allocate a new buffer and memcpy the finished header to the start of
|
|
the buffer. (We will adjust this later with strtab length info.) */
|
|
|
|
hdr.cth_lbloff = hdr.cth_objtoff = 0;
|
|
hdr.cth_funcoff = hdr.cth_objtoff + objt_size;
|
|
hdr.cth_objtidxoff = hdr.cth_funcoff + func_size;
|
|
hdr.cth_funcidxoff = hdr.cth_objtidxoff + objtidx_size;
|
|
hdr.cth_varoff = hdr.cth_funcidxoff + funcidx_size;
|
|
hdr.cth_typeoff = hdr.cth_varoff + (nvars * sizeof (ctf_varent_t));
|
|
hdr.cth_stroff = hdr.cth_typeoff + type_size;
|
|
hdr.cth_strlen = 0;
|
|
|
|
buf_size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;
|
|
|
|
if ((buf = malloc (buf_size)) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
memcpy (buf, &hdr, sizeof (ctf_header_t));
|
|
t = (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_objtoff;
|
|
|
|
hdrp = (ctf_header_t *) buf;
|
|
if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parname != NULL))
|
|
ctf_str_add_ref (fp, fp->ctf_parname, &hdrp->cth_parname);
|
|
if (fp->ctf_cuname != NULL)
|
|
ctf_str_add_ref (fp, fp->ctf_cuname, &hdrp->cth_cuname);
|
|
|
|
/* Sort the linker's symbols into name order if need be: if
|
|
ctf_link_shuffle_syms has not been called at all, just use all the symbols
|
|
that were added to this dict, and don't bother sorting them since this is
|
|
probably an ld -r and will likely just be consumed by ld again, with no
|
|
ctf_lookup_by_symbol()s ever done on it. */
|
|
|
|
if ((objtidx_size != 0) || (funcidx_size != 0))
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
void *symname;
|
|
const char **walk;
|
|
int err;
|
|
|
|
if (symfp->ctf_dynsyms)
|
|
ndynsyms = ctf_dynhash_elements (symfp->ctf_dynsyms);
|
|
else
|
|
ndynsyms = ctf_dynhash_elements (symfp->ctf_objthash)
|
|
+ ctf_dynhash_elements (symfp->ctf_funchash);
|
|
|
|
if ((sym_name_order = calloc (ndynsyms, sizeof (const char *))) == NULL)
|
|
goto oom;
|
|
|
|
walk = sym_name_order;
|
|
|
|
if (symfp->ctf_dynsyms)
|
|
{
|
|
while ((err = ctf_dynhash_next_sorted (symfp->ctf_dynsyms, &i, &symname,
|
|
NULL, ctf_dynhash_sort_by_name,
|
|
NULL)) == 0)
|
|
*walk++ = (const char *) symname;
|
|
if (err != ECTF_NEXT_END)
|
|
goto symerr;
|
|
}
|
|
else
|
|
{
|
|
while ((err = ctf_dynhash_next (symfp->ctf_objthash, &i, &symname,
|
|
NULL)) == 0)
|
|
*walk++ = (const char *) symname;
|
|
if (err != ECTF_NEXT_END)
|
|
goto symerr;
|
|
|
|
while ((err = ctf_dynhash_next (symfp->ctf_funchash, &i, &symname,
|
|
NULL)) == 0)
|
|
*walk++ = (const char *) symname;
|
|
if (err != ECTF_NEXT_END)
|
|
goto symerr;
|
|
}
|
|
}
|
|
|
|
/* Emit the object and function sections, and if necessary their indexes.
|
|
Emission is done in symtab order if there is no index, and in index
|
|
(name) order otherwise. */
|
|
|
|
if ((objtidx_size == 0) && symfp->ctf_dynsymidx)
|
|
{
|
|
ctf_dprintf ("Emitting unindexed objt symtypetab\n");
|
|
if (emit_symtypetab (fp, symfp, (uint32_t *) t, symfp->ctf_dynsymidx,
|
|
NULL, symfp->ctf_dynsymmax + 1, maxobjt, objt_size,
|
|
symflags | CTF_SYMTYPETAB_EMIT_PAD) < 0)
|
|
goto err; /* errno is set for us. */
|
|
}
|
|
else
|
|
{
|
|
ctf_dprintf ("Emitting indexed objt symtypetab\n");
|
|
if (emit_symtypetab (fp, symfp, (uint32_t *) t, NULL, sym_name_order,
|
|
ndynsyms, maxobjt, objt_size, symflags) < 0)
|
|
goto err; /* errno is set for us. */
|
|
}
|
|
|
|
t += objt_size;
|
|
|
|
if ((funcidx_size == 0) && symfp->ctf_dynsymidx)
|
|
{
|
|
ctf_dprintf ("Emitting unindexed func symtypetab\n");
|
|
if (emit_symtypetab (fp, symfp, (uint32_t *) t, symfp->ctf_dynsymidx,
|
|
NULL, symfp->ctf_dynsymmax + 1, maxfunc,
|
|
func_size, symflags | CTF_SYMTYPETAB_EMIT_FUNCTION
|
|
| CTF_SYMTYPETAB_EMIT_PAD) < 0)
|
|
goto err; /* errno is set for us. */
|
|
}
|
|
else
|
|
{
|
|
ctf_dprintf ("Emitting indexed func symtypetab\n");
|
|
if (emit_symtypetab (fp, symfp, (uint32_t *) t, NULL, sym_name_order,
|
|
ndynsyms, maxfunc, func_size,
|
|
symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
|
|
goto err; /* errno is set for us. */
|
|
}
|
|
|
|
t += func_size;
|
|
|
|
if (objtidx_size > 0)
|
|
if (emit_symtypetab_index (fp, symfp, (uint32_t *) t, sym_name_order,
|
|
ndynsyms, objtidx_size, symflags) < 0)
|
|
goto err;
|
|
|
|
t += objtidx_size;
|
|
|
|
if (funcidx_size > 0)
|
|
if (emit_symtypetab_index (fp, symfp, (uint32_t *) t, sym_name_order,
|
|
ndynsyms, funcidx_size,
|
|
symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
|
|
goto err;
|
|
|
|
t += funcidx_size;
|
|
free (sym_name_order);
|
|
sym_name_order = NULL;
|
|
|
|
/* Work over the variable list, translating everything into ctf_varent_t's and
|
|
prepping the string table. */
|
|
|
|
dvarents = (ctf_varent_t *) t;
|
|
for (i = 0, dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL;
|
|
dvd = ctf_list_next (dvd), i++)
|
|
{
|
|
ctf_varent_t *var = &dvarents[i];
|
|
|
|
ctf_str_add_ref (fp, dvd->dvd_name, &var->ctv_name);
|
|
var->ctv_type = (uint32_t) dvd->dvd_type;
|
|
}
|
|
assert (i == nvars);
|
|
|
|
t += sizeof (ctf_varent_t) * nvars;
|
|
|
|
assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_typeoff);
|
|
|
|
/* We now take a final lap through the dynamic type definition list and copy
|
|
the appropriate type records to the output buffer, noting down the
|
|
strings as we go. */
|
|
|
|
for (dtd = ctf_list_next (&fp->ctf_dtdefs);
|
|
dtd != NULL; dtd = ctf_list_next (dtd))
|
|
{
|
|
uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
ctf_array_t cta;
|
|
uint32_t encoding;
|
|
size_t len;
|
|
ctf_stype_t *copied;
|
|
const char *name;
|
|
|
|
if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
|
|
len = sizeof (ctf_stype_t);
|
|
else
|
|
len = sizeof (ctf_type_t);
|
|
|
|
memcpy (t, &dtd->dtd_data, len);
|
|
copied = (ctf_stype_t *) t; /* name is at the start: constant offset. */
|
|
if (copied->ctt_name
|
|
&& (name = ctf_strraw (fp, copied->ctt_name)) != NULL)
|
|
ctf_str_add_ref (fp, name, &copied->ctt_name);
|
|
t += len;
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
if (kind == CTF_K_INTEGER)
|
|
{
|
|
encoding = CTF_INT_DATA (dtd->dtd_u.dtu_enc.cte_format,
|
|
dtd->dtd_u.dtu_enc.cte_offset,
|
|
dtd->dtd_u.dtu_enc.cte_bits);
|
|
}
|
|
else
|
|
{
|
|
encoding = CTF_FP_DATA (dtd->dtd_u.dtu_enc.cte_format,
|
|
dtd->dtd_u.dtu_enc.cte_offset,
|
|
dtd->dtd_u.dtu_enc.cte_bits);
|
|
}
|
|
memcpy (t, &encoding, sizeof (encoding));
|
|
t += sizeof (encoding);
|
|
break;
|
|
|
|
case CTF_K_SLICE:
|
|
memcpy (t, &dtd->dtd_u.dtu_slice, sizeof (struct ctf_slice));
|
|
t += sizeof (struct ctf_slice);
|
|
break;
|
|
|
|
case CTF_K_ARRAY:
|
|
cta.cta_contents = (uint32_t) dtd->dtd_u.dtu_arr.ctr_contents;
|
|
cta.cta_index = (uint32_t) dtd->dtd_u.dtu_arr.ctr_index;
|
|
cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems;
|
|
memcpy (t, &cta, sizeof (cta));
|
|
t += sizeof (cta);
|
|
break;
|
|
|
|
case CTF_K_FUNCTION:
|
|
{
|
|
uint32_t *argv = (uint32_t *) (uintptr_t) t;
|
|
uint32_t argc;
|
|
|
|
for (argc = 0; argc < vlen; argc++)
|
|
*argv++ = dtd->dtd_u.dtu_argv[argc];
|
|
|
|
if (vlen & 1)
|
|
*argv++ = 0; /* Pad to 4-byte boundary. */
|
|
|
|
t = (unsigned char *) argv;
|
|
break;
|
|
}
|
|
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
|
|
t = ctf_copy_smembers (fp, dtd, t);
|
|
else
|
|
t = ctf_copy_lmembers (fp, dtd, t);
|
|
break;
|
|
|
|
case CTF_K_ENUM:
|
|
t = ctf_copy_emembers (fp, dtd, t);
|
|
break;
|
|
}
|
|
}
|
|
assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_stroff);
|
|
|
|
/* Construct the final string table and fill out all the string refs with the
|
|
final offsets. Then purge the refs list, because we're about to move this
|
|
strtab onto the end of the buf, invalidating all the offsets. */
|
|
strtab = ctf_str_write_strtab (fp);
|
|
ctf_str_purge_refs (fp);
|
|
|
|
if (strtab.cts_strs == NULL)
|
|
goto oom;
|
|
|
|
/* Now the string table is constructed, we can sort the buffer of
|
|
ctf_varent_t's. */
|
|
ctf_sort_var_arg_cb_t sort_var_arg = { fp, (ctf_strs_t *) &strtab };
|
|
ctf_qsort_r (dvarents, nvars, sizeof (ctf_varent_t), ctf_sort_var,
|
|
&sort_var_arg);
|
|
|
|
if ((newbuf = ctf_realloc (fp, buf, buf_size + strtab.cts_len)) == NULL)
|
|
{
|
|
free (strtab.cts_strs);
|
|
goto oom;
|
|
}
|
|
buf = newbuf;
|
|
memcpy (buf + buf_size, strtab.cts_strs, strtab.cts_len);
|
|
hdrp = (ctf_header_t *) buf;
|
|
hdrp->cth_strlen = strtab.cts_len;
|
|
buf_size += hdrp->cth_strlen;
|
|
free (strtab.cts_strs);
|
|
|
|
/* Finally, we are ready to ctf_simple_open() the new dict. If this is
|
|
successful, we then switch nfp and fp and free the old dict. */
|
|
|
|
if ((nfp = ctf_simple_open_internal ((char *) buf, buf_size, NULL, 0,
|
|
0, NULL, 0, fp->ctf_syn_ext_strtab,
|
|
1, &err)) == NULL)
|
|
{
|
|
free (buf);
|
|
return (ctf_set_errno (fp, err));
|
|
}
|
|
|
|
(void) ctf_setmodel (nfp, ctf_getmodel (fp));
|
|
|
|
nfp->ctf_parent = fp->ctf_parent;
|
|
nfp->ctf_parent_unreffed = fp->ctf_parent_unreffed;
|
|
nfp->ctf_refcnt = fp->ctf_refcnt;
|
|
nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY;
|
|
if (nfp->ctf_dynbase == NULL)
|
|
nfp->ctf_dynbase = buf; /* Make sure buf is freed on close. */
|
|
nfp->ctf_dthash = fp->ctf_dthash;
|
|
nfp->ctf_dtdefs = fp->ctf_dtdefs;
|
|
nfp->ctf_dvhash = fp->ctf_dvhash;
|
|
nfp->ctf_dvdefs = fp->ctf_dvdefs;
|
|
nfp->ctf_dtoldid = fp->ctf_dtoldid;
|
|
nfp->ctf_add_processing = fp->ctf_add_processing;
|
|
nfp->ctf_snapshots = fp->ctf_snapshots + 1;
|
|
nfp->ctf_specific = fp->ctf_specific;
|
|
nfp->ctf_nfuncidx = fp->ctf_nfuncidx;
|
|
nfp->ctf_nobjtidx = fp->ctf_nobjtidx;
|
|
nfp->ctf_objthash = fp->ctf_objthash;
|
|
nfp->ctf_funchash = fp->ctf_funchash;
|
|
nfp->ctf_dynsyms = fp->ctf_dynsyms;
|
|
nfp->ctf_ptrtab = fp->ctf_ptrtab;
|
|
nfp->ctf_pptrtab = fp->ctf_pptrtab;
|
|
nfp->ctf_dynsymidx = fp->ctf_dynsymidx;
|
|
nfp->ctf_dynsymmax = fp->ctf_dynsymmax;
|
|
nfp->ctf_ptrtab_len = fp->ctf_ptrtab_len;
|
|
nfp->ctf_pptrtab_len = fp->ctf_pptrtab_len;
|
|
nfp->ctf_link_inputs = fp->ctf_link_inputs;
|
|
nfp->ctf_link_outputs = fp->ctf_link_outputs;
|
|
nfp->ctf_errs_warnings = fp->ctf_errs_warnings;
|
|
nfp->ctf_funcidx_names = fp->ctf_funcidx_names;
|
|
nfp->ctf_objtidx_names = fp->ctf_objtidx_names;
|
|
nfp->ctf_funcidx_sxlate = fp->ctf_funcidx_sxlate;
|
|
nfp->ctf_objtidx_sxlate = fp->ctf_objtidx_sxlate;
|
|
nfp->ctf_str_prov_offset = fp->ctf_str_prov_offset;
|
|
nfp->ctf_syn_ext_strtab = fp->ctf_syn_ext_strtab;
|
|
nfp->ctf_pptrtab_typemax = fp->ctf_pptrtab_typemax;
|
|
nfp->ctf_in_flight_dynsyms = fp->ctf_in_flight_dynsyms;
|
|
nfp->ctf_link_in_cu_mapping = fp->ctf_link_in_cu_mapping;
|
|
nfp->ctf_link_out_cu_mapping = fp->ctf_link_out_cu_mapping;
|
|
nfp->ctf_link_type_mapping = fp->ctf_link_type_mapping;
|
|
nfp->ctf_link_memb_name_changer = fp->ctf_link_memb_name_changer;
|
|
nfp->ctf_link_memb_name_changer_arg = fp->ctf_link_memb_name_changer_arg;
|
|
nfp->ctf_link_variable_filter = fp->ctf_link_variable_filter;
|
|
nfp->ctf_link_variable_filter_arg = fp->ctf_link_variable_filter_arg;
|
|
nfp->ctf_symsect_little_endian = fp->ctf_symsect_little_endian;
|
|
nfp->ctf_link_flags = fp->ctf_link_flags;
|
|
nfp->ctf_dedup_atoms = fp->ctf_dedup_atoms;
|
|
nfp->ctf_dedup_atoms_alloc = fp->ctf_dedup_atoms_alloc;
|
|
memcpy (&nfp->ctf_dedup, &fp->ctf_dedup, sizeof (fp->ctf_dedup));
|
|
|
|
nfp->ctf_snapshot_lu = fp->ctf_snapshots;
|
|
|
|
memcpy (&nfp->ctf_lookups, fp->ctf_lookups, sizeof (fp->ctf_lookups));
|
|
nfp->ctf_structs = fp->ctf_structs;
|
|
nfp->ctf_unions = fp->ctf_unions;
|
|
nfp->ctf_enums = fp->ctf_enums;
|
|
nfp->ctf_names = fp->ctf_names;
|
|
|
|
fp->ctf_dthash = NULL;
|
|
ctf_str_free_atoms (nfp);
|
|
nfp->ctf_str_atoms = fp->ctf_str_atoms;
|
|
nfp->ctf_prov_strtab = fp->ctf_prov_strtab;
|
|
fp->ctf_str_atoms = NULL;
|
|
fp->ctf_prov_strtab = NULL;
|
|
memset (&fp->ctf_dtdefs, 0, sizeof (ctf_list_t));
|
|
memset (&fp->ctf_errs_warnings, 0, sizeof (ctf_list_t));
|
|
fp->ctf_add_processing = NULL;
|
|
fp->ctf_ptrtab = NULL;
|
|
fp->ctf_pptrtab = NULL;
|
|
fp->ctf_funcidx_names = NULL;
|
|
fp->ctf_objtidx_names = NULL;
|
|
fp->ctf_funcidx_sxlate = NULL;
|
|
fp->ctf_objtidx_sxlate = NULL;
|
|
fp->ctf_objthash = NULL;
|
|
fp->ctf_funchash = NULL;
|
|
fp->ctf_dynsyms = NULL;
|
|
fp->ctf_dynsymidx = NULL;
|
|
fp->ctf_link_inputs = NULL;
|
|
fp->ctf_link_outputs = NULL;
|
|
fp->ctf_syn_ext_strtab = NULL;
|
|
fp->ctf_link_in_cu_mapping = NULL;
|
|
fp->ctf_link_out_cu_mapping = NULL;
|
|
fp->ctf_link_type_mapping = NULL;
|
|
fp->ctf_dedup_atoms = NULL;
|
|
fp->ctf_dedup_atoms_alloc = NULL;
|
|
fp->ctf_parent_unreffed = 1;
|
|
|
|
fp->ctf_dvhash = NULL;
|
|
memset (&fp->ctf_dvdefs, 0, sizeof (ctf_list_t));
|
|
memset (fp->ctf_lookups, 0, sizeof (fp->ctf_lookups));
|
|
memset (&fp->ctf_in_flight_dynsyms, 0, sizeof (fp->ctf_in_flight_dynsyms));
|
|
memset (&fp->ctf_dedup, 0, sizeof (fp->ctf_dedup));
|
|
fp->ctf_structs.ctn_writable = NULL;
|
|
fp->ctf_unions.ctn_writable = NULL;
|
|
fp->ctf_enums.ctn_writable = NULL;
|
|
fp->ctf_names.ctn_writable = NULL;
|
|
|
|
memcpy (&ofp, fp, sizeof (ctf_dict_t));
|
|
memcpy (fp, nfp, sizeof (ctf_dict_t));
|
|
memcpy (nfp, &ofp, sizeof (ctf_dict_t));
|
|
|
|
nfp->ctf_refcnt = 1; /* Force nfp to be freed. */
|
|
ctf_dict_close (nfp);
|
|
|
|
return 0;
|
|
|
|
symerr:
|
|
ctf_err_warn (fp, 0, err, _("error serializing symtypetabs"));
|
|
goto err;
|
|
oom:
|
|
free (buf);
|
|
free (sym_name_order);
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
err:
|
|
free (buf);
|
|
free (sym_name_order);
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
ctf_names_t *
|
|
ctf_name_table (ctf_dict_t *fp, int kind)
|
|
{
|
|
switch (kind)
|
|
{
|
|
case CTF_K_STRUCT:
|
|
return &fp->ctf_structs;
|
|
case CTF_K_UNION:
|
|
return &fp->ctf_unions;
|
|
case CTF_K_ENUM:
|
|
return &fp->ctf_enums;
|
|
default:
|
|
return &fp->ctf_names;
|
|
}
|
|
}
|
|
|
|
int
|
|
ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind)
|
|
{
|
|
const char *name;
|
|
if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type,
|
|
dtd) < 0)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return -1;
|
|
}
|
|
|
|
if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL)
|
|
{
|
|
if (ctf_dynhash_insert (ctf_name_table (fp, kind)->ctn_writable,
|
|
(char *) name, (void *) (uintptr_t)
|
|
dtd->dtd_type) < 0)
|
|
{
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t)
|
|
dtd->dtd_type);
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return -1;
|
|
}
|
|
}
|
|
ctf_list_append (&fp->ctf_dtdefs, dtd);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd)
|
|
{
|
|
ctf_dmdef_t *dmd, *nmd;
|
|
int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
int name_kind = kind;
|
|
const char *name;
|
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
case CTF_K_ENUM:
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = nmd)
|
|
{
|
|
if (dmd->dmd_name != NULL)
|
|
free (dmd->dmd_name);
|
|
nmd = ctf_list_next (dmd);
|
|
free (dmd);
|
|
}
|
|
break;
|
|
case CTF_K_FUNCTION:
|
|
free (dtd->dtd_u.dtu_argv);
|
|
break;
|
|
case CTF_K_FORWARD:
|
|
name_kind = dtd->dtd_data.ctt_type;
|
|
break;
|
|
}
|
|
|
|
if (dtd->dtd_data.ctt_name
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
|
|
&& LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
|
|
{
|
|
ctf_dynhash_remove (ctf_name_table (fp, name_kind)->ctn_writable,
|
|
name);
|
|
ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
|
|
}
|
|
|
|
ctf_list_delete (&fp->ctf_dtdefs, dtd);
|
|
free (dtd);
|
|
}
|
|
|
|
ctf_dtdef_t *
|
|
ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
return (ctf_dtdef_t *)
|
|
ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type);
|
|
}
|
|
|
|
ctf_dtdef_t *
|
|
ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id)
|
|
{
|
|
ctf_id_t idx;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return NULL;
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id))
|
|
fp = fp->ctf_parent;
|
|
|
|
idx = LCTF_TYPE_TO_INDEX(fp, id);
|
|
|
|
if ((unsigned long) idx <= fp->ctf_typemax)
|
|
return ctf_dtd_lookup (fp, id);
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd)
|
|
{
|
|
if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return -1;
|
|
}
|
|
ctf_list_append (&fp->ctf_dvdefs, dvd);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd)
|
|
{
|
|
ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name);
|
|
free (dvd->dvd_name);
|
|
|
|
ctf_list_delete (&fp->ctf_dvdefs, dvd);
|
|
free (dvd);
|
|
}
|
|
|
|
ctf_dvdef_t *
|
|
ctf_dvd_lookup (const ctf_dict_t *fp, const char *name)
|
|
{
|
|
return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name);
|
|
}
|
|
|
|
/* Discard all of the dynamic type definitions and variable definitions that
|
|
have been added to the dict since the last call to ctf_update(). We locate
|
|
such types by scanning the dtd list and deleting elements that have type IDs
|
|
greater than ctf_dtoldid, which is set by ctf_update(), above, and by
|
|
scanning the variable list and deleting elements that have update IDs equal
|
|
to the current value of the last-update snapshot count (indicating that they
|
|
were added after the most recent call to ctf_update()). */
|
|
int
|
|
ctf_discard (ctf_dict_t *fp)
|
|
{
|
|
ctf_snapshot_id_t last_update =
|
|
{ fp->ctf_dtoldid,
|
|
fp->ctf_snapshot_lu + 1 };
|
|
|
|
/* Update required? */
|
|
if (!(fp->ctf_flags & LCTF_DIRTY))
|
|
return 0;
|
|
|
|
return (ctf_rollback (fp, last_update));
|
|
}
|
|
|
|
ctf_snapshot_id_t
|
|
ctf_snapshot (ctf_dict_t *fp)
|
|
{
|
|
ctf_snapshot_id_t snapid;
|
|
snapid.dtd_id = fp->ctf_typemax;
|
|
snapid.snapshot_id = fp->ctf_snapshots++;
|
|
return snapid;
|
|
}
|
|
|
|
/* Like ctf_discard(), only discards everything after a particular ID. */
|
|
int
|
|
ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
|
|
{
|
|
ctf_dtdef_t *dtd, *ntd;
|
|
ctf_dvdef_t *dvd, *nvd;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (fp->ctf_snapshot_lu >= id.snapshot_id)
|
|
return (ctf_set_errno (fp, ECTF_OVERROLLBACK));
|
|
|
|
for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
|
|
{
|
|
int kind;
|
|
const char *name;
|
|
|
|
ntd = ctf_list_next (dtd);
|
|
|
|
if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id)
|
|
continue;
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
if (kind == CTF_K_FORWARD)
|
|
kind = dtd->dtd_data.ctt_type;
|
|
|
|
if (dtd->dtd_data.ctt_name
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
|
|
&& LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
|
|
{
|
|
ctf_dynhash_remove (ctf_name_table (fp, kind)->ctn_writable,
|
|
name);
|
|
ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
|
|
}
|
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
|
|
ctf_dtd_delete (fp, dtd);
|
|
}
|
|
|
|
for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
|
|
{
|
|
nvd = ctf_list_next (dvd);
|
|
|
|
if (dvd->dvd_snapshots <= id.snapshot_id)
|
|
continue;
|
|
|
|
ctf_dvd_delete (fp, dvd);
|
|
}
|
|
|
|
fp->ctf_typemax = id.dtd_id;
|
|
fp->ctf_snapshots = id.snapshot_id;
|
|
|
|
if (fp->ctf_snapshots == fp->ctf_snapshot_lu)
|
|
fp->ctf_flags &= ~LCTF_DIRTY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ctf_id_t
|
|
ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
|
|
ctf_dtdef_t **rp)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
|
|
if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, ECTF_FULL));
|
|
|
|
if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1))
|
|
return (ctf_set_errno (fp, ECTF_FULL));
|
|
|
|
/* Make sure ptrtab always grows to be big enough for all types. */
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((dtd = malloc (sizeof (ctf_dtdef_t))) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
type = ++fp->ctf_typemax;
|
|
type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD));
|
|
|
|
memset (dtd, 0, sizeof (ctf_dtdef_t));
|
|
dtd->dtd_data.ctt_name = ctf_str_add_ref (fp, name, &dtd->dtd_data.ctt_name);
|
|
dtd->dtd_type = type;
|
|
|
|
if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0')
|
|
{
|
|
free (dtd);
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
}
|
|
|
|
if (ctf_dtd_insert (fp, dtd, flag, kind) < 0)
|
|
{
|
|
free (dtd);
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
|
|
*rp = dtd;
|
|
return type;
|
|
}
|
|
|
|
/* When encoding integer sizes, we want to convert a byte count in the range
|
|
1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
|
|
is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */
|
|
static size_t
|
|
clp2 (size_t x)
|
|
{
|
|
x--;
|
|
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
|
|
return (x + 1);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_encoded (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep, uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
|
|
if (ep == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, kind, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
|
|
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
|
|
/ CHAR_BIT);
|
|
dtd->dtd_u.dtu_enc = *ep;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
int child = fp->ctf_flags & LCTF_CHILD;
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, kind, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
if (kind != CTF_K_POINTER)
|
|
return type;
|
|
|
|
/* If we are adding a pointer, update the ptrtab, both the directly pointed-to
|
|
type and (if an anonymous typedef node is being pointed at) the type that
|
|
points at too. Note that ctf_typemax is at this point one higher than we
|
|
want to check against, because it's just been incremented for the addition
|
|
of this type. The pptrtab is lazily-updated as needed, so is not touched
|
|
here. */
|
|
|
|
uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref);
|
|
|
|
if (LCTF_TYPE_ISCHILD (fp, ref) == child
|
|
&& ref_idx < fp->ctf_typemax)
|
|
{
|
|
fp->ctf_ptrtab[ref_idx] = type_idx;
|
|
|
|
ctf_id_t refref_idx = LCTF_TYPE_TO_INDEX (fp, dtd->dtd_data.ctt_type);
|
|
|
|
if (tmp == fp
|
|
&& (LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) == CTF_K_TYPEDEF)
|
|
&& strcmp (ctf_strptr (fp, dtd->dtd_data.ctt_name), "") == 0
|
|
&& refref_idx < fp->ctf_typemax)
|
|
fp->ctf_ptrtab[refref_idx] = type_idx;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref,
|
|
const ctf_encoding_t *ep)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t resolved_ref = ref;
|
|
ctf_id_t type;
|
|
int kind;
|
|
const ctf_type_t *tp;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (ep == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if ((ep->cte_bits > 255) || (ep->cte_offset > 255))
|
|
return (ctf_set_errno (fp, ECTF_SLICEOVERFLOW));
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL))
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Make sure we ultimately point to an integral type. We also allow slices to
|
|
point to the unimplemented type, for now, because the compiler can emit
|
|
such slices, though they're not very much use. */
|
|
|
|
resolved_ref = ctf_type_resolve_unsliced (tmp, ref);
|
|
kind = ctf_type_kind_unsliced (tmp, resolved_ref);
|
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) &&
|
|
(kind != CTF_K_ENUM)
|
|
&& (ref != 0))
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0);
|
|
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
|
|
/ CHAR_BIT);
|
|
dtd->dtd_u.dtu_slice.cts_type = (uint32_t) ref;
|
|
dtd->dtd_u.dtu_slice.cts_bits = ep->cte_bits;
|
|
dtd->dtd_u.dtu_slice.cts_offset = ep->cte_offset;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_integer (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep)
|
|
{
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_float (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep)
|
|
{
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (arp == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (arp->ctr_contents != 0
|
|
&& ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
tmp = fp;
|
|
if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD)
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_array: index type %lx is incomplete"),
|
|
arp->ctr_contents);
|
|
return (ctf_set_errno (fp, ECTF_INCOMPLETE));
|
|
}
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0);
|
|
dtd->dtd_data.ctt_size = 0;
|
|
dtd->dtd_u.dtu_arr = *arp;
|
|
|
|
return type;
|
|
}
|
|
|
|
int
|
|
ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL
|
|
|| LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
dtd->dtd_u.dtu_arr = *arp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_function (ctf_dict_t *fp, uint32_t flag,
|
|
const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
uint32_t vlen;
|
|
uint32_t *vdat = NULL;
|
|
ctf_dict_t *tmp = fp;
|
|
size_t i;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0
|
|
|| (ctc->ctc_argc != 0 && argv == NULL))
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
vlen = ctc->ctc_argc;
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
vlen++; /* Add trailing zero to indicate varargs (see below). */
|
|
|
|
if (ctc->ctc_return != 0
|
|
&& ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (vlen > CTF_MAX_VLEN)
|
|
return (ctf_set_errno (fp, EOVERFLOW));
|
|
|
|
if (vlen != 0 && (vdat = malloc (sizeof (ctf_id_t) * vlen)) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
for (i = 0; i < ctc->ctc_argc; i++)
|
|
{
|
|
tmp = fp;
|
|
if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL)
|
|
{
|
|
free (vdat);
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
vdat[i] = (uint32_t) argv[i];
|
|
}
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION,
|
|
&dtd)) == CTF_ERR)
|
|
{
|
|
free (vdat);
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return;
|
|
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
vdat[vlen - 1] = 0; /* Add trailing zero to indicate varargs. */
|
|
dtd->dtd_u.dtu_argv = vdat;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
size_t size)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
/* Promote root-visible forwards to structs. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name);
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT,
|
|
&dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0);
|
|
|
|
if (size > CTF_MAX_SIZE)
|
|
{
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
|
|
}
|
|
else
|
|
dtd->dtd_data.ctt_size = (uint32_t) size;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return (ctf_add_struct_sized (fp, flag, name, 0));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
size_t size)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
/* Promote root-visible forwards to unions. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name);
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION,
|
|
&dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0);
|
|
|
|
if (size > CTF_MAX_SIZE)
|
|
{
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
|
|
}
|
|
else
|
|
dtd->dtd_data.ctt_size = (uint32_t) size;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return (ctf_add_union_sized (fp, flag, name, 0));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
/* Promote root-visible forwards to enums. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM,
|
|
&dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0);
|
|
dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
const ctf_encoding_t *ep)
|
|
{
|
|
ctf_id_t type = 0;
|
|
|
|
/* First, create the enum if need be, using most of the same machinery as
|
|
ctf_add_enum(), to ensure that we do not allow things past that are not
|
|
enums or forwards to them. (This includes other slices: you cannot slice a
|
|
slice, which would be a useless thing to do anyway.) */
|
|
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
|
|
|
|
if (type != 0)
|
|
{
|
|
if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) &&
|
|
(ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM))
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
}
|
|
else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Now attach a suitable slice to it. */
|
|
|
|
return ctf_add_slice (fp, flag, type, ep);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
if (!ctf_forwardable_kind (kind))
|
|
return (ctf_set_errno (fp, ECTF_NOTSUE));
|
|
|
|
/* If the type is already defined or exists as a forward tag, just
|
|
return the ctf_id_t of the existing definition. */
|
|
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, kind, name);
|
|
|
|
if (type)
|
|
return type;
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, kind, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0);
|
|
dtd->dtd_data.ctt_type = kind;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
ctf_id_t ref)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF,
|
|
&dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT));
|
|
}
|
|
|
|
int
|
|
ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name,
|
|
int value)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, enid);
|
|
ctf_dmdef_t *dmd;
|
|
|
|
uint32_t kind, vlen, root;
|
|
char *s;
|
|
|
|
if (name == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL)
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
|
|
vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
if (kind != CTF_K_ENUM)
|
|
return (ctf_set_errno (fp, ECTF_NOTENUM));
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
|
return (ctf_set_errno (fp, ECTF_DTFULL));
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if (strcmp (dmd->dmd_name, name) == 0)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
}
|
|
|
|
if ((dmd = malloc (sizeof (ctf_dmdef_t))) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
if ((s = strdup (name)) == NULL)
|
|
{
|
|
free (dmd);
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
}
|
|
|
|
dmd->dmd_name = s;
|
|
dmd->dmd_type = CTF_ERR;
|
|
dmd->dmd_offset = 0;
|
|
dmd->dmd_value = value;
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
|
|
ctf_list_append (&dtd->dtd_u.dtu_members, dmd);
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type, unsigned long bit_offset)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid);
|
|
ctf_dmdef_t *dmd;
|
|
|
|
ssize_t msize, malign, ssize;
|
|
uint32_t kind, vlen, root;
|
|
char *s = NULL;
|
|
int is_incomplete = 0;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL)
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
if (name != NULL && name[0] == '\0')
|
|
name = NULL;
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
|
|
vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
return (ctf_set_errno (fp, ECTF_NOTSOU));
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
|
return (ctf_set_errno (fp, ECTF_DTFULL));
|
|
|
|
if (name != NULL)
|
|
{
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if (dmd->dmd_name != NULL && strcmp (dmd->dmd_name, name) == 0)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
}
|
|
}
|
|
|
|
if ((msize = ctf_type_size (fp, type)) < 0 ||
|
|
(malign = ctf_type_align (fp, type)) < 0)
|
|
{
|
|
/* The unimplemented type, and any type that resolves to it, has no size
|
|
and no alignment: it can correspond to any number of compiler-inserted
|
|
types. We allow incomplete types through since they are routinely
|
|
added to the ends of structures, and can even be added elsewhere in
|
|
structures by the deduplicator. They are assumed to be zero-size with
|
|
no alignment: this is often wrong, but problems can be avoided in this
|
|
case by explicitly specifying the size of the structure via the _sized
|
|
functions. The deduplicator always does this. */
|
|
|
|
msize = 0;
|
|
malign = 0;
|
|
if (ctf_errno (fp) == ECTF_NONREPRESENTABLE)
|
|
ctf_set_errno (fp, 0);
|
|
else if (ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
is_incomplete = 1;
|
|
else
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
if ((dmd = malloc (sizeof (ctf_dmdef_t))) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
if (name != NULL && (s = strdup (name)) == NULL)
|
|
{
|
|
free (dmd);
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
}
|
|
|
|
dmd->dmd_name = s;
|
|
dmd->dmd_type = type;
|
|
dmd->dmd_value = -1;
|
|
|
|
if (kind == CTF_K_STRUCT && vlen != 0)
|
|
{
|
|
if (bit_offset == (unsigned long) - 1)
|
|
{
|
|
/* Natural alignment. */
|
|
|
|
ctf_dmdef_t *lmd = ctf_list_prev (&dtd->dtd_u.dtu_members);
|
|
ctf_id_t ltype = ctf_type_resolve (fp, lmd->dmd_type);
|
|
size_t off = lmd->dmd_offset;
|
|
|
|
ctf_encoding_t linfo;
|
|
ssize_t lsize;
|
|
|
|
/* Propagate any error from ctf_type_resolve. If the last member was
|
|
of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we
|
|
cannot insert right after such a member without explicit offset
|
|
specification, because its alignment and size is not known. */
|
|
if (ltype == CTF_ERR)
|
|
{
|
|
free (dmd);
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
if (is_incomplete)
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_member_offset: cannot add member %s of "
|
|
"incomplete type %lx to struct %lx without "
|
|
"specifying explicit offset\n"),
|
|
name ? name : _("(unnamed member)"), type, souid);
|
|
return (ctf_set_errno (fp, ECTF_INCOMPLETE));
|
|
}
|
|
|
|
if (ctf_type_encoding (fp, ltype, &linfo) == 0)
|
|
off += linfo.cte_bits;
|
|
else if ((lsize = ctf_type_size (fp, ltype)) > 0)
|
|
off += lsize * CHAR_BIT;
|
|
else if (lsize == -1 && ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_member_offset: cannot add member %s of "
|
|
"type %lx to struct %lx without specifying "
|
|
"explicit offset after member %s of type %lx, "
|
|
"which is an incomplete type\n"),
|
|
name ? name : _("(unnamed member)"), type, souid,
|
|
lmd->dmd_name ? lmd->dmd_name
|
|
: _("(unnamed member)"), ltype);
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
/* Round up the offset of the end of the last member to
|
|
the next byte boundary, convert 'off' to bytes, and
|
|
then round it up again to the next multiple of the
|
|
alignment required by the new member. Finally,
|
|
convert back to bits and store the result in
|
|
dmd_offset. Technically we could do more efficient
|
|
packing if the new member is a bit-field, but we're
|
|
the "compiler" and ANSI says we can do as we choose. */
|
|
|
|
off = roundup (off, CHAR_BIT) / CHAR_BIT;
|
|
off = roundup (off, MAX (malign, 1));
|
|
dmd->dmd_offset = off * CHAR_BIT;
|
|
ssize = off + msize;
|
|
}
|
|
else
|
|
{
|
|
/* Specified offset in bits. */
|
|
|
|
dmd->dmd_offset = bit_offset;
|
|
ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
|
|
ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dmd->dmd_offset = 0;
|
|
ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
|
|
ssize = MAX (ssize, msize);
|
|
}
|
|
|
|
if ((size_t) ssize > CTF_MAX_SIZE)
|
|
{
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize);
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize);
|
|
}
|
|
else
|
|
dtd->dtd_data.ctt_size = (uint32_t) ssize;
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
|
|
ctf_list_append (&dtd->dtd_u.dtu_members, dmd);
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type, unsigned long bit_offset,
|
|
const ctf_encoding_t encoding)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
|
int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
int otype = type;
|
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM))
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
|
|
if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return ctf_add_member_offset (fp, souid, name, type, bit_offset);
|
|
}
|
|
|
|
int
|
|
ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type)
|
|
{
|
|
return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1);
|
|
}
|
|
|
|
int
|
|
ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref)
|
|
{
|
|
ctf_dvdef_t *dvd;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (ctf_dvd_lookup (fp, name) != NULL)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
if (ctf_lookup_by_id (&tmp, ref) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
/* Make sure this type is representable. */
|
|
if ((ctf_type_resolve (fp, ref) == CTF_ERR)
|
|
&& (ctf_errno (fp) == ECTF_NONREPRESENTABLE))
|
|
return -1;
|
|
|
|
if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL)
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL)
|
|
{
|
|
free (dvd);
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
}
|
|
dvd->dvd_type = ref;
|
|
dvd->dvd_snapshots = fp->ctf_snapshots;
|
|
|
|
if (ctf_dvd_insert (fp, dvd) < 0)
|
|
{
|
|
free (dvd->dvd_name);
|
|
free (dvd);
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
fp->ctf_flags |= LCTF_DIRTY;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
|
|
{
|
|
ctf_dict_t *tmp = fp;
|
|
char *dupname;
|
|
ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash;
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (ctf_dynhash_lookup (fp->ctf_objthash, name) != NULL ||
|
|
ctf_dynhash_lookup (fp->ctf_funchash, name) != NULL)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
if (ctf_lookup_by_id (&tmp, id) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
if ((dupname = strdup (name)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0)
|
|
{
|
|
free (dupname);
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
{
|
|
return (ctf_add_funcobjt_sym (fp, 0, name, id));
|
|
}
|
|
|
|
int
|
|
ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
{
|
|
return (ctf_add_funcobjt_sym (fp, 1, name, id));
|
|
}
|
|
|
|
typedef struct ctf_bundle
|
|
{
|
|
ctf_dict_t *ctb_dict; /* CTF dict handle. */
|
|
ctf_id_t ctb_type; /* CTF type identifier. */
|
|
ctf_dtdef_t *ctb_dtd; /* CTF dynamic type definition (if any). */
|
|
} ctf_bundle_t;
|
|
|
|
static int
|
|
enumcmp (const char *name, int value, void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
int bvalue;
|
|
|
|
if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
|
_("conflict due to enum %s iteration error"), name);
|
|
return 1;
|
|
}
|
|
if (value != bvalue)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
|
_("conflict due to enum value change: %i versus %i"),
|
|
value, bvalue);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
enumadd (const char *name, int value, void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
|
|
return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type,
|
|
name, value) < 0);
|
|
}
|
|
|
|
static int
|
|
membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset,
|
|
void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
ctf_membinfo_t ctm;
|
|
|
|
/* Don't check nameless members (e.g. anonymous structs/unions) against each
|
|
other. */
|
|
if (name[0] == 0)
|
|
return 0;
|
|
|
|
if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
|
_("conflict due to struct member %s iteration error"),
|
|
name);
|
|
return 1;
|
|
}
|
|
if (ctm.ctm_offset != offset)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
|
_("conflict due to struct member %s offset change: "
|
|
"%lx versus %lx"),
|
|
name, ctm.ctm_offset, offset);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
membadd (const char *name, ctf_id_t type, unsigned long offset, void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
ctf_dmdef_t *dmd;
|
|
char *s = NULL;
|
|
|
|
if ((dmd = malloc (sizeof (ctf_dmdef_t))) == NULL)
|
|
return (ctf_set_errno (ctb->ctb_dict, EAGAIN));
|
|
|
|
/* Unnamed members in non-dynamic dicts have a name of "", while dynamic dicts
|
|
use NULL. Adapt. */
|
|
|
|
if (name[0] == 0)
|
|
name = NULL;
|
|
|
|
if (name != NULL && (s = strdup (name)) == NULL)
|
|
{
|
|
free (dmd);
|
|
return (ctf_set_errno (ctb->ctb_dict, EAGAIN));
|
|
}
|
|
|
|
/* For now, dmd_type is copied as the src_fp's type; it is reset to an
|
|
equivalent dst_fp type by a final loop in ctf_add_type(), below. */
|
|
dmd->dmd_name = s;
|
|
dmd->dmd_type = type;
|
|
dmd->dmd_offset = offset;
|
|
dmd->dmd_value = -1;
|
|
|
|
ctf_list_append (&ctb->ctb_dtd->dtd_u.dtu_members, dmd);
|
|
|
|
ctb->ctb_dict->ctf_flags |= LCTF_DIRTY;
|
|
return 0;
|
|
}
|
|
|
|
/* The ctf_add_type routine is used to copy a type from a source CTF dictionary
|
|
to a dynamic destination dictionary. This routine operates recursively by
|
|
following the source type's links and embedded member types. If the
|
|
destination dict already contains a named type which has the same attributes,
|
|
then we succeed and return this type but no changes occur. */
|
|
static ctf_id_t
|
|
ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type,
|
|
ctf_dict_t *proc_tracking_fp)
|
|
{
|
|
ctf_id_t dst_type = CTF_ERR;
|
|
uint32_t dst_kind = CTF_K_UNKNOWN;
|
|
ctf_dict_t *tmp_fp = dst_fp;
|
|
ctf_id_t tmp;
|
|
|
|
const char *name;
|
|
uint32_t kind, forward_kind, flag, vlen;
|
|
|
|
const ctf_type_t *src_tp, *dst_tp;
|
|
ctf_bundle_t src, dst;
|
|
ctf_encoding_t src_en, dst_en;
|
|
ctf_arinfo_t src_ar, dst_ar;
|
|
|
|
ctf_funcinfo_t ctc;
|
|
|
|
ctf_id_t orig_src_type = src_type;
|
|
|
|
if (!(dst_fp->ctf_flags & LCTF_RDWR))
|
|
return (ctf_set_errno (dst_fp, ECTF_RDONLY));
|
|
|
|
if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL)
|
|
return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR)
|
|
&& (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE))
|
|
return (ctf_set_errno (dst_fp, ECTF_NONREPRESENTABLE));
|
|
|
|
name = ctf_strptr (src_fp, src_tp->ctt_name);
|
|
kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info);
|
|
flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info);
|
|
vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info);
|
|
|
|
/* If this is a type we are currently in the middle of adding, hand it
|
|
straight back. (This lets us handle self-referential structures without
|
|
considering forwards and empty structures the same as their completed
|
|
forms.) */
|
|
|
|
tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp);
|
|
|
|
if (tmp != 0)
|
|
{
|
|
if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing,
|
|
(void *) (uintptr_t) src_type))
|
|
return tmp;
|
|
|
|
/* If this type has already been added from this dictionary, and is the
|
|
same kind and (if a struct or union) has the same number of members,
|
|
hand it straight back. */
|
|
|
|
if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind)
|
|
{
|
|
if (kind == CTF_K_STRUCT || kind == CTF_K_UNION
|
|
|| kind == CTF_K_ENUM)
|
|
{
|
|
if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL)
|
|
if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info))
|
|
return tmp;
|
|
}
|
|
else
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
forward_kind = kind;
|
|
if (kind == CTF_K_FORWARD)
|
|
forward_kind = src_tp->ctt_type;
|
|
|
|
/* If the source type has a name and is a root type (visible at the top-level
|
|
scope), lookup the name in the destination dictionary and verify that it is
|
|
of the same kind before we do anything else. */
|
|
|
|
if ((flag & CTF_ADD_ROOT) && name[0] != '\0'
|
|
&& (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0)
|
|
{
|
|
dst_type = tmp;
|
|
dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type);
|
|
}
|
|
|
|
/* If an identically named dst_type exists, fail with ECTF_CONFLICT
|
|
unless dst_type is a forward declaration and src_type is a struct,
|
|
union, or enum (i.e. the definition of the previous forward decl).
|
|
|
|
We also allow addition in the opposite order (addition of a forward when a
|
|
struct, union, or enum already exists), which is a NOP and returns the
|
|
already-present struct, union, or enum. */
|
|
|
|
if (dst_type != CTF_ERR && dst_kind != kind)
|
|
{
|
|
if (kind == CTF_K_FORWARD
|
|
&& (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT
|
|
|| dst_kind == CTF_K_UNION))
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
|
|
if (dst_kind != CTF_K_FORWARD
|
|
|| (kind != CTF_K_ENUM && kind != CTF_K_STRUCT
|
|
&& kind != CTF_K_UNION))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("ctf_add_type: conflict for type %s: "
|
|
"kinds differ, new: %i; old (ID %lx): %i"),
|
|
name, kind, dst_type, dst_kind);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
|
|
/* We take special action for an integer, float, or slice since it is
|
|
described not only by its name but also its encoding. For integers,
|
|
bit-fields exploit this degeneracy. */
|
|
|
|
if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE)
|
|
{
|
|
if (ctf_type_encoding (src_fp, src_type, &src_en) != 0)
|
|
return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
if (dst_type != CTF_ERR)
|
|
{
|
|
ctf_dict_t *fp = dst_fp;
|
|
|
|
if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL)
|
|
return CTF_ERR;
|
|
|
|
if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0)
|
|
return CTF_ERR; /* errno set for us. */
|
|
|
|
if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT)
|
|
{
|
|
/* The type that we found in the hash is also root-visible. If
|
|
the two types match then use the existing one; otherwise,
|
|
declare a conflict. Note: slices are not certain to match
|
|
even if there is no conflict: we must check the contained type
|
|
too. */
|
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
|
{
|
|
if (kind != CTF_K_SLICE)
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We found a non-root-visible type in the hash. If its encoding
|
|
is the same, we can reuse it, unless it is a slice. */
|
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
|
{
|
|
if (kind != CTF_K_SLICE)
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
src.ctb_dict = src_fp;
|
|
src.ctb_type = src_type;
|
|
src.ctb_dtd = NULL;
|
|
|
|
dst.ctb_dict = dst_fp;
|
|
dst.ctb_type = dst_type;
|
|
dst.ctb_dtd = NULL;
|
|
|
|
/* Now perform kind-specific processing. If dst_type is CTF_ERR, then we add
|
|
a new type with the same properties as src_type to dst_fp. If dst_type is
|
|
not CTF_ERR, then we verify that dst_type has the same attributes as
|
|
src_type. We recurse for embedded references. Before we start, we note
|
|
that we are processing this type, to prevent infinite recursion: we do not
|
|
re-process any type that appears in this list. The list is emptied
|
|
wholesale at the end of processing everything in this recursive stack. */
|
|
|
|
if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing,
|
|
(void *) (uintptr_t) src_type, (void *) 1) < 0)
|
|
return ctf_set_errno (dst_fp, ENOMEM);
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
/* If we found a match we will have either returned it or declared a
|
|
conflict. */
|
|
dst_type = ctf_add_integer (dst_fp, flag, name, &src_en);
|
|
break;
|
|
|
|
case CTF_K_FLOAT:
|
|
/* If we found a match we will have either returned it or declared a
|
|
conflict. */
|
|
dst_type = ctf_add_float (dst_fp, flag, name, &src_en);
|
|
break;
|
|
|
|
case CTF_K_SLICE:
|
|
/* We have checked for conflicting encodings: now try to add the
|
|
contained type. */
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en);
|
|
break;
|
|
|
|
case CTF_K_POINTER:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind);
|
|
break;
|
|
|
|
case CTF_K_ARRAY:
|
|
if (ctf_array_info (src_fp, src_type, &src_ar) != 0)
|
|
return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
src_ar.ctr_contents =
|
|
ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents,
|
|
proc_tracking_fp);
|
|
src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_ar.ctr_index,
|
|
proc_tracking_fp);
|
|
src_ar.ctr_nelems = src_ar.ctr_nelems;
|
|
|
|
if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (dst_type != CTF_ERR)
|
|
{
|
|
if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: array info "
|
|
"differs, old %lx/%lx/%x; new: %lx/%lx/%x"),
|
|
name, dst_type, src_ar.ctr_contents,
|
|
src_ar.ctr_index, src_ar.ctr_nelems,
|
|
dst_ar.ctr_contents, dst_ar.ctr_index,
|
|
dst_ar.ctr_nelems);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
dst_type = ctf_add_array (dst_fp, flag, &src_ar);
|
|
break;
|
|
|
|
case CTF_K_FUNCTION:
|
|
ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_tp->ctt_type,
|
|
proc_tracking_fp);
|
|
ctc.ctc_argc = 0;
|
|
ctc.ctc_flags = 0;
|
|
|
|
if (ctc.ctc_return == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL);
|
|
break;
|
|
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
int errs = 0;
|
|
size_t size;
|
|
ssize_t ssize;
|
|
ctf_dtdef_t *dtd;
|
|
|
|
/* Technically to match a struct or union we need to check both
|
|
ways (src members vs. dst, dst members vs. src) but we make
|
|
this more optimal by only checking src vs. dst and comparing
|
|
the total size of the structure (which we must do anyway)
|
|
which covers the possibility of dst members not in src.
|
|
This optimization can be defeated for unions, but is so
|
|
pathological as to render it irrelevant for our purposes. */
|
|
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
&& dst_kind != CTF_K_FORWARD)
|
|
{
|
|
if (ctf_type_size (src_fp, src_type) !=
|
|
ctf_type_size (dst_fp, dst_type))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: union "
|
|
"size differs, old %li, new %li"), name,
|
|
dst_type, (long) ctf_type_size (src_fp, src_type),
|
|
(long) ctf_type_size (dst_fp, dst_type));
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
|
|
if (ctf_member_iter (src_fp, src_type, membcmp, &dst))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: members "
|
|
"differ, see above"), name, dst_type);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* Unlike the other cases, copying structs and unions is done
|
|
manually so as to avoid repeated lookups in ctf_add_member
|
|
and to ensure the exact same member offsets as in src_type. */
|
|
|
|
dst_type = ctf_add_generic (dst_fp, flag, name, kind, &dtd);
|
|
if (dst_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst.ctb_type = dst_type;
|
|
dst.ctb_dtd = dtd;
|
|
|
|
/* Pre-emptively add this struct to the type mapping so that
|
|
structures that refer to themselves work. */
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
|
|
if (ctf_member_iter (src_fp, src_type, membadd, &dst) != 0)
|
|
errs++; /* Increment errs and fail at bottom of case. */
|
|
|
|
if ((ssize = ctf_type_size (src_fp, src_type)) < 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
size = (size_t) ssize;
|
|
if (size > CTF_MAX_SIZE)
|
|
{
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
|
|
}
|
|
else
|
|
dtd->dtd_data.ctt_size = (uint32_t) size;
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, vlen);
|
|
|
|
/* Make a final pass through the members changing each dmd_type (a
|
|
src_fp type) to an equivalent type in dst_fp. We pass through all
|
|
members, leaving any that fail set to CTF_ERR, unless they fail
|
|
because they are marking a member of type not representable in this
|
|
version of CTF, in which case we just want to silently omit them:
|
|
no consumer can do anything with them anyway. */
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
ctf_dict_t *dst = dst_fp;
|
|
ctf_id_t memb_type;
|
|
|
|
memb_type = ctf_type_mapping (src_fp, dmd->dmd_type, &dst);
|
|
if (memb_type == 0)
|
|
{
|
|
if ((dmd->dmd_type =
|
|
ctf_add_type_internal (dst_fp, src_fp, dmd->dmd_type,
|
|
proc_tracking_fp)) == CTF_ERR)
|
|
{
|
|
if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE)
|
|
errs++;
|
|
}
|
|
}
|
|
else
|
|
dmd->dmd_type = memb_type;
|
|
}
|
|
|
|
if (errs)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
break;
|
|
}
|
|
|
|
case CTF_K_ENUM:
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
&& dst_kind != CTF_K_FORWARD)
|
|
{
|
|
if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst)
|
|
|| ctf_enum_iter (dst_fp, dst_type, enumcmp, &src))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for enum %s against ID %lx: members "
|
|
"differ, see above"), name, dst_type);
|
|
return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dst_type = ctf_add_enum (dst_fp, flag, name);
|
|
if ((dst.ctb_type = dst_type) == CTF_ERR
|
|
|| ctf_enum_iter (src_fp, src_type, enumadd, &dst))
|
|
return CTF_ERR; /* errno is set for us */
|
|
}
|
|
break;
|
|
|
|
case CTF_K_FORWARD:
|
|
if (dst_type == CTF_ERR)
|
|
dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind);
|
|
break;
|
|
|
|
case CTF_K_TYPEDEF:
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* If dst_type is not CTF_ERR at this point, we should check if
|
|
ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with
|
|
ECTF_CONFLICT. However, this causes problems with bitness typedefs
|
|
that vary based on things like if 32-bit then pid_t is int otherwise
|
|
long. We therefore omit this check and assume that if the identically
|
|
named typedef already exists in dst_fp, it is correct or
|
|
equivalent. */
|
|
|
|
if (dst_type == CTF_ERR)
|
|
dst_type = ctf_add_typedef (dst_fp, flag, name, src_type);
|
|
|
|
break;
|
|
|
|
default:
|
|
return (ctf_set_errno (dst_fp, ECTF_CORRUPT));
|
|
}
|
|
|
|
if (dst_type != CTF_ERR)
|
|
ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type)
|
|
{
|
|
ctf_id_t id;
|
|
|
|
if (!src_fp->ctf_add_processing)
|
|
src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer,
|
|
ctf_hash_eq_integer,
|
|
NULL, NULL);
|
|
|
|
/* We store the hash on the source, because it contains only source type IDs:
|
|
but callers will invariably expect errors to appear on the dest. */
|
|
if (!src_fp->ctf_add_processing)
|
|
return (ctf_set_errno (dst_fp, ENOMEM));
|
|
|
|
id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp);
|
|
ctf_dynhash_empty (src_fp->ctf_add_processing);
|
|
|
|
return id;
|
|
}
|
|
|
|
/* Write the compressed CTF data stream to the specified gzFile descriptor. */
|
|
int
|
|
ctf_gzwrite (ctf_dict_t *fp, gzFile fd)
|
|
{
|
|
const unsigned char *buf;
|
|
ssize_t resid;
|
|
ssize_t len;
|
|
|
|
resid = sizeof (ctf_header_t);
|
|
buf = (unsigned char *) fp->ctf_header;
|
|
while (resid != 0)
|
|
{
|
|
if ((len = gzwrite (fd, buf, resid)) <= 0)
|
|
return (ctf_set_errno (fp, errno));
|
|
resid -= len;
|
|
buf += len;
|
|
}
|
|
|
|
resid = fp->ctf_size;
|
|
buf = fp->ctf_buf;
|
|
while (resid != 0)
|
|
{
|
|
if ((len = gzwrite (fd, buf, resid)) <= 0)
|
|
return (ctf_set_errno (fp, errno));
|
|
resid -= len;
|
|
buf += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compress the specified CTF data stream and write it to the specified file
|
|
descriptor. */
|
|
int
|
|
ctf_compress_write (ctf_dict_t *fp, int fd)
|
|
{
|
|
unsigned char *buf;
|
|
unsigned char *bp;
|
|
ctf_header_t h;
|
|
ctf_header_t *hp = &h;
|
|
ssize_t header_len = sizeof (ctf_header_t);
|
|
ssize_t compress_len;
|
|
ssize_t len;
|
|
int rc;
|
|
int err = 0;
|
|
|
|
if (ctf_serialize (fp) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
memcpy (hp, fp->ctf_header, header_len);
|
|
hp->cth_flags |= CTF_F_COMPRESS;
|
|
compress_len = compressBound (fp->ctf_size);
|
|
|
|
if ((buf = malloc (compress_len)) == NULL)
|
|
{
|
|
ctf_err_warn (fp, 0, 0, _("ctf_compress_write: cannot allocate %li bytes"),
|
|
(unsigned long) compress_len);
|
|
return (ctf_set_errno (fp, ECTF_ZALLOC));
|
|
}
|
|
|
|
if ((rc = compress (buf, (uLongf *) &compress_len,
|
|
fp->ctf_buf, fp->ctf_size)) != Z_OK)
|
|
{
|
|
err = ctf_set_errno (fp, ECTF_COMPRESS);
|
|
ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
|
|
goto ret;
|
|
}
|
|
|
|
while (header_len > 0)
|
|
{
|
|
if ((len = write (fd, hp, header_len)) < 0)
|
|
{
|
|
err = ctf_set_errno (fp, errno);
|
|
ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing header"));
|
|
goto ret;
|
|
}
|
|
header_len -= len;
|
|
hp += len;
|
|
}
|
|
|
|
bp = buf;
|
|
while (compress_len > 0)
|
|
{
|
|
if ((len = write (fd, bp, compress_len)) < 0)
|
|
{
|
|
err = ctf_set_errno (fp, errno);
|
|
ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing"));
|
|
goto ret;
|
|
}
|
|
compress_len -= len;
|
|
bp += len;
|
|
}
|
|
|
|
ret:
|
|
free (buf);
|
|
return err;
|
|
}
|
|
|
|
/* Optionally compress the specified CTF data stream and return it as a new
|
|
dynamically-allocated string. */
|
|
unsigned char *
|
|
ctf_write_mem (ctf_dict_t *fp, size_t *size, size_t threshold)
|
|
{
|
|
unsigned char *buf;
|
|
unsigned char *bp;
|
|
ctf_header_t *hp;
|
|
ssize_t header_len = sizeof (ctf_header_t);
|
|
ssize_t compress_len;
|
|
int rc;
|
|
|
|
if (ctf_serialize (fp) < 0)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
compress_len = compressBound (fp->ctf_size);
|
|
if (fp->ctf_size < threshold)
|
|
compress_len = fp->ctf_size;
|
|
if ((buf = malloc (compress_len
|
|
+ sizeof (struct ctf_header))) == NULL)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
ctf_err_warn (fp, 0, 0, _("ctf_write_mem: cannot allocate %li bytes"),
|
|
(unsigned long) (compress_len + sizeof (struct ctf_header)));
|
|
return NULL;
|
|
}
|
|
|
|
hp = (ctf_header_t *) buf;
|
|
memcpy (hp, fp->ctf_header, header_len);
|
|
bp = buf + sizeof (struct ctf_header);
|
|
*size = sizeof (struct ctf_header);
|
|
|
|
if (fp->ctf_size < threshold)
|
|
{
|
|
hp->cth_flags &= ~CTF_F_COMPRESS;
|
|
memcpy (bp, fp->ctf_buf, fp->ctf_size);
|
|
*size += fp->ctf_size;
|
|
}
|
|
else
|
|
{
|
|
hp->cth_flags |= CTF_F_COMPRESS;
|
|
if ((rc = compress (bp, (uLongf *) &compress_len,
|
|
fp->ctf_buf, fp->ctf_size)) != Z_OK)
|
|
{
|
|
ctf_set_errno (fp, ECTF_COMPRESS);
|
|
ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
|
|
free (buf);
|
|
return NULL;
|
|
}
|
|
*size += compress_len;
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/* Write the uncompressed CTF data stream to the specified file descriptor. */
|
|
int
|
|
ctf_write (ctf_dict_t *fp, int fd)
|
|
{
|
|
const unsigned char *buf;
|
|
ssize_t resid;
|
|
ssize_t len;
|
|
|
|
if (ctf_serialize (fp) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
resid = sizeof (ctf_header_t);
|
|
buf = (unsigned char *) fp->ctf_header;
|
|
while (resid != 0)
|
|
{
|
|
if ((len = write (fd, buf, resid)) <= 0)
|
|
{
|
|
ctf_err_warn (fp, 0, errno, _("ctf_write: error writing header"));
|
|
return (ctf_set_errno (fp, errno));
|
|
}
|
|
resid -= len;
|
|
buf += len;
|
|
}
|
|
|
|
resid = fp->ctf_size;
|
|
buf = fp->ctf_buf;
|
|
while (resid != 0)
|
|
{
|
|
if ((len = write (fd, buf, resid)) <= 0)
|
|
{
|
|
ctf_err_warn (fp, 0, errno, _("ctf_write: error writing"));
|
|
return (ctf_set_errno (fp, errno));
|
|
}
|
|
resid -= len;
|
|
buf += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|